JP6156317B2 - 膜電極接合体及び燃料電池 - Google Patents

膜電極接合体及び燃料電池 Download PDF

Info

Publication number
JP6156317B2
JP6156317B2 JP2014208571A JP2014208571A JP6156317B2 JP 6156317 B2 JP6156317 B2 JP 6156317B2 JP 2014208571 A JP2014208571 A JP 2014208571A JP 2014208571 A JP2014208571 A JP 2014208571A JP 6156317 B2 JP6156317 B2 JP 6156317B2
Authority
JP
Japan
Prior art keywords
anode
catalyst layer
gas diffusion
diffusion layer
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014208571A
Other languages
English (en)
Other versions
JP2016081581A (ja
Inventor
恒政 西田
恒政 西田
大雄 吉川
大雄 吉川
淳二 中西
淳二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014208571A priority Critical patent/JP6156317B2/ja
Priority to KR1020150140328A priority patent/KR101823207B1/ko
Priority to DE102015117087.6A priority patent/DE102015117087B4/de
Priority to US14/878,064 priority patent/US9634346B2/en
Priority to CN201510651333.5A priority patent/CN105514452B/zh
Publication of JP2016081581A publication Critical patent/JP2016081581A/ja
Application granted granted Critical
Publication of JP6156317B2 publication Critical patent/JP6156317B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Composite Materials (AREA)

