JP6147561B2 - 硬化性樹脂組成物及び封止材 - Google Patents

硬化性樹脂組成物及び封止材 Download PDF

Info

Publication number
JP6147561B2
JP6147561B2 JP2013100469A JP2013100469A JP6147561B2 JP 6147561 B2 JP6147561 B2 JP 6147561B2 JP 2013100469 A JP2013100469 A JP 2013100469A JP 2013100469 A JP2013100469 A JP 2013100469A JP 6147561 B2 JP6147561 B2 JP 6147561B2
Authority
JP
Japan
Prior art keywords
group
resin composition
curable resin
compound
silane compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013100469A
Other languages
English (en)
Other versions
JP2014028923A (ja
Inventor
高明 和田
高明 和田
鴻巣 修
修 鴻巣
輝久 藤林
輝久 藤林
杉岡 卓央
卓央 杉岡
修輔 鎌田
修輔 鎌田
篤 岡田
篤 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2013100469A priority Critical patent/JP6147561B2/ja
Publication of JP2014028923A publication Critical patent/JP2014028923A/ja
Application granted granted Critical
Publication of JP6147561B2 publication Critical patent/JP6147561B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、硬化性樹脂組成物及び封止材に関する。より詳しくは電子部品、半導体チップの実装基板の封止材の材料として好適に用いることができる硬化性樹脂組成物及び封止材に関する。
硬化性樹脂は、光や熱によって硬化する性質を有する樹脂であり、電気、機械分野を始めとする様々な産業分野において、それぞれの用途に求められる物性を有する硬化性樹脂が用いられている。このような硬化性樹脂の用途の1つに、電子部品等を実装した基板に用いられる封止材がある。電子部品、半導体チップ等を基板に実装する場合の実装方式は、高密度実装が可能なことから表面実装方式が多く、その際に電気絶縁性を有する封止材で封止しており、このような封止材としてはエポキシ樹脂等を配合した樹脂組成物が汎用されている。
従来の封止材用途に用いられる硬化性樹脂組成物に関し、例えば、特許文献1には、エポキシ樹脂、オルガノシロキサンと所定のエポキシ樹脂との反応物、シリカ及び硬化剤からなるエポキシ樹脂組成物が開示され、硬化剤としてノボラック型フェノール樹脂が好ましい旨が記載されている。特許文献2には、エポキシ樹脂、フェノール樹脂硬化剤、無機質充填材及び硬化促進剤からなる半導体封止用エポキシ樹脂組成物が開示されている。また、特許文献3には、エポキシ樹脂、該エポキシ樹脂の硬化剤として作用するフェノール樹脂、金属水酸化物及び有機リン化合物を含有する半導体封止材用樹脂組成物が開示されている。
特開平2−102217号公報 特開平9−316176号公報 特開2001−234037号公報
封止材が用いられる電子部品や半導体チップには高温環境下で使用されるものもあり、高温下で動作するチップの保護に使用される封止材は、半導体の性能を左右するため、高い耐熱性が求められる。特に近年、その電力消費の少なさと高電流・高電圧を制御できることで注目を集めているSiCデバイスは、200℃以上の高温領域で最も効率よく動作するため、これを封止する樹脂組成物にも200℃以上の高い耐熱性が求められる。しかしながら、従来のエポキシ樹脂を配合した樹脂組成物では、耐熱性が高くても175℃程度であるため、更なる樹脂組成物の高耐熱化が求められている。また封止材の塗膜が剥がれたり欠けたりすることがないよう、封止材には柔軟性や機械強度に優れることも求められるため、これらの要求に応える樹脂組成物の開発が求められている。
本発明は、上記現状に鑑みてなされたものであり、高い耐熱性を有するとともに、柔軟性や機械強度にも優れ、高耐熱性を有する半導体の封止材にも好適に用いることができる硬化性樹脂組成物を提供することを目的とする。
本発明者は、高い耐熱性を有するとともに、柔軟性や機械強度にも優れた硬化性樹脂組成物について種々検討し、エポキシ樹脂を含む樹脂組成物において、フェノール樹脂硬化剤に加えて、芳香族アミン化合物を硬化剤として用い、更に特定の構造のシラン化合物を含むものとすると、得られる樹脂組成物がガラス転移温度が高く耐熱性に優れることに加え、柔軟性や機械強度にも優れ、200℃以上の高い耐熱性が求められる封止材用途にも好適に用いることができる樹脂組成物となることを見出し、本発明に到達したものである。
すなわち本発明は、エポキシ樹脂、シラン化合物、及び、硬化剤を含む硬化性樹脂組成物であって、上記シラン化合物は、シロキサン結合を有し、かつ下記平均組成式(1):
SiO (1)
(式中、Xは、同一又は異なって、イミド結合を含む有機骨格を表す。Yは、同一又は異なって、水素原子、水酸基、ハロゲン原子及びOR基からなる群から選ばれる少なくとも1種を表す。Rは、同一又は異なって、アルキル基、アシル基、アリール基及び不飽和脂肪族残基からなる群より選択される少なくとも1種の基を表し、置換基を有していてもよい。Zは、同一又は異なって、イミド結合を含まない有機骨格を表す。aは0又は3未満の数、bは0又は3未満の数、cは0又は3未満の数、dは0でない2未満の数であり、a+b+c+2d=4である。)で表される化合物であり、上記硬化剤は、フェノール樹脂と芳香族アミン化合物とを含む硬化性樹脂組成物である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
本発明の硬化性樹脂組成物は、エポキシ樹脂、シラン化合物、フェノール樹脂、及び、芳香族アミン化合物を含むものであるが、これらはそれぞれ1種含まれていてもよく、2種以上含まれていてもよい。また、エポキシ樹脂、シラン化合物、フェノール樹脂、及び、芳香族アミン化合物を含む限り、その他の成分を含んでいてもよい。
以下においては、本発明の硬化性樹脂組成物の必須成分である芳香族アミン化合物、シラン化合物、フェノール樹脂、エポキシ樹脂について順に記載し、その後に本発明の硬化性樹脂組成物が含むことができるそれ以外の成分について記載する。
<芳香族アミン化合物>
本発明の硬化性樹脂組成物が含む芳香族アミン化合物は、100℃以上に融点を有する化合物であることが好ましい。100℃以上に融点を有するものであると、硬化性樹脂組成物から得た硬化物の強度及びTgをより充分に向上させることができ、より耐熱性に優れた硬化物を得ることができる。芳香族アミン化合物の融点として好ましくは102℃以上、より好ましくは105℃以上、更に好ましくは110℃以上である。また、芳香族アミン化合物の融点の上限は、200℃以下であることが好適である。後述するように、本発明の硬化性樹脂組成物においては、シラン化合物が芳香族アミン化合物中に均一に分散した形態が好ましいが、芳香族アミン化合物の融点がこのような範囲であると、シラン化合物とより充分に分子レベルで混じり合うことができるため、芳香族アミン化合物とシラン化合物とを用いることの効果をより充分に発揮することが可能となる。より好ましくは190℃以下である。
本明細書中、融点とは、不活性雰囲気下で結晶が溶けて液状になる状態の温度(℃)を意味する。したがって、非晶質の化合物や、室温で既に液状のものは、融点を有しない。
