JP6129031B2 - 給湯システム - Google Patents

給湯システム Download PDF

Info

Publication number
JP6129031B2
JP6129031B2 JP2013181444A JP2013181444A JP6129031B2 JP 6129031 B2 JP6129031 B2 JP 6129031B2 JP 2013181444 A JP2013181444 A JP 2013181444A JP 2013181444 A JP2013181444 A JP 2013181444A JP 6129031 B2 JP6129031 B2 JP 6129031B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
amount
remaining
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013181444A
Other languages
English (en)
Other versions
JP2015048994A (ja
Inventor
裕基 井浪
裕基 井浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2013181444A priority Critical patent/JP6129031B2/ja
Publication of JP2015048994A publication Critical patent/JP2015048994A/ja
Application granted granted Critical
Publication of JP6129031B2 publication Critical patent/JP6129031B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貯湯タンクを有する給湯システムに関する。
ヒートポンプ等の加熱装置により加熱した湯水を蓄える貯湯タンクを有する給湯システムとしては、従来、例えば、特許文献1に見られるものが知られている。
この給湯システムは、貯湯タンクの上部から導出された出湯管と、貯湯タンクの下部及び出湯管の途中部に接続された給水管と、出湯管の下流側に配置された燃焼式給湯器(燃焼熱により通水を加熱する給湯器)と、出湯管の上記途中部から下流側に流れる湯水を、燃焼式給湯器をバイパスさせて出湯管の上流側から下流側に流す出湯バイパス管とを有する。
そして、給湯運転の開始時に、貯湯タンクに所定温度以上の高温の湯水が十分に残っている場合(残湯量が大きい場合)には、燃焼式給湯器による湯水の加熱運転を行わない状態で、貯湯タンクの湯水と給水管の水とを適宜混合することで所望の温度に温調してなる湯水を、出湯バイパス管を介して出湯管の終端の給湯口に供給する。
また、貯湯タンクが湯切れ状態になった場合には、出湯バイパス管を閉弁して、貯湯タンクの湯水と給水管の水とを適宜混合してなる湯水の全量を燃焼式給湯器に供給し、該燃焼式給湯器の加熱運転によって所望の温度に温調してなる湯水を出湯管の終端の給湯口に供給する。
さらに、給湯運転の開始時に、貯湯タンクの残湯量が小さい(湯切れ状態に近い)場合には、貯湯タンクが湯切れ状態になる前に、出湯バイパス管を開弁したまま、燃焼式給湯器の加熱運転を開始して、燃焼式給湯器内の出湯管の湯水を昇温させておくようにしている。
特開2011−153796号公報
ところで、特許文献1に見られる如き給湯システムのエネルギー効率を高める上では、燃焼式給湯器の加熱運転を行う頻度を極力少なくすることが望ましい。このため、特許文献1に見られる如く、給湯運転の開始時に、貯湯タンク内の残湯量の大小を判断して、該残湯量が小さいと判断される場合に、貯湯タンクの湯切れが発生する前から燃焼式給湯器の加熱運転を行うものでは、該残湯量の大小を区分する閾値ができるだけ小さいことが望ましい。
しかるに、給湯運転の開始時に大小を判断する残湯量の閾値を極力小さくしておくと、次のような不都合が生じる場合があることが本願発明者の実験、検討により判明した。
すなわち、燃焼式給湯器の加熱運転を行った場合には、該加熱運転の終了後、ある程度の時間が経過するまでは、燃焼式給湯器内の通水管(湯水の流路)内の湯水は余熱によって温められている。
このような状況で、燃焼式給湯器の加熱運転を行わずに、給湯システムの給湯運転を開始した場合には、その開始後まもなくに貯湯タンクが湯切れ状態となって、燃焼式給湯器の加熱運転により加熱した湯を出湯管の終端の給湯口に給湯することを開始しても、その開始直後に、燃焼式給湯器から出湯管の終端の給湯口に一時的に冷えた湯水が供給されてしまうことは生じない。
一方、燃焼式給湯器の加熱運転の終了後、十分に時間が経過した状態では、燃焼式給湯器の余熱が無くなって、燃焼式給湯器内の通水管内の湯水は冷えたものとなっている。
このような状況で、燃焼式給湯器の加熱運転を行わずに、給湯システムの給湯運転を開始した場合には、その開始後まもなくに貯湯タンクが湯切れ状態となると、湯切れ状態になる前に燃焼式給湯器に貯湯タンク側から流入する高温の湯水が少なすぎて、湯切れ状態になる前に燃焼式給湯器内の通水管の出口近辺の湯水が冷えたままになっている状況が生じやすい。
そして、この場合、貯湯タンクが湯切れ状態となった直後に一時的に、燃焼式給湯器から昇温不足の冷えた湯水が出湯管の終端の給湯口に供給される場合がある。
このような不都合を解消するためには、給湯運転の開始時に、貯湯タンク内の残湯量が大きいと判断されることとなる該残湯量が常に多めの残湯量となるように該残湯量の大小を区分する残湯量閾値を定めておくことが考えられる。
しかるに、この場合には、給湯運転の開始時から燃焼式給湯器の加熱運転を行う頻度が必要以上に多くなって、給湯システムのエネルギー効率が低下してしまう。
本発明はかかる背景に鑑みてなされたものであり、燃焼式給湯器の加熱運転を行うことを抑制しつつ、所要の温度の湯水の給湯を適切に行うことを実現できる給湯システムを提供することを目的とする。
本発明の給湯システムは、かかる目的を達成するために、貯湯タンクと、前記貯湯タンク内の湯水を加熱する加熱手段と、前記貯湯タンクから導出された出湯管と、前記貯湯タンクと前記出湯管の第1途中部とに接続された給水管と、前記出湯管の第1途中部よりも下流側に配置され、前記出湯管を流れる湯水を加熱する燃焼式給湯器と、前記出湯管の第1途中部から下流側に流れる湯水を、前記燃焼式給湯器をバイパスさせて流すように前記燃焼式給湯器の上流側における前記出湯管の第2途中部と前記燃焼式給湯器の下流側における前記出湯管の第3途中部とを連通させる出湯バイパス管と、前記貯湯タンクから前記出湯管に供給される湯水と前記給水管から前記出湯管に供給される水との混合比を変更する混合比変更手段と、前記出湯バイパス管を開閉可能に該出湯バイパス管に設けられたバイパス弁とを備える給湯システムであって、
前記出湯管からの給湯の開始時に、前記貯湯タンク内に存在する所定温度以上の湯水の量である残湯量を大小に分別して検知する残湯量検知手段と、
前記残湯量検知手段により残湯量が大きいことが検知された場合には、前記貯湯タンクが湯切れ状態になるまで、前記燃焼式給湯器の加熱運転を禁止すると共に前記バイパス弁を開弁状態に制御した状態で、前記混合比変更手段により前記混合比を調整しつつ、前記出湯管から目標温度の湯水を給湯する第1給湯制御処理を実行し、前記残湯量検知手段により残湯量が小さいことが検知された場合には、前記燃焼式給湯器の加熱運転を行いつつ、前記出湯管から目標温度の湯水を給湯する第2給湯制御処理を実行する運転制御手段と、
前記燃焼式給湯器の加熱運転の終了後の経過時間を計時する第1計時手段とを備えており、
前記残湯量検知手段は、前記残湯量が大きいと判断することとなる該残湯量の範囲と、前記残湯量が小さいと判断することとなる該残湯量の範囲との間の境界値である残湯量閾値が、前記第1計時手段による計時時間が長いほど、大きくなるようにして、該残湯量の大小を検知するように構成されていることを特徴とする(第1発明)。
かかる第1発明によれば、前記出湯管からの給湯の開始時に、前記残湯量検知手段により残湯量が大きいことが検知された場合には、前記運転制御手段により前記第1給湯制御処理が実行される。これにより、前記燃焼式給湯器の加熱運転を行うことなく、前記出湯管から目標温度の湯水を給湯させることができる。
ここで、出湯管からの給湯(ひいては、貯湯タンクから出湯管への湯水の供給)が継続すると、最終的に、貯湯タンクが湯切れ状態となる。該湯切れ状態は、所定温度以上の湯水の残湯量がゼロもしくそれに近いものとなる状態である。この湯切れ状態では、貯湯タンクから出湯管に所定温度以上の高温の湯水を供給することができなくなるので、出湯管から目標温度の湯水の給湯を行うために、前記出湯管の第1途中部から下流側に流れる湯水の全体もしくは大部分を燃焼式給湯器に流入させて、該燃焼式給湯器の加熱運転を行う必要がある。
一方、貯湯タンクが湯切れ状態となる前には、前記出湯管の第1途中部から下流側に流れる湯水(貯湯タンクから第1途中部に供給される湯水と給水管から第1途中部に供給される水とを混合してなる湯水。以降、混合湯水ということがある)の多くは、前記出湯バイパス管を通って、出湯管の下流側に流れるものの、該混合湯水の一部は燃焼式給湯器に流入する。
この場合、給湯の開始時における貯湯タンクの残湯量が大きいので、貯湯タンクが湯切れ状態になる前に、前記燃焼式給湯器に、前記目標温度もしくはそれに近い温度の混合湯水の一部を、比較的長い時間にわたって供給することができる。
しかも、前記残湯量検知手段は、前記残湯量の大小を区分する境界値としての前記残湯量閾値が、前記第1計時手段による計時時間が長いほど、大きくなるようにして、該残湯量の大小を検知する。
このため、燃焼式給湯器の加熱運転の終了後の経過時間(第1計時手段による計時時間。以降、第1計時時間ということがある)が相対的に長いものとなっている状況での給湯の開始時に、残湯量検知手段により残湯量が大きいと判断された場合には、貯湯タンク内に所定温度以上の湯水が多めに残存している。
従って、上記第1計時時間が相対的に長いものとなっていることによって、給湯の開始時における燃焼式給湯器内の出湯管やその内部の湯水が冷えていても、貯湯タンクが湯切れ状態となるまでに、貯湯タンク内の高温の湯水(所定温度以上の湯水)の一部を燃焼式給湯器に十分に流入させ、燃焼式給湯器の出湯管内の湯水の全体が、目標温度もしくはそれに近い温度の湯水に置換されるようにすると共に、該湯水の温度を保温しておくことができる。
他方、上記第1計時時間が相対的に短いものとなっている状況での給湯の開始時に、残湯量検知手段により残湯量が大きいと判断された場合には、貯湯タンク内の残湯量が、該第1計時時間が相対的に長いものとなっている状況よりも少ないものとなっている場合がある。
例えば、第1計時時間が相対的に長い状況での前記残湯量閾値をA、第1計時時間が相対的に短い状況での前記残湯量閾値をB(<A)とした場合、第1計時時間が相対的に短い状況では、残湯量がAより小さくてもBよりも大きければ、残湯量検知手段により該残湯量が大きいと判断される。
そして、このような場合には、給湯の開始後、比較的早期に貯湯タンクが湯切れ状態となる。
しかるに、第1計時時間が相対的に短い状況では、給湯の開始時に、燃焼式給湯器の出湯管内の湯水が余熱より温められている。このため、給湯の開始時から貯湯タンクが湯切れ状態になる前に貯湯タンク側から燃焼式給湯器に流入する高温の湯水が比較的少なくても、貯湯タンクが湯切れ状態になる前に、燃焼式給湯器の出湯管内の湯水が保温される(温度低下が生じ難い)。
従って、給湯の開始時に、残湯量検知手段により残湯量が大きいことが検知される状況では、第1計時時間が相対的に短い場合だけでなく、相対的に長い場合でも、貯湯タンクが湯切れ状態となる前に、燃焼式給湯器の加熱運転を行うことなく、燃焼式給湯器の出湯管内の湯水の全体を、高い確実性で、目標温度もしくはそれに近い温度の湯水にしておくことができることとなる。