Description

本発明は、燃料電池に用いられる膜電極接合体及び燃料電池に関する。
特許文献1には、積層方向におけるアノード側触媒層の厚みがT1であり、積層方向におけるカソード側触媒層の厚みがT2であり、積層方向におけるアノード側ガス拡散層の厚みがT3であり、積層方向におけるカソード側ガス拡散層の厚みがT4である時に、T1+T3≧T2+T4、T1<T2、T3>T4の関係を満たす膜電極接合体、燃料電池が記載されている。
特開2012−243630号公報
しかしながら、T1+T3、T2+T4の大きさの関係によっては、カソード側の断熱性を高めることが難しいことがわかってきた。また、高温低加湿状態では、アノードが乾燥しやすいため、カソードで生成した生成水をアノードに送りたい。しかし、従来の構成では、カソードからアノードへの水の移動を促進することが難しいこともわかってきた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、燃料電池に用いられる膜電極接合体が提供される。この形態の膜電極接合体は、電解質膜と、前記電解質膜の第1の面に形成されるアノード側触媒層と、前記電解質膜の第2の面に形成されるカソード側触媒層と、前記アノード側触媒層に積層されるアノード側ガス拡散層と、前記カソード側触媒層に積層されるカソード側ガス拡散層と、を備える。前記アノード側触媒層と前記カソード側触媒層と前記アノード側ガス拡散層と前記カソード側ガス拡散層の厚さ当たりの断熱性能は同じであり、積層方向における前記アノード側触媒層の厚みをT1、積層方向における前記カソード側触媒層の厚みをT2、積層方向における前記アノード側ガス拡散層の厚みをT3、積層方向における前記カソード側ガス拡散層の厚みをT4、としたときに、T1+T3<T2+T4、T1<T2及びT3>T4の関係をいずれも満たす。この形態によれば、カソード側の断熱性をアノード側の断熱性より高めることができ、カソードからアノードへの水の移動を促進できる。
(2)上記形態の膜電極接合体において、前記アノード側触媒層と前記カソード側触媒層と前記アノード側ガス拡散層と前記カソード側ガス拡散層は、カーボンを含んでもよい。断熱性を決める因子は主としてカーボンである。アノード側触媒層とカソード側触媒層の触媒を担持するカーボンが含まれており、アノード側ガス拡散層とカソード側ガス拡散層もカーボンを含んでいるので、カソード側の断熱性をアノード側の断熱性よりも大きく出来る。その結果、カソードからアノードへの水の移動を促進できる。
なお、本発明は、種々の態様で実現することが可能である。例えば、膜電極接合体の他、膜電極接合体を備える燃料電池等の形態で実現することができる。
本発明の実施形態としての燃料電池の構成を示す概略斜視図。 ユニットセルの酸化剤ガス排出孔近傍を模式的に示す断面図。 MEGA110の構成を示す説明図。 各サンプルの触媒層とガス拡散層の厚さをまとめた説明図。 (T2+T4)/(T1+T3)の値と、カソードからアノードへの水の移動量との関係を示す説明図。
図1は本発明の実施形態としての燃料電池10の構成を示す概略斜視図である。燃料電池10は、燃料電池セルたるユニットセル100をZ方向(以下、「積層方向」とも呼ぶ)に複数積層し、一対のエンドプレート170F,170Eで挟持したスタック構造を有している。燃料電池10は、前端側のエンドプレート170Fとユニットセル100との間に、前端側の絶縁板165Fを介在させて前端側のターミナルプレート160Fを有する。燃料電池10は、後端側のエンドプレート170Eとユニットセル100との間にも、同様に、後端側の絶縁板165Eを介在させて後端側のターミナルプレート160Eを有する。ユニットセル100と、ターミナルプレート160F,160Eと、絶縁板165F,165Eおよびエンドプレート170F,170Eは、それぞれ、略矩形状の外形を有するプレート構造を有しており、長辺がX方向(水平方向)で短辺がY方向(垂直方向,鉛直方向)に沿うように配置されている。
前端側におけるエンドプレート170Fと絶縁板165Fとターミナルプレート160Fは、燃料ガス供給孔172inおよび燃料ガス排出孔172outと、複数の酸化剤ガス供給孔174inおよび酸化剤ガス排出孔174outと、複数の冷却水供給孔176inおよび冷却水排出孔176outとを有する。これらの供給孔及び排出孔は、各ユニットセル100の対応する位置に設けられているそれぞれの孔(不図示)と連結して、それぞれに対応するガス或いは冷却水の供給マニホールドと排出マニホールドを構成する。その一方、後端側におけるエンドプレート170Eと絶縁板165Eとターミナルプレート160Eには、これらの供給孔及び排出孔は設けられていない。これは、反応ガス(燃料ガス,酸化剤ガス)および冷却水を前端側のエンドプレート170Fからそれぞれのユニットセル100に対して供給マニホールドを介して供給しつつ、それぞれのユニットセル100からの排出ガスおよび排出水を前端側のエンドプレート170Fから外部に対して排出マニホールドを介して排出するタイプの燃料電池であることによる。ただし、これに限定されるものではなく、例えば、前端側のエンドプレート170Fから反応ガスおよび冷却水を供給し、後端側のエンドプレート170Eから排出ガスおよび排出水が外部へ排出されるタイプ等の種々のタイプとすることができる。
複数の酸化剤ガス供給孔174inは、前端側のエンドプレート170Fの下端の外縁部にX方向(長辺方向)に沿って配置されており、複数の酸化剤ガス排出孔174outは、上端の外縁部にX方向に沿って配置されている。燃料ガス供給孔172inは、前端側のエンドプレート170Fの右端の外縁部のY方向(短辺方向)の上端部に配置されており、燃料ガス排出孔172outは、左端の外縁部のY方向の下端部に配置されている。複数の冷却水供給孔176inは、燃料ガス供給孔172inの下側にY方向に沿って配置されており、複数の冷却水排出孔176outは、燃料ガス排出孔172outの上側にY方向に沿って配置されている。