芳香族アミン化合物や後述するシラン含有組成物の融点は、例えば、示差走査熱量測定法(DSC)にて測定することができる。
上記芳香族アミン化合物は、その構造中に芳香環骨格を有するアミン化合物であり、第一級アミン化合物、第二級アミン化合物、第三級アミン化合物等が挙げられるが、第一級アミン化合物及び/又は第二級アミン化合物を用いることが好適である。また、1分子内のアミノ基の数は特に限定されないが、例えば、1〜10個であることが好ましい。より好ましくは2〜4個である。
上記芳香族アミン化合物の分子量は、例えば、100〜1000であることが好適である。1000を超える高分子化合物であると、シラン化合物とより充分に混じり合うことができないおそれがある。また、100未満であると、実質的に芳香環骨格を含まない化合物となり、耐熱分解性等が充分とはならないおそれがある。より好ましくは100〜800、更に好ましくは100〜600である。
上記芳香族アミン化合物としては、例えば、下記の化合物等が挙げられる。
Figure 0006147561
式中、Aは、直接結合(−)、−C(CF−、−C(CH−、又は、−SO−を表す。Aは、直接結合(−)、−C(CF−、−C(CH−、−S−、−SO−、−O−、又は、−(CH−を表す。pは、1以上の数であり、例えば、1〜5の数が好ましい。Aは、同一又は異なって、アミノ基(−NH)、又は、メチルアミノ基(−CHNH)を表す。R及びRは、同一又は異なって、水素原子(−H)、メチル基(−CH)、アミノ基(−NH)、又は、フッ素原子(−F)を表す。Rは、同一又は異なって、水素原子(−H)、又は、メチル基(−CH)を表す。
本発明の硬化性樹脂組成物における上記芳香族アミン化合物の含有量は、硬化性樹脂組成物が含むエポキシ樹脂100質量%に対して5〜100質量%であることが好ましい。芳香族アミン化合物をこのような割合で含むことで、硬化性樹脂組成物から得られる硬化物が充分な耐熱性を有するものとなる。より好ましくは、エポキシ樹脂100質量%に対して10〜80質量%であり、更に好ましくは、15〜60質量%である。
<シラン化合物>
本発明の硬化性樹脂組成物において、シラン化合物は、シロキサン結合(Si−O−Si結合)を有し、かつ上記平均組成式(1)で表される化合物である。このようなシラン化合物を含むことで、耐熱性、耐圧性、機械的・化学的安定性、熱伝導率性に優れる硬化物を与えることが可能となる。また、高温高圧等の過酷な環境下においても各種物性低下が抑制された硬化物を形成でき、半導体封止材等の実装用途等に好適に使用することができる。
上記シラン化合物において、シロキサン骨格(シロキサン結合を必須とする主鎖骨格)の構造は、例えば、鎖状(直鎖状又は分岐状)、ラダー状、網状、環状、かご状、キュービック状等が好ましく例示される。中でも、上記シラン化合物の添加量が少量であっても効果が発揮されやすいため、ラダー状、網状、かご状であることが好ましい。より好ましくは、かご状であることである。すなわち、上記シラン化合物は、ポリシルセスオキサンを含むことが好適である。
なお、上記シラン化合物におけるシロキサン骨格の占める割合としては、シラン化合物100質量%中、10〜80質量%であることが好ましい。より好ましくは15〜70質量%、更に好ましくは20〜50質量%である。
上記平均組成式(1):XSiOにおいて、Xの好ましい形態は後述するとおりであるが、Yとしては、水酸基又はOR基が好適である。中でもOR基がより好ましく、更に好ましくは、Rが炭素数1〜8のアルキル基であるOR基である。また、Zとしては、アルキル基、アリール基、アラルキル基等の芳香族残基、及び、不飽和脂肪族残基からなる群から選ばれる少なくとも1種であることが好ましい(これらは置換基を有していてもよい)。より好ましくは、置換基を有していてもよい、炭素数1〜8のアルキル基、又は、アリール基やアラルキル基等の芳香族残基である。また、Xの係数aは、0≦a<3の数であり、Yの係数bは、0≦b<3の数であり、Zの係数cは、0≦c<3未満の数であり、Oの係数dは、0<d<2の数である。
上記平均組成式:XSiOにおけるX、Y、Zのうち、少なくとも一つは、重合性官能基を有することが好ましい。本発明におけるシラン化合物が重合性官能基を少なくとも一つ有するものであると、後述するイミド成分を添加することでシラン化合物に架橋構造を形成することができ、本発明の硬化性樹脂組成物をより耐熱性の高いものとすることができる。
重合性官能基としては、アルケニル基、アルキニル基等の不飽和炭化水素基、水酸基、ハロゲン原子、アミノ基、カルボキシル基、エポキシ基、イソシアナート基などが挙げられるが、これらに限定されるものではない。
なお、Xが後述する式(3)で表される場合、Xが重合性官能基を有する場合には、Rで表される芳香環、複素環及び脂環からなる群より選ばれる少なくとも1種の環構造が重合性官能基を置換基として有する場合の他、Rで表される芳香環、複素環及び脂環からなる群より選ばれる少なくとも1種の環構造の一部が重合性の不飽和炭化水素構造である場合も含まれる。
Xが後述する式(3−1)〜(3−6)で表される場合についても同様に、Xが重合性官能基を有する場合には、環構造が重合性官能基を置換基として有する場合と、環構造の一部が重合性の不飽和炭化水素構造である場合とがある。
上記シラン化合物は、例えば、下記式(2):
Figure 0006147561
(式中、X、Y及びZは、各々上記と同様である。n及びnは、重合度を示す。nは、0でない正の整数であり、nは、0又は正の整数である。)で表すことができる。
なお、「Y/Z−」は、Y又はZが結合していることを表し、「X1〜2−」は、Xが1又は2個結合していることを表し、「(Z/Y)1〜2−」は、Z又はYが1個結合するか、Z又はYが2個結合するか、Z及びYが1個ずつ、合計2個結合することを表す。「Si−(X/Y/Z)」は、X、Y及びZから選ばれる任意の3種がケイ素原子に結合していることを示す。
上記式(2)において、Si−OmとSi−Omは、Si−OmとSi−Omの結合順序を規定するものではなく、例えば、Si−OmとSi−Omが交互又はランダムに共縮合している形態、Si−OmからなるポリシロキサンとSi−Omのポリシロキサンが結合している形態等が好適であり、縮合構造は任意である。
上記シラン化合物は、上記平均組成式(1)で表すことができるが、該シラン化合物が有するシロキサン骨格(シロキサン結合を必須とする主鎖骨格)は、(SiOと表すこともできる。このようなシラン化合物における(SiO以外の構造は、イミド結合を有する有機骨格(イミド結合を必須とする構造)X、水素原子や水酸基等のY、及び、イミド結合を含まない有機基Zであり、これらは主鎖骨格のケイ素原子に結合することとなる。
X、Y及びZは、「鎖」の形態となった繰り返し単位に含まれてもよく、含まれていなくてもよい。例えば、Xは、側鎖として1分子に1つ以上含まれていればよい。上記(SiOにおいて、nは、重合度を表すが、該重合度は、主鎖骨格の重合度を表し、イミド結合を有する有機骨格は、必ずしもn個存在していなくてもよい。言い換えれば、(SiOの1つの単位に必ず1つのイミド結合を有する有機骨格が存在していなくてもよい。また、イミド結合を有する有機骨格は、1分子中に1つ以上含まれていればよいが、複数含まれる場合、上述したように、1つのケイ素原子に2以上のイミド結合を有する有機骨格が結合していてもよい。これらは、以下においても同様である。
上記主鎖骨格(SiOにおいて、mは、1以上、2未満の数であることが好ましい。より好ましくはm=1.5〜1.8である。
上記nは、重合度を表し、1〜5000であることが好ましい。より好ましくは1〜2000、更に好ましくは1〜1000であり、特に好ましくは1〜200である。
上記nが2である場合のシラン化合物としては、ケイ素原子にイミド結合を有する有機骨格(X)が少なくとも1個結合してなる構成単位(以下、「構成単位(I)」とも称す)が2つ含まれる形態と、該構成単位(I)が1つしか含まれない形態が挙げられる。具体的には、下記式:
Figure 0006147561
