JP6145992B2 - 液体噴射装置 - Google Patents

液体噴射装置 Download PDF

Info

Publication number
JP6145992B2
JP6145992B2 JP2012244181A JP2012244181A JP6145992B2 JP 6145992 B2 JP6145992 B2 JP 6145992B2 JP 2012244181 A JP2012244181 A JP 2012244181A JP 2012244181 A JP2012244181 A JP 2012244181A JP 6145992 B2 JP6145992 B2 JP 6145992B2
Authority
JP
Japan
Prior art keywords
potential
piezoelectric
piezoelectric layer
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012244181A
Other languages
English (en)
Other versions
JP2013229549A (ja
Inventor
晃雄 小西
晃雄 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012244181A priority Critical patent/JP6145992B2/ja
Priority to US13/767,283 priority patent/US8752926B2/en
Priority to EP13155520.3A priority patent/EP2628596B1/en
Publication of JP2013229549A publication Critical patent/JP2013229549A/ja
Application granted granted Critical
Publication of JP6145992B2 publication Critical patent/JP6145992B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

本発明は、ノズル開口に連通する圧力発生室に圧力変化を生じさせる電極及び圧電体層を有する圧電素子を具備する液体噴射装置に関する。
液体噴射装置に搭載される液体噴射ヘッドの代表例としては、例えば、インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し、この振動板を圧電素子により変形させて圧力発生室のインクを加圧してノズル開口からインク滴として吐出させるインクジェット式記録ヘッドがある。
このような圧電素子を構成する圧電体層として用いられる圧電材料の代表例として、チタン酸ジルコン酸鉛(以下「PZT」という)が挙げられるが、環境問題の観点から、非鉛又は鉛の含有量を抑えた圧電材料が求められている。そこで、非鉛系の圧電材料としては、例えば、Bi及びFeを含有するBiFeO3系の圧電材料がある(例えば、特許文献1)。
特開2007−287745号公報
しかしながら、このような非鉛又は鉛の含有量を抑えた複合酸化物からなる圧電体層は、チタン酸ジルコン酸鉛(PZT)と比較すると変位量が十分ではないので、変位量の向上が求められている。
なお、このような問題は、インクジェット式記録ヘッドだけではなく、勿論、インク以外の液滴を吐出する他の液体噴射ヘッドにおいても同様に存在し、また、液体噴射ヘッド以外に用いられる圧電素子においても同様に存在する。
本発明はこのような事情に鑑み、圧電材料として、ビスマス、鉄、バリウム及びチタンを含むペロブスカイト構造の複合酸化物を用いて十分な変位特性を得ることができる液体噴射装置を提供することを目的とする。
上記課題を解決する本発明の態様は、圧電体層および該圧電体層に設けられた電極を備えた圧電素子と、前記圧電素子を駆動する駆動波形を前記圧電素子に供給する駆動手段と、を有する液体噴射装置であって、前記圧電体層は、ビスマス、鉄、バリウム及びチタンを含むペロブスカイト構造を有する複合酸化物からなり、前記駆動波形は、前記圧電体層に中間電位を印加する待機工程と、前記中間電位の印加状態から前記中間電位とは逆極性の電圧を印加して最小電位まで降下させる第1の電圧変化工程と、前記最小電位から、前記中間電位より大きな電圧を印加して液体を吐出すると共に最大電位まで上昇させる第2の電圧変化工程と、を有し、前記中間電位の印加によって前記圧電体層にかかる電界は、11.1V/μm以上であり、且つ前記最大電位と最小電位における前記圧電体層にかかる電界の差の1/2より大きいことを特徴とする液体噴射装置にある。
かかる本発明によれば、待機状態で圧電素子に印加する中間電位の印加によって前記圧電体層にかかる電界を、11.1V/μm以上であり、且つ前記最大電位と最小電位における前記圧電体層にかかる電界の差の1/2より大きくすることにより、変位量の大きな液体噴射装置を実現できる。また、圧電材料を、非鉛系、すなわち、鉛を含有しないものとしているため、環境への負荷が小さい液体噴射装置を実現できる。
本発明の実施形態に係るインクジェット式記録装置の概略構成を示す図。 実施形態に係る記録ヘッドの概略構成を示す分解斜視図。 実施形態に係る記録ヘッドの平面図。 実施形態に係る記録ヘッドの断面図。 実施形態に係る記録装置の制御構成を示すブロック図。 実施形態に係る駆動信号(駆動波形)を示す図。 試験例1の電界−変位特性を示す図。 試験例1の電界−変位特性を示す図。 試験例11、31で用いた駆動波形を説明する図。 試験例11の結果を示す図。 試験例21、41の電界−変位量を示す図。 試験例31の結果を示す図。 試験例32の結果を示す図。
(実施形態1)
図1は、本実施形態にかかる液体噴射装置の一例であるインクジェット式記録装置の一例を示す概略図である。図1に示すように、インクジェット式記録装置IIにおいて、インクジェット式記録ヘッドを有する記録ヘッドユニット1A及び1Bは、インク供給手段を構成するカートリッジ2A及び2Bが着脱可能に設けられ、この記録ヘッドユニット1A及び1Bを搭載したキャリッジ3は、装置本体4に取り付けられたキャリッジ軸5に軸方向移動可能に設けられている。この記録ヘッドユニット1A及び1Bは、例えば、それぞれブラックインク組成物及びカラーインク組成物を吐出するものとしている。
そして、駆動モーター6の駆動力が図示しない複数の歯車およびタイミングベルト7を介してキャリッジ3に伝達されることで、記録ヘッドユニット1A及び1Bを搭載したキャリッジ3はキャリッジ軸5に沿って移動される。一方、装置本体4にはキャリッジ軸5に沿ってプラテン8が設けられており、図示しない給紙ローラーなどにより給紙された紙等の記録媒体である記録シートSがプラテン8に巻き掛けられて搬送されるようになっている。
ここで、このようなインクジェット式記録装置IIに搭載されるインクジェット式記録ヘッドについて、図2〜図4を参照して説明する。なお、図2は、本実施形態に係る液体噴射ヘッドの一例であるインクジェット式記録ヘッドの概略構成を示す分解斜視図であり、図3は、図2の平面図であり、図4は図3のA−A′線断面図である。
図2〜図4に示すように、本実施形態の流路形成基板10は、シリコン単結晶基板からなり、その一方の面には二酸化シリコンからなる弾性膜50が形成されている。
流路形成基板10には、複数の圧力発生室12がその幅方向に並設されている。また、流路形成基板10の圧力発生室12の長手方向外側の領域には連通部13が形成され、連通部13と各圧力発生室12とが、各圧力発生室12毎に設けられたインク供給路14及び連通路15を介して連通されている。連通部13は、後述する保護基板のマニホールド部31と連通して各圧力発生室12の共通のインク室となるマニホールドの一部を構成する。インク供給路14は、圧力発生室12よりも狭い幅で形成されており、連通部13から圧力発生室12に流入するインクの流路抵抗を一定に保持している。なお、本実施形態では、流路の幅を片側から絞ることでインク供給路14を形成したが、流路の幅を両側から絞ることでインク供給路を形成してもよい。また、流路の幅を絞るのではなく、厚さ方向から絞ることでインク供給路を形成してもよい。本実施形態では、流路形成基板10には、圧力発生室12、連通部13、インク供給路14及び連通路15からなる液体流路が設けられていることになる。
また、流路形成基板10の開口面側には、各圧力発生室12のインク供給路14とは反対側の端部近傍に連通するノズル開口21が穿設されたノズルプレート20が、接着剤や熱溶着フィルム等によって固着されている。なお、ノズルプレート20は、例えば、ガラスセラミックス、シリコン単結晶基板、ステンレス鋼等からなる。
一方、このような流路形成基板10の開口面とは反対側には、上述したように弾性膜50が形成され、この弾性膜50上には、例えば厚さ30〜50nm程度の酸化チタン等からなり、弾性膜50等の第1電極60の下地との密着性を向上させるための密着層56が設けられている。なお、弾性膜50上に、必要に応じて酸化ジルコニウム等からなる絶縁体膜が設けられていてもよい。
さらに、この密着層56上には、第1電極60と、厚さが3μm以下、好ましくは0.3〜1.5μmの薄膜である圧電体層70と、第2電極80とが、積層形成されて、圧力発生室12に圧力変化を生じさせる圧力発生手段としての圧電素子300を構成している。ここで、圧電素子300は、第1電極60、圧電体層70及び第2電極80を含む部分をいう。一般的には、圧電素子300の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12毎にパターニングして構成する。本実施形態では、第1電極60を圧電素子300の共通電極とし、第2電極80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆にしても支障はない。また、ここでは、圧電素子300と当該圧電素子300の駆動により変位が生じる振動板とを合わせてアクチュエーター装置と称する。なお、上述した例では、弾性膜50、密着層56、第1電極60及び必要に応じて設ける絶縁体膜が振動板として作用するが、勿論これに限定されるものではなく、例えば、弾性膜50や密着層56を設けなくてもよい。また、圧電素子300自体が実質的に振動板を兼ねるようにしてもよい。
そして、本実施形態においては、圧電体層70を構成する圧電材料は、ビスマス(Bi)、鉄(Fe)、バリウム(Ba)及びチタン(Ti)を含みペロブスカイト構造を有する複合酸化物である。ペロブスカイト構造、すなわち、ABO3型構造のAサイトは酸素が12配位しており、また、Bサイトは酸素が6配位して8面体(オクタヘドロン)をつくっている。このAサイトにBi及びBaが、BサイトにFe及びTiが位置している。
このようなBi、Fe、Ba及びTiを含みペロブスカイト構造を有する複合酸化物は、鉄酸ビスマスとチタン酸バリウムとの混晶のペロブスカイト構造を有する複合酸化物、または、鉄酸ビスマスとチタン酸バリウムが均一に固溶した固溶体としても表される。なお、X線回折パターンにおいて、鉄酸ビスマスや、チタン酸バリウムは、単独では検出されないものである。
ここで、鉄酸ビスマスやチタン酸バリウムは、それぞれペロブスカイト構造を有する公知の圧電材料であり、それぞれ種々の組成のものが知られている。例えば、鉄酸ビスマスやチタン酸バリウムとして、BiFeO3やBaTiO3以外に、元素(Bi、Fe、Ba、TiやO)が一部欠損する又は過剰であったり、元素の一部が他の元素に置換されたものも知られているが、本実施形態で鉄酸ビスマス、チタン酸バリウムと表記した場合、欠損・過剰により化学量論の組成からずれたものや元素の一部が他の元素に置換されたものも、鉄酸ビスマス、チタン酸バリウムの範囲に含まれるものとする。また、鉄酸ビスマスとチタン酸バリウムとの比も、種々変更することができる。
このようなペロブスカイト構造を有する複合酸化物からなる圧電体層70の組成は、例えば、下記一般式(1)で表される混晶として表される。また、この式(1)は、下記一般式(1’)で表すこともできる。ここで、一般式(1)及び一般式(1’)の記述は化学量論に基づく組成表記であり、上述したように、ペロブスカイト構造を取り得る限りにおいて、格子不整合、酸素欠損等による不可避な組成のずれは勿論、元素の一部置換等も許容される。例えば、化学量論比が1とすると、0.85〜1.20の範囲内のものは許容される。また、下記のように一般式で表した場合は異なるものであっても、Aサイトの元素とBサイトの元素との比が同じものは、同一の複合酸化物とみなせる場合がある。