前端側のターミナルプレート160Fおよび後端側のターミナルプレート160Eは、各ユニットセル100の発電電力の集電板であり、図示しない端子から集電した電力を外部へ出力する。
図2は、ユニットセル100の酸化剤ガス排出孔174out近傍を模式的に示す断面図である。ユニットセル100は、膜電極接合体110(以下「MEGA110」と呼ぶ。)と、シール部材140と、カソード側セパレーター130と、アノード側セパレーター120と、ガス流路部材150と、シーリングプレート151と、を備える。酸化剤ガス供給孔174in近傍については、上下方向が逆になるだけで、同様の構成であるので、説明を省略する。
シール部材140は、MEGA110を外縁から支持する部材であり、樹脂により形成されている。シール部材140は、カソード側セパレーター130と、アノード側セパレーター120と接着し、酸化剤ガスや燃料ガス、冷却水の漏れをシールする。シール部材140のカソード側には、シーリングプレート151が配置されている。シーリングプレート151は、金属製の板であり、一部が酸化剤ガス排出孔174out内に突出している。MEGA110とシール部材140とシーリングプレート151のカソード側には、ガス流路部材150が配置されている。ガス流路部材150は、酸化剤ガスを流すための流路であり、例えば、エキスパンドメタルにより形成されている。ただし、エキスパンドメタルの代わりに、他の種類の金属多孔体により形成されていてもよい。ガス流路部材150は、シーリングプレート151と同位置まで酸化剤ガス排出孔174out内に突出している。なお、図2において、カソード側セパレーター130、ガス流路部材150、シーリングプレート151の突出している大きさについては、模式的に示している。
ガス流路部材150の隣のユニットセル100側にカソード側セパレーター130が配置される。カソード側セパレーター130は、金属製の板であり、一部が酸化剤ガス排出孔174out内に突出している。MEGA110とシール部材140のガス流路部材150と反対側の面には、アノード側セパレーター120が配置される。アノード側セパレーター120は、凹凸のある金属製のプレートである。アノード側セパレーター120は、酸化剤ガス排出孔174out内に突出していない。アノード側セパレーター120とMEGA110との間には燃料ガス流路128が形成され、アノード側セパレーター120とカソード側セパレーター130との間には、冷媒流路129が形成される。
図3は、MEGA110の構成を示す説明図である。MEGA110は、電解質膜111と、カソード側触媒層114と、アノード側触媒層116と、カソード側ガス拡散層118と、アノード側ガス拡散層119と、を備える。電解質膜111は、プロトン伝導性を有する電解質膜であり、例えば、パーフルオロカーボンスルホン酸ポリマのようなフッ素系電解質樹脂(イオン交換樹脂)が用いられる。
カソード側触媒層114と、アノード側触媒層116は、触媒(例えば白金)を担持したカーボンを有している。本実施形態では、アノード側触媒層116は電解質膜111の第1の面の全領域にわたって塗工されているが、カソード側触媒層114は電解質膜111の第2の面のうちの一部の領域(発電領域)のみに塗工されている。この理由は、アノード側触媒層116は、カソード側触媒層114に比べて単位面積当たりの触媒量が少なくて良い(典型的には1/2以下であり、例えば約1/3)ので、電解質膜111の第1面の全領域に触媒を塗工しても過度の無駄とはならない反面、塗工工程が簡単になるからである。
カソード側触媒層114の上には、カソード側ガス拡散層118が配置され、アノード側触媒層116の上には、アノード側ガス拡散層119が配置されている。カソード側ガス拡散層118及びアノード側ガス拡散層119は、カーボンペーパーで形成されているただし、カーボンペーパーの代わりにカーボン不織布で形成されていてもよい。
本実施形態では、アノード側触媒層116の積層方向の厚さをT1、カソード側触媒層114の積層方向の厚さをT2、アノード側ガス拡散層119の積層方向の厚さをT3、カソード側ガス拡散層118の積層方向の厚さをT4とすると、以下の3つの式をいずれも満たす。
T1+T3<T2+T4 …(1)
T1<T2 …(2)
T3>T4 …(3)
なお、式(1)と式(3)を満たせば、式(2)は必然的に満たされる。
式(1)、すなわち、カソード側触媒層114とカソード側ガス拡散層118の厚さの和(T2+T4)が、アノード側触媒層116とアノード側ガス拡散層119の厚さの和(T1+T3)よりも大きいことを満たすと、カソード側(カソード側触媒層114とカソード側ガス拡散層118)の断熱性を、アノード側(アノード側触媒層116とアノード側ガス拡散層119)の断熱性よりも高めることができる。ここで、断熱性を決める因子は、主としてカーボンである。カソード側触媒層114、アノード側触媒層116は、触媒を担持するカーボンを有している。カソード側ガス拡散層118、アノード側ガス拡散層119は、カーボンペーパーで形成されているので、基材に炭素繊維を含む。また、カソード側ガス拡散層118、アノード側ガス拡散層119は、撥水層を有する場合、撥水層を構成する材料として、カーボン粒子を含む。このように、カソード側触媒層114、アノード側触媒層116、カソード側ガス拡散層118、アノード側ガス拡散層119は断熱を決める因子であるカーボンを含み、厚みに対する断熱性能は、触媒層か、ガス拡散層か、に関わらずほぼ同じである。すなわち、触媒層とガス拡散層の厚さ当たりの断熱性能は、ほぼ同じである。したがって、断熱性の大小は、触媒層とガス拡散層の合計の厚みで評価可能である。