(式中、AはY又はZであり、X、Y及びZは、各々上記と同様である。)等が好適であり、同一の構成単位(I)を2つ含むホモポリマーの形態と、異なる構成単位(I)を2つ含むホモポリマーの形態と、当該構成単位(I)を1つしか含まないコポリマーの形態(共縮合構造の形態)がある。
上記平均組成式(1)において、Xは、イミド結合を含む有機骨格を表すが、イミド結合を有することで、芳香族アミン化合物との相溶性が良好となる。このようなイミド結合を有する有機骨格が占める割合としては、シラン化合物に含まれるケイ素原子100モルに対して、20〜100モルであることが好ましい。より好ましくは50〜100モル、更に好ましくは70〜100モルである。
上記平均組成式(1)におけるXは、下記式(3)で表される構成単位であることが好適である。すなわち、本発明のシラン化合物は、上記平均組成式(1)中のXが、下記式(3):
Figure 0006147561
(式中、Rは、芳香族、複素環及び脂環からなる群より選ばれる少なくとも1種の構造を表す。x及びzは、同一又は異なって、0以上5以下の整数であり、yは、0又は1である。)で表される構成単位である、シラン化合物を含むことが好適である。このようなシラン化合物を含むことで、硬化物の耐熱性が更に向上されることになる。
上記式(3)で表される構成単位において、x及びzは、同一又は異なって、0以上5以下の整数である。また、yは、0又は1であり、0であることが好ましい。x+zとしては、0以上10以下の整数であればよいが、3〜7であることが好ましく、より好ましくは3〜5であり、特に好ましくは3である。
また上記式(3)中、Rは、芳香族、複素環及び脂環からなる群より選ばれる少なくとも1種の構造を表す。すなわち、Rが芳香族化合物の環構造(芳香環)を有する基、複素環式化合物の環構造(複素環)を有する基及び脂環式化合物の環構造(脂環)を有する基からなる群より選ばれる少なくとも1種の基であることを表す。
上記Rとして具体的には、フェニレン基、ナフチリデン基、ノルボルネンの2価基、(アルキル)シクロヘキシレン基、シクロヘキセニル基等が好ましい。
なお、上記式(3)で表される構成単位は、Rがフェニレン基である場合には下記式(3−1)で表される構成単位となり、Rが(アルキル)シクロヘキシレン基である場合には下記式(3−2)で表される構成単位となり、Rがナフチリデン基である場合には下記式(3−3)で表される構成単位となり、Rがノルボルネンの2価基である場合には下記式(3−4)で表される構成単位となり、Rがシクロヘキセニル基である場合には下記式(3−5)で表される構成単位となる。
また、芳香族、複素環及び脂環が置換基を有する場合、置換基としては、ハロゲン原子、水酸基、メチル基、エチル基、ビニル基、クロロプロピル基、メルカプトプロピル基、(エポキシシクロヘキシル)エチル基、グリシドキシプロピル基、N−フェニル−3−アミノプロピル基、(メタ)アクリロキシプロピル基、ヘキシル基、デシル基、オクタデシル基、トリフルオロプロピル基等が好適である。
Figure 0006147561
上記式(3−1)〜(3−5)中、x、y及びzは、各々上記式(3)と同様である。
上記式(3−1)中、R〜Rは、同一又は異なって、水素原子、炭素数1〜12のアルキル基、ハロゲン原子及び炭素数6〜14の芳香族からなる群より選ばれる少なくとも1種の構造を表す。上記R〜Rとしては、全てが水素原子である形態が好ましい。
上記式(3−2)中、R〜R及びR6´〜R9´は、同一又は異なって、水素原子、炭素数1〜12のアルキル基、ハロゲン原子及び炭素数6〜14の芳香族からなる群より選ばれる少なくとも1種の構造を表す。上記R〜R及びR6´〜R9´としては、R若しくはRがメチル基で残りの全てが水素原子である形態、又は、R〜R及びR6´〜R9´全てが水素原子である形態、又は、R〜R及びR6´〜R9´全てがフッ素原子である形態が好ましい。より好ましくは、R又はRがメチル基で残りの全てが水素原子である形態である。
上記式(3−3)中、R10〜R15は、同一又は異なって、水素原子、炭素数1〜12のアルキル基、ハロゲン原子及び炭素数6〜14の芳香族からなる群より選ばれる少なくとも1種の構造を表す。上記R10〜R15としては、全てが水素原子である形態、又は、全てがフッ素原子である形態が好ましい。より好ましくは、全てが水素原子である形態である。
上記式(3−4)中、R16〜R21は、同一又は異なって、水素原子、炭素数1〜12のアルキル基、ハロゲン原子及び炭素数6〜14の芳香族からなる群より選ばれる少なくとも1種の構造を表す。上記R16〜R21としては、全てが水素原子である形態、全てがフッ素原子である形態、又は、全てが塩素原子である形態のいずれかの形態が好ましい。より好ましくは、全てが水素原子である形態である。
上記式(3−5)中、R22〜R25、R22´及びR25´は、同一又は異なって、水素原子、炭素数1〜12のアルキル基、ハロゲン原子及び炭素数6〜14の芳香族からなる群より選ばれる少なくとも1種の構造を表す。上記R22〜R25、R22´及びR25´としては、全てが水素原子である形態、全てがフッ素原子である形態、又は、全てが塩素原子である形態のいずれかの形態が好ましい。より好ましくは、全てが水素原子である形態である。
上記式(3)で表される構成単位の中でも、下記式(3−6):
Figure 0006147561
(式中、R26は、炭素数6〜14の芳香族、複素環及び脂環からなる群より選ばれる少なくとも1種の構造を表す。)で表される構成単位であることが好適である。すなわち、本発明のシラン化合物は、上記平均組成式(1)中のXが上記式(3−6)で表される構成単位である、シラン化合物を含むことが好適である。なお、上記式(3−6)中のR26は、上記式(3)において説明したRと同様であることが好ましい。
上記シラン化合物の特に好ましい形態としては、R26がフェニレン基であるポリ(γ−フタロイミドプロピルシルセスキオキサン);R26がメチルシクロヘキシレン基であるポリ{γ−(へキサヒドロ−4−メチルフタルイミド)プロピルシルセスキオキサン};R26がナフチリデン基であるポリ{γ−(1,8−ナフタルイミド)プロピルシルセスキオキサン};R26がノルボルネンの2価基であるポリ{γ−(5−ノルボルネン−2,3−イミド)プロピルシルセスキオキサン};R26がシクロヘキセニル基であるポリ〔(cis−4−シクロヘキセン−1,2−イミド)プロピルシルセスキオキサン〕である。これらの化合物の構造は、H−NMR、13C−NMR、MALDI−TOF−MSを測定して同定することができる。
上記シラン化合物を得る方法としては特に限定されないが、例えば、下記の製法(a)及び(b)等が挙げられる。
(a)上記シラン化合物におけるイミド結合を含む有機骨格Xに対応するアミド結合を有する有機骨格X´と、シロキサン結合とを有する平均組成式X´SiOで表される(シラン化合物からなる)中間体を、イミド化させる工程を含む製造方法。
(b)上記シラン化合物におけるイミド結合を含む有機骨格Xに対応するイミド結合を有する有機骨格が、ケイ素原子に結合し、かつ加水分解性基を有するシラン化合物よりなる中間体を、加水分解・縮合させる工程を含む製造方法。
上記シラン化合物の分子量は、例えば、数平均分子量が100〜10000であることが好適である。10000を超える高分子化合物であると、芳香族アミン化合物とより充分に混じり合うことができないおそれがある。また、100未満であると、耐熱分解性等が充分とはならないおそれがある。より好ましくは100〜800、更に好ましくは100〜600である。また、重量平均分子量は100〜10000であることが好適である。より好ましくは100〜800、更に好ましくは100〜600である。
シラン化合物の分子量(数平均分子量及び重量平均分子量)は、例えば、後述する測定条件下、GPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