(1−x)[BiFeO3]−x[BaTiO3] (1)
(0<x<0.40)
(Bi1-xBax)(Fe1-xTix)O3 (1’)
(0<x<0.40)
また、本実施形態の圧電体層70を構成する複合酸化物は、Bi、Fe、Ba及びTi以外の元素をさらに含んでいてもよい。他の元素としては、例えば、Mn、Co、Crなどが挙げられる。これら他の元素を含む複合酸化物である場合も、ペロブスカイト構造を有することが好ましい。
圧電体層70が、Mn、CoやCrを含む場合、Mn、CoやCrはペロブスカイト構造のBサイトに位置した構造の複合酸化物である。例えば、Mnを含む場合、圧電体層70を構成する複合酸化物は、鉄酸ビスマスとチタン酸バリウムが均一に固溶した固溶体のFeの一部がMnで置換された構造、又は、鉄酸マンガン酸ビスマスとチタン酸バリウムとの混晶のペロブスカイト構造を有する複合酸化物として表され、基本的な特性は鉄酸ビスマスとチタン酸バリウムとの混晶のペロブスカイト構造を有する複合酸化物と同じであるが、リーク特性が向上することがわかっている。また、CoやCrを含む場合も、Mnと同様にリーク特性が向上するものである。なお、X線回折パターンにおいて、鉄酸ビスマス、チタン酸バリウム、鉄酸マンガン酸ビスマス、鉄酸コバルト酸ビスマス、及び、鉄酸クロム酸ビスマスは、単独では検出されないものである。また、Mn、CoおよびCrを例として説明したが、その他遷移金属元素の2元素を同時に含む場合にも同様にリーク特性が向上することがわかっており、これらも圧電体層70とすることができ、さらに、特性を向上させるため公知のその他の添加物を含んでもよい。
このようなBi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる圧電体層70は、例えば、下記一般式(2)で表される混晶である。また、この式(2)は、下記一般式(2’)で表すこともできる。なお一般式(2)及び一般式(2’)において、Mは、Mn、CoまたはCrである。ここで、一般式(2)及び一般式(2’)の記述は化学量論に基づく組成表記であり、上述したように、ペロブスカイト構造を取り得る限りにおいて、格子不整合、酸素欠損等による不可避な組成ずれは許容される。例えば、化学量論が1であれば、0.85〜1.20の範囲内のものは許容される。また、下記のように一般式で表した場合は異なるものであっても、Aサイトの元素とBサイトの元素との比が同じものは、同一の複合酸化物とみなせる場合がある。
(1−x)[Bi(Fe1-yy)O3]−x[BaTiO3] (2)
(0<x<0.40、0.01<y<0.10)
(Bi1-xBax)((Fe1-yy1-xTix)O3 (2’)
(0<x<0.40、0.01<y<0.10)
そして、圧電体層70の配向状態は特に限定されず、(110)面に優先配向したものでも、(100)面に優先配向しているものでも、(111)に優先配向しているものでもよい。ここで、本実施形態において、「(110)面、(100)面又は(111)面に優先配向している」(優先配向している配向面を「優先配向面」という)とは、全ての結晶が「優先配向面」に配向している場合と、ほとんどの結晶(例えば80%以上)が「優先配向面」に配向している場合とを含むものである。
圧電体層70の「優先配向面」の配向度=[圧電体層70の「優先配向面」に由来する
回折ピークの面積]/[圧電体層70に由来する(100)面、(110)面及び(111)面の回折ピークの面積の総和]
このような圧電素子300の個別電極である各第2電極80には、インク供給路14側の端部近傍から引き出され、弾性膜50上や必要に応じて設ける絶縁体膜上にまで延設される、例えば、金(Au)等からなるリード電極90が接続されている。
このような圧電素子300が形成された流路形成基板10上、すなわち、第1電極60、弾性膜50や必要に応じて設ける絶縁体膜及びリード電極90上には、マニホールド100の少なくとも一部を構成するマニホールド部31を有する保護基板30が接着剤35を介して接合されている。このマニホールド部31は、本実施形態では、保護基板30を厚さ方向に貫通して圧力発生室12の幅方向に亘って形成されており、上述のように流路形成基板10の連通部13と連通されて各圧力発生室12の共通のインク室となるマニホールド100を構成している。また、流路形成基板10の連通部13を圧力発生室12毎に複数に分割して、マニホールド部31のみをマニホールドとしてもよい。さらに、例えば、流路形成基板10に圧力発生室12のみを設け、流路形成基板10と保護基板30との間に介在する部材(例えば、弾性膜50、必要に応じて設ける絶縁体膜等)にマニホールド100と各圧力発生室12とを連通するインク供給路14を設けるようにしてもよい。
また、保護基板30の圧電素子300に対向する領域には、圧電素子300の運動を阻害しない程度の空間を有する圧電素子保持部32が設けられている。圧電素子保持部32は、圧電素子300の運動を阻害しない程度の空間を有していればよく、当該空間は密封されていても、密封されていなくてもよい。
このような保護基板30としては、流路形成基板10の熱膨張率と略同一の材料、例えば、ガラス、セラミック材料等を用いることが好ましく、本実施形態では、流路形成基板10と同一材料のシリコン単結晶基板を用いて形成した。
また、保護基板30には、保護基板30を厚さ方向に貫通する貫通孔33が設けられている。そして、各圧電素子300から引き出されたリード電極90の端部近傍は、貫通孔33内に露出するように設けられている。
また、保護基板30上には、並設された圧電素子300を駆動するための駆動回路120が固定されている。この駆動回路120としては、例えば、回路基板や半導体集積回路(IC)等を用いることができる。そして、駆動回路120とリード電極90とは、ボンディングワイヤー等の導電性ワイヤーからなる接続配線121を介して電気的に接続されている。
また、このような保護基板30上には、封止膜41及び固定板42とからなるコンプライアンス基板40が接合されている。ここで、封止膜41は、剛性が低く可撓性を有する材料からなり、この封止膜41によってマニホールド部31の一方面が封止されている。また、固定板42は、比較的硬質の材料で形成されている。この固定板42のマニホールド100に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、マニホールド100の一方面は可撓性を有する封止膜41のみで封止されている。
このような本実施形態のインクジェット式記録ヘッドIでは、図示しない外部のインク供給手段と接続したインク導入口からインクを取り込み、マニホールド100からノズル開口21に至るまで内部をインクで満たした後、駆動回路120からの記録信号(駆動信号)に従い、圧力発生室12に対応するそれぞれの第1電極60と第2電極80との間に電圧を印加し、弾性膜50、密着層56、第1電極60及び圧電体層70をたわみ変形させることにより、各圧力発生室12内の圧力が高まりノズル開口21からインク滴が吐出する。
図5は、このようなインクジェット式記録装置の制御構成例を示すブロック図である。図5を参照して、本実施形態のインクジェット式記録装置の制御について説明する。本実施形態のインクジェット式記録装置は、図5に示すように、プリンターコントローラー511とプリントエンジン512とから概略構成されている。プリンターコントローラー511は、外部インターフェース513(以下、外部I/F513という)と、各種データを一時的に記憶するRAM514と、制御プログラム等を記憶したROM515と、CPU等を含んで構成した制御部516と、クロック信号を発生する発振回路517と、インクジェット式記録ヘッドIへ供給するための駆動信号を発生する駆動信号発生回路519と、駆動信号や印刷データに基づいて展開されたドットパターンデータ(ビットマップデータ)等をプリントエンジン512に送信する内部インターフェース520(以下、内部I/F520という)とを備えている。
外部I/F513は、例えば、キャラクターコード、グラフィック関数、イメージデータ等によって構成される印刷データを、図示しないホストコンピューター等から受信する。また、この外部I/F513を通じてビジー信号(BUSY)やアクノレッジ信号(ACK)が、ホストコンピューター等に対して出力される。RAM514は、受信バッファー521、中間バッファー522、出力バッファー523、及び、図示しないワークメモリーとして機能する。そして、受信バッファー521は外部I/F513によって受信された印刷データを一時的に記憶し、中間バッファー522は制御部516が変換した中間コードデータを記憶し、出力バッファー523はドットパターンデータを記憶する。なお、このドットパターンデータは、階調データをデコード(翻訳)することにより得られる印字データによって構成してある。
また、ROM515には、各種データ処理を行わせるための制御プログラム(制御ルーチン)の他に、フォントデータ、グラフィック関数等を記憶させてある。
制御部516は、受信バッファー521内の印刷データを読み出すと共に、この印刷データを変換して得た中間コードデータを中間バッファー522に記憶させる。また、中間バッファー522から読み出した中間コードデータを解析し、ROM515に記憶させているフォントデータ及びグラフィック関数等を参照して、中間コードデータをドットパターンデータに展開する。そして、制御部516は、必要な装飾処理を施した後に、この展開したドットパターンデータを出力バッファー523に記憶させる。さらに、制御部516は、波形設定手段としても機能し、駆動信号発生回路519を制御することにより、この駆動信号発生回路519から発生される駆動信号の波形形状を設定する。かかる制御部516は、後述する駆動回路(図示なし)などと共に本発明の駆動手段を構成する。また、インクジェット式記録ヘッドIを駆動する液体噴射駆動装置としては、この駆動手段を少なくとも具備するものであればよく、本実施形態では、プリンターコントローラー511を含むものとして例示してある。
そして、インクジェット式記録ヘッドIの1行分に相当するドットパターンデータが得られたならば、この1行分のドットパターンデータは、内部I/F520を通じてインクジェット式記録ヘッドIに出力される。また、出力バッファー523から1行分のドットパターンデータが出力されると、展開済みの中間コードデータは中間バッファー522から消去され、次の中間コードデータについての展開処理が行われる。
プリントエンジン512は、インクジェット式記録ヘッドIと、紙送り機構524と、キャリッジ機構525とを含んで構成してある。紙送り機構524は、紙送りモーターとプラテン8等から構成してあり、記録紙等の印刷記憶媒体をインクジェット式記録ヘッドIの記録動作に連動させて順次送り出す。即ち、この紙送り機構524は、印刷記憶媒体を副走査方向に相対移動させる。
キャリッジ機構525は、インクジェット式記録ヘッドIを搭載可能なキャリッジ3と、このキャリッジ3を主走査方向に沿って走行させるキャリッジ駆動部とから構成してあり、キャリッジ3を走行させることによりインクジェット式記録ヘッドIを主走査方向に移動させる。なお、キャリッジ駆動部は、上述したように駆動モーター6及びタイミングベルト7等で構成されている。
インクジェット式記録ヘッドIは、副走査方向に沿って多数のノズル開口21を有し、ドットパターンデータ等によって規定されるタイミングで各ノズル開口21から液滴を吐出する。そして、このようなインクジェット式記録ヘッドIの圧電素子300には、図示しない外部配線を介して電気信号、例えば、後述する駆動信号(COM)や記録データ(SI)等が供給される。このように構成されるプリンターコントローラー511及びプリントエンジン512では、プリンターコントローラー511と、駆動信号発生回路519から出力された所定の駆動波形を有する駆動信号を選択的に圧電素子300に入力するラッチ532、レベルシフター533及びスイッチ534等を有する駆動回路(図示なし)とが圧電素子300に所定の駆動信号を印加する駆動手段となる。