また、本実施形態において、カソード側触媒層114の積層方向の厚さT2は、アノード側触媒層116の積層方向の厚さT1よりも大きく形成されている。これにより、カソード側触媒層114の断熱性をアノード側触媒層の断熱性よりも高めることが出来る。なお、式(1)を満たせば、カソード側の断熱性をアノード側の断熱性よりも高めて、水をアノード側に移動させることができるが、さらに、式(2)を満たすことで、カソード側触媒層114で生成した生成水をアノード側触媒層116により効果的に拡散することができる。カソード側の断熱性がアノード側の断熱性よりも高いと、カソードの温度がアノードの温度よりも高くなる。その結果、カソード側の水蒸気分圧がアノード側の水蒸気分圧よりも高くなる。水蒸気分圧の差により、カソードからアノードへの水の移動が促進される。
さらに、本実施形態において、アノード側ガス拡散層119の積層方向の厚さT3は、カソード側ガス拡散層118の厚さT4よりも厚く形成されている。式(3)を満たすことにより、カソード側ガス拡散層118におけるガス拡散性を、アノード側ガス拡散層119におけるガス拡散性よりも大きくすることができ、カソード側ガス拡散層118の排水性を向上できる。
実施例:
図4は、各サンプルの触媒層とガス拡散層の厚さをまとめた説明図である。なお、これらの厚さは、燃料電池10を締結した状態における値である。なお、図4では、式(1)の代わりに、(T2+T4)/(T1+T3)を用いている。(T2+T4)/(T1+T3)の値が1より大きければ、式(1)を満たす。
サンプル1:
アノード側触媒層の厚みT1:3.5μm
カソード側触媒層の厚みT2:10.5μm
アノード側ガス拡散層の厚みT3:159μm
カソード側ガス拡散層の厚みT4:156μm
サンプル1は、式(1)〜(3)を全て満たしている。
サンプル2:
アノード側触媒層の厚みT1:3.5μm
カソード側触媒層の厚みT2:20μm
アノード側ガス拡散層の厚みT3:159μm
カソード側ガス拡散層の厚みT4:156μm
サンプル2は、式(1)〜(3)を全て満たしている。
サンプル3:
アノード側触媒層の厚みT1:10.5μm
カソード側触媒層の厚みT2:10.5μm
アノード側ガス拡散層の厚みT3:159μm
カソード側ガス拡散層の厚みT4:159μm
サンプル3は、T1=T2、T3=T4、T1+T3=T2+T4であり、式(1)〜(3)のいずれも満たしていない。
サンプル4:
アノード側触媒層の厚みT1:10.5μm
カソード側触媒層の厚みT2:20μm
アノード側ガス拡散層の厚みT3:159μm
カソード側ガス拡散層の厚みT4:126μm
サンプル1は、式(2)、(3)を満たしているが、T1+T3>T2+T4であり、式(1)を満たしていない。
図5は、(T2+T4)/(T1+T3)の値と、カソードからアノードへの水の移動量との関係を示す説明図である。水の移動量については、以下のように測定した。
Step1:
ユニットセル100に酸化ガス及びアノードガスを供給して発電を行った。その後、ユニットセルの発電を停止した。ユニットセル100のアノード及びカソードには、水が残存した。
Step2:
アノードのアノードガスを供給して、アノード側に残存した水を排水した。なお、カソード側には、水が残存していた。
Step3:
ユニットセル100の重さX1を測定した。
Step4:
ユニットセル100を放置した。この結果、カソードに残存していた水がアノードに移動した。
Step5:
アノードのアノードガスを供給して、アノード側の水を排水した。なお、このとき排水された水は、カソードから移動してきたものである。
Step6:
ユニットセル100の重さX2を測定した。
Step7:
カソードからアノードへの水の移動量を計算した。水の移動量は、X1−X2で算出した。
図5からわかるように、(T2+T4)/(T1+T3)の値が大きくなると、カソードからアノードへの水の移動量が多くなることがわかる。さらに、(T2+T4)/(T1+T3)の値が1を越えると、すなわち、(T1+T3)<(T2+T4)を満たすと、グラフの傾きが大きくなり、カソードからアノードへの水の移動量がより促進されることがわかる。
以上、本実施形態によれば、膜電極接合体110は、積層方向におけるアノード側触媒層116の厚みをT1、積層方向におけるカソード側触媒層114の厚みをT2、積層方向におけるアノード側ガス拡散層119の厚みをT3、積層方向におけるカソード側ガス拡散層118の厚みをT4、としたときに、T1+T3<T2+T4、T1<T2及びT3>T4の関係をいずれも満たすので、カソード側の断熱性をアノード側の断熱性よりも大きくすることができ、カソードからアノードへの水の移動量を促進できる。
上記実施形態では、断熱性を決める因子は、主としてカーボンであるとし、カソード側触媒層114、アノード側触媒層116において、触媒を担持する担体としてカーボンを用い、カソード側ガス拡散層118、アノード側ガス拡散層119として、基材に炭素繊維を含むカーボンペーパーを用いた。しかし、触媒を担持する担体としては、カーボンを含まない担体であっても良い。例えばカーボンの代わりに、ゼオライト、アルミナ、セラミックなどの担体を用いても良い。かかる場合であっても、触媒を担持する担体としてカーボンを用いた場合と同様に、触媒層とガス拡散層の合計の厚さにより断熱性が決まる。
以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。
10…燃料電池
100…ユニットセル
110…膜電極接合体
111…電解質膜
114…カソード側触媒層
116…アノード側触媒層
118…カソード側ガス拡散層
119…アノード側ガス拡散層
120…アノード側セパレーター
128…燃料ガス流路
129…冷媒流路
130…カソード側セパレーター
140…シール部材
150…ガス流路部材
151…シーリングプレート
160E…ターミナルプレート
160F…ターミナルプレート
165E…絶縁板
165F…絶縁板
170E…エンドプレート
170F…エンドプレート
172out…燃料ガス排出孔
172in…燃料ガス供給孔
174out…酸化剤ガス排出孔
174in…酸化剤ガス供給孔
176out…冷却水排出孔
176in…冷却水供給孔