上記シラン化合物の含有量としては、芳香族アミン化合物とシラン化合物との合計量100重量部に対し、10〜90重量部であることが好適である。シラン化合物が10重量部未満であると、後述する芳香族アミン化合物の融点を消失させる作用を充分に発揮することができないおそれがあり、また、シラン含有組成物の軟化点を充分に低減させることができないおそれがある。また、90重量部を超えると、シラン化合物が芳香族アミン化合物中により充分に分散できず、硬化物の架橋構造がより充分に均一とはならず、耐熱性をより高いものすることができないおそれがある。より好ましくは20〜80重量部、更に好ましくは25〜75重量部である。
本発明の硬化性樹脂組成物は、エポキシ樹脂、平均組成式(1)で表されるシラン化合物、フェノール樹脂、及び、芳香族アミン化合物を含んでいればよいが、シラン化合物は、芳香族アミン化合物中に均一分散された形態のものを樹脂組成物に加えることが好ましく、シラン化合物と芳香族アミン化合物との単なる混合物ではなく、一体化してなる形態であることが好適である。シラン化合物が芳香族アミン化合物中に均一分散された形態のものをエポキシ樹脂とフェノール樹脂とを含む組成物に添加すると、樹脂組成物から得られる硬化物がより高いガラス転移温度を有し、より優れた耐熱性を有するものとなる。
上記シラン化合物が芳香族アミン化合物中に均一分散された形態のものは、室温(20℃)で固体であることが好適である。室温で固体であると、その取り扱い性や作業性が良く、また、保存や移送にも有利である。
本発明においては、シラン化合物が芳香族アミン化合物中に均一分散された形態のものをシラン含有組成物ともいう。
上記シラン化合物が芳香族アミン化合物中に均一分散された形態のものは、熱軟化温度(軟化点とも称す)が100℃以下であることが好適である。軟化点が100℃以下にあることで、例えば、シラン含有組成物を、エポキシ樹脂の硬化剤として用いた場合にも、シラン含有組成物及びエポキシ樹脂の溶融温度でエポキシ樹脂の架橋反応が進行することが抑制されるため、好適である。軟化点としてより好ましくは98℃以下、更に好ましくは95℃以下である。
軟化点(℃)はJIS K7234(1986年)に準じて測定した値であり、例えば、熱軟化温度測定装置(製品名「ASP−MG4」、メイテック社製)を用いて測定することができる。
上記シラン含有組成物を得るには、例えば、シラン化合物及び溶剤を含むシラン化合物溶液に、芳香族アミン化合物を溶解した後、溶剤を脱揮する工程を行うことが好適である。これにより、シラン化合物が芳香族アミン化合物中に均一分散され、これらが一体化してなる形態のシラン含有組成物を好適に得ることが可能となるため、シラン含有組成物に由来する効果を充分に発揮することができる。このように、シラン化合物及び溶剤を含むシラン化合物溶液に、芳香族アミン化合物を溶解した後、溶剤を脱揮する工程を含むシラン含有組成物の製造方法もまた、本発明の1つである。なお、揮発成分を含んでもよい用途に用いる場合は、脱溶媒工程を経なくてもよい。
上記製造方法において、シラン化合物溶液を構成する溶剤(有機溶剤)としては、シラン化合物を溶解又は分散することができるものであれば特に限定されないが、例えば、エーテル結合、エステル結合及び窒素原子からなる群より選ばれた少なくとも一つ以上の構造を有する化合物を含有してなる溶媒であることが好ましい。
上記エーテル結合を有する化合物としては、例えば、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、アニソール、フェネトール、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、ペラトロール、プロピレンオキシド、1,2−エポキシブタン、ジオキサン、トリオキサン、フラン、2−メチルフラン、テトラヒドロフラン、テトラヒドロピラン、シオネール、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、グリセリンエーテル、クラウンエーテル、メチラール、アセタール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノプロピルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコール、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、プロピレングリコールメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールプロピルエーテル、プロピレングリコールブチルエーテル、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコール、トリプロピレングリコールモノメチルエーテル、2−メトキシエタノール、2−エトキシエタノール、2−(メトキシメトキシ)エタノール、2−イソプロポキシエタノール、2−ブトキシエタノール、2−(イソペンチルオキシ)エタノール、2−(ヘキシルオキシ)エタノール、2−フェノキシエタノール、2−(ベンジルオキシ)エタノール、フルフリルアルコール、テトラヒドロフルフリルアルコール等が好適である。
上記エステル結合を有する化合物としては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸ペンチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸sec−ブチル、酢酸ペンチル、酢酸イソペンチル、酢酸3−メトキシブチル、酢酸sec−ヘキシル、酢酸2−エチルブチル、酢酸2−エチルヘキシル、酢酸シクロヘキシル、酢酸ベンジル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソペンチル、エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、モノアセチン、ジアセチン、トリアセチン、モノブチリン、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート、酪酸エステル類、イソ酪酸エステル類、イソ吉草酸エステル類、ステアリン酸エステル類、安息香酸エステル類、ケイ皮酸エチル類、アビエチン酸エステル類、アジピン酸エステル類、γ−ブチロラクトン類、シュウ酸エステル類、マロン酸エステル類、マレイン酸エステル類、酒石酸エステル類、クエン酸エステル類、セバシン酸エステル類、フタル酸エステル類、二酢酸エチレン類等が好適である。
上記窒素原子を含有してなる化合物としては、例えば、ニトロメタン、ニトロエタン、1−ニトロプロパン、2−ニトロプロパン、ニトロベンゼン、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、ベンゾニトリル、α−トルニトリル、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、2−ピロリドン、N−メチルピロリドン、ε−カプロラクタム等が好適である。
上記エーテル結合、エステル結合及び窒素原子からなる群より選ばれた構造を複数有する化合物としては、例えば、N−エチルモルホリン、N−フェニルモルホリン、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテート、フェノキシエチルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、プロピレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート、ジプロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールブチルエーテルアセテート、トリプロピレングリコールメチルエーテルアセテート等が好適である。これらの化合物のうち、1種又は2種以上を使用することができる。
上記溶剤の使用量としては、シラン化合物及び溶剤の総量100質量%に対し、5〜70質量%であることが好適である。より好ましくは10〜60質量%、更に好ましくは10〜50質量%である。