なお、これらのシフトレジスター(SR)531、ラッチ532、レベルシフター533、スイッチ534及び圧電素子300は、それぞれ、インクジェット式記録ヘッドIの各ノズル開口21毎に設けられており、これらのシフトレジスター531、ラッチ532、レベルシフター533及びスイッチ534は、駆動信号発生回路519が発生した吐出駆動信号や緩和駆動信号から駆動パルスを生成する。ここで、駆動パルスとは実際に圧電素子300に印加される印加パルスのことである。
このようなインクジェット式記録ヘッドIでは、最初に発振回路517からのクロック信号(CK)に同期して、ドットパターンデータを構成する記録データ(SI)が出力バッファー523からシフトレジスター531へシリアル伝送され、順次セットされる。この場合、まず、全ノズル開口21の印字データにおける最上位ビットのデータがシリアル伝送され、この最上位ビットのデータシリアル伝送が終了したならば、上位から2番目のビットのデータがシリアル伝送される。以下同様に、下位ビットのデータが順次シリアル伝送される。
そして、当該ビットの記録データの全ノズル分が各シフトレジスター531にセットされたならば、制御部516は、所定のタイミングでラッチ532へラッチ信号(LAT)を出力させる。このラッチ信号により、ラッチ532は、シフトレジスター531にセットされた印字データをラッチする。このラッチ532がラッチした記録データ(LATout)は、電圧増幅器であるレベルシフター533に印加される。このレベルシフター533は、記録データが例えば「1」の場合に、スイッチ534が駆動可能な電圧値、例えば、数十ボルトまでこの記録データを昇圧する。そして、この昇圧された記録データは各スイッチ534に印加され、各スイッチ534は、当該記録データにより接続状態になる。
そして、各スイッチ534には、駆動信号発生回路519が発生した駆動信号(COM)も印加されており、スイッチ534が選択的に接続状態になると、このスイッチ534に接続された圧電素子300に選択的に駆動信号が印加される。このように、例示したインクジェット式記録ヘッドIでは、記録データによって圧電素子300に吐出駆動信号を印加するか否かを制御することができる。例えば、記録データが「1」の期間においてはラッチ信号(LAT)によりスイッチ534が接続状態となるので、駆動信号(COMout)を圧電素子300に供給することができ、この供給された駆動信号(COMout)により圧電素子300が変位(変形)する。また、記録データが「0」の期間においてはスイッチ534が非接続状態となるので、圧電素子300への駆動信号の供給は遮断される。この記録データが「0」の期間において、各圧電素子300は直前の電位を保持するので、直前の変位状態が維持される。
なお、上記の圧電素子300は、撓み振動モードの圧電素子300である。この、撓み振動モードの圧電素子300を用いると、圧電体層70が電圧印加に伴い電圧と垂直方向(31方向)に縮むことで、圧電素子300および振動板が圧力発生室12側に撓み、これにより圧力発生室12を収縮させる。一方、電圧を減少させることにより圧電体層70が31方向に伸びることで、圧電素子300および振動板が圧力発生室12の逆側に撓み、これにより圧力発生室12を膨張させる。このようなインクジェット式記録ヘッドIでは、圧電素子300に対する充放電に伴って対応する圧力発生室12の容積が変化するので、圧力発生室12の圧力変動を利用してノズル開口21から液滴を吐出させることができる。
ここで、圧電素子300に入力される本実施形態の駆動信号(COM)を表す駆動波形について説明する。なお、図6は、本実施形態の駆動信号を示す駆動波形である。
圧電素子300に入力される駆動波形は、共通電極(第1電極60)を基準電位(本実施形態ではVbs)として、個別電極(第2電極80)に印加されるものである。すなわち、駆動波形によって個別電極(第2電極80)に印加される電圧は、基準電位(Vbs)を基準としての電位として示される。
本実施形態の基準となる駆動波形は、図6に示すように、駆動波形を入力する準備状態(駆動待機状態)となると、例えば、抗電圧より高い中間電位Vmが印加される状態となる。この中間電位Vmを維持する工程は、圧電体層70を分極状態とする待機工程P01であり、これに続いて中間電位Vmを維持した状態から中間電位Vmとは逆極性の最小電位である第1電位V1まで降下させると共に圧力発生室12を膨張させる第1の電圧変化工程P02と、第1電位V1を一定時間維持する第1のホールド工程P03と、第1電位V1から第1電位V1とは逆極性で中間電位Vmとは同極性で当該中間電位Vmより大きい最大電位である第2電位V2まで上昇させて圧力発生室12を収縮させる第2の電圧変化工程P04と、第2電位V2を一定時間維持する第2のホールド工程P05と、第2電位V2から中間電位Vmより小さな第3電位V3まで下降させて圧力発生室12を膨張させる第3の電圧変化工程P06と、第3電位V3を一定時間維持する第3のホールド工程P07と、第3電位V3から中間電位Vmまで電位を上昇させる第4の電圧変化工程P08と、中間電位Vmを維持する工程P09とで構成される。ここで、第2電位V2から中間電位Vmより少し低い第3電位V3まで下降させる第3の電圧変化工程P06と、第3電位V3を一定時間維持する第3のホールド工程P07と、電位V3から中間電位Vmまで電位を上昇させる第4の電圧変化工程P08とは、液滴を吐出した後のメニスカスを安定化させるためのものであり、従来より公知のものである。
本実施形態のBi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、電源オフの状態では、分極状態が維持されておらず、非分極状態(極一部は分極が維持されているが、実質的に非分極状態といえる場合を含む)であり、上述した駆動波形200が圧電素子300に出力される準備状態(駆動待機状態)になると、中間電位Vmが印加された状態となり、圧電体層70が分極状態となる。そして、上述した駆動波形が入力されると、第1の電圧変化工程P02によって中間電位Vmから逆極性の最小電位V1まで電位が変化し、圧電体層70の分極が緩和される。これと同時に圧電素子300が圧力発生室12の容積を膨張させる方向に変形して、ノズル開口21内のメニスカスが圧力発生室12側に引き込まれる。次いで、第2の電圧変化工程P04によって、圧電素子300が圧力発生室12の容積を収縮させる方向に変形することにより、ノズル開口21内のメニスカスが圧力発生室12側から大きく押し出され、ノズル開口21から液滴が吐出される。
ここで、第1電位V1は、マイナス電位であり、例えば、−15V〜−1Vとしている。この電位は、電界に換算すると、−16.7V/μm〜−1.1V/μmである。そして、第2の電圧変化工程P04で、第1電位V1から第1電位V1とは逆極性で中間電位Vmとは同極性で当該中間電位Vmより大きい最大電位である第2電位V2まで上昇させる。本実施形態では、第1電位V1と第2電位V2との電位差を、30V〜60V、電界に換算すると、3.3×107〜6.6×107(V/m)として圧力発生室12を収縮させる。
本実施形態は、上述した所定の圧電材料からなる圧電体層70を具備する圧電素子300を駆動する場合、駆動波形が、抗電圧以上の中間電位Vmに保持して当該圧電素子を分極状態とする工程と、中間電位Vmの印加状態から当該中間電位Vmとは逆極性の最小電圧である第1電位V1を印加して前記圧電体層の分極を緩和させる工程と、第1電位V1の印加状態から前記中間電位Vmより大きな最大電圧である第2電位V2を印加して液体を吐出する工程とを有するようにし、前記中間電位の印加によって前記圧電体層にかかる電界を、11.1V/μm以上であり且つ前記最大電位と最小電位における前記圧電体層にかかる電界の差の1/2より大きくすることで、大きな変位量を確保するという効果を奏するものである。ここで、抗電圧以上の中間電位とは、低い周波数(例えば66Hz〜1kHz)で圧電体層70のヒステリシスカーブを描いたときの抗電圧の電圧以上の電圧のことを指すが、駆動波形が高周波化することで実質的な高電界は高い方向に変化することに留意が必要である。本実施形態では、5V以上であり、電界では5.5V/μm以上となる。
かかる本実施形態を完成するにあたって、まず、Bi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、分極状態を維持できず、電界を受けて分極して歪んだ状態から、電界が除去されると、時間と共に分極緩和が生じて歪がない状態となる。そして、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られることを知見した。
また、分極緩和した状態から最大電圧である第2電位V2まで電圧を変化させると、(110)面に優先配向した、ビスマス(Bi)、鉄(Fe)、バリウム(Ba)及びチタン(Ti)を含みペロブスカイト構造を有する複合酸化物では、非180度ドメインローテーションが発生して大きな変位量が得られることを知見した。本実施形態で用いる、(110)面に優先配向した複合酸化物は、分極軸が2つの状態をとり、その一方の分極軸方向は電界に対して垂直な方向をもつため、本来、変位に関与しない。しかしながら、上述したような駆動波形で駆動すると、本来変位に関与しない分極軸が第2の電圧変化工程で方向が変化する。これを非180度ドメインローテーションといい、本来の圧電定数に伴う変位量に非180度ドメインローテーションに基づく変位量が付加され、結果的に大きな変位量を得ることができる。
このような非180度ドメインローテーションによる変位は、(100)面に優先配向した、Bi、Fe、Ba及びTiを含みペロブスカイト構造を有する複合酸化物、すなわち、BFO−BT系圧電材料を用いても効果が小さい。これは、(100)面配向のBi、Fe、Ba及びTiを含む複合酸化物では、変位が安定した状態で起こり、前記駆動波形の第2の電圧変化工程P04で、本来の圧電定数に比例した所望の変位量を得ることができる。
このように配向状態に応じて多少の違いはあるが、何れの配向状態においても、中間電位の印加によって圧電体層にかかる電界を、11.1V/μm以上であり且つ最大電位V2と最小電位V1における圧電体層にかかる電界の差の1/2より大きくする駆動を行うことにより、変位量が大きくなることを知見した。
(試験例1)
下記実施例の(110)面配向の圧電体層70を具備する圧電素子300と下記比較例1の(100)面配向の圧電体層70を具備する圧電素子300の変位量を測定した。図6に示す駆動波形を基本波形として用い、最大電位と最小電位との電位差ΔVを35Vに固定し、第1電圧は事前に測定した実施サンプルに最適な電圧(0〜−10V)とし、前記駆動波形の中間電位をVmを変化させた波形を200ms間隔と十分なディレイタイムをとった状態で印加することにより、圧電素子300の変位量を求めた。変位量は、グラフテック社製のレーザードップラー振動計で計測した速度データを、デクロイ社製のオシロスコープにて時間積分することにより、算出している(25℃)。測定サンプルは図3の形状に加工され、キャビティーが形成されているセグメントを使用し、各駆動波形を印加して測定した。
上記の手法で測定した実施例1〜4の各圧電素子300の変位量と電界(V/m)との関係を図7に示す。
なお、電界(V/m)は、図6に示す駆動波形の中間電位Vmと圧電体層70の膜厚(900nm)とを考慮して、印加された電界の変化として示した。
また、比較例1の結果を同様に図8に示した。
この結果、BFO−BT系圧電材料の実施例では、中間電位Vmが電位差ΔV=35Vの半分の17.5V以上、電界に換算すると、19.4V/μmより大きくなると、変位量が大きくなる傾向になることがわかった。これに対し、比較例1としたPZTの場合には、中間電位を大きくしても変位量が向上する傾向がなく、むしろ変位量が低下する傾向があることがわかった。
(実施例1)(110)面配向BFO−BT系
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウム層を40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極60が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(実施例2)(100)面配向BFO−BT系