このため、給湯の開始時に、残湯量検知手段により残湯量が大きいことが検知される状況では、給湯の開始時における前記第1計時時間によらずに、貯湯タンクが湯切れ状態となった直後に一時的に、燃焼式給湯器から目標温度に比して冷えた昇温不足の湯水が出湯管の下流側に流れるのを防止することが可能となる。
次に、前記出湯管からの給湯の開始時に、前記残湯量検知手段により残湯量が小さいことが検知された場合には、前記運転制御手段により前記第2給湯制御処理が実行される。
この場合、出湯管からの給湯の開始時における貯湯タンクの残湯量が小さいので、該残湯量が大きい場合よりも、貯湯タンクが早期に湯切れ状態となる。しかるに、貯湯タンクが湯切れ状態になる前であっても、燃焼式給湯器の加熱運転が行われる。このため、貯湯タンクが湯切れ状態になる前に、燃焼式給湯器の出湯管内の湯水を目標温度もしくはそれに近い温度に湯水に速やかに昇温して保温しておくことができる。
しかも、前記残湯量検知手段は、前記第1計時時間が長いほど、残湯量閾値が大きくなるようにして、貯湯タンクの残湯量の大小を検知する。このため、第1計時時間が相対的に長い状況での給湯の開始時には、該第1計時時間が相対的に短い状況での給湯の開始時に比べて、前記残湯量がより多めの状態でも、残湯量検知手段より該残湯量が小さいと判断されることとなる。
例えば、第1計時時間が相対的に長い状況での前記残湯量閾値をA、第1計時時間が相対的に短い状況での前記残湯量閾値をB(<A)とした場合、第1計時時間が相対的に長い状況では、残湯量がAよりも小さければ、Bよりも大きくても、残湯量検知手段により該残湯量が小さいと判断される。
これに対して、第1計時時間が相対的に短い状況では、残湯量がBよりも大きければ、残湯量検知手段により該残湯量が大きいと判断される。
従って、第1計時時間が相対的に長い場合には、貯湯タンクが湯切れ状態になる前に、前記燃焼式給湯器における出湯管の湯水を、該燃焼式給湯器の加熱運転により加熱し得る期間を、第1計時時間が相対的に短い場合よりも長めにすることができる。ひいては、第1計時時間が相対的に長い場合でも、貯湯タンクが湯切れ状態になる前に、燃焼式給湯器の出湯管内の湯水の全体を、高い確実性で、目標温度もしくはそれに近い温度の湯水にすると共に、該湯水の温度を保温することができる。
この結果、出湯管からの給湯の開始時に、貯湯タンクの残湯量が小さいことが検知される場合であっても、給湯の開始時における前記第1計時時間によらずに、貯湯タンクが湯切れ状態となった直後に一時的に、燃焼式給湯器から目標温度に比して冷えた昇温不足の湯水が出湯管の下流側に流れるのを防止することが可能となる。
よって、本発明によれば、燃焼式給湯器の加熱運転を行うことを抑制しつつ、所要の温度の湯水の給湯を高い安定性で行うことを実現できる。
かかる第1発明では、前記加熱手段は、例えば、前記貯湯タンク内の湯水の加熱を開始することと該加熱を終了することとを少なくとも前記貯湯タンク内の湯水の温度状態に応じて規定されるタイミングで行うように構成される。この場合、前記加熱手段による前記貯湯タンク内の湯水の加熱の開始後の該加熱の継続時間を計時する第2計時手段をさらに備えており、前記残湯量検知手段は、前記残湯量閾値を大小2種類に選択的に変更可能に構成されていると共に、前記第1計時手段による計時時間が第1所定時間以下であり、且つ、前記第2計時手段による計時時間が第2所定時間以上であるという条件が成立する場合に、前記残湯量閾値が小となり、該条件が成立しない場合に、前記残湯量閾値が大となるようにして、該残湯量の大小を検知するように構成されていることが好ましい(第2発明)。
すなわち、貯湯タンクの湯水を加熱手段により加熱している状況で前記出湯管からの給湯が開始される場合、給湯の開始時までの当該加熱の継続時間(第2計時手段による計時時間。以降、第2計時時間ということがある)が相対的に長いものとなっている状況は、貯湯タンク内の湯水の全体の加熱が進行した状況であるのに対し、該第2計時時間が相対的に短いものとなっている状況は、貯湯タンク内の湯水の加熱がさほど進行していない状況である。
このため、上記第2計時時間が相対的に短いものとなっている状況で、給湯を開始する場合には、第2計時時間が相対的に長いものとなっている状況で給湯を開始した場合よりも、早期に貯湯タンクが湯切れ状態になりやすい。
そこで、第2発明では、残湯量検知手段を上記の如く構成した。このため、第2発明では、第1計時時間が相対的に長い場合(詳しくは、第1所定時間よりも長い場合)に加えて、第2計時時間が相対的に短い場合(詳しくは、第2所定時間よりも短い場合)にも、残湯量閾値が大となるように、貯湯タンクの残湯量の大小が検知されることとなる。
従って、第2計時時間が相対的に短い状況での給湯の開始時に、残湯量が大きいと判断される場合には、貯湯タンクが湯切れ状態になる前に、燃焼式給湯器の加熱運転を行わずとも、貯湯タンク内の湯水を加熱手段により昇温させながら、該湯水の一部を燃焼式給湯器に十分に流入させて、燃焼式給湯器の出湯管内の湯水の全体を、目標温度もしくはそれに近い温度の湯水にすると共に、該湯水の温度を保温しておくことができる。
よって、第2計時時間が相対的に短いものとなっている状況で、燃焼式給湯器の加熱運転を行わずに給湯を開始した場合に、貯湯タンクが湯切れ状態となった直後に一時的に、昇温不足の冷えた湯水が出湯管から給湯されるのを防止できる。
また、第1計時時間が第1所定時間よりも短く、且つ、第2計時時間が第2所定時間よりも長い場合には、残湯量が少なめな状態で、燃焼式給湯器の加熱運転を行わずに給湯を開始される場合があるものの、この状況は、給湯の開始時に燃焼式給湯器の出湯管内に余熱により温められた湯水が残っており、また、貯湯タンク内の湯水の加熱がある程度進行した状況である。
従って、貯湯タンクが湯切れ状態になる前に、燃焼式給湯器の加熱運転を行わずとも、貯湯タンク側から高温の湯水の一部を燃焼式給湯器に十分に流入させて、燃焼式給湯器の出湯管内の湯水の全体を、目標温度もしくはそれに近い温度の湯水にすると共に、該湯水の温度を保温しておくことができる。
補足すると、第2発明における前記第2所定時間としては、あらかじめ定めた所定値(一定値)を採用することができることはもちろんであるが、該第2所定時間を、例えば給水温度(貯湯タンクに給水管から供給される水の温度)の検出値に応じて可変的に設定してもよい。この場合、給水温度が低いほど、貯湯タンク内の湯水の昇温に時間がかかりやすくなるので、給水温度が低いほど、第2所定時間が長くなるように該第2所定時間を設定することが望ましい。
前記第1発明では、当該給湯システムの周囲の温度又は当該給湯システムの給水温度である環境温度を検出する環境温度検出手段をさらに備えており、前記残湯量検知手段は、前記環境温度検出手段による前記環境温度の検出値が所定の温度閾値よりも低い場合に、前記第1計時手段による計時時間によらずに、前記残湯量閾値が該残湯量閾値の可変範囲の最大値になるようにして、前記残湯量の大小を検知するように構成されていることが好ましい(第3発明)。
同様に、前記第2発明では、当該給湯システムの周囲の温度又は当該給湯システムの給水温度である環境温度を検出する環境温度検出手段をさらに備えており、前記残湯量検知手段は、前記環境温度検出手段による前記環境温度の検出値が所定の温度閾値よりも低い場合に、前記第1計時手段による計時時間及び第2計時手段による計時時間によらずに、前記残湯量閾値が大となるようにして、前記残湯量の大小を検知するように構成されていることが好ましい(第4発明)。
すなわち、前記環境温度が低い状況では、燃焼式給湯器の出湯管等における放熱が生じやすく、該出湯管内の湯水の昇温に時間がかかりやすい。このため、燃焼式給湯器の加熱運転を行わずに出湯管からの給湯を開始する場合、該給湯の開始後、貯湯タンクが湯切れ状態になるまでの期間が短いと、当該期間での燃焼式給湯器の出湯管内の湯水の昇温が不足しやすい。
そこで、第3発明又は第4発明では、残湯量検知手段を上記の如く構成した。このため、第3発明又は第4発明では、給湯の前記環境温度の検出値が所定の温度閾値よりも低い状況では、貯湯タンクの残湯量が多めの状態で、該残湯量が大きいと判断されることとなる。
その結果、貯湯タンクが湯切れ状態になるまでに、燃焼式給湯器の加熱運転を行わずとも、貯湯タンク側から高温の湯水の一部を燃焼式給湯器に十分に流入させて、燃焼式給湯器の出湯管内の湯水の全体を、目標温度もしくはそれに近い温度の湯水にすると共に、該湯水の温度を保温しておくことができる。
ひいては、貯湯タンクが湯切れ状態になった直後に一時的に、燃焼式給湯器から昇温不足の冷えた湯水が出湯管の下流側に流れるのを防止できる。
以上説明した第1〜第4発明では、前記残湯量検出手段による残湯量の大小の検知の仕方は、結果的に、前記した如く変化させ得るように構成されていればよい。
その検知の仕方の形態として、例えば次のような形態を採用することが好ましい。すなわち、前記第1〜第4発明では、前記貯湯タンク内の湯水の温度を、該貯湯タンクの複数の高さ位置でそれぞれ検出する複数の温度センサを備えており、前記残湯量検知手段は、前記複数の温度センサのうちから選択した1つの残湯量検知用の温度センサにより検出された温度を前記所定温度と比較することにより、前記残湯量の大小を検知するように構成されると共に、前記複数の温度センサのうちから選択する残湯量検知用の温度センサを切り替えることにより、前記残湯量閾値を変更するように構成されていることが好ましい(第5発明)。
この第5発明によれば、前記複数の温度センサのうちの1つの温度センサにより検出された温度を、前記所定温度と比較することで、結果的に、該所定温度以上の湯水の残湯量を大小に区分して検知できる。この場合、前記残湯量閾値は、当該温度センサの高さ位置に対応する。
従って、第5発明によれば、前記複数の温度センサのうちから選択する残湯量検知用の温度センサを切り替えることにより、前記残湯量閾値を容易に変更することができる。
本発明の一実施形態の給湯システムの構成を示す図。 図1の給湯システムの給湯運転時の作動を示すフローチャート。 図2のSTEP11の処理の内容を示すフローチャート。 図2のSTEP12の処理の内容を示すフローチャート。
本発明の一実施形態を図1〜図4を参照して以下に説明する。
図1を参照して、本実施形態の給湯システムは、燃焼式給湯器10と、タンクユニット30と、ヒートポンプユニット60とを備える。
ヒートポンプユニット60は、本発明における加熱手段としてのヒートポンプ61を備える。このヒートポンプ61は、圧縮機62、凝縮器63、減圧器64、及び蒸発器65と、これらを経由させて冷媒を循環させる冷媒循環路66とを備えている。
この場合、凝縮器63は、後述の貯湯タンク31内の湯水と冷媒との熱交換を行うことで該湯水を加熱する熱交換器としての機能を有するものであり、貯湯タンク31と凝縮器63との間で湯水を循環させるタンク循環路67を介して貯湯タンク31に接続されている。タンク循環路67は、貯湯タンク31の下部及び上部をそれぞれ凝縮器63の湯水の流入口、流出口に接続している。そして、タンク循環路67には、循環ポンプ68が介装されている。
従って、循環ポンプ68を作動させることで、貯湯タンク31内の湯水が貯湯タンク31の下部から凝縮器63に供給される。そして、該湯水は、凝縮器63を経由した後に、貯湯タンク31の上部から該貯湯タンク31内に還流する。このように貯湯タンク31内の湯水をタンク循環路67で循環させつつ、ヒートポンプ61を作動させることで、該湯水が、凝縮器63における冷媒(圧縮機62で圧縮されて昇温した冷媒)との熱交換によって加熱される。
なお、図1では、循環ポンプ68は、貯湯タンク31の下部から凝縮器63に至る流路に介装されているが、凝縮器63から貯湯タンク31の上部に至る流路に介装されていてもよい。
ヒートポンプユニット60は、さらにヒートポンプ61及び循環ポンプ68の作動制御を行う機能を有するヒートポンプコントローラ71を備えている。該ヒートポンプコントローラ71は、マイクロコンピュータ等を含む電子回路ユニットにより構成されており、後述のタンクコントローラ41と相互に通信可能とされている。
また、タンク循環路67には、貯湯タンク31に凝縮器63から供給される湯水の温度を検出する温度センサ72と、凝縮器63に貯湯タンク31から供給される湯水の温度を検出する温度センサ73とが装着されている。