上記シラン含有組成物の製造方法において、シラン化合物溶液に芳香族アミン化合物を溶解する方法や、溶剤を脱揮する方法については特に限定されず、通常の手法で行えばよい。また、必要に応じてその他の工程を有していてもよい。
上記シラン含有組成物における芳香族アミン化合物として、上述した100℃以上に融点を有するものを用いた場合、芳香族アミン化合物及びシラン化合物に由来する優れた特性を有したまま、芳香族アミン化合物の融点が消失するとともに、当該組成物が100℃以下の温度で軟化可能になるという特異な性質を有するものとなる。したがって、例えば、シラン含有組成物をエポキシ樹脂の硬化剤として使用し、更に無機充填材を配合して、これら3成分を少なくとも含む組成物を溶融混合しようとする場合、シラン含有組成物及びエポキシ樹脂の溶融温度でエポキシ樹脂の架橋(硬化)反応が進行することなく、ハンドリング性良く、容易に溶融混合することができるうえ、芳香族アミン化合物に起因して、機械的強度及びガラス転移温度が極めて高い硬化物を与えることができる。そのため、そのようなシラン含有組成物を、エポキシ樹脂を含む硬化性樹脂組成物に用いれば、電機・電子部品用途で極めて有用な高性能の封止材等を好適に得ることが可能になる。
上記平均組成式XSiOで表されるシラン化合物は、いずれの方法によっても得ることができるが、下記(a)や(b)の製造方法により得ることが好ましい。(a)上記シラン化合物におけるイミド結合を含む有機骨格Xに対応するアミド結合を有する有機骨格X´と、シロキサン結合とを有する平均組成式X´SiOで表される(シラン化合物からなる)中間体をイミド化させる工程を含む製造方法。(b)上記該シラン化合物におけるイミド結合を含む有機骨格Xに対応するイミド結合を有する有機骨格が、ケイ素原子に結合しかつ加水分解性基を有するシラン化合物よりなる中間体を、加水分解・縮合させる工程を含む製造方法。
<フェノール樹脂>
本発明の硬化性樹脂組成物は、フェノール樹脂と芳香族アミン化合物とを硬化剤として用いるものである。フェノール樹脂を用いることで、芳香族アミン化合物のみを硬化剤とした場合に比べて硬化速度を上げることができ、得られる硬化物を柔軟性、機械的強度に優れたものとすることができる。
本発明の硬化性樹脂組成物が含むフェノール樹脂としては、エポキシ樹脂の硬化剤として作用するものである限り特に制限されないが、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエンフェノール樹脂、フェノールアラルキル樹脂、テルペンフェノール樹脂等の種々のフェノール樹脂類;種々のフェノール類とヒドロキシベンズアルデヒド、クロトンアルデヒド、グリオキザール等の種々のアルデヒド類との縮合反応で得られる多価フェノール樹脂等の各種のフェノール樹脂類等を用いることができる。
本発明の硬化性樹脂組成物におけるフェノール樹脂の含有量は、硬化性樹脂組成物中のエポキシ樹脂100質量%に対して10〜100質量%であることが好ましい。より好ましくは、15〜80質量%であり、更に好ましくは、20〜60質量%である。
本発明の硬化性樹脂組成物における芳香族アミン化合物とフェノール樹脂との配合比率は、両者の官能基当量(モル当量)比で、80/20〜20/80であることが好ましい。硬化剤として作用する芳香族アミン化合物とフェノール樹脂とがこのような割合であると、本発明の硬化性樹脂組成物から得られる硬化物が、高い耐熱性と柔軟性、機械的強度の全ての特性をよりバランスよく発揮するものとなる。芳香族アミン化合物とフェノール樹脂との質量割合は、より好ましくは、70/30〜30/70であり、更に好ましくは、60/40〜40/60である。
<エポキシ樹脂>
本発明の硬化性樹脂組成物において、エポキシ樹脂としては、分子内に1個以上のエポキシ基を含む樹脂であれば特に限定されず、例えば、下記の化合物等が挙げられる。
ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS等)とエピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;該エポキシ樹脂を、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS等)と更に付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類(フェノール、クレゾール、キシレノール、ナフトール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、スフェノールS等)と、ホルムアルデヒド、アセトアルテヒド、プロピオンアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド、ジシクロペンタジエン、テルペン、クマリン、パラキシリレングリコールジメチルエーテル、ジクロロパラキシリレン、ビスヒドロキシメチルビフェニル等とを縮合反応させて得られる多価フェノール類を、更にエピハロヒドリンと縮合反応することにより得られるノボラック・アラルキルタイプグリシジルエーテル型エポキシ樹脂;テトラメチルビフェノール、テトラメチルビスフェノールF、ハイドロキノン、ナフタレンジオール等とエピハロヒドリンとの縮合反応により得られる芳香族結晶性エポキシ樹脂;該芳香族結晶性エポキシ樹脂に、更に、上記ビスフェノール類や、テトラメチルビフェノール、テトラメチルビスフェノールF、ハイドロキノン、ナフタレンジオール等を付加反応させることにより得られる芳香族結晶性エポキシ樹脂の高分子量体;トリスフェノール型エポキシ樹脂;
上記ビスフェノール類、芳香族骨格を水素化した脂環式グリコール類(テトラメチルビフェノール、テトラメチルビスフェノールF、ハイドロキノン、ナフタレンジオール等)、又は、単/多糖類(エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、PEG600、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、PPG、グリセロール、ジグリセロール、テトラグリセロール、ポリグリセロール、トリメチロールプロパン及びその多量体、ペンタエリスリトール及びその多量体、グルコース、フルクトース、ラクトース、マルトース等)と、エピハロヒドリンとの縮合反応により得られる脂肪族グリシジルエーテル型エポキシ樹脂;該脂肪族グリシジルエーテル型エポキシ樹脂を、上記ビスフェノール類と更に付加反応させることにより得られる高分子量脂肪族グリシジルエーテル型エポキシ樹脂;(3,4−エポキシシクロヘキサン)メチル3′,4′−エポキシシクロヘキシルカルボキシレート等のエポキシシクロへキサン骨格を有するエポキシ樹脂;テトラヒドロフタル酸、ヘキサヒドロフタル酸、安息香酸等と、エピハロヒドリンとの縮合反応により得られるグリシジルエステル型エポキシ樹脂;ヒダントインや、シアヌール酸、メラミン、ベンゾグアナミン等と、エピハロヒドリンとの縮合反応により得られる室温で固形の3級アミン含有グリシジルエーテル型エポキシ樹脂;等。
これらのエポキシ樹脂の中でも、脂肪族グリシジルエーテル型エポキシ樹脂が好ましい。また、より硬化性を高めるため、分子内に2個以上のエポキシ基を含む化合物(多官能エポキシ化合物)を用いることが好適である。
なお、本明細書中では、グリシジル基もエポキシ基に含むものとする。
上記エポキシ樹脂はまた、重量平均分子量が200〜20000であるものが好適である。このような分子量のエポキシ樹脂を用いると、より充分に硬化した硬化物を得ることができる。より好ましくは220〜18000、更に好ましくは250〜15000である。
エポキシ樹脂の重量平均分子量は、例えば、後述する測定条件の下で、GPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
また上記硬化性樹脂組成物におけるエポキシ当量は、100〜450g/molであることが好適である。より好ましくは120〜420g/mol、更に好ましくは150〜400g/molである。