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウム層を40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ50nmの白金膜(第1電極60)を形成した。この白金膜上に、スパッター法もしくはゾル−ゲル法にてニッケル酸ランタン(LaNiO3)を40nmの厚さで成膜し、配向制御のシード層とした。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極60が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(実施例3)
9層目まではRTAでの焼成温度が800℃であること以外は、実施例1と同様に実施した。10層から12層については、前駆体溶液にBiに対して3%Li、3%B、1%Cuの各元素を添加した溶液を同様の工程で塗布〜焼成(10〜12層についてはRTAにて750℃焼成)を行った。
(実施例4)
圧電体組成を0.75[(Bi、Fe0.89、Mn0.02、Ti0.09]O3]−0.25[BaTiO3]として、RTA焼成温度を800℃とし、実施例1と同様に実施した。
(比較例1)
酢酸鉛3水和物(Pb(CH3COO)2・3H2O)、チタニウムイソプロポキシド(Ti[OCH(CH324)、ジルコニウムアセチルアセトナート(Zr(CH3COCHCOCH34)を主原料とし、ブチルセロソルブ(C6146)を溶媒とし、ジエタノールアミン(C411NO2)を安定剤とし、ポリエチレングリコール(C266)を増粘剤として混合して得た前駆体溶液を用い、圧電体層を形成した。
(実施形態2)
本実施形態に係る液体噴射装置は、図1〜図5に示す実施形態1に係る液体噴射装置の構成、及び図6に示す駆動波形が適用できる。以下、実施形態1とは異なる点について説明する。
本実施形態の圧電体層70は、(100)面に優先配向しているものである。ここで、本実施形態において、「(100)面に優先配向している」とは、全ての結晶が(100)面に配向している場合と、ほとんどの結晶(例えば90%以上)が(100)面に配向している場合とを含むものである。具体的には、本実施形態の圧電体層70は、(100)面の配向度が0.90以上、好ましくは0.99以上である。
本実施形態において、図6に示す駆動波形の第1電位V1は、マイナス電位であるが、−5V以上の電圧と、マイナス側に小さくしている。これにより、詳細は後述するように、比較的容易にマイナス電位であるV1を形成でき且つ(100)面に優先配向している圧電体層70の変位を安定して高く維持することができる。
本実施形態は、上述した所定の圧電材料からなる圧電体層70を具備する圧電素子300を駆動する場合、駆動波形が、抗電圧以上の中間電位Vmに保持して当該圧電素子を分極状態とする工程と、中間電位Vmの印加状態から当該中間電位Vmとは逆極性の最小電圧であるが、−5V以上の電位である第1電圧V1を印加して前記圧電体層の分極を緩和させる工程と、第1電圧の印加状態から前記中間電位Vmより大きな最大電圧である第2電位V2を印加して液体を吐出する工程とを有するようにすることで、大きな変位量を確保するという効果を奏するものである。ここで、抗電圧以上の中間電圧とは、低い周波数(例えば66Hz〜1kHz)で圧電体層70のヒステリシスカーブを描いたときの抗電圧の電圧以上の電圧のことをいい、本実施形態では、10V以上となる。
かかる本実施形態を完成するにあたって、まず、Bi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、分極状態を維持できず、電界を受けて分極して歪んだ状態から、電界が除去されると、時間と共に分極緩和が生じて歪がない状態となる。そして、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られることを知見した。
また、分極緩和状態とする際の条件は、圧電体層70の配向状態で大きく変化し、例えば、(100)配向以外の配向状態では、分極緩和状態とするための最低電位の大きさが大きくなればなるほど、すなわち、マイナス電位が大きくなればなるほど、変位が大きくなるが、(100)配向の場合には、マイナス電位を大きくして変位が大きくなる割合は他の配向より著しく小さいことを知見した。この知見により、マイナス電位を大きくして電源設計を複雑且つ高価にするより、マイナス電位を小さく保った方が、結果的に安価で安定した圧電素子を実現できることがわかった。
よって、本実施形態は、中間電位Vmを維持した工程P01の後に、中間電位Vmとは逆極性の最小電位である第1電位V1を、マイナス電位であるが−5V以上(−5以上、0V未満)とマイナス電位としては小さな電位とする点に特徴がある。この電位は、電界に換算すると、−5.6V/μm以上となる。
これは(100)配向の圧電体層では、第1電位V1が−5V以上であっても、十分な変位が得られ、−5V以上であれば、特別な設計変更をしなくても、マイナス電位を印加でき、結果的にコストダウンにつながるからである。
なお、マイナス電圧であるV1は、共通電極である第2電極80にVbs=5Vを印加しておき、V1を2.5Vとすることで、V1=−2.5Vが実現できる。このように−5V以上の電圧であれば、制御部となる制御チップを駆動させるために用意している電源を用いて容易に実現でき、特別な電源を用意する必要がない。
(試験例11)
下記実施例11の組成の圧電体層70を具備する圧電素子300に、図9に示す駆動波形を基本として用い、当該駆動波形のΔV=35Vと一定として、Vm及びVminを変化させた波形を、200ms間隔と十分なディレイタイムをとった状態で印加し、圧電素子300の変位量を求めた結果を図10に示す。変位量は、グラフテック社製のレーザードップラー振動計で計測した速度データを、デクロイ社製のオシロスコープにて時間積分することにより、算出している(25℃)。測定サンプルは図3の形状に加工され、キャビティーが形成されているセグメントを使用し、各駆動波形を印加して測定した。なお、各変位量は、VmおよびVmin=0の場合を100として規格化して表した。
この結果、実施例11の(100)面に優先配向している圧電体層70を具備する圧電素子300では、Vm=0V、Vm=5Vの場合、Vminをマイナス側に大きくしていくと、変位量が低下していくが、Vm=10V、Vm=15V、Vm=20V、Vm=25Vの場合には、Vminをマイナス側に大きくしていくほど、変位量が向上し、ある電圧で飽和することがわかった。
一方、Vm=10V、Vm=15V、Vm=20V、Vm=25Vでは、待機状態では分極状態となり、Vminがマイナス側に大きくなるほど、分極して歪んだ状態から、電界が除去されると時間と共に分極緩和が生じて歪がない状態となり、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られるようになることを示している。しかしながら、(100)面配向の実施例11では、Vminをマイナス側に大きくしていくことによる分極緩和による効果が小さいことから、Vminは−5V程度までとして電源の低コスト化を図った方がよいことも表している。
比較のため、(110)面に配向又は(111)面に配向した圧電体層を具備するもの(下記比較例11、12)とした場合を同様に行った結果も同じく図10に示す。この結果、圧電材料が(110)面配向又は(111)面配向の場合には、Vm=15V、Vm=20V、Vm=25Vの場合には、Vminが0〜−5程度では、変位量がVm=0の場合より小さくなるが、Vmが−5Vを越えてマイナス側に大きくしていくほど、変位量が向上し、ある電圧で飽和することがわかった。よって、(110)面配向又は(111)面配向の圧電体層を有する場合には、Vminが−5V以上(マイナス側で小さい)の場合には変位量が小さくなって使用できないことがわかった。
(実施例11)(100)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ50nmの白金膜(第1電極60)を形成した。この白金膜上に、スパッター法もしくはゾル−ゲル法にてニッケル酸ランタン(LaNiO3)を40nmの厚さで成膜し、配向制御のシード層とした。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(比較例11)(110)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(比較例12)(111)面配向
(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。次いで、鉄酸コバルト酸ビスマスとチタン酸バリウムの複合酸化物(BiFeCoO3−BaTiO3)をゾル−ゲル法にてコーティングし、725℃3分RTA焼成することにより、20nmの薄膜を形成した。この前述の層をシード層として、配向制御を行った。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、775℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を10回繰り返し、10層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(実施形態3)
本実施形態に係る液体噴射装置は、図1〜図5に示す実施形態1に係る液体噴射装置の構成、及び図6に示す駆動波形が適用できる。以下、実施形態1とは異なる点について説明する。
本実施形態の圧電体層70は、(100)面に優先配向しているものである。ここで、本実施形態において、「(100)面に優先配向している」とは、全ての結晶が(100)面に配向している場合と、ほとんどの結晶(例えば80%以上)が(100)面に配向している場合とを含むものである。具体的には、本実施形態の圧電体層70は、(100)面の配向度が0.80以上、好ましくは0.90以上である。
本実施形態において、図6に示す駆動波形の第1電位V1は、マイナス電位であり、例えば、−15V〜−1Vとしている。この電位は、電界に換算すると、−16.7V/μm〜−1.1V/μmである。そして、第2の電圧変化工程P04で、第1電位V1から第1電位V1とは逆極性で中間電位Vmとは同極性で当該中間電位Vmより大きい最大電位である第2電位V2まで上昇させる。本実施形態では、第1電位V1と第2電位V2との電位差を、55V以上、電界に換算すると、6.1×107(V/m)以上として圧力発生室12を収縮させる。
本実施形態は、上述した所定の圧電材料からなる圧電体層70を具備する圧電素子300を駆動する場合、駆動波形が、抗電圧以上の中間電位Vmに保持して当該圧電素子を分極状態とする工程と、中間電位Vmの印加状態から当該中間電位Vmとは逆極性の最小電圧である第1電位V1を印加して前記圧電体層の分極を緩和させる工程と、第1電位V1の印加状態から前記中間電位Vmより大きな最大電圧である第2電位V2を印加して液体を吐出する工程とを有するようにし、第1電位V1と第2電位V2との電位差を、55V以上、電界に換算すると、6.1×107(V/m)以上として圧力発生室12を収縮させることで、大きな変位量を確保するという効果を奏するものである。ここで、抗電圧以上の中間電圧とは、低い周波数(例えば66Hz〜1kHz)で圧電体層70のヒステリシスカーブを描いたときの抗電圧の電圧以上の電圧のことを指すが、駆動波形が高周波化することで実質的な抗電圧は高い方向に変化することに留意が必要である。本実施形態では、10V以上であり、電界では11.1V/μm以上となる。
かかる本実施形態を完成するにあたって、まず、Bi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、分極状態を維持できず、電界を受けて分極して歪んだ状態から、電界が除去されると、時間と共に分極緩和が生じて歪がない状態となる。そして、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られることを知見した。