ヒートポンプコントローラ71には、後述のタンクコントローラ41から貯湯タンク31内の湯水を加熱すべき旨の貯湯沸き上げ指令、該加熱を終了すべき旨の貯湯沸き上げ終了指令、貯湯沸き上げ温度(貯湯タンク31内の湯水の沸き上げ温度の目標値)を示すデータ等が入力されると共に、上記温度センサ72,73の検出データが入力される。
そして、ヒートポンプコントローラ71は、タンクコントローラ41から貯湯沸き上げ指令を受信すると、貯湯タンク31内の湯水を加熱させるように、ヒートポンプ61及び循環ポンプ68の作動を制御する。
この場合、ヒートポンプコントローラ71は、上記温度センサ72,73の検出温度を用いて、所定の制御プログラムを実行することで、貯湯タンク31内の湯水の温度を、タンクコントローラ41から指示された貯湯沸き上げ温度まで昇温させるように、ヒートポンプ61の出力と循環ポンプ68の回転数(ひいては、タンク循環路67を流れる湯水の流量)とを制御する。
上記貯湯沸き上げ温度は、本実施形態では、あらかじめ定められた所定値(例えば、45°C、50°C等)である。ただし、貯湯沸き上げ温度は、例えば、給湯システムの設置業者あるいはユーザが、後述のリモコン43等の操作器を操作することによって、既定の範囲内で適宜変更し得るようになっていてもよい。
また、ヒートポンプコントローラ71は、ヒートポンプ61の作動を開始すると、貯湯タンク31内の湯水の加熱を開始したことを示す貯湯沸き上げ開始信号をタンクコントローラ41に出力する。
なお、ヒートポンプコントローラ71は、タンクコントローラ41から貯湯沸き上げ終了指令が入力されると、ヒートポンプ61及び循環ポンプ68の作動を停止して、貯湯タンク31内の湯水の加熱を終了する。
次に、タンクユニット30は、ヒートポンプ61により加熱された湯水を貯蔵する貯湯タンク31と、出湯管32、給水管33及び出湯バイパス管34とを備える。
出湯管32は、台所、洗面所、浴室等に配置される給湯口に給湯するための流路である。この出湯管32は、貯湯タンク31の上部から導出され、燃焼式給湯器10(詳しくは、後述の熱交換器13)を経由した後、終端の給湯口に至るように配管されている。出湯管32の終端の給湯口には、例えばカラン35が接続される。
なお、出湯管32の終端の給湯口は複数に分岐していてもよく、また、カラン35の代わりに、シャワー等が接続されていてもよい。
給水管33は、水道管等から供給される水を貯湯タンク31と出湯管32とに給水する流路である。この給水管33は、その下流側の途中部33xから第1分岐給水管33aと第2分岐給水管33bとに分岐されている。そして、第1分岐給水管33aが貯湯タンク31の下部に接続され、第2分岐給水管33bが、出湯管32の上流側の第1途中部32xに接続(合流)されている。
従って、給水管33は、第1分岐給水管33aを介して貯湯タンク31にその下部から給水すると共に、第2分岐給水管33bを介して出湯管32の第1途中部32xに給水するように構成されている。なお、給水管33の途中部33xよりも上流側の箇所には減圧弁36が介装されている。
出湯管32の第1途中部32xは、換言すれば、給水管33から第1分岐給水管33aを介して貯湯タンク31に給水することに伴い該貯湯タンク31から出湯管32に供給される湯水と、給水管33から第2分岐給水管33bを介して出湯管32に供給される水との混合部である。
そして、貯湯タンク31から出湯管32に供給される湯水の流量(出湯管32の第1途中部32xに貯湯タンク31側から流入する湯水の流量)であるタンク出湯流量を調整するための流量調整弁37が、貯湯タンク31と第1途中部32xとの間で出湯管32に介装されている。また、給水管33から第2分岐給水管33bを介して出湯管32の第1途中部32xに供給される水の流量である混合給水流量を調整するための流量調整弁38が第2分岐給水管33bに介装されている。
これらの流量調整弁37,38により、それぞれタンク出湯流量、混合給水流量を調整することで、貯湯タンク31から出湯管32に供給される湯水と給水管33から第2分岐給水管33bを経由して出湯管32に供給される水との混合比(詳しくは、タンク出湯流量と混合給水流量との比)を変更することが可能となっている。従って、本実施形態では、流量調整弁37,38により、本発明における混合比変更手段が構成されている。
なお、流量調整弁37,38を上記の如く備える代わりに、例えば、出湯管32の第1途中部32xに三方弁を介装し、この三方弁により混合比変更手段を構成してもよい。
出湯バイパス管34は、出湯管32の第1途中部32xから下流側に流れる湯水(以降、混合湯水という)を、燃焼式給湯器10の上流側から下流側にバイパスさせて流す(燃焼式給湯器10を経由させずに流す)ための流路である。
この出湯バイパス管34は、燃焼式給湯器10の上流側における出湯管32の第2途中部32yと燃焼式給湯器10の下流側における出湯管32の第3途中部32zとを連通させるように配管されている。なお、上記第2途中部32yは、第1途中部32xよりも下流側の途中部である。
そして、出湯バイパス管34には、該出湯バイパス管34を開閉可能なバイパス弁39が介装されている。
ここで、出湯バイパス管34は、出湯管32の燃焼式給湯器10側の流路(第2途中部32yから燃焼式給湯器10を経由して第3途中部32zに至る流路)よりも圧力損失が小さい流路に構成されている。
このため、バイパス弁39を開弁した状態では、出湯管32の第1途中部32xから下流側に流れる前記混合湯水のうちの大部分が、第2途中部32yから出湯バイパス管34を通って下流側に流れ、残りの一部の混合湯水が燃焼式給湯器10に流入する。
また、バイパス弁39を閉弁した状態では、前記混合湯水の全体が燃焼式給湯器10に流入する。
タンクユニット30は、さらに、前記流量調整弁37,38、及びバイパス弁39の作動制御等を行う機能を有するタンクコントローラ41を備えている。該タンクコントローラ41は、マイクロコンピュータ等を含む電子回路ユニットにより構成されており、ヒートポンプコントローラ71及び後述の給湯コントローラ21と相互に通信可能とされている。
このタンクコントローラ41には、ヒートポンプ61による貯湯タンク31内の湯水の加熱が開始されたときに、前記貯湯沸き上げ開始信号がヒートポンプコントローラ71から入力される。さらに、燃焼式給湯器10の加熱運転の終了時(後述するバーナ12の燃焼運転の終了時)に、該加熱運転の終了を示す給湯加熱運転終了信号が後述の給湯コントローラ21から入力される。
また、タンクコントローラ41には、使用者が給湯システムの運転操作等を行うためのリモコン43と、給湯システムの周囲の温度を検出する温度センサ44とが接続されている。
リモコン43は、図示しない操作スイッチの操作、あるいは音声入力等に応じて、給湯システムの給湯運転のオンオフ、浴槽の湯はり運転のオンオフ、目標給湯温度、目標湯はり温度等の運転操作情報をタンクコントローラ41に指示する端末機器である。
温度センサ44は、本発明における環境温度検出手段に相当するものである。この温度センサ44は、給湯システムの周囲の温度として外気温を検出し、その検出データをタンクコントローラ41に入力する。
また、タンクユニット30の貯湯タンク31、出湯管32、給水管33には、以下に説明する種々のセンサが組み付けられており、これらのセンサの検出データもタンクコントローラ41に入力される。
すなわち、貯湯タンク31には、貯湯タンク31内に存在する所定温度以上の湯の量である残湯量を大小に分別して検知するための第1タンク温度センサ45及び第2タンク温度センサ46と、貯湯タンク31の湯切れ状態(貯湯タンク31内に所定温度以上の湯が無いか、もしくはほとんど無いと見なせる状態)や貯湯タンク31内の上部の湯水の温度を検知するための第3タンク温度センサ47とが付設されている。
第1〜第3タンク温度センサ45,46,47は、それぞれ、貯湯タンク31の互いに異なる所定の高さ位置で該貯湯タンク31の外周面又は内部に装着されており、それぞれの高さ位置での貯湯タンク31内の湯水の温度を検出する。
この場合、第1〜第3タンク温度センサ45,46,47のそれぞれの高さ(貯湯タンク31の下端からの高さ)h1、h2、h3は、図示のように、h1<h2<h3となるように設定されている。
より具体的には、第1タンク温度センサ45の高さh1は、その高さh1よりも上側における貯湯タンク31内の容量(以降、第1所定量という)が例えば30リットルとなり、第2タンク温度センサ46の高さh2は、その高さh2よりも上側における貯湯タンク31内の容量(以降、第2所定量という)が例えば12リットルとなり、第3タンク温度センサ47の高さh3は、その高さh3よりも上側における貯湯タンク31内の容量(以降、第3所定量という)が例えば6リットルとなるように、h1、h2、h3が設定されている。
また、給水管33のうちの、途中部33xよりも上流側の箇所には、該給水管33を流れる水の流量(貯湯タンク31及び出湯管32へのトータルの給水流量)を検出する流量センサ49が装着され、第2分岐給水管33bには、給水温度を検出する温度センサ50が装着されている。
また、出湯管32の第1途中部32xよりも上流側の箇所には、前記タンク出湯流量を検出する流量センサ51と、貯湯タンク31側から第1途中部32xに流入する湯水の温度を検出する温度センサ52とが装着されている。
さらに、出湯管32の第1途中部32xと第2途中部32yとの間の箇所には、第1途中部32xから下流側に流れる混合湯水の温度を検出する温度センサ53が装着され、第3途中部32zの下流側の箇所には、給湯口から出湯させる湯水の温度(給湯温度)を検出する温度センサ54が装着されている。
なお、給水温度を検出するための温度センサ50は、本実施形態では、外気温を検出する前記温度センサ44と共に、本発明における環境温度検出手段に相当するものである。該温度サンサ50は、途中部33xよりも上流側の給水管33、あるいは、第1分岐給水管33aに装着されていてもよい。また、流量センサ49,51のいずれか一方の代わりに、第2分岐給水管33bを流れる水の流量を検出する流量センサが該第2分岐給水管33bに装着されていてもよい。
そして、タンクコントローラ41は、リモコン43から与えられる運転操作情報、上記各センサ44〜54の検出データを用いて、所定の制御プログラムを実行する。
この場合、タンクコントローラ41は、制御プログラムを実行することで実現される機能として、ヒートポンプコントローラ71と協働して、ヒートポンプユニット60に係る制御を行う機能を有する。この制御では、ヒートポンプ61の所定の運転許可条件が成立する状況において、タンクコントローラ41は、第1〜第3タンク温度センサ45〜47のうちの例えば第3タンク温度センサ47の検出温度を監視し、該検出温度があらかじめ設定された貯湯沸き上げ開始温度以下になると、ヒートポンプコントローラ71に前記貯湯沸き上げ指令を出力する。なお、貯湯沸き上げ開始温度は、前記貯湯沸き上げ温度よりも低い温度である。
また、ヒートポンプ61の上記運転許可条件は、ヒートポンプ61の運転を行うことを許可するか否かを規定する条件である。該運転許可条件は、例えば、現在時刻があらかじめ設定された時間帯(例えば、夜間を除く時間帯、あるいは、電力料金が安い時間帯)であるという条件等である。
そして、タンクコントローラ41は、第3タンク温度センサ47の検出温度等により、貯湯タンク3内の湯水の全体が貯湯沸き上げ温度に達したことを検知すると、ヒートポンプコントローラ71に貯湯沸き上げ終了指令を出力する。
これによりヒートポンプ61による貯湯タンク31内の湯水の加熱の開始と該加熱の終了とは、少なくとも貯湯タンク3内の湯水の温度状態に応じて規定されるタイミングで行われることとなる。
また、タンクコントローラ41は、本発明における残湯量検知手段としての機能と、本発明における第1計時手段及び第2計時手段としての機能とを有する。さらに、タンクコントローラ41は、給湯コントローラ21と協働することで、本発明における運転制御手段としての機能を有している。
第1計時手段としての機能(以降、第1タイマ機能という)では、タンクコントローラ41は、燃焼式給湯器10の加熱運転の終了後の経過時間を計時するために、給湯コントローラ21から前記給湯加熱運転終了信号を受信すると、それに応じてカウントアップタイマ等による計時を開始する。