本発明の硬化性樹脂組成物中におけるエポキシ樹脂の含有量は、硬化性樹脂組成物全体100質量%に対して1〜20質量%であることが好ましい。より好ましくは、2〜15質量%であり、更に好ましくは、3〜10質量%である。
<イミド基を有する化合物>
本発明の硬化性樹脂組成物は、更にイミド基を有する化合物を含むことが好ましい。本発明の硬化性樹脂組成物が含むシラン化合物が、分子内部に重合性不飽和炭素結合を有するものである場合、イミド基を有する化合物を含むと、シラン化合物が架橋構造を形成することができ、これにより、本発明の樹脂組成物から得られる硬化物をより耐熱性の高いものとすることができる。
上記イミド基を有する化合物としては、マレイミド化合物が好ましい。
上記マレイミド化合物としては、ビスマレイミド、例えば、N,N’−エチレンビスマレイミド、N,N’−ヘキサメチレンビスマレイミド、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、ビス[4−(4−マレイミドフェノキシ)フェニル]メタン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、N,N’−p,p’−ジフェニルジメチルシリルビスマレイミド、N,N’−4,4’−ジフェニルエーテルビスマレイミド、N,N’−メチレンビス(3−クロロ−p−フェニレン)ビスマレイミド、N,N’−4,4’−ジフェニルスルホンビスマレイミド、N,N’−4,4’−ジシクロヘキシルメタンビスマレイミド、N,N’−ジメチレンシクロヘキサンビスマレイミド、N,N’−m−キシレンビスマレイミド、N,N’−4,4’−ジフェニルシクロヘキサンビスマレイミド、N−フェニルマレイミドとホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシフェニルアルデヒドなどのアルデヒド化合物との共縮合物が好適である。また、下記一般式:
Figure 0006147561
(式中、R27は、
Figure 0006147561
又は、
Figure 0006147561
よりなる2価の基を表す。Qは、2つの芳香環に直結する基であり、炭素数1〜10の2価の炭化水素基、6フッ素化されたイソプロピリデン基、カルボニル基、チオ基、スルフィニル基、スルホニル基及びオキシド基からなる群より選ばれる少なくとも一つの基を表す。)で表されるビスマレイミド化合物が好適である。具体的には、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、ビス[4−(3−マレイミドフェノキシ)フェニル]メタン、1,1−ビス[4−(3−マレイミドフェノキシ)フェニル]エタン、1,2−[4−(3−マレイミドフェノキシ)フェニル]エタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]ブタン、2,2−ビス[4−(3−マレイミドフェノキシ)フェニル]−1,1,1,3,3,3−ヘキサフルオロプロパン、4,4−ビス(3−マレイミドフェノキシ)ビフェニル、ビス[4−(3−マレイミドフェノキシ)フェニル]ケトン、ビス[4−(3−マレイミドフェノキシ)フェニル]スルフィド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホキシド、ビス[4−(3−マレイミドフェノキシ)フェニル]スルホン、ビス[4−(3−マレイミドフェノキシ)フェニル]エーテル、下記一般式:
Figure 0006147561
(式中、Qは、置換基があってもよい芳香環からなる2価の基を表す。nは、繰り返し数を表し、平均で0〜10の数である。)で表される化合物等が好適である。上記Qとしては、具体的には、フェニル基、ビフェニル基、ナフチル基等の2価の基(フェニレン基、ビフェニレン基、ナフチリデン基等)が好ましい。
本発明の不飽和イミド化合物が高分子化合物である場合、不飽和イミド化合物の重量平均分子量は、200〜5000であることが好ましい。不飽和イミド化合物の分子量がこのような範囲にあると、耐熱性等に優れた硬化物が得られる。より好ましくは、220〜4500であり、更に好ましくは250〜4000である。
不飽和イミド化合物の重量平均分子量は、上記エポキシ樹脂の重量平均分子量と同様に測定することができる。
本発明の硬化性樹脂組成物がイミド基を有する化合物を含む場合、シラン化合物とイミド基を有する化合物の配合比率は両者の不飽和結合の当量(モル当量)比で10/90〜90/10、より好ましくは、15/85〜85/15であり、更に好ましくは、20/80〜80/20である。
<無機充填材>
本発明の硬化性樹脂組成物は、更に無機充填材を含むことが好ましい。無機充填材としては特に限定されず、通常の実装基板の封止材等で使用されるものを用いればよい。例えば、シリカフィラー等が挙げられる。
上記硬化性樹脂組成物における無機充填材の含有割合としては、硬化性樹脂組成物の総量100質量%に対し、50〜95質量%とすることが好適である。より好ましくは60〜93質量%、更に好ましくは70〜90質量%である。このように多量の無機充填材を用いることで、例えば、実装基板の封止材等を得るために用いた場合に、硬化後の基板の反り発生を充分に防ぐことが可能になる。
なお、本発明の硬化性樹脂組成物は、無機充填材を多量に含むものであっても、ハンドリング性良く容易に調製でき、芳香族アミン化合物及びエポキシ樹脂に由来する性能を充分に発揮することができるものである。
<他の成分>
本発明の硬化性樹脂組成物はまた、上述した各成分以外の添加剤(他の成分とも称す)を含有していてもよい。例えば、有機溶剤や希釈剤等の揮発成分、硬化促進剤、安定剤、離型剤、カップリング剤、着色剤、可塑剤、可とう化剤、各種ゴム状物、光感光剤、難燃剤、顔料等が挙げられ、これらの1種又は2種以上を用いることができる。
上記揮発成分としては、特に限定されず、通常使用されるものを使用すればよい。
ここで、本発明の硬化性樹脂組成物は、揮発成分を極力含まないことが望まれる用途、すなわち例えば、実装用途、光学用途、オプトデバイス用途、機械部品用途、電機・電子部品用途、自動車部品用途等に用いることができるが、この場合、上記硬化性樹脂組成物100質量%中の揮発成分の含有量は、10質量%以下であることが好ましい。より好ましくは5質量%以下、更に好ましくは3質量%以下、特に好ましくは実質的に揮発成分を含まないことである。実質的に揮発成分を含まないとは、揮発成分の含有量が、組成物を溶解させることができる量未満であることを意味し、例えば、上記硬化性樹脂組成物100質量%中に1質量%以下であることが好適である。なお、印刷インク用途等のように、揮発成分を含んでもよい用途に用いる場合にあっては、上記硬化性樹脂組成物は揮発成分を含んでいてもよく、このような形態も本発明の好適な実施形態の1つである。
上記硬化促進剤としては、例えば、トリフェニルホスフィン、トリブチルヘキサデシルホスフォニウムブロマイド、トリブチルホスフィン、トリス(ジメトキシフェニル)ホスフィン等の有機リン化合物等の1種又は2種以上が好適である。
上記硬化性樹脂組成物におけるその他の成分の含有割合としては、その合計量が、硬化性樹脂組成物の総量100質量%に対して、20質量%以下であることが好適である。より好ましくは15質量%以下、更に好ましくは10質量%以下である。
本発明の硬化性樹脂組成物の製造方法は、特に限定されるものではない。例えば、上記シラン含有組成物の製造方法にてシラン含有組成物を得た後、これに、エポキシ樹脂、フェノール樹脂、及び、必要に応じてイミド基を有する化合物、無機充填材や他の成分を添加して混合することにより製造することができる。本発明の硬化性樹脂組成物はシラン含有組成物を使用することにより、シラン含有組成物の特異な性質(すなわち芳香族アミン化合物の融点が消失し、100℃以下の温度で軟化可能になるという性質)に起因して、ハンドリング性良く容易に調製できるものであることから、シラン含有組成物と、エポキシ樹脂と、必要に応じて添加されるイミド基を有する化合物、無機充填材や他の成分との混合工程は、特殊な機械を必要とすることなく容易に行うことができる。例えば、ニーダー、ロール、1軸押出混練機、2軸押出混練機等の、加熱混合で通常使用される混合機のいずれを用いても、好適に混合工程を行うことができる。