Claims (3)

  1. 燃料電池に用いられる膜電極接合体であって、
    電解質膜と、
    前記電解質膜の第1の面に形成されるアノード側触媒層と、
    前記電解質膜の第2の面に形成されるカソード側触媒層と、
    前記アノード側触媒層に積層されるアノード側ガス拡散層と、
    前記カソード側触媒層に積層されるカソード側ガス拡散層と
    を備え、
    前記アノード側触媒層と前記カソード側触媒層と前記アノード側ガス拡散層と前記カソード側ガス拡散層の厚さ当たりの断熱性能は同じであり、
    積層方向における前記アノード側触媒層の厚みをT1、
    積層方向における前記カソード側触媒層の厚みをT2、
    積層方向における前記アノード側ガス拡散層の厚みをT3、
    積層方向における前記カソード側ガス拡散層の厚みをT4、
    としたときに、
    T1+T3<T2+T4、T1<T2及びT3>T4の関係をいずれも満たす、膜電極接合体。
  2. 請求項1に記載の膜電極接合体において、
    前記アノード側触媒層と前記カソード側触媒層と前記アノード側ガス拡散層と前記カソード側ガス拡散層は、カーボンを含む、膜電極接合体。
  3. 請求項1または2に記載の膜電極接合体を備える燃料電池。
JP2014208571A 2014-10-10 2014-10-10 膜電極接合体及び燃料電池 Active JP6156317B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014208571A JP6156317B2 (ja) 2014-10-10 2014-10-10 膜電極接合体及び燃料電池
KR1020150140328A KR101823207B1 (ko) 2014-10-10 2015-10-06 막전극 접합체 및 연료 전지
DE102015117087.6A DE102015117087B4 (de) 2014-10-10 2015-10-07 Membranelektrodenanordnung und Brennstoffzellenbatterie
US14/878,064 US9634346B2 (en) 2014-10-10 2015-10-08 Membrane electrode assembly and fuel cell battery
CN201510651333.5A CN105514452B (zh) 2014-10-10 2015-10-10 膜电极组件和燃料电池组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208571A JP6156317B2 (ja) 2014-10-10 2014-10-10 膜電極接合体及び燃料電池