また、第2計時手段としての機能(以降、第2タイマ機能という)では、タンクコントローラ41は、ヒートポンプ61による貯湯タンク31内の湯水の加熱の開始後の該加熱の継続時間を計時するために、ヒートポンプコントローラ71から前記貯湯沸き上げ開始信号を受信すると、それに応じてカウントアップタイマ等による計時を開始する。
タンクコントローラ41の残湯量検知手段としての機能と、運転制御手段としての機能とを以下に概略的に説明しておく。
まず、残湯量検知手段としての機能に関し、タンクコントローラ41は、本実施形態では、第1タンク温度センサ45又は第2タンク温度センサ46の検出温度に基づいて、貯湯タンク31の所定温度以上の湯の残湯量を大小に分別して検知する。なお、以降の説明では、特にことわらない限り、「残湯量」は、ある所定温度以上の湯の量を意味する。
ここで、貯湯タンク31内の湯水が加熱された状態で、給水管33の第1分岐給水管33aから貯湯タンク31への給水が行われると、該給水に伴い、貯湯タンク31内の高温の湯が貯湯タンク31の上部から出湯管32に供給される。これに伴い、基本的には、貯湯タンク31内の下部に低温の水の層が生成されると共に上部に高温の湯の層が生成される。そして、貯湯タンク31への給水の進行に伴い、貯湯タンク31の下部の低温層が増加すると共に、上部の高温層が減少していく。
このため、第1タンク温度センサ45の検出温度が所定温度よりも高い状態は、貯湯タンク31の残湯量が、前記第1所定量よりも多いことを示し、該検出温度が所定温度よりも低い状態は、該残湯量が前記第1所定量よりも少ないことを示す。
従って、第1タンク温度センサ45の検出温度を所定温度と比較することで、貯湯タンク31の残湯量を大小に分別して(詳しくは、第1所定量よりも多いか否かに分別して)検知できることとなる。
同様に、第2タンク温度センサ46の検出温度を所定温度と比較することで、貯湯タンク31の残湯量を大小に分別して(詳しくは、第2所定量よりも多いか否かに分別して)検知することができる。
そこで、本実施形態では、タンクコントローラ41は、第1タンク温度センサ45又は第2タンク温度センサ46の検出温度を所定温度と比較することで、貯湯タンク31の残湯量を大小に分別して検知する。
この場合、詳細は後述するが、タンクコントローラ41は、残湯量の大小を検知するために用いる温度センサ45又は46を、温度センサ44の検出温度(外気温の検出値)、温度センサ50の検出温度(給水温度の検出値)、前記第1タイマ機能による計時時間(以降、給湯加熱終了後経過時間という)、前記第2タイマ機能による計時時間(以降、貯湯沸き上げ継続時間という)等に応じて選択的に切り替える。
そして、タンクコントローラ41は、第1タンク温度センサ45を選択した場合には、該第1タンク温度センサ45の検出温度が所定温度以下である場合に、貯湯タンク31の残湯量が小さいと判断し、該検出温度が所定温度よりも高い場合には、貯湯タンク31の残湯量が大きいと判断する。この場合には、貯湯タンク31の残湯量の大小を区分する残湯量閾値(大の残湯量の範囲と小の残湯量の範囲との間の境界値)は結果的に、前記第1所定量となる。
また、タンクコントローラ41は、第2タンク温度センサ46を選択した場合には、該第2タンク温度センサ46の検出温度が所定温度以下である場合に、貯湯タンク31の残湯量が小さいと判断し、該検出温度が所定温度よりも高い場合には、貯湯タンク31の残湯量が大きいと判断する。この場合には、貯湯タンク31の残湯量の大小を区分する残湯量閾値は結果的に、前記第2所定量(<第1所定量)となる。
従って、第1タンク温度センサ45を選択した場合には、第2タンク温度センサ46を選択した場合よりも、上記残湯量閾値が大きくなる。
なお、第1タンク温度センサ45又は第2タンク温度センサ46と比較する所定温度は、本実施形態では、リモコン43で設定される目標給湯温度に応じて決定される。具体的には、該所定温度は、例えば目標給湯温度と同じ温度とされる。ただし、該所定温度は、目標給湯温度よりも若干高い温度(例えば目標給湯温度+3°C)であってもよい。
補足すると、第3タンク温度センサ47の検出温度を所定温度と比較することで、貯湯タンク31の残湯量を大小に分別して(詳しくは、第3所定量よりも多いか否かに分別して)検知することもできる。
ただし、本実施形態では、貯湯タンク31の残湯量が上記第3所定量よりも少ない状態は、貯湯タンク31内に所定温度以上の高温の湯が無いか、もしくはほとんど無い状態であるので、該高温の湯の湯切れ状態を意味する。
このため、本実施形態では、タンクコントローラ41は、第3タンク温度センサ47を、貯湯タンク31の湯切れ状態の発生を検知するためのセンサとして利用する。
さらに、前記第3タンク温度センサ47は、第1タンク温度センサ45又は第2タンク温度センサ46の検出温度が所定温度以上であるのに、なんらかの異常等により、貯湯タンク31の上部(第1タンク温度センサ45及び第2タンク温度センサ46よりも高い上部)に所定温度よりも低い冷えた湯水が存在するようなイレギュラーな状態を検知するセンサとしても利用される。
次に、タンクコントローラ41の運転制御手段としての機能に関し、タンクコントローラ41は、給湯システムの給湯運転(より詳しくは、流量センサ49により所定の下限流量以上の通水が検知される給湯運転)の開始時において、第1タンク温度センサ45又は第2タンク温度センサ46の検出温度に基づいて、貯湯タンク31の残湯量が大きいと判断した状況では、第1給湯制御処理を実行する。
詳細は後述するが、この第1給湯制御処理では、タンクコントローラ41は、バイパス弁39を開弁状態に制御した状態で、流量センサ49,51の検出流量と、温度センサ50,52,53,54の検出温度とを監視しつつ、温度センサ54(又は53)の検出温度(給湯温度の検出値)が、目標温度(ここでは、リモコン43で設定された目標給湯温度)になるように、流量調整弁37,38の開度を制御する(ひいては、前記混合比を調整する)処理である混合温調制御処理を実行する。また、タンクコントローラ41は、燃焼式給湯器10の加熱運転を禁止することを給湯コントローラ21に指令する。
その後、第3タンク温度センサ47の検出温度に基づいて、貯湯タンク31の湯切れ状態が検知された場合には、タンクコントローラ41は、バイパス弁39を閉弁すると共に、燃焼式給湯器10の加熱運転を許可する旨を給湯コントローラ21に指令する。
また、タンクコントローラ41は、給湯システムの給湯運転の開始時において、第1タンク温度センサ45又は第2タンク温度センサ46の検出温度に基づいて、貯湯タンク31の残湯量が小さいと判断した状況では、タンクコントローラ41は給湯コントローラ21と協働して、第2給湯制御処理を実行する。
詳細は後述するが、この第2給湯制御処理では、タンクコントローラ41は、バイパス弁39を閉弁状態に制御した状態で、混合温調制御処理を実行する。また、タンクコントローラ41は、燃焼式給湯器10の加熱運転を許可する旨を給湯コントローラ21に指令する。
なお、リモコン43により浴槽の湯はり運転を行うことが指示された場合には、タンクコントローラ41は、給湯コントローラ21に浴槽の湯はり運転を行うべきことを指令すると共に、バイパス弁39を閉弁状態に制御する。
さらに、タンクコントローラ41は、第3タンク温度センサ47の検出温度に基づいて、貯湯タンク31の湯切れ状態が検知されていない状況では、流量センサ49,51の検出流量と、温度センサ50,52,53の検出温度とを監視しつつ、温度センサ53の検出温度が、目標温度(ここでは、リモコン43で設定された目標湯はり温度)になるように、混合温調制御処理を実行する。
この場合、湯切れ状態の検知は、第3タンク温度センサ47の検出温度を目標湯はり温度と比較することで行われる。
そして、貯湯タンク31の湯切れ状態が検知された場合には、給湯コントローラ21に燃焼式給湯器10の加熱運転を指令する。
次に、燃焼式給湯器10は、出湯管32により上流側から供給される湯水を燃焼式加熱源11により適宜加熱するものである。この燃焼式加熱源11は、ガスバーナ等のバーナ12と、バーナ12の燃焼熱が付与される熱交換器13とを備えている。そして、燃焼式給湯器10に導入された出湯管32は、上流側の第2途中部32yから供給される湯水を、熱交換器13を経由させて、下流側の第3途中部32zに流すように配管されている。
燃焼式給湯器10は、さらに、熱交換器13の上流側から下流側に該熱交換器13をバイパスさせて湯水を流すためのバイパス管14と、熱交換器13の下流側から図示しない浴槽に湯はり用の湯水を供給する湯はり管15とを備える。
バイパス管14は、燃焼式給湯器10の内部の出湯管32における熱交換器13の上流側の途中部と下流側の途中部とを接続している。そして、燃焼式給湯器10の内部の出湯管32には、熱交換器13の上流側におけるバイパス管14との接続箇所に、該接続箇所から熱交換器13に流れる湯水の流量と、バイパス管14に流れる湯水の流量との比率であるバイパス比を調整するためのバイパスサーボ弁16が介装されている。
また、燃焼式給湯器10の内部の出湯管32には、バイパスサーボ弁16の上流側の箇所に、燃焼式給湯器10に上流側から流入する湯水の流量を調整するための水量サーボ弁17が介装されている。さらに、該出湯管32には、熱交換器13の下流側の箇所に、燃焼式給湯器10の下流側からの湯水の逆流を防止するための逆止弁18が介装されている。
湯はり管15は、熱交換器13の下流側における出湯管32から分岐されて、図示しない浴槽に至るように配管されている。そして、この湯はり管15には、該湯はり管15を開閉する湯はり弁19が介装されている。
燃焼式給湯器10は、さらに、バーナ12の燃焼運転、あるいは、バイパスサーボ弁16、水量サーボ弁17及び湯はり弁19の作動制御等を行う機能を有する給湯コントローラ21を備えている。該給湯コントローラ21は、マイクロコンピュータ等を含む電子回路ユニットにより構成されている。
また、燃焼式給湯器10の内部の出湯管32には、上流側から該燃焼式給湯器10に供給される湯水の全体の流量をバイパスサーボ弁16の上流側で検出する流量センサ22と、熱交換器13の下流側におけるバイパス管14との接続箇所から下流側に供給される湯水の温度(給湯器出湯温度)を当該接続箇所の下流側で検出する温度センサ23とが装着されている。さらに、湯はり管15には、該湯はり管15で浴槽に供給される湯水の流量を検出する流量センサ24が装着されている。
給湯コントローラ21には、タンクコントローラ41から、給湯運転又は湯はり運転を行うべき旨の指令、目標給湯温度又は目標湯はり温度を示すデータ、給湯運転時に燃焼式給湯器10の加熱運転(詳しくは、燃焼式加熱源11による湯水の加熱を行う運転)を許可するか否かを示す指令等が入力されると共に、上記流量センサ22,24及び温度センサ23の検出データが入力される。
そして、給湯コントローラ21は、給湯運転を行うことが指令され、且つ、燃焼式給湯器10の加熱運転を行うことが許可されている状態では、流量センサ22により所定の下限流量以上の通水が検知される場合に、温度センサ23の検出温度が、目標温度(ここでは目標給湯温度)になるように、バーナ12の燃焼量とバイパスサーボ弁16によるバイパス比とを制御する処理である加熱温調制御処理を実行する。
なお、給湯コントローラ21は、給湯運転の終了時に、バーナ12の燃焼運転を停止して、燃焼式給湯器10の加熱運転を終了すると、前記給湯加熱運転終了信号をタンクコントローラ41に出力する。
また、給湯コントローラ21は、湯はり運転を行うことが指令されている状態では、湯はり弁19を開弁する。そして、給湯コントローラ21は、燃焼式給湯器10の加熱運転がタンクコントローラ41から指令された場合に、温度センサ23の検出温度が、目標温度(ここでは目標湯はり温度)になるように、加熱温調制御処理を実行する。なお、湯はり運転時には、流量センサ24の検出流量の積算値が、リモコン43等で設定される目標湯はり量に達すると、湯はり弁19が閉弁されると共に、燃焼式給湯器10の加熱運転が終了される。
本実施形態では、上記したタンクコントローラ41と給湯コントローラ21とにより本発明における運転制御手段が構成される。