本発明の硬化性樹脂組成物は、175℃における粘度が5〜100Pa・sであることが好ましい。硬化性樹脂組成物がこのような適度な粘度を有するものであると、例えば、電子部品パッケージを封止する際のハンドリング性に優れたものとなる。より好ましくは10〜90Pa・sである。
硬化性樹脂組成物の粘度は、例えば、フローテスタ(島津製作所社製)を用いて、175±1℃で測定することができる。
〔硬化物〕
本発明の硬化性樹脂組成物は、例えば、熱硬化することにより、硬化物とすることができる。硬化方法は特に限定されず、通常の熱硬化手法を採用すればよい。例えば、熱硬化温度は70〜250℃が好適であり、より好ましくは100〜250℃である。また、硬化時間は1〜15時間が好適であり、より好ましくは2〜10時間である。
上記硬化物の形状は、例えば、異形品等の成形体、フィルム、シート、ペレット等が挙げられる。このように本発明の硬化性樹脂組成物を用いてなる硬化物(本発明の硬化性樹脂組成物から形成される硬化物)もまた、本発明の1つである。
上記硬化物は、熱機械分析装置(TMA)によるガラス転移温度が230℃以上であることが好適である。これにより、例えば、実装基板の封止材等のエレクトロニクス実装材料により好適に利用することができる。より好ましくは240℃以上、更に好ましくは245℃以上、特に好ましくは250℃以上である。
上記硬化物は、本発明の硬化性樹脂組成物から得られることに起因して、著しくガラス転移温度が高く、機械的強度にも極めて優れるものであることから、例えば、実装用途、光学用途、オプトデバイス用途、表示デバイス用途、機械部品用途、電気・電子部品用途、自動車部品用途、印刷インク用途等の種々様々な用途に有用なものである。具体的には、封止材等のエレクトロニクス実装材料、ポッティング材、アンダーフィル材、導電性ペースト、絶縁ペースト、ダイポンド材、印刷インク等に好ましく使用される。中でも、エレクトロニクス実装材料に用いることがより好ましく、特に、実装基板の封止材に極めて有用である。このように上記硬化性樹脂組成物を用いてなることを特徴とする封止材もまた、本発明の1つである。封止材として特に好ましくは、半導体封止材である。また、上記硬化物を用いて構成された半導体装置又はプリント配線板もまた、本発明の好ましい形態に含まれる。
上記封止材は、例えば、半導体部品を封止する際に使用される部材であるが、本発明の効果を損なわない範囲内で、必要に応じ、例えば、硬化促進剤、安定剤、離型剤、カップリング剤、着色剤、可塑剤、可とう化剤、各種ゴム状物、光感光剤、充填材、難燃剤、顔料等を含むことができる。また、上記封止材は、揮発成分を多量に含むと不具合を生じるおそれがあるため、揮発成分を含まないことが望まれており、例えば、上記封止材100質量%中の揮発成分の含有量は、10質量%以下であることが好ましい。より好ましくは5質量%以下、更に好ましくは3質量%以下、特に好ましくは実質的に揮発成分を含まないことである。
本発明の硬化性樹脂組成物は、上述の構成よりなり、SiCデバイス等の高い耐熱性を有する半導体チップの封止材としても好適に用いることができる高い耐熱性を有するとともに、柔軟性、機械的強度にも優れ、封止材の剥がれや割れ等の不具合の発生も充分に抑制された硬化物を与えるものであり、電子部品や半導体チップ等の封止材として好適に用いることができるものである。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
シラン化合物及びエポキシ樹脂の重量平均分子量は、以下の測定条件の下で、GPC(ゲルパーミエーションクロマトグラフィー)測定により求めた。
測定機器:HLC−8120GPC(商品名、東ソー社製)
分子量カラム:TSK−GEL GMHXL−Lと、TSK−GELG5000HXL(いずれも東ソー社製)とを直列に接続して使用
溶離液:テトラヒドロフラン(THF)
検量線用標準物質:ポリスチレン(東ソー社製)
測定方法:測定対象物を固形分が約0.2質量%となるようにTHFに溶解し、フィルターにてろ過した物を測定サンプルとして分子量を測定した。
合成例1(ポリ{γ−(5−ノルボルネン−2,3−イミド)アミノプロピルシルセスキオキサン}の合成)
攪拌装置、温度センサー、冷却管を備え付けた300mL4つ口フラスコに、予めモレキュラーシーブで乾燥したジグライム35.1gと、3−アミノプロピルトリメトキシシラン30.8gを投入し、攪拌しながら乾燥窒素流通下で100℃に昇温して系内の水分を除去した。次に100℃のまま反応液温度を維持しながら5−ノルボルネン−2,3−ジカルボン酸無水物28.2gを30分かけて4分割投入した。投入終了後9時間で5−ノルボルネン−2,3−ジカルボン酸無水物が完全に消費されているのを高速液体クロマトグラフィで確認した。
続いて脱イオン水9.3gを一括投入し冷却管で副生メタノールの還流が掛かるように昇温し、95℃で10時間保持したのち、冷却管をパーシャルコンデンサーに付け替えて再び昇温を開始し、副生メタノール及び縮合水を回収しながら3時間かけて反応液温度を120℃に到達させた。120℃到達時にピリジン1.4gを投入してそのまま昇温を開始し、縮合水を回収しながら3時間かけて160℃に到達、同温度で2時間保持して室温まで冷却した。
反応生成物は不揮発分58.2%で濃褐色高粘度液体(この反応生成液を「シラン化合物溶液」と称す)であり、GPCで分子量測定したところ数平均分子量2340、重量平均分子量2570であった。H−NMR、13C−NMRを測定し、下記化学式で表されるシラン化合物(ポリ{γ−(5−ノルボルネン−2,3−イミド)アミノプロピルシルセスキオキサン})を含有することを確認した。
実施例1〜3
はじめに、芳香族アミン硬化剤を上記のシラン化合物溶液に投入し、150℃で2時間加熱攪拌しながら減圧して溶媒成分を脱揮させることで、芳香族アミンおよびシラン化合物が均一分散した組成物を得た。これと表1に示す他の樹脂組成原料とを80℃にて混練し、加熱式プレス成型機を用いて175℃にて6分間圧縮成型した。得られた成型物を250℃にて3時間硬化させて硬化物を得た。得られた硬化物について、TMA測定によりガラス転移温度(Tg)を、インストロン万能試験機を用いて3点曲げ試験を行い、弾性率、曲げ強度を測定した。結果を表1に示す。
なお、表1に示す実施例1〜3、及び、比較例1の樹脂組成の値は全て重量部である。
比較例1
表1に示す樹脂組成原料を80℃にて混練し、加熱式プレス成型機を用いて175℃にて6分間圧縮成型した。得られた成型物を250℃にて3時間硬化させて硬化物を得た。得られた硬化物について、実施例1〜3と同様の方法によりガラス転移温度(Tg)、弾性率、曲げ強度を測定した。結果を表1に示す。
Figure 0006147561
表1に記載のシリカ成分は、溶融シリカである。それ以外の各成分は、下記のとおりである。シラン化合物は、合成例1で合成したものを用いた。
エポキシ樹脂:トリス(ヒドロキシフェニル)メタン型エポキシ樹脂(EPPN−501HY、日本化薬社製)
フェノール硬化剤A:フェノールノボラック硬化剤(TD−2131、DIC社製)
フェノール硬化剤B:多官能フェノール硬化剤(MEH−7500、明和化成社製)
アミン硬化剤:4,4’−ジアミノジフェニルスルホン(セイカキュアS、和歌山精化工業社製)
イミド成分:ポリフェニルメタンマレイミド(BMI2300、大和化成工業社製)
Figure 0006147561
表1の結果から、フェノール硬化剤とアミン硬化剤とを併用した実施例1〜3の樹脂組成物から得られた硬化物は、Tgが高く、高い耐熱性を保ちつつ、柔軟で強度の強い硬化物であることが確認された。一方、フェノール硬化剤のみを用いた比較例1では、実施例1〜3に比べてTgが低く、耐熱性に劣ることが確認された。

Claims (5)