Publications (2)

Publication Number Publication Date
JP2016081581A JP2016081581A (ja) 2016-05-16
JP6156317B2 true JP6156317B2 (ja) 2017-07-05

Family

ID=55656067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208571A Active JP6156317B2 (ja) 2014-10-10 2014-10-10 膜電極接合体及び燃料電池

Country Status (5)

Country Link
US (1) US9634346B2 (ja)
JP (1) JP6156317B2 (ja)
KR (1) KR101823207B1 (ja)
CN (1) CN105514452B (ja)
DE (1) DE102015117087B4 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272319B2 (ja) * 2020-05-22 2023-05-12 トヨタ自動車株式会社 燃料電池用の積層体
CN112838251A (zh) * 2021-01-25 2021-05-25 武汉绿知行环保科技有限公司 一种燃料电池膜电极及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022413A1 (fr) * 1997-10-28 1999-05-06 Kabushiki Kaisha Toshiba Cellule electrochimique comprenant un distributeur de gaz
US7429429B2 (en) 2004-06-02 2008-09-30 Utc Power Corporation Fuel cell with thermal conductance of cathode greater than anode
JP5069927B2 (ja) 2007-03-26 2012-11-07 アイシン精機株式会社 燃料電池用膜電極接合体およびその製造方法
CN102792653A (zh) * 2009-12-08 2012-11-21 开普敦大学 用于提高动态频谱访问多载波系统中的信道估计性能的方法
JP2012243630A (ja) * 2011-05-20 2012-12-10 Toyota Motor Corp 燃料電池
JP5772554B2 (ja) * 2011-12-06 2015-09-02 トヨタ自動車株式会社 燃料電池

Also Published As

Publication number Publication date
DE102015117087B4 (de) 2023-06-29
US9634346B2 (en) 2017-04-25
CN105514452B (zh) 2018-04-03
DE102015117087A1 (de) 2016-05-25
JP2016081581A (ja) 2016-05-16
US20160104910A1 (en) 2016-04-14
KR101823207B1 (ko) 2018-01-29
CN105514452A (zh) 2016-04-20
KR20160042771A (ko) 2016-04-20

Similar Documents

Publication Publication Date Title
JP4304101B2 (ja) 電解質膜・電極構造体及び燃料電池
JP2008192368A (ja) 燃料電池スタック
US20100285386A1 (en) High power fuel stacks using metal separator plates
JP5354576B2 (ja) 燃料電池用分離板
JP6280531B2 (ja) 燃料電池
JP6156317B2 (ja) 膜電極接合体及び燃料電池
JP2014086131A (ja) 燃料電池システム
JP2008004494A (ja) 燃料電池
JP5653867B2 (ja) 燃料電池
JP2009081102A (ja) 固体高分子型燃料電池
JP2008146897A (ja) 燃料電池用セパレータおよび燃料電池
JP2015153568A (ja) 燃料電池スタック
JP2007115620A (ja) 高分子電解質形燃料電池用セパレータおよび高分子電解質形燃料電池
JP4661103B2 (ja) 燃料電池
JP2013114899A (ja) 燃料電池用スタック
JP2013089443A (ja) 燃料電池システム及びその運転方法
JPH06333581A (ja) 固体高分子電解質型燃料電池
JP2010251166A (ja) 燃料電池スタック
JP2005310586A (ja) 燃料電池
JP2008186783A (ja) 燃料電池スタック
JP5874596B2 (ja) 燃料電池
JP2012003875A (ja) 燃料電池
JP2008269806A (ja) 電解質膜およびそれを用いた燃料電池
JP2011171028A (ja) 燃料電池
JP2010257906A (ja) 燃料電池スタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6156317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151