次に、本実施形態の給湯システムの給湯運転時におけるタンクコントローラ41及び給湯コントローラ21の制御処理を図2〜図4を参照して詳説する。
給湯システムの電源が投入された状態で、タンクコントローラ41は、STEP1において、給水管33における通水(カラン35の開栓等に起因する給湯口への通水)の有無を監視する(STEP1)。
この場合、タンクコントローラ41は、給水管33の流量センサ49の検出流量があらかじめ設定された下限流量以上となった場合に、通水を検知する。なお、給水管33の通水が行われていない止水状態では、タンクコントローラ41は、出湯バイパス管34のバイパス弁39を開弁状態に制御している。
STEP1で通水が検知されると、STEP2からの制御処理がタンクコントローラ41及び給湯コントローラ21により実行される。
なお、以降説明するSTEP2からの制御処理は、給水管33の通水が検知されなくなる止水状態になると中止される。
タンクコントローラ41は、まず、残湯量検知手段としての機能によって、STEP2〜10の処理を実行する。
STEP2〜10のうちのSTEP2〜6は、残湯量検知用の温度センサとして、第1タンク温度センサ45及び第2タンク温度センサ46のいずれを使用するかを決定するための判断処理である。そして、タンクコントローラ41は、STEP2〜6のそれぞれの判断結果がいずれも肯定的となる場合に、STEP7で、第2タンク温度センサ46を残湯量検知用の温度センサとして選択する。
また、STEP2〜6のいずれかの判断結果が否定的となる場合には、タンクコントローラ41は、STEP9で第1タンク温度センサ45を残湯量検知用の温度センサとして選択する。
上記STEP2の判断処理は、温度センサ44により検出される現在の外気温が、あらかじめ設定された所定の外気温閾値よりも高いか否かを判断する処理である。該外気温閾値は、本発明における温度閾値に相当するものであり、例えば10°Cである。
また、STEP3の判断処理は、前記第1タイマ機能による給湯加熱終了後経過時間の計測値(燃焼式給湯器10の加熱運転の終了後の経過時間の計測値)があらかじめ設定された所定の第1判定時間T1以内の状態であるか否かを判断する処理である。該第1判定時間T1は、本発明における第1所定時間に相当するものであり、例えば20分である。
また、STEP4の判断処理は、ヒートポンプ61の運転許可条件が成立しているか否かを判断する処理、STEP5の判断処理は、前記第2タイマ機能による貯湯沸き上げ継続時間の計測値(ヒートポンプ61による貯湯タンク31内の湯水の加熱を開始してからの該加熱の継続時間の計測値)が所定の第2判定時間T2を超えた状態であるか否かを判断する処理である。該第2判定時間T2は、本発明における第2所定時間に相当するものであり、本実施形態では、温度センサ50による給水温度の検出値に応じてタンクコントローラ41により設定される。
具体的には、タンクコントローラ41は、給水温度の検出値が低いほど、第2判定時間T2を長くするように、該第2判定時間T2を設定する。例えば、給水温度が13°Cよりも低い場合には、T2=45分、給水温度が13〜21°Cの範囲内の温度である場合には、T2=40分、給水温度が21°Cよりも高い場合には、T2=30分というように、T2が設定される。
なお、第2判定時間T2を、給水温度に応じて連続的に変化するように設定してもよい。また、第2判定時間T2を、給水温度によらずに既定の一定時間に設定しておいてもよい。さらに、STEP4,5の判断処理のうちのSTEP4の判断処理を省略し、STEP5の判断処理だけを実行するようにしてもよい。
また、STEP6の判断処理は、温度センサ50により検出される現在の給水温度が、あらかじめ設定された所定の給水温閾値よりも高いか否かを判断する処理である。該給水温閾値は、本発明における温度閾値に相当するものであり、例えば15°Cである。
ここで、STEP2又は6の判断結果が否定的となる状況は、給湯システムの周囲の温度(ここでは外気温)あるいは給水温度が低いために、燃焼式給湯器10内の出湯管32における湯水の放熱が生じやすいか、もしくは、燃焼式給湯器10の加熱運転を行っても該燃焼式給湯器10から出湯する湯水の昇温に時間がかかりやすい状況である。
また、STEP3の判断結果が否定的となる状況は、今回の給湯運転の開始前の燃焼式給湯器10の加熱運転の終了後の経過時間が長いものとなっているために、該燃焼式給湯器10の出湯管32内での湯水の放熱が進行して、該湯水が冷えていることを予想される状況である。
そして、STEP3の判断結果が肯定的となる状況は、今回の給湯運転の開始前の燃焼式給湯器10の加熱運転による余熱によって、該燃焼式給湯器10の出湯管32内での湯水が目標給湯温度もしくはそれに近い温度に保たれていることが予想される状況である。
また、STEP4又は5の判断結果が否定的となる状況は、ヒートポンプ61による貯湯タンク31内に湯水の加熱がさほど進行していないか、もしくは該加熱が行われておらず、貯湯タンク31内に所定温度(目標給湯温度)以上の湯が十分に蓄えられていないことが予想される状況である。
そして、STEP4及び5の判断結果が肯定的となる状況は、貯湯タンク31内の湯水の多くが、目標給湯温度以上となるような状態まで、ヒートポンプ61による貯湯タンク31内の湯水の加熱が進行したことが予想される状態である。
タンクコントローラ41は、STEP7又は9で残湯量検知用の温度センサ45又は46を選択した後、その選択した温度センサ45又は46を用いて、貯湯タンク31の残湯量の大小を検知する(STEP8,10)。
具体的には、タンクコントローラ41は、STEP7で第2タンク温度センサ46を残湯量検知用の温度センサとして選択した場合には、STEP8において、基本的には、第2タンク温度センサ46の検出温度th2を、残湯量検知用の所定温度(本実施形態では目標給湯温度)と比較することにより、貯湯タンク31の残湯量の大小を判断する。
この場合、STEP8では、基本的には、th2≦目標給湯温度である場合に、残湯量が小であると判断され、th2>目標給湯温度である場合に、残湯量が大であると判断される。
ここで、th2>目標給湯温度である場合には、通常は、第2タンク温度センサ46よりも高い位置での貯湯タンク31内の湯水の温度も目標給湯温度よりも高い温度となっている。ただし、発生頻度は少ないものの、貯湯タンク31の上部に目標給湯温度以下の低温の湯水が存在している場合もある。そして、このような場合には、貯湯タンク31から出湯管32に一時的に低温の湯水が供給されてしまう。
そこで、本実施形態では、タンクコントローラ41は、STEP8において、貯湯タンク31内の上部に配置されている前記第3タンク温度センサ47の検出温度th3が残湯量検知用の所定温度(目標給湯温度)以下となっている場合にも、残湯量が小であると判断する(残湯量が小であると見なす)。
そして、タンクコントローラ41は、th2及びth3の両方が、残湯量検知用の所定温度(目標給湯温度)よりも高い場合に、貯湯タンク31の残湯量が大であると判断する。
また、タンクコントローラ41は、STEP9で第1タンク温度センサ45を残湯量検知用の温度センサとして選択した場合には、STEP10において、基本的には、第1タンク温度センサ45の検出温度th1を、残湯量検知用の所定温度としての目標給湯温度と比較することにより、貯湯タンク31の残湯量の大小を判断する。
この場合、STEP10では、基本的には、th1≦目標給湯温度である場合に、残湯量が小であると判断され、th1>目標給湯温度である場合に、残湯量が大であると判断される。
ただし、本実施形態では、STEP8の場合と同じ理由によって、タンクコントローラ41は、STEP10において、第3タンク温度センサ47の検出温度th3が残湯量検知用の所定温度(目標給湯温度)以下となっている場合にも、残湯量が小であると判断する(残湯量が小であると見なす)。
そして、タンクコントローラ41は、th1及びth3の両方が、残湯量検知用の所定温度(目標給湯温度)よりも高い場合に、貯湯タンク31の残湯量が大であると判断する。
なお、以降の説明では、th1又はth2が、残湯量検知用の所定温度よりも高い状況で、th3が残湯量検知用の所定温度以下となる状況を「タンク内温度のイレギュラー状況」という。
以上のSTEP2〜STEP10の処理が、タンクコントローラ41の残湯量検知手段としての機能によって、貯湯タンク31の残湯量の大小を検知する処理である。
この場合、外気温(環境温度)の検出値が外気温閾値(10°C)よりも高いという条件と、給湯加熱終了後経過時間の計測値が第1判定時間T1(20分)以内であるという条件と、ヒートポンプ61の運転許可条件が成立する状況で貯湯沸き上げ継続時間の計測値が第2判定時間T2(45分又は40分又は30分)を超えているという条件と、給水温度の検出値が給水温閾値(15°C)よりも高いという条件とが成立する状況(STEP2〜6のそれぞれの判断結果がいずれも肯定的となる状況)では、残湯量検知用の温度センサとして、第2タンク温度センサ46が使用される。
また、上記のいずれかの条件が成立しない状況(STEP2〜6のいずれかの判断結果が否定的となる状況)では、残湯量検知用の温度センサとして、第2タンク温度センサ46よりも低い位置の第1タンク温度センサ45が使用される。
そして、STEP8において、残湯量検知用の所定温度に対応する残湯量閾値は、タンク内温度のイレギュラー状況を除き、第2タンク温度センサ46の高さ位置に対応する第2所定量である。
また、STEP10において、残湯量検知用の所定温度に対応する残湯量閾値は、タンク内温度のイレギュラー状況を除き、第1タンク温度センサ45の高さ位置に対応する第1所定量(>第2所定量)である。
従って、STEP8又は10において、残湯量閾値は、結果的に、外気温もしくは給水温度の検出値、あるいは、給湯加熱終了後経過時間の計測値、あるいは、貯湯沸き上げ継続時間に応じて変更されることとなる。
STEP8又は10において、貯湯タンク31の残湯量が大きいと判断された場合には、STEP11において、タンクコントローラ41によって、第1給湯制御処理が実行される。この第1給湯制御処理は、燃焼式給湯器10の加熱運転を禁止した状態で、給湯口への給湯を行わせる制御処理である。
また、STEP8又は10において、貯湯タンク31の残湯量が小さいと判断された場合には、STEP12において、タンクコントローラ41と給湯コントローラ21との協働によって、第2給湯制御処理が実行される。この第2給湯制御処理は、燃焼式給湯器10の加熱運転を許可した状態で、給湯口への給湯を行わせる制御処理である。
上記第1給湯制御処理は、図3のフローチャートに示す如く実行される。
タンクコントローラ41は、STEP21において、給湯コントローラ21に燃焼式給湯器10の加熱運転を禁止する旨の指令を与える。
さらにSTEP22において、タンクコントローラ41は出湯バイパス管34のバイパス弁39を開弁状態に制御する。これにより、出湯管32の第1途中部32xから下流側に流れる混合湯水の大部分は、出湯バイパス管34を通って給湯口に供給される状態となる。また、一部の混合湯水が出湯バイパス管34を通らずに、燃焼式給湯器10に流入する。これにより、燃焼式給湯器10における出湯管32内の湯水が燃焼式給湯器10に流入する混合湯水(湯)に置換される。
そして、タンクコントローラ41は、STEP23において、前記した混合温調制御処理を実行する。すなわち、タンクコントローラ41は、流量調整弁37,38を介してタンク出湯流量と混合給水流量との比である混合比を調整することで、温度センサ54(又は53)で検出される給湯温度が目標給湯温度になるように、温調制御を行う。
この混合温調制御処理の実行中は、燃焼式給湯器10の加熱運転は行われず、燃焼式加熱源11のバーナ12が消火状態に維持される。
タンクコントローラ41は、混合温調制御処理を実行しつつ、STEP24において、第3タンク温度センサ47の検出温度th3を所定の湯切れ判定温度と比較することで、貯湯タンク31の湯切れ状態の発生の有無を検知する。
この場合、上記湯切れ判定温度として、目標給湯温度が使用される。そして、タンクコントローラ41は、th3>目標給湯温度である場合には、湯切れ状態が発生してないと判断し、th3≦目標給湯温度になると、湯切れ状態が発生したと判断する。