また、分極緩和した状態から最大電圧である第2電位V2まで電圧を変化させると、(100)面と(110)面に優先配向したビスマス(Bi)、鉄(Fe)、バリウム(Ba)及びチタン(Ti)を含みペロブスカイト構造を有する複合酸化物では、配向性の違いにより変位量が異なることを知見した。具体的には、(100)面配向の複合酸化物の変位量は、電界印加に伴い線形的に増加するが、(110)面配向の変位量は、非線形的に増加する。本実施形態で用いる、菱面対称構造の(100)面配向の複合酸化物は、自発分極の方向がすべて電界方向に対して45°程度の傾きをもち、分極方向の合成ベクトルが電界印加方向と一致する。このため、(100)面配向の複合酸化物では、変位が安定した状態で起こり、前記駆動波形の第2の電圧変化工程P04で、本来の圧電定数に比例した所望の変位量を得ることができ、電圧変化を大きくするほど大きな変位量が得られる。一方、菱面対称構造の(110)面配向のBi、Fe、Ba及びTiを含みペロブスカイト構造を有する複合酸化物、すなわち、BFO−BT系圧電材料では、分極方向が電界に対して2つの状態をとる。そして、その一方である、電界方向に対して垂直方向の分極軸は、前記駆動波形の第2の電圧変化工程P04で、自発分極の向きの変化、すなわち、非180度ドメインローテーションが発生し、本来の圧電定数に基づく変位量よりも大きな変位が発生するが、この非180度ドメインローテーション現象の大部分は比較的低電界領域で起こる。よって、高電界領域で圧電素子を駆動する場合は、(100)面配向の複合酸化物を圧電素子に用いた方が、より大きな変位量を得ることができる。この大きな変位量は、一般的に圧電材料として用いられているPZTを圧電素子に用いた場合と比較すると、例えば、第2電位V2と第1電位V1との電位差が60V、電界に換算すると、電界が6.7×107(V/m)において、ほぼ同じ変位量となる。
(実施例21)(100)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの膜厚で形成した後、同じくDCスパッター法により(111)面に配向し厚さ50nmの白金膜(第1電極60)を形成した。この白金膜上に、スパッター法もしくはゾル−ゲル法にてニッケル酸ランタン(LaNiO3)を40nmの厚さで成膜し、配向制御のシード層とした。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(比較例21)(110)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(試験例21)
実施例21の(100)面配向の圧電体層70を具備する圧電素子300と比較例21の(110)面配向の圧電体層70を具備する圧電素子300の変位量を測定した。
図6に示す駆動波形を基本波形として用い、前記駆動波形の中間電位をVm=20Vとし、最小電位である第1電位V1を各配向において変位量が最も高くなる電位、すなわち、(100)面配向の場合はV1=−7V、(110)面配向の場合はV1=−10Vとした。そして、前記駆動波形の最小電位V1から最大電位V2までの電位差ΔVを駆動電圧(V)として、この電位差ΔVを変化させた波形を200ms間隔と十分なディレイタイムをとった状態で印加することにより、圧電素子300の変位量を求めた。なお、前記駆動電圧(V)と圧電体層70の膜厚(900nm)との関係から電界(V/m)を算出した。変位量は、グラフテック社製のレーザードップラー振動計で計測した速度データを、デクロイ社製のオシロスコープにて時間積分することにより算出している(25℃)。測定サンプルは図3の形状に加工され、キャビティーが形成されているセグメントを使用し、各駆動波形を印加して測定した。
上記の手法で測定した各圧電素子300の変位量(nm)と電界(V/m)との関係を図11に示す。なお、電界(V/m)は、図6に示す駆動波形の第2電位V2と第1電位V1との電位差ΔVと圧電体層70の膜厚(900nm)とを考慮して、印加された電界の変化として示した。
この結果、実施例21の(100)面配向の圧電素子を駆動すると、前記駆動波形の第2電位V2と第1電位V1との電位差から換算した電界が6.1×107(V/m)より大きい領域で、変位量が(110)面配向の比較例21より大きくなり、電界が6.1×107(V/m)より小さくなると、(110)面配向より小さくなることがわかった。よって、(100)面配向のBFO−BT系圧電材料を用いた圧電素子を所定の駆動波形で、電界が6.1×107(V/m)以上となるように駆動することにより、変位量の向上の効果を得ることができる。また、(100)面配向の圧電素子の変位量は、低電界から高電界領域にかけて、線形的に増加するので、(100)面配向のBFO−BT系圧電材料を用いることにより、電界強度に対応する所望の変位量を得ることができる。
(実施形態4)
本実施形態に係る液体噴射装置は、図1〜図5に示す実施形態1に係る液体噴射装置の構成、及び図6に示す駆動波形が適用できる。以下、実施形態1とは異なる点について説明する。
本実施形態の圧電体層70は、(110)面又は(111)面に優先配向しているものである。ここで、本実施形態において、「(110)面又は(111)面に優先配向している」とは、全ての結晶が(110)面又は(111)面に配向している場合と、ほとんどの結晶(例えば80%以上)が(110)面又は(111)面に配向している場合とを含むものである。具体的には、本実施形態の圧電体層70は、(110)面又は(111)面の配向度が0.80以上、好ましくは0.9以上である。
本実施形態において、図6に示す駆動波形の第1電位V1は、マイナス電位であるが、−15V〜−5Vとしている。この電位は、電界に換算すると、−16.7V/μm〜−5.6V/μmである。これにより、詳細は後述するように、(110)面又は(111)面に優先配向している圧電体層70の変位を著しく高く維持することができる。
本実施形態は、上述した所定の圧電材料からなる圧電体層70を具備する圧電素子300を駆動する場合、駆動波形が、抗電圧以上の中間電位Vmに保持して当該圧電素子を分極状態とする工程と、中間電位Vmの印加状態から当該中間電位Vmとは逆極性の最小電圧であるが、電界に換算して、−16.7V/μm〜−5.6V/μmの電位である第1電位V1を印加して前記圧電体層の分極を緩和させる工程と、第1電位V1の印加状態から前記中間電位Vmより大きな最大電圧である第2電位V2を印加して液体を吐出する工程とを有するようにすることで、大きな変位量を確保するという効果を奏するものである。ここで、抗電圧以上の中間電位Vmとは、低い周波数(例えば66Hz〜1kHz)で圧電体層70のヒステリシスカーブを描いたときの抗電圧の電圧以上の電圧のことを指すが、駆動波形が高周波化することで実質的な高電界は高い方向に変化することに留意が必要である。本実施形態では、10V以上であり、電界では11.1V/μm以上となる。
かかる本実施形態を完成するにあたって、まず、Bi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、分極状態を維持できず、電界を受けて分極して歪んだ状態から、電界が除去されると、時間と共に分極緩和が生じて歪がない状態となる。そして、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られることを知見した。
また、分極緩和状態とする際の条件は、圧電体層70の配向状態で大きく変化し、例えば、(110)面又は(111)面の配向状態では、分極緩和状態とするための最小電位の大きさが大きくなればなるほど、すなわち、マイナス電位が大きくなればなるほど、変位が大きくなることがわかった。一方、(100)配向の場合には、マイナス電位を大きくして変位が大きくなる割合が(110)面又は(111)面配向より著しく小さいことがわかった。よって、この知見により、(110)面又は(111)面に配向している圧電体層70を具備する場合には、最小電位である第1電位V1を−15V〜−5Vとすると、大きな変位が得られることがわかった。
本実施形態は、中間電位Vmを維持した工程P01の後に、中間電位Vmとは逆極性の最小電位である第1電位V1を、マイナス電位であるが−15V〜−5Vとする点に特徴がある。
これは(110)面又は(111)面の圧電体層では、第1電位V1が−15V〜−5Vの範囲、好ましくは、−14V〜−6Vとすると、大きな変位が得られるからである。
なお、マイナス電圧であるV1は、共通電極である第2電極80に、例えば、Vbs=15Vを印加しておき、V1を2.5Vとすることで、V1=−12.5Vが実現できる。
(試験例31)
下記実施例31、32の組成の圧電体層70を具備する圧電素子300に、図9に示す駆動波形を基本として用い、当該駆動波形のΔV=35Vと一定として、Vm及びVminを変化させた波形を、200ms間隔と十分なディレイタイムをとった状態で印加し、圧電素子300の変位量を求めた結果を図12に示す。変位量は、グラフテック社製のレーザードップラー振動計で計測した速度データを、デクロイ社製のオシロスコープにて時間積分することにより、算出している(25℃)。測定サンプルは図3の形状に加工され、キャビティーが形成されているセグメントを使用し、各駆動波形を印加して測定した。なお、各変位量は、VmおよびVmin=0の場合を100として規格化して表した。
この結果、実施例31、32の(110)面に配向、(111)面に優先配向している圧電体層70を具備する圧電素子300では、Vm=10、Vm=15V、Vm=20V、Vm=25Vでは、待機状態では分極状態となり、Vminがマイナス側に大きくなるほど、分極して歪んだ状態から、電界が除去されると時間と共に分極緩和が生じて歪がない状態となり、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られるようになることを示している。
よって、実施例31、32の(110)面に配向、(111)面に優先配向している圧電体層70を具備する圧電素子300では、第1電位V1に対応するVmimを−15V〜−5V、好ましくは、−14V〜−6Vとするのが好ましいことがわかった。電界に換算すると、−16.7V/μm〜−5.6V/μm、好ましくは、−6.7V/μm〜15.6V/μmである。
比較のため、(100)面に配向圧電体層を具備するもの(下記比較例31)とした場合を同様に行った結果も同じく図12に示す。この結果、圧電材料が(100)面配向の場合には、Vmを−5Vを越えてマイナス側に大きくしても、変位量の大きな向上は見られないことがわかった。
(実施例31)(110)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmを形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(実施例32)(111)面配向
(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmを形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。次いで、鉄酸コバルト産ビスマスとチタン酸バリウムの複合酸化物(BiFeCoO3−BaTiO3)をゾルゲル法にてコーティングし、725℃3分RTA焼成することにより、20nmの薄膜を形成した。この前述の層をシード層として、配向制御を行った。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、775℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を10回繰り返し、10層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(比較例31)(100)配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmを形成した後、同じくDCスパッター法により(111)面に配向し厚さ50nmの白金膜(第1電極60)を形成した。この白金膜上に、スパッター法もしくはゾルゲル法にてニッケル酸ランタン(LaNiO3)を40nmの厚さで成膜し、配向制御のシード層とした。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(試験例32)