  1. エポキシ樹脂、シラン化合物、及び、硬化剤を含む硬化性樹脂組成物であって、
    該シラン化合物は、シロキサン結合を有し、かつ下記平均組成式(1):
    SiO (1)
    (式中、Xは、同一又は異なって、イミド結合を含む有機骨格を表す。Yは、同一又は異なって、水素原子、水酸基、ハロゲン原子及びOR基からなる群から選ばれる少なくとも1種を表す。Rは、同一又は異なって、アルキル基、アシル基、アリール基及び不飽和脂肪族残基からなる群より選択される少なくとも1種の基を表し、置換基を有していてもよい。Zは、同一又は異なって、イミド結合を含まない有機骨格を表す。aは0又は3未満の数、bは0又は3未満の数、cは0又は3未満の数、dは0でない2未満の数であり、a+b+c+2d=4である。)で表される化合物であり、
    該硬化剤は、フェノール樹脂と芳香族アミン化合物とを含み、
    該シラン化合物の含有割合は、芳香族アミン化合物とシラン化合物との合計量100質量%に対し、10〜90質量%であることを特徴とする硬化性樹脂組成物。
  2. 前記芳香族アミン化合物は、100℃以上に融点を有する化合物であることを特徴とする請求項1に記載の硬化性樹脂組成物。
  3. 前記硬化性樹脂組成物は、更に無機充填材を含むことを特徴とする請求項1又は2に記載の硬化性樹脂組成物。
  4. 前記無機充填材の含有割合は、硬化性樹脂組成物の総量100質量%に対し、50〜95質量%であることを特徴とする請求項3に記載の硬化性樹脂組成物。
  5. 請求項1〜のいずれかに記載の硬化性樹脂組成物を用いてなることを特徴とする封止材。
JP2013100469A 2012-06-26 2013-05-10 硬化性樹脂組成物及び封止材 Active JP6147561B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100469A JP6147561B2 (ja) 2012-06-26 2013-05-10 硬化性樹脂組成物及び封止材

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012143565 2012-06-26
JP2012143565 2012-06-26
JP2013100469A JP6147561B2 (ja) 2012-06-26 2013-05-10 硬化性樹脂組成物及び封止材

Publications (2)

Publication Number Publication Date
JP2014028923A JP2014028923A (ja) 2014-02-13
JP6147561B2 true JP6147561B2 (ja) 2017-06-14

Family

ID=50201697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100469A Active JP6147561B2 (ja) 2012-06-26 2013-05-10 硬化性樹脂組成物及び封止材

Country Status (1)

Country Link
JP (1) JP6147561B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6705487B2 (ja) * 2018-11-14 2020-06-03 日立化成株式会社 モールドアンダーフィル用樹脂組成物及び電子部品装置
JP7221079B2 (ja) * 2019-02-27 2023-02-13 株式会社東光高岳 エポキシ樹脂組成物、絶縁性成形体及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345843A (ja) * 1986-08-12 1988-02-26 Nitto Electric Ind Co Ltd 半導体装置
KR910008560B1 (ko) * 1988-02-15 1991-10-19 주식회사 럭키 반도체 봉지용 에폭시 수지 조성물
JPH0386751A (ja) * 1989-08-29 1991-04-11 Risho Kogyo Co Ltd 半導体封止用エポキシ樹脂組成物
KR960010844B1 (ko) * 1991-07-11 1996-08-09 제일모직 주식회사 내열성이 향상된 반도체소자 밀봉용 수지조성물
JP3388537B2 (ja) * 1998-05-15 2003-03-24 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP4028672B2 (ja) * 1999-07-15 2007-12-26 荒川化学工業株式会社 反応生成物の製造方法
JP2002145994A (ja) * 2000-11-16 2002-05-22 Risho Kogyo Co Ltd プリント配線板用プリプレグ及び積層板
JP5345904B2 (ja) * 2009-07-01 2013-11-20 株式会社日本触媒 液状組成物及びエレクトロニクス実装材料
JP5373538B2 (ja) * 2009-10-13 2013-12-18 株式会社日本触媒 硬化性樹脂組成物
CN104024337B (zh) * 2011-11-15 2016-08-24 株式会社日本触媒 含硅烷组合物、固化性树脂组合物和密封材

Also Published As

Publication number Publication date
JP2014028923A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5547351B2 (ja) シラン含有組成物、硬化性樹脂組成物及び封止材
JP6236222B2 (ja) シアネートエステル系組成物及びその用途
JP5193207B2 (ja) シラン化合物、その製造方法及びシラン化合物を含む樹脂組成物
JP6227954B2 (ja) 硬化性樹脂組成物及びその用途
JP5345904B2 (ja) 液状組成物及びエレクトロニクス実装材料
JP5848638B2 (ja) 硬化性樹脂組成物、その製造方法及びエレクトロニクス実装材料
JP6856317B2 (ja) 硬化性樹脂組成物及びそれを用いてなる封止材
JP6126837B2 (ja) 液状硬化性樹脂組成物及びその用途
JP2014028932A (ja) 低弾性樹脂組成物
JP6116852B2 (ja) 液状硬化性樹脂組成物及びその用途
JP6175290B2 (ja) 封止材用樹脂組成物
JP6147561B2 (ja) 硬化性樹脂組成物及び封止材
JP2016069475A (ja) 硬化性樹脂組成物
JP2018119023A (ja) 導電性組成物及び半導体装置
JP2009161605A (ja) フェノール性水酸基を有する新規ビスマレイミド類及びこれを必須成分とする熱硬化性樹脂組成物、及びその硬化物
JP5373538B2 (ja) 硬化性樹脂組成物
JP6955329B2 (ja) 硬化性樹脂組成物、それを用いた封止材及び半導体装置
WO2016132889A1 (ja) 硬化性樹脂組成物及びそれを用いてなる封止材
JP5507108B2 (ja) 熱硬化性樹脂組成物、繊維複合樹脂組成物及びそれを硬化して得られる成型体
JP6274747B2 (ja) 硬化性樹脂組成物及び封止材
JP2016189455A (ja) 半導体装置
JP2014108972A (ja) 硬化性樹脂組成物及びその用途
JP2014028929A (ja) 電子部品の製造方法
JP2005281618A (ja) 熱硬化性樹脂組成物
WO2022102489A1 (ja) 樹脂組成物、硬化物、半導体封止材、及び、半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6147561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150