STEP24で湯切れ状態の発生が検知されない場合には、タンクコントローラ41は、STEP21〜24の処理を継続する。また、STEP24で湯切れ状態の発生が検知された場合には、タンクコントローラ41は、第1給湯制御処理を終了し、後述の第2給湯制御処理を開始する。
以上が、第1給湯制御処理である。この場合、エネルギー効率が比較的高いヒートポンプ61によって蓄熱した貯湯タンク31内の湯水を利用し、且つ、燃焼式給湯器10の加熱運転を行わずに、給湯口への給湯(目標給湯温度の湯水の給湯)を行うので、該給湯を良好なエネルギー効率で行うことができる。
次に、前記第2給湯制御処理は、図4のフローチャートに示す如く実行される。
タンクコントローラ41は、STEP31において、前記STEP24と同様に貯湯タンク31の湯切れ状態の発生の有無を検知する。
STEP31で湯切れ状態の発生が検知されない場合には、タンクコントローラ41は、STEP32において、給湯コントローラ21に燃焼式給湯器10の加熱運転を許可する旨の指令を与える。
さらにSTEP33において、タンクコントローラ41は出湯バイパス管34のバイパス弁39を閉弁状態に制御する。従って、この場合には、前記第1給湯制御処理の場合と異なり、燃焼式給湯器10の加熱運転を許可した状態で、バイパス弁39が閉弁状態に制御される。
そして、STEP34において、給湯コントローラ21による加熱温調制御処理が実行される。併せて、タンクコントローラ41によって、前記混合比の調整も行われる。
具体的には、STEP34では、タンクコントローラ41は、温度センサ53で検出される混合湯水の温度が、目標給湯温度よりも最小能力温度だけ低い所定の混合目標温度になるように、前記混合比を流量調整弁37,38を介して調整する。上記最小能力温度は、出湯管32により燃焼式給湯器10に流入する現在の水量(流量センサ22により検出される流量)の湯水を、バーナ12の最小燃焼量で熱交換器13を介して加熱した場合における該湯水の上昇温度である。
さらに、STEP34では、給湯コントローラ21は、温度センサ23の検出温度(燃焼式給湯器10から流出する湯水の温度)が目標給湯温度になるようにバーナ12の燃焼量とバイパスサーボ弁16によるバイパス比とを制御する(加熱温調制御処理を実行する)。なお、バイパス比を一定として、バーナ12の燃焼量だけを制御するようにしてもよい。
以上のSTEP32〜34の処理は、STEP31で貯湯タンク31の湯切れ状態の発生が検知されるまで継続される。
補足すると、STEP34では、バイパス弁39を開弁させた状態で燃焼式給湯器10の加熱運転を行うようにしてもよい。また、STEP34では、前記流量調整弁37,38の開度、ひいては、前記混合比を一定に保持するようにしてもよい。
STEP31で貯湯タンク31の湯切れ状態の発生が検知された場合、あるいは、前記第1給湯制御処理のSTEP24において湯切れ状態の発生が検知された場合には、タンクコントローラ41は、STEP35において、給湯コントローラ21に燃焼式給湯器10の加熱運転を許可する旨の指令を与える。
さらにSTEP36において、タンクコントローラ41は出湯バイパス管34のバイパス弁39を閉弁状態に制御する。これにより、出湯管32の第1途中部32xから下流側に流れる混合湯水の全量が燃焼式給湯器10に供給されるようになる。
そして、STEP37において、給湯コントローラ21による加熱温調制御処理が実行される。なお、この場合、貯湯タンク31内の残湯量がゼロになると、温度センサ53で検出される湯水の温度を所望の目標温度に制御することはできない。そこで、STEP37では、前記流量調整弁37,38を全開にする等、出湯管32や第2分岐給水管33bの通路抵抗を小さくするよう、流量調整弁37,38が制御される。
貯湯タンク31の湯切れ状態が発生した後には、以上のSTEP35〜37の処理が継続される。
補足すると、STEP37では、バイパス弁39を開弁させた状態で燃焼式給湯器10の加熱運転を行うようにしてもよい。また、STEP37では、前記流量調整弁37,38の開度、ひいては、前記混合比を一定に保持するようにしてもよい。
以上が、給湯システムの給湯運転時におけるタンクコントローラ41及び給湯コントローラ21の制御処理である。
以上説明した本実施形態の給湯システムによれば、給湯運転の開始時に、タンクコントローラ41は、まず、外気温、給水温度、給湯加熱終了後経過時間、貯湯沸き上げ継続時間に応じて、残湯量の大小を区分する残湯量閾値が変化するようにして、貯湯タンク31内の残湯量の大小を検知する。そして、残湯量が大きいと判断された場合には、前記第1給湯制御処理がタンクコントローラ41により実行され、残湯量が小さいと判断された場合には、前記第2給湯制御処理がタンクコントローラ41及び給湯コントローラ21の協働によって実行される。
ここで、前記第1給湯制御処理では、貯湯タンク31が湯切れ状態になるまでは、バイパス弁39は開弁状態とされるので、出湯管32の第1途中部32xから下流側に供給される前記混合湯水は、その大部分が出湯バイパス管34を通って下流側に流れる。そして、該混合湯水の一部だけが燃焼式給湯器10に供給される。
このため、STEP2〜6のいずれかの判断結果が否定的となる状況で、仮に、第1給湯制御処理の開始後まもなくに、貯湯タンク31が湯切れ状態となった場合には、バイパス弁39の閉弁の直後に、燃焼式給湯器10の出湯管32から、一時的に目標給湯温度に比して冷えた湯水が給湯口に供給される状況が生じやすい。
しかるに、本実施形態では、給湯運転の開始時に、STEP2〜6のいずれかの判断結果が否定的となる状況では、STEP2〜6のそれぞれの判断結果がいずれも肯定的となる場合よりも、残湯量の大小を区分する残湯量閾値が大きくなるようにして、残湯量の大小が検知される。
このため、残湯量が大きいと判断された場合の前記第1給湯制御処理の実行時には、STEP2〜6のいずれかの判断結果が否定的となる状況であっても、燃焼式給湯器10の加熱運転を行わずとも、貯湯タンク31が湯切れ状態になる前に、燃焼式給湯器10に混合湯水の一部を十分に供給して、燃焼式給湯器10の出湯管32の湯水の全体を目標給湯温度またはそれに近い温度の湯水にして、さらに該湯水の温度を保温しておくことができる。
また、給湯運転の開始時に、STEP2〜6のそれぞれの判断結果がいずれも肯定的となる状況で、残湯量が大きいと判断された場合には、前記第1給湯制御処理の実行開始後、比較的早期に貯湯タンク31が湯切れ状態になることがある。
しかるに、当該状況では、STEP3の判断結果が肯定的となるので、燃焼式給湯器10における出湯管32内の湯水が燃焼式給湯器10の加熱運転後の余熱によって温められている。
また、当該状況は、STEP5の判断結果も肯定的となるので、貯湯タンク31が湯切れ状態になるまでは、目標給湯温度に近い温度の混合湯水の一部を高い確実性で連続的に燃焼式給湯器10にその上流側から流入させることができる状況である。
さらに当該状況は、STEP2及び6の判断結果が肯定的となるので、燃焼式給湯器10の加熱運転によって迅速に湯水を昇温させることが可能な状況である。
このため、第1給湯制御処理の実行開始後、比較的早期に貯湯タンク31が湯切れ状態になっても、バイパス弁39の閉弁の直後に、燃焼式給湯器10の出湯管32から、一時的に目標給湯温度に比して冷えた湯水が給湯口に供給される状況が生じるのを防止できる。
また、給湯運転の開始時に残湯量が小さいと判断された場合の前記第2給湯制御処理の実行時には、貯湯タンク31が湯切れ状態になる前に、燃焼式給湯器10に供給し得る混合湯水は比較的少ないものの、燃焼式給湯器10の加熱運転が行われる。
しかも、STEP2〜6のいずれかの判断結果が否定的となる状況では、残湯量が比較的多めの状態でも該残湯量が小さいと判断され、燃焼式給湯器10の加熱運転を行う第2給湯制御処理が実行される。このため、STEP2〜6のいずれかの判断結果が否定的となる状況では、給湯運転の開始時における貯湯タンク31の残湯量が残湯量閾値(ここでは、前記第1所定量)に近い場合、貯湯タンク31が湯切れ状態になるまでに、燃焼式給湯器10の加熱運転が長めの期間、行われる。
従って、残湯量が小さいと判断された場合の第2給湯制御処理の実行時には、STEP2〜6のいずれかの判断結果が否定的となる状況であっても、貯湯タンク31が湯切れ状態になる前に、燃焼式給湯器10の加熱運転によって、該燃焼式給湯器10の出湯管32の湯水の全体を目標給湯温度またはそれに近い温度の湯水に速やかに昇温させ、さらに該湯水の温度を保温しておくことができる。
この結果、給湯運転の開始時の残湯量が大きい場合及び小さい場合のいずれの場合であっても、貯湯タンク31の湯切れ状態が発生することに応じて、全量の湯水を燃焼式給湯器10を介して給湯することを開始したときに、該燃焼式給湯器10から一時的に冷えた湯水が出湯管32の給湯口に供給されることを防止することができる。従って、外気温や給水温度、給湯加熱終了後経過時間、あるいは、貯湯沸き上げ継続時間等の様々な条件下で、目標給湯温度への実際の給湯温度の追従制御の安定性を高めることができる。
また、STEP2〜6のそれぞれの判断結果がいずれも肯定的となる状況では、残湯量閾値が比較的小さめの閾値となるため、燃焼式給湯器10の加熱運転を開始することをSTEP2〜6のいずれかの判断結果が否定的となる状況よりも遅延させることができる。このため、燃焼式給湯器10の加熱運転が必要以上に頻繁に行われることを抑制することができる。ひいては、給湯システムのエネルギー効率を高めることができる。
次に、以上説明した実施形態の変形態様を説明する。
前記実施形態では、給湯加熱終了後経過時間に関するSTEP3の判断結果に応じて残湯量閾値を変化させることに加えて、STEP2、4、5、6の判断結果にも応じて残湯量閾値を変化させるようにしたが、STEP2、4、5、6の判断処理を省略し、STEP3の判断結果だけに応じて、残湯量閾値を変化させる(残湯量検知用の温度センサを切り替える)ようにしてもよい。
さらには、給湯加熱終了後経過時間の計測値を長短2種類に分類して判断する代わりに、大中小等、3種類以上の範囲に分類して判断し、各範囲毎に残湯量閾値を異ならせるようにしてもよい。すなわち、残湯量閾値を、給湯加熱終了後経過時間の計測値に応じて3種類以上の閾値に変化させるようにしてもよい。
また、例えば、STEP2とSTEP4,5とSTEP6とのうちのいずれか1つ以上の判断処理を省略して、残湯量閾値を変化させるようにしてもよい。
また、前記実施形態では、給湯システムの周囲の温度として、外気温を検出するようにしたが、給湯システムの周囲の温度は、燃焼式給湯器10の周囲の温度と同程度の温度であれば、外気温以外の温度であってもよい。
また、前記実施形態では、貯湯タンク31の残湯量の大小を検知するために、貯湯タンク31に装着した温度センサ45,46を使用したが、例えば次のような手法で残湯量の大小を検知することも可能である。
すなわち、貯湯タンク31の沸き上げ状態(残湯量の満杯状態)から、貯湯タンク31から出湯管32に流れる湯水(所定温度以上の湯水)の流量を適宜の流量センサにより検出し、その検出値を積算する。そして、該流量の検出値の積算値を、貯湯タンク31の容量から減算することにより、貯湯タンク31の残湯量を推定する。この残湯量の推定値を、給湯加熱終了後経過時間の計測値等に応じて設定した残湯量閾値と比較することで、該残湯量の大小を検知することができる。
また、前記実施形態では、浴槽の湯はりを行い得る給湯システムを説明したが、本発明の給湯システムは、給湯運転だけを行うものであってもよい。あるいは、給湯運転に加えて、温水暖房を行い得る給湯システムであってもよい。
10…燃焼式給湯器、21…給湯コントローラ(運転制御手段)、31…貯湯タンク、32…出湯管、32x…第1途中部、32y…第2途中部、32z…第3途中部、33…給水管、34…出湯バイパス管、37,38…流量調整弁(混合比変更手段)、41…タンクコントローラ(残湯量検知手段、運転制御手段、第1計時手段、第2計時手段)、44,50…温度センサ(環境温度検出手段)、45,46…温度センサ、61…ヒートポンプ(加熱手段)。