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmを形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比下記組成となるように前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。なお、第2電極80を設ける前に圧電体層70のXRDを測定して配向状態を観察したところ、(110)面に配向したものであった。
前駆体溶液を下記の組成としたサンプル1〜5の圧電素子について、試験例31と同様に測定した結果を図13に示す。
この結果、BFO−BT系の非鉛系圧電材料では、BFO比が大きいほどVmimの電位をマイナス側にした場合の変位量の向上が顕著であり、BFO/BT=79/21のサンプル1が一番顕著であった。また、このような組成で(110)面配向の圧電素子では、第1電圧に相当するVminは−6V〜−14V、電界に換算すると、−6.7V/μm〜15.6V/μmとするのが好ましいことがわかった。
<前駆体溶液>
ここで、BFOは、Ba:Fe=1:1の複合酸化物、BTは、Ba:Ti=1:1の複合酸化物を示す。
サンプル1:BFO/BT=79/21
サンプル2:BFO/BT=77/23
サンプル3:BFO/BT=75/25
サンプル4:BFO/BT=73/27
サンプル5:BFO/BT=71/29
(実施形態5)
本実施形態に係る液体噴射装置は、図1〜図5に示す実施形態1に係る液体噴射装置の構成、及び図6に示す駆動波形が適用できる。以下、実施形態1とは異なる点について説明する。
本実施形態の圧電体層70は、(110)面に優先配向しているものである。ここで、本明細書において、「(110)面に優先配向している」とは、全ての結晶が(110)面に配向している場合と、ほとんどの結晶(例えば80%以上)が(110)面に配向している場合とを含むものである。具体的には、本実施形態の圧電体層70は、(110)面の配向度が0.80以上、好ましくは0.90以上である。
本実施形態において、図6に示す駆動波形の第1電位V1は、マイナス電位であり、例えば、−15V〜−1Vとしている。この電位は、電界に換算すると、−16.7V/μm〜−1.1V/μmである。そして、第2の電圧変化工程P04で、第1電位V1から第1電位V1とは逆極性で中間電位Vmとは同極性で当該中間電位Vmより大きい最大電位である第2電位V2まで上昇させる。本実施形態では、第1電位V1と第2電位V2との電位差を、55V以内、電界に換算すると、6.1×107(V/m)以下として圧力発生室12を収縮させる。
本実施形態は、上述した所定の圧電材料からなる圧電体層70を具備する圧電素子300を駆動する場合、駆動波形が、抗電圧以上の中間電位Vmに保持して当該圧電素子を分極状態とする工程と、中間電位Vmの印加状態から当該中間電位Vmとは逆極性の最小電圧である第1電位V1を印加して前記圧電体層の分極を緩和させる工程と、第1電位V1の印加状態から前記中間電位Vmより大きな最大電圧である第2電位V2を印加して液体を吐出する工程とを有するようにし、第1電位V1と第2電位V2との電位差を、55V以内、電界に換算すると、6.1×107(V/m)以下として圧力発生室12を収縮させることで、大きな変位量を確保するという効果を奏するものである。ここで、抗電圧以上の中間電圧とは、低い周波数(例えば66Hz〜1kHz)で圧電体層70のヒステリシスカーブを描いたときの抗電圧の電圧以上の電圧のことを指すが、駆動波形が高周波化することで実質的な高電界は高い方向に変化することに留意が必要である。本実施形態では、5V以上であり、電界では5.5V/μm以上となる。
かかる本実施形態を完成するにあたって、まず、Bi、Fe、Ba及びTiに加えてMn、CoやCrも含みペロブスカイト構造を有する複合酸化物からなる所定の圧電体層70は、分極状態を維持できず、電界を受けて分極して歪んだ状態から、電界が除去されると、時間と共に分極緩和が生じて歪がない状態となる。そして、分極状態から所定の電圧変化工程を付与すると、分極緩和が電界により促進され、短時間で分極緩和状態とし、その後、大きな変位が得られることを知見した。
また、分極緩和した状態から最大電圧である第2電位V2まで電圧を変化させると、(110)面に優先配向した、ビスマス(Bi)、鉄(Fe)、バリウム(Ba)及びチタン(Ti)を含みペロブスカイト構造を有する複合酸化物では、非180度ドメインローテーションが発生して大きな変位量が得られることを知見した。本実施形態で用いる、(110)面に優先配向した複合酸化物は、分極軸が2つの状態をとり、その一方の分極軸方向は電界に対して垂直な方向をもつため、本来、変位に関与しない。しかしながら、上述したような駆動波形で駆動すると、本来変位に関与しない分極軸が第2の電圧変化工程で方向が変化する。これを非180度ドメインローテーションといい、本来の圧電定数に伴う変位量に非180度ドメインローテーションに基づく変位量が付加され、結果的に大きな変位量を得ることができる。この結果、第1電位V1と第2電位V2との電位差を55V以下と比較的小さく抑えても、大きな変位量を確保することができる。
このような非180度ドメインローテーションによる変位は、(100)面に優先配向した、Bi、Fe、Ba及びTiを含みペロブスカイト構造を有する複合酸化物、すなわち、BFO−BT系圧電材料を用いても効果が小さい。これは、(100)面配向のBi、Fe、Ba及びTiを含む複合酸化物では、すべての分極軸方向が電界に対して45°の傾きを持ち、合成された分極軸のベクトルが電界方向と一致するため、このような(100)配向のBFO−BT系圧電材料では、圧電定数に付与される変位量は小さくなる。なお、非180度ドメインローテーションによる変位は、従来から一般的に圧電材料として用いられているPZTでも生じるものではあるが、効果が小さく、また信頼性に劣るため、実質的な使用は不可能である。
(実施例41)(110)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmの厚さで形成した後、同じくDCスパッター法により(111)面に配向し厚さ100nmの白金膜(第1電極60)を形成した。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、750℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(比較例41)(100)面配向
まず、(110)単結晶シリコン(Si)基板の表面に熱酸化により膜厚1200nmの酸化シリコン(SiO2)膜を形成した。次に、SiO2膜上にDCスパッター法により膜厚400nmのジルコニウム膜を作成し、これを酸素雰囲気下で熱処理(RTA)することによりジルコニア層を形成した。このジルコニア層に密着層としてDCスパッター法によりジルコニウムを40nmを形成した後、同じくDCスパッター法により(111)面に配向し厚さ50nmの白金膜(第1電極60)を形成した。この白金膜上に、スパッター法もしくはゾル−ゲル法にてニッケル酸ランタン(LaNiO3)を40nmの厚さで成膜し、配向制御のシード層とした。
次いで、第1電極60上に圧電体膜を積層し、圧電体層70とした。その手法は以下のとおりである。まず、2−エチルヘキサン酸ビスマス、2−エチルヘキサン酸鉄、2−エチルヘキサン酸マンガン、2−エチルヘキサン酸バリウム及び2−エチルヘキサン酸チタンの各n−オクタン溶液を、各元素がモル比でBi:Ba:Fe:Ti:Mn=75:25:71.25:25:3.75となるように混合して(BFO:BT=75:25)、前駆体溶液を調製した。
そしてこの前駆体溶液を、第1電極が形成された基板上に滴下し、3000rpmで基板を回転させて圧電体前駆体膜を形成した(塗布工程)。次に、ホットプレート上で、180℃で2分間乾燥した(乾燥工程)。次いで、350℃で4分間脱脂を行った(脱脂工程)。次に、酸素雰囲気中で、RTA(Rapid Thermal Annealing)装置で、650℃で5分間焼成を行って圧電体膜を形成した(焼成工程)。この塗布工程、乾燥工程、脱脂工程及び焼成工程の一連の工程を12回繰り返し、12層の圧電体膜からなる、全体で厚さ900nmの圧電体層70を形成した。
その後、圧電体層70上に、第2電極80としてスパッター法により厚さ50nmのイリジウム膜(第2電極80)を形成することで、Bi、Fe、Mn、Ba及びTiを含みペロブスカイト構造を有する複合酸化物を圧電体層70とする圧電素子300を形成した。
(試験例41)
実施例41の(110)面配向の圧電体層70を具備する圧電素子300と比較例41の(100)面配向の圧電体層70を具備する圧電素子300の変位量を測定した。図6に示す駆動波形を基本波形として用い、前記駆動波形の中間電位をVm=20Vとし、最小電位である第1電位V1を各配向において変位量が最も高くなる電位、すなわち、(110)面配向の場合はV1=−10V、(100)面配向の場合はV1=−7Vとした。そして、前記駆動波形の最小電位V1から最大電位V2までの電位差ΔVを駆動電圧(V)として、この電位差ΔVを変化させた波形を200ms間隔と十分なディレイタイムをとった状態で印加することにより圧電素子300の変位量を求めた。変位量は、グラフテック社製のレーザードップラー振動計で計測した速度データを、デクロイ社製のオシロスコープにて時間積分することにより算出している(25℃)。測定サンプルは図3の形状に加工され、キャビティーが形成されているセグメントを使用し、各駆動波形を印加して測定した。
上記の手法で測定した各圧電素子300の変位量(nm)と電界(V/m)との関係を図11に示す。
なお、電界(V/m)は、図6に示す駆動波形の第2電位V2と第1電位V1との電位差ΔVと圧電体層70の膜厚(900nm)とを考慮して、印加された電界の変化として示した。
図11に示すように、(110)面配向の実施例では、第1電位V1と第2電位V2との電位差から換算した電界が比較的小さい領域で、変位量が(100)面配向の比較例41より大きくなり、電界が6.1×107(V/m)より大きくなると、(100)面配向より小さくなることがわかった。
この結果、非180度ドメインローテーションに基づく変位量向上の恩恵が受けられるのは、電界が6.1×107(V/m)以下であることがわかった。
よって、(110)面配向のBFO−BT系圧電材料を用い、所定の駆動波形で電界が6.1×107(V/m)以下となるように駆動することにより、非180度ドメインローテーションに基づいて変位量向上の効果を得ることができる。
(他の実施形態)
以上、本発明の一実施形態を説明したが、本発明の基本的構成は上述したものに限定されるものではない。例えば、上述した実施形態では、流路形成基板10として、シリコン単結晶基板を例示したが、特にこれに限定されず、例えば、SOI基板、ガラス等の材料を用いるようにしてもよい。
さらに、上述した実施形態では、基板(流路形成基板10)上に第1電極60、圧電体層70及び第2電極80を順次積層した圧電素子300を例示したが、特にこれに限定されず、例えば、圧電材料と電極形成材料とを交互に積層させて軸方向に伸縮させる縦振動型の圧電素子を具備する液体噴射装置にも本発明を適用することができる。
なお、上記各実施形態においては、液体噴射ヘッドの一例としてインクジェット式記録ヘッドを、また液体噴射装置の一例としてインクジェット式記録装置を挙げて説明したが、本発明は、広く液体噴射装置全般を対象としたものであり、インク以外の液体を噴射する液体噴射装置にも勿論適用することができる。その他の液体噴射ヘッドとしては、例えば、プリンター等の画像記録装置に用いられる各種の記録ヘッド、液晶ディスプレイ等のカラーフィルターの製造に用いられる色材噴射ヘッド、有機ELディスプレイ、FED(電界放出ディスプレイ)等の電極形成に用いられる電極材料噴射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられ、かかる液体噴射ヘッドを備えた液体噴射装置にも適用できる。
I インクジェット式記録ヘッド(液体噴射ヘッド)、 II インクジェット式記録装置(液体噴射装置)、 10 流路形成基板、 12 圧力発生室、 13 連通部、 14 インク供給路、 20 ノズルプレート、 21 ノズル開口、 30 保護基板、 31 マニホールド部、 32 圧電素子保持部、 40 コンプライアンス基板、 50 弾性膜、 60 第1電極、 70 圧電体層、 80 第2電極、 90 リード電極、 100 マニホールド、 120 駆動回路、 300 圧電素子。