Claims (5)

  1. 貯湯タンクと、前記貯湯タンク内の湯水を加熱する加熱手段と、前記貯湯タンクから導出された出湯管と、前記貯湯タンクと前記出湯管の第1途中部とに接続された給水管と、前記出湯管の第1途中部よりも下流側に配置され、前記出湯管を流れる湯水を加熱する燃焼式給湯器と、前記出湯管の第1途中部から下流側に流れる湯水を、前記燃焼式給湯器をバイパスさせて流すように前記燃焼式給湯器の上流側における前記出湯管の第2途中部と前記燃焼式給湯器の下流側における前記出湯管の第3途中部とを連通させる出湯バイパス管と、前記貯湯タンクから前記出湯管に供給される湯水と前記給水管から前記出湯管に供給される水との混合比を変更する混合比変更手段と、前記出湯バイパス管を開閉可能に該出湯バイパス管に設けられたバイパス弁とを備える給湯システムであって、
    前記出湯管からの給湯の開始時に、前記貯湯タンク内に存在する所定温度以上の湯水の量である残湯量を大小に分別して検知する残湯量検知手段と、
    前記残湯量検知手段により残湯量が大きいことが検知された場合には、前記貯湯タンクが湯切れ状態になるまで、前記燃焼式給湯器の加熱運転を禁止すると共に前記バイパス弁を開弁状態に制御した状態で、前記混合比変更手段により前記混合比を調整しつつ、前記出湯管から目標温度の湯水を給湯する第1給湯制御処理を実行し、前記残湯量検知手段により残湯量が小さいことが検知された場合には、前記燃焼式給湯器の加熱運転を行いつつ、前記出湯管から目標温度の湯水を給湯する第2給湯制御処理を実行する運転制御手段と、
    前記燃焼式給湯器の加熱運転の終了後の経過時間を計時する第1計時手段とを備えており、
    前記残湯量検知手段は、前記残湯量が大きいと判断することとなる該残湯量の範囲と、前記残湯量が小さいと判断することとなる該残湯量の範囲との間の境界値である残湯量閾値が、前記第1計時手段による計時時間が長いほど、大きくなるようにして、該残湯量の大小を検知するように構成されていることを特徴とする給湯システム。
  2. 請求項1記載の給湯システムにおいて、
    前記加熱手段は、前記貯湯タンク内の湯水の加熱を開始することと該加熱を終了することとを少なくとも前記貯湯タンク内の湯水の温度状態に応じて規定される所定のタイミングで行うように構成されており、
    前記加熱手段による前記貯湯タンク内の湯水の加熱の開始後の該加熱の継続時間を計時する第2計時手段をさらに備えており、
    前記残湯量検知手段は、前記残湯量閾値を大小2種類に選択的に変更可能に構成されていると共に、前記第1計時手段による計時時間が第1所定時間以下であり、且つ、前記第2計時手段による計時時間が第2所定時間以上であるという条件が成立する場合に、前記残湯量閾値が小となり、該条件が成立しない場合に、前記残湯量閾値が大となるようにして、該残湯量の大小を検知するように構成されていることを特徴とする給湯システム。
  3. 請求項1記載の給湯システムにおいて、
    当該給湯システムの周囲の温度又は当該給湯システムの給水温度である環境温度を検出する環境温度検出手段をさらに備えており、
    前記残湯量検知手段は、前記環境温度検出手段による前記環境温度の検出値が所定の温度閾値よりも低い場合に、前記第1計時手段による計時時間によらずに、前記残湯量閾値が該残湯量閾値の可変範囲の最大値になるようにして、前記残湯量の大小を検知するように構成されていることを特徴とする給湯システム。
  4. 請求項2記載の給湯システムにおいて、
    当該給湯システムの周囲の温度又は当該給湯システムの給水温度である環境温度を検出する環境温度検出手段をさらに備えており、
    前記残湯量検知手段は、前記環境温度検出手段による前記環境温度の検出値が所定の温度閾値よりも低い場合に、前記第1計時手段による計時時間及び第2計時手段による計時時間によらずに、前記残湯量閾値が大となるようにして、前記残湯量の大小を検知するように構成されていることを特徴とする給湯システム。
  5. 請求項1〜4のいずれか1項に記載の給湯システムにおいて、
    前記貯湯タンク内の湯水の温度を、該貯湯タンクの複数の高さ位置でそれぞれ検出する複数の温度センサを備えており、前記残湯量検知手段は、前記複数の温度センサのうちから選択した1つの残湯量検知用の温度センサにより検出された温度を前記所定温度と比較することにより、前記残湯量の大小を検知するように構成されると共に、前記複数の温度センサのうちから選択する残湯量検知用の温度センサを切り替えることにより、前記残湯量閾値を変更するように構成されていることを特徴とする給湯システム。
JP2013181444A 2013-09-02 2013-09-02 給湯システム Active JP6129031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181444A JP6129031B2 (ja) 2013-09-02 2013-09-02 給湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181444A JP6129031B2 (ja) 2013-09-02 2013-09-02 給湯システム

Publications (2)

Publication Number Publication Date
JP2015048994A JP2015048994A (ja) 2015-03-16
JP6129031B2 true JP6129031B2 (ja) 2017-05-17

Family

ID=52699168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181444A Active JP6129031B2 (ja) 2013-09-02 2013-09-02 給湯システム

Country Status (1)

Country Link
JP (1) JP6129031B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129032B2 (ja) * 2013-09-02 2017-05-17 リンナイ株式会社 給湯システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101548B2 (ja) * 2009-03-11 2012-12-19 リンナイ株式会社 給湯システム
JP5084768B2 (ja) * 2009-03-11 2012-11-28 リンナイ株式会社 給湯システム
JP5084767B2 (ja) * 2009-03-11 2012-11-28 リンナイ株式会社 給湯システム
JP5295985B2 (ja) * 2010-01-28 2013-09-18 リンナイ株式会社 給湯システム
JP5831198B2 (ja) * 2011-12-16 2015-12-09 三菱電機株式会社 貯湯式給湯機
JP6032931B2 (ja) * 2012-04-20 2016-11-30 リンナイ株式会社 給湯システム
JP5833062B2 (ja) * 2013-07-26 2015-12-16 リンナイ株式会社 給湯システム
JP6129032B2 (ja) * 2013-09-02 2017-05-17 リンナイ株式会社 給湯システム
JP6129033B2 (ja) * 2013-09-02 2017-05-17 リンナイ株式会社 給湯システム

Also Published As

Publication number Publication date
JP2015048994A (ja) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5084768B2 (ja) 給湯システム
JP6032931B2 (ja) 給湯システム
JP6129033B2 (ja) 給湯システム
JP5309061B2 (ja) 給湯システム
JP6129032B2 (ja) 給湯システム
JP5869534B2 (ja) 給湯システム
JP6129031B2 (ja) 給湯システム
JP6607375B2 (ja) 補助熱源機
TWI674373B (zh) 具有節能加熱的儲熱式電熱水器及其熱水供應方法
KR101579399B1 (ko) 급탕시스템
JP5379083B2 (ja) 給湯システム
JP5505129B2 (ja) 給湯システム
JP2012013301A (ja) 給湯システム
JP5833062B2 (ja) 給湯システム
KR101810769B1 (ko) 급탕시스템
KR101797646B1 (ko) 순간식 보일러의 계절에 따른 온수 비례제어장치 및 그 방법
JP5816226B2 (ja) 貯湯式給湯装置
JP7016707B2 (ja) 即時出湯装置
KR101661844B1 (ko) 급탕 시스템
KR101586165B1 (ko) 급탕시스템
KR101648666B1 (ko) 급탕 시스템
JP6391521B2 (ja) 給湯システム
JP2017122535A (ja) 風呂給湯器
KR101621189B1 (ko) 급탕 시스템
JP6320118B2 (ja) 熱源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170411

R150 Certificate of patent or registration of utility model

Ref document number: 6129031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250