Claims (4)

  1. 圧電体層および該圧電体層に設けられた電極を備えた圧電素子と、前記圧電素子を駆動する駆動波形を前記圧電素子に供給する駆動手段と、を有する液体噴射装置であって、
    前記圧電体層は、ビスマス、鉄、バリウム及びチタンを含むペロブスカイト構造を有する複合酸化物からなり、
    前記駆動波形は、
    前記圧電体層に中間電位を印加する待機工程と、
    前記中間電位の印加状態から前記中間電位とは逆極性の電圧を印加して最小電位まで降下させる第1の電圧変化工程と、
    前記最小電位から、前記中間電位より大きな電圧を印加して液体を吐出すると共に最大電位まで上昇させる第2の電圧変化工程と、を有し、
    前記中間電位の印加によって前記圧電体層にかかる電界は、11.1V/μm以上であり、且つ前記最大電位と最小電位における前記圧電体層にかかる電界の差の1/2より大きく、
    前記圧電体層は、(100)面に優先配向していることを特徴とする液体噴射装置。
  2. 前記最小電位は、電界に換算して−5.6V/μm以上であることを特徴とする請求項1に記載の液体噴射装置。
  3. 前記最大電位と最小電位における前記圧電体層にかかる電界の差が、61V/μm以上であることを特徴とする請求項1又は請求項2に記載の液体噴射装置。
  4. 前記圧電体層は、さらにMn、Co及びCrを含むことを特徴とする請求項1乃至のいずれか一項に記載の液体噴射装置。
JP2012244181A 2012-02-16 2012-11-06 液体噴射装置 Expired - Fee Related JP6145992B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012244181A JP6145992B2 (ja) 2012-03-26 2012-11-06 液体噴射装置
US13/767,283 US8752926B2 (en) 2012-02-16 2013-02-14 Liquid ejecting apparatus
EP13155520.3A EP2628596B1 (en) 2012-02-16 2013-02-15 Liquid ejecting apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012070456 2012-03-26
JP2012070456 2012-03-26
JP2012244181A JP6145992B2 (ja) 2012-03-26 2012-11-06 液体噴射装置

Publications (2)

Publication Number Publication Date
JP2013229549A JP2013229549A (ja) 2013-11-07
JP6145992B2 true JP6145992B2 (ja) 2017-06-14

Family

ID=49676869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244181A Expired - Fee Related JP6145992B2 (ja) 2012-02-16 2012-11-06 液体噴射装置

Country Status (1)

Country Link
JP (1) JP6145992B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013553B4 (de) * 2015-10-20 2018-03-08 Physik Instrumente (Pi) Gmbh & Co. Kg Verfahren zur Ansteuerung eines Stellelements
EP3367452A1 (en) * 2017-02-28 2018-08-29 Koninklijke Philips N.V. Electroactive material actuator and drive method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043265A (ja) * 1998-08-03 2000-02-15 Fujitsu Ltd インクジェットヘッド及びインクジェット記録装置
JP2010105300A (ja) * 2008-10-31 2010-05-13 Seiko Epson Corp 液体吐出装置
JP2011031403A (ja) * 2009-07-29 2011-02-17 Seiko Epson Corp アクチュエーター、液体噴射ヘッド及びその製造方法並びに液滴噴射装置
JP2011073392A (ja) * 2009-10-01 2011-04-14 Seiko Epson Corp 液体噴射ヘッドの製造方法
JP5839157B2 (ja) * 2010-03-02 2016-01-06 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置、圧電素子、超音波センサー及び赤外センサー
JP5534179B2 (ja) * 2010-03-09 2014-06-25 セイコーエプソン株式会社 圧電体膜、圧電素子、液体噴射ヘッド及び液体噴射装置
JP5623134B2 (ja) * 2010-05-27 2014-11-12 富士フイルム株式会社 ペロブスカイト型酸化物、酸化物組成物、酸化物体、圧電素子、及び液体吐出装置

Also Published As

Publication number Publication date
JP2013229549A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
JP5577844B2 (ja) 液体噴射装置
US9673378B2 (en) Liquid-ejecting head, liquid-ejecting apparatus, piezoelectric element, and piezoelectric material
JP5453960B2 (ja) 液体噴射ヘッド及び液体噴射装置並びにアクチュエーター装置
JP5534179B2 (ja) 圧電体膜、圧電素子、液体噴射ヘッド及び液体噴射装置
US8752926B2 (en) Liquid ejecting apparatus
JP6115720B2 (ja) 液体噴射装置及び液体噴射ヘッドの駆動方法
JP6145992B2 (ja) 液体噴射装置
JP2010089470A (ja) 液体噴射ヘッド及び液体噴射装置並びにアクチュエータ装置
US9162455B2 (en) Liquid ejecting apparatus
JP2016004854A (ja) 圧電素子、液体噴射ヘッド、液体噴射装置、アクチュエーター、センサー及び圧電材料
JP5888344B2 (ja) 圧電素子の駆動方法、及び圧電デバイス
JP2013125914A (ja) 液体噴射装置
US9061493B2 (en) Liquid ejecting apparatus and manufacturing method thereof
JP2013139096A (ja) 液体噴射装置
JP2013180531A (ja) 液体噴射装置
JP2013180530A (ja) 液体噴射装置
JP2013166330A (ja) 液体噴射装置
JP2013166329A (ja) 液体噴射装置
JP2015208925A (ja) 圧電素子の設計手法、液体噴射装置及び液体噴射ヘッドの駆動方法
JP5733374B2 (ja) 液体噴射ヘッド及び液体噴射装置並びにアクチュエーター装置
JP2013187207A (ja) 圧電アクチュエーター及びその製造方法、液体噴射ヘッド及びその製造方法、並びに、液体噴射装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160609

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6145992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees