JP6118269B2 - クロマトグラフ媒体 - Google Patents

クロマトグラフ媒体 Download PDF

Info

Publication number
JP6118269B2
JP6118269B2 JP2013553296A JP2013553296A JP6118269B2 JP 6118269 B2 JP6118269 B2 JP 6118269B2 JP 2013553296 A JP2013553296 A JP 2013553296A JP 2013553296 A JP2013553296 A JP 2013553296A JP 6118269 B2 JP6118269 B2 JP 6118269B2
Authority
JP
Japan
Prior art keywords
chromatographic medium
separating agent
layer
permeation layer
agent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013553296A
Other languages
English (en)
Other versions
JPWO2013105572A1 (ja
Inventor
稔治 蓑田
稔治 蓑田
池田 勇
勇 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Publication of JPWO2013105572A1 publication Critical patent/JPWO2013105572A1/ja
Application granted granted Critical
Publication of JP6118269B2 publication Critical patent/JP6118269B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • G01N30/93Application of the sorbent layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8877Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample optical isomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は、紫外線に対する光学応答性が異なる二種の層を有するクロマトグラフ媒体に関する。
混合物中から特定の成分を分離、検出する方法としては、薄層クロマトグラフィー(以下、「TLC」とも言う)が知られている。TLCによる成分の分離は、例えば、分離剤層と検出対象成分との光学的な応答性の相違に基づいて、試料の展開によるスポットへの紫外線の照射や発色試薬の発色処理によって検出される。
一方で、光学異性体用分離剤には、多糖のフェニルエステル等の多糖誘導体を含有する分離剤が知られている。このような芳香族環を含む分離剤は、TLCプレートの分離剤層に用いた場合、紫外線の照射や発色試薬の発色処理では検出対象成分を検出することができないことがある。
このような問題点に対して、同一基板上に、目的物質に対する分離能を有するが光学応答性を有さない第一の分離剤層と、分離能は有さないが光学応答性を有する第二の分離剤層とが並んで形成されているTLCプレートが知られている(例えば、特許文献1参照。)。このTLCプレートでは、第一の分離剤層から第二の分離剤層まで試料中の目的物質を展開させ、第一の分離剤層で分離したスポットが隣接する第二の分離剤層まで移動し、そこで光学応答性に応じて検出される。
このTLCプレートでは、試料中の、第一の分離剤層により吸着されやすいエクストラクト成分は、第二の分離剤層まで十分に到達しない場合がある。また、一般に各分離剤層における試料中の目的物質のスポットの移動速度が異なることから、第一の分離剤層におけるスポットの位置関係は第二の分離剤層まで正確に維持されないことがある。このように前記のTLCプレートは、第一の分離剤層での分離状態が正確に検出することができないことがあり、少なくともこの点について検討の余地が残されている。
特許第3140138号公報
本発明は、試料中の目的物質の分離と検出を単一のキットで行うことができるクロマトグラフ媒体を提供する。
本発明者らは、目的物質を分離するための分離剤層と、該分離剤層に面して積層され、該分離剤層で分離された目的物質が浸透するための被浸透層とを有するクロマトグラフ媒体であって、前記分離剤層の一部の領域に、前記被浸透層が積層されていない、つまり分離剤層のみが存在する領域があり、前記分離剤層として、目的物質に対する分離能と紫外線に対する光学応答性とを有するものを用い、前記被浸透層として、分離剤層とは異なる光学応答性を有するものを用いることで、前述の問題点を解決できることを見出し、本発明を完成させた。
すなわち本発明は、目的物質を分離するための分離剤層と、該分離剤層に面して積層され、該分離剤層で分離された目的物質が浸透するための被浸透層とを有するクロマトグラフ媒体であって、前記分離剤層の一部の領域に、前記被浸透層が積層されていない領域があり、前記分離剤層は、目的物質に対する分離能と紫外線に対する光学応答性とを有し、前記被浸透層は、目的物質と分離剤層とは異なる光学応答性を有するクロマトグラフ媒体を提供する。
<1> 目的物質を分離するための分離剤層と、該分離剤層に面して積層され、該分離剤層で分離された目的物質が浸透するための被浸透層とを有するクロマトグラフ媒体であって、
前記分離剤層の一部に前記被浸透層が積層されていない領域があり、
前記分離剤層は、前記目的物質に対する分離性と紫外線に対する光学応答性とを有し、
前記被浸透層は、前記目的物質と前記分離剤層とは異なる光学応答性を有する、クロマトグラフ媒体。
<2> 前記分離剤層の一部に前記被浸透層が積層されていない領域が、前記クロマトグラフ媒体における前記目的物質を展開させるための展開液が浸漬する浸漬端部から、該クロマトグラフ媒体の展開方向の長さの1/2までの間の領域に存在する、<1>に記載のクロマトグラフ媒体。
<3> 前記被浸透層は、クロマトグラフ媒体の展開方向に不連続に積層されている、<1>または<2>に記載のクロマトグラフ媒体。
<4> 前記被浸透層は、前記分離剤層の上にドット状に積層されている、<1>〜<3>のいずれかに記載のクロマトグラフ媒体。
<5> 前記ドット状に積層されている被浸透層は、該ドットの平均径が0.01〜5mmであり、ドット間のピッチが0.015〜5mmである、<4>に記載のクロマトグラフ媒体。
<6> 前記被浸透層は、前記分離剤層の上に、クロマトグラフ媒体の展開方向と交差する帯状の列として積層されている、<1>〜<3>のいずれかに記載のクロマトグラフ媒体。
<7> 前記帯状の列を形成する帯は、直線、波線及びそれらの破線から選ばれる<6>に記載のクロマトグラフ媒体。
<8> 前記被浸透層の厚みが、前記分離剤層よりも薄い、<1>〜<7>のいずれかに記載のクロマトグラフ媒体。
<9> 前記分離剤層を構成する分離剤が、光学異性体用分離剤である、<1>〜<8>のいずれかに記載のクロマトグラフ媒体。
<10> 前記光学異性体用分離剤が、多糖と多糖の水酸基或いはアミノ基の一部又は全部と置き換わった芳香族エステル基、芳香族カルバモイル基、芳香族エーテル基、及びカルボニル基のいずれかとからなる多糖誘導体を含むことを特徴とする<9>に記載のクロマトグラフ媒体。
<11> 前記被浸透層は、多孔質体及び蛍光指示薬もしくは発色試薬を構成材料として含む、<1>〜<10>のいずれかに記載のクロマトグラフ媒体。
<12> 前記多孔質体が、シリカゲルまたは表面処理されたシリカゲルである、<9>に記載のクロマトグラフ媒体。
<13> 前記被浸透層がさらにバインダを構成材料として含む、<11>または<12>に記載のクロマトグラフ媒体。
<14> 前記被浸透層上に目盛及び/または文字が存在する、<1>〜<13>のいずれかに記載のクロマトグラフ媒体。
<15> 前記目盛及び/または文字が、前記被浸透層とは異なる光学応答性を有する、<14>に記載のクロマトグラフ媒体。
<16> 前記分離剤層に面して、または、前記被浸透層に面して、前記クロマトグラフ媒体を支持するための基材を有する、<1>〜<15>のいずれかに記載のクロマトグラフ媒体。
<17> 前記クロマトグラフ媒体がプレート状、筒状または柱状である、<1>〜<16>のいずれかに記載のクロマトグラフ媒体。
<18> <1>〜<15>のいずれかに記載のクロマトグラフ媒体と、該クロマトグラフ媒体を支持するための基材とを有し、前記基材上の複数領域に前記クロマトグラフ媒体が積層されてなる、TLCプレート。
<19> <1>〜<15>のいずれかに記載のクロマトグラフ媒体と該クロマトグラフ媒体を支持するための基材とからなる、TLC材料。
本発明のクロマトグラフ媒体は、分離剤層に面して、分離された目的物質が浸透するための被浸透層が積層され、かつ、この被浸透層は分離剤層とは異なる光学応答性を有することから、光学応答性では検出できない分離剤層に存在し、分離剤層と同じ光学応答性を有する目的物質が被浸透層に浸透することにより、被浸透層に浸透した目的物質を光学応答性により検出することができる。
また、本発明のクロマトグラフ媒体では、前記分離剤層の一部の領域に、前記被浸透層が積層されていない領域があることで、この領域に前記目的物質をスポッティングして、展開を行った場合には、分離剤層と被浸透層の間の相互作用、あるいは、被浸透層による目的物質の保持によって生じうる目的物質のテーリングを極力防ぐことができる。
また、本発明のクロマトグラフ媒体は、他の部材を用いることなく単一のキットで目的物質の分離と検出を行うことができることから、目的物質の分離と検出のために複雑な工程を必要としない。
(a)実施例1で作製したTLCプレート(展開液の浸漬端部から、該TLCプレートの展開方向の長さの1/6.6までの間の領域が、被浸透層で積層されていない)を用い、トランス−スチルベンオキサイド(t−SO)、トレガー塩基及びフラバノンを、展開液としてヘキサン/エタノール(90:10, v/v)を用いて展開させて得られたスポットを示す図(写真)である。(b)比較例1で作製したTLCプレートを用いたこと以外は実施例1と同様の操作を行って得た写真である。 (a)実施例1で作製したTLCプレートと同様のTLCプレートを作製し、実施例1と同様の目的物質を、展開液としてエタノールを用いて展開させて得られたスポットを示す図(写真)である(実施例2)。(b)比較例2で作製したTLCプレートを用いたこと以外は実施例1と同様の操作を行って得た写真である。 (a)実施例3(a)で得たTLCプレート(被浸透層を構成する材料としてシリカゲルを使用し、展開液の浸漬端部から、該TLCプレートの展開方向の長さの1/6.6までの間の領域が被浸透層で積層されていない)を用いて、ベンゾインエチルエーテル(BEE)、トランス−スチルベンオキシド(t−SO)、トレガー塩基及びフラバノンを、展開液としてヘキサン/エタノール(90:10, v/v)を用いて展開させて得られたスポットを示す図(写真)である。(b)実施例3(b)で得たTLCプレート(被浸透層を構成する材料としてアミノプロピルシリル化シリカゲルを使用し、展開液の浸漬端部から、該TLCプレートの展開方向の長さの1/6.6までの間の領域が、被浸透層で積層されていない)を用いて、実施例3(a)と同じ展開液を用いて実施例3(a)と同じ目的物質を展開させて得られたスポットを示す図(写真)である。 (a)実施例4(a)で得たTLCプレート(被浸透層を構成する材料としてシリカゲルを使用し、展開液の浸漬端部から、該TLCプレートの展開方向の長さの1/6.6までの間の領域が、被浸透層で積層されていない)を用いて、実施例3と同じ目的物質を、展開液としてヘキサン/イソプロピルアルコール(2−プロパノール)(90:10, v/v)を用いて展開させて得られたスポットを示す図(写真)である。(b)実施例4(b)で得たTLCプレート(被浸透層を構成する材料としてアミノプロピルシリル化シリカゲルを使用し、展開液の浸漬端部から、該TLCプレートの展開方向の長さの1/6.6までの間の領域が、被浸透層で積層されていない)を用いて、展開液として実施例4(a)と同じものを用いて実施例4(a)と同じ目的物質を展開させて得られたスポットを示す図(写真)である。 (1)分離剤層の一部に被浸透層が積層されていない領域を有し、被浸透層が分離剤層上にドット状に積層されている本発明のクロマトグラフ媒体の概略図である。(2)被浸透層が積層されていない領域が、略円形の形状を有する本発明のクロマトグラフ媒体の概略図である。 本発明のクロマトグラフ媒体において、被浸透層が帯状の列として積層された例を示す図である((1)〜(4))。 本発明のクロマトグラフ媒体において、被浸透層がドット状に積層される場合のドットの直径(φ)とピッチ(Pt)の一例を示す図である。 (a)本発明のクロマトグラフ媒体として、プレート状の一態様の断面を示す該略図である。(b)本発明のクロマトグラフ媒体として、プレート状の別の一態様の断面を示す該略図である。 本発明のクロマトグラフ媒体として、筒状(b)及び柱状(a)、(c)の一態様を示す概略図である。 本発明のクロマトグラフ媒体が一枚の基材上の複数領域に積層されているTLCプレートを示す概略図である。 本発明のクロマトグラフ媒体と基材とを構成要素として含むTLC材料を示す概略図である。
本発明のクロマトグラフ媒体は、分離剤層と、分離剤で分離された目的物質が浸透するための被浸透層とを有する。
本発明でいうクロマトグラフ媒体は、上記の分離剤層と被浸透層が積層されており、その形状がプレート状、筒状及び柱状のものを含み、プレート状のものは、いわゆる薄層クロマトグラフィー(TLC)のことである。一方、筒状や柱状のものは、ステッィク状カラムと呼ばれることもある。
前記被浸透層は前記分離剤層に面して積層されており、前記被浸透層と分離剤層とを有するクロマトグラフ媒体において、前記分離剤層の一部の領域に、前記被浸透層が積層されていない領域が存在する。また、前記分離剤層は、目的物質に対する分離能を有するとともに、紫外線に対する光学応答性を有する。一方、前記被浸透層は、紫外線に対する光学応答性が、目的物質及び分離剤層とは異なる。
本発明でいう目的物質として、光学異性体を例示することができる。目的物質に対する分離能を有するとは、目的物質を分離する能力を有することをいい、目的物質が光学異性体である場合には、光学分割能を有することをいう。また、本発明でいう紫外線に対する光学応答性とは、蛍光等の紫外線による発光、又は紫外線の吸収をいう。
本発明のクロマトグラフ媒体は、上記のように分離剤層と、被浸透層を有することにより、分離剤層で分離された目的物質が、被浸透層に浸透する。そして、被浸透層の光学応答性と目的物質と分離剤層の光学応答性が異なることから、被浸透層に浸透した目的物質を紫外線等の照射により確認することができる。
本発明のクロマトグラフ媒体では、分離剤層の一部の領域に被浸透層が存在しない領域が存在する。このような領域に目的物質をスポッティングして展開させた場合には、分離剤層と被浸透層との間の相互作用、あるいは、被浸透層による目的物質の保持によって生じうる目的物質のピークがブロードになることを極力防ぐことができる。
なお、前記の被浸透層が存在しない分離剤層の一部の領域とは、分離剤層による目的物質の分離と、被浸透層における目的物質の確認ができるだけの領域が残っており、かつ、その一部の領域に目的物質をスポッティングすることが可能である領域であれば、その大きさ、形状及びクロマトグラフ媒体における場所は特に制限されない。
目的物質の十分な分離を確保する観点からは、前記分離剤層の領域のうち、前記被浸透層が積層されていない領域が、前記クロマトグラフ媒体における前記目的物質を展開させるための展開液が浸漬する浸漬端部(以下、下側縁ともいう)から、該クロマトグラフ媒体の展開方向の長さの1/2までの間の領域に存在することが好ましい。
目的物質の良好な分離を確保する観点から、前記被浸透層が積層されていない領域は、前記クロマトグラフ媒体の下側縁から、該クロマトグラフ媒体の展開方向の長さの1/20〜1/2.2までの間の領域であることがより好ましい。このような領域の境界は、目的物質のスポッティング位置及び展開槽に浸漬した際の液浸の位置よりも展開方向の長さの下流側に設けるようにする。
また、前記分離剤層の一部に前記被浸透層が積層されていない領域の形状及び場所は、生産性の観点から、クロマトグラフ媒体がプレート状のものである場合、その下側縁を含めた四角形であることが好ましい。
あるいは、目的物質のスポッティングが行える程度の大きさの略円形状の形状であってもよい。
また、被浸透層が積層されていない領域は、上記の特定範囲の領域の全てである必要はなく、目的物質の分離特性に影響を与えなければ、上記の特定範囲の領域の中で部分的に被浸透層が積層されていてもよい。
分離剤層の全面積に対する、被浸透層が積層されていない領域の面積の割合は、0.05%〜50%であることが好ましく、多様な目的物質の分離の確認が行えるようにする観点からは、0.2%〜40%であることがより好ましい。
このような、被浸透層が積層されておらず分離剤層が露出している領域は、分離剤層を積層した後、後述する塗布技術、浸漬技術あるいは印刷技術を用いて被浸透層を積層する際に、その領域だけ塗布、浸漬あるいは印刷しない方法を用いて得ることができる。
あるいは、被浸透層の積層を分離剤層の全面に一旦行った後、掻き採り等の操作で分離剤層から除去することによっても得ることができる。
本発明のクロマトグラフ媒体は、上述のような構成を有していれば、その形状は特に限定されるものではなく、プレート状、筒状または柱状のものであってもよい。
プレート状のものとしては、基材として後述するものを用いて、紫外線を照射する方向から見て、被浸透層、分離剤層、基材の順に積層する第一の態様(図8(a)参照)や、紫外線を照射する方向から見て、基材、被浸透層、分離剤層の順で積層する第二の態様(図8(b)参照)が挙げられる。
前記第一の態様では、目的物質のスポッティングは紫外線を照射する面のうち、分離剤層が露出している領域に行う。
前記第二の態様で用いる基材として、図8(b)で示すような柔軟性を有する素材を用い、図8(b)に示すよう分離剤層及び被浸透層に接して形成することが、分離剤層及び被浸透層の崩壊を防止する観点から好ましい。
また、前記第二の態様では、図8(b)に示すように紫外線を照射する方向とは逆の方向(図8(b)中の5’)から目的物質のスポッティングを行うことができるが、基材の一部を除去して紫外線を照射する方向と同じ方向(図8(b)中の5)からスポッティングを行うこともできる。
本発明のクロマトグラフ媒体がプレート状のTLCである場合、前記基材には、TLCにおける公知の基板を用いることができる。このような基材としては、例えば、ガラス製、樹脂製、金属製、又は紙製の平板が挙げられる。基材の形状は、特に限定されないが、TLCで通常使用される長方形であることが好ましい。
一方、筒状または柱状のクロマトグラフ媒体については、図9に例示されるものが挙げられる。これらの例では軸と垂直方向の断面形状が楕円〜円形を有しているが、これらに限られず、多角形であってもよい。これらの形態では、柱状又は筒状の基材の外周面に分離剤層と被浸透層が形成されてなる形態と、筒状の基材の内周面に分離剤層と被浸透層が形成されてなる形態とを含む。柱状の基材には、例えば断面形状が多角形や円形の棒を用いることができ、筒状の基材には、例えば断面形状が多角形の管や、カラム管や、カラム管と同じ寸法の管を用いることができる。
筒状の基材の内周面に分離剤層と被浸透層を積層させる場合、筒状の基材として光透過性を有するものを用いることにより、目的物質の確認を行うことができる。ここで光透過性とは、目的物質のスポットの光学的特徴(発色、発光、及び吸光等)を確認可能な透明性を言う。そのような光透過性を有するカラム管等の管には、例えば石英ガラスの管や、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)等のフッ素樹脂製の管を用いることができる。
また、基材を有さず、分離剤層と被浸透層のみからなり、通液性を有するクロマトグラフ媒体とすることもできる。
図9に示される筒状または柱状のクロマトグラフ媒体においても、目的物質は被浸透層が積層されておらず、分離剤層が露出している領域にスポッティングする。
このような筒状や柱状のクロマトグラフ媒体においては、通常1〜40cmの長さを有し、径(最大径)は、通常0.1〜1cmである。
本発明のクロマトグラフ媒体における分離剤層に用いる分離剤は、目的物質に対する分離能と紫外線に対する光学応答性とを有するものであれば特に限定されない。
上記分離剤には、粒子状の分離剤を用いることができる。このような粒子状の分離剤としては、分離剤のみからなる粒子、粒子状の担体に分離剤が担持されてなる粒子、が挙げられる。担体への分離剤の担持には、物理的な吸着による担持の他、担体への化学結合による分離剤の担持も含まれる。
分離剤としては、光学応答性を有する低分子系の分離剤や高分子系の分離剤のいずれも用いることができる。低分子系の分離剤としては、例えば、配位子交換型の分離剤、電化移動(π−π)型の分離剤、水素結合型の分離剤、包接型の分離剤、イオン結合型の分離剤、インターカレート型の分離剤、クラウンエーテル又はその誘導体、及び、シクロデキストリン又はその誘導体、が挙げられる。高分子系の分離剤としては、例えば多糖誘導体、ポリアミド、ポリメタクリル酸エステル、ポリアクリルアミド、タンパク質、及び酒石酸誘導体が挙げられる。
前記多糖誘導体としては、例えば光学異性体用分離剤に用いられる、多糖と多糖の水酸基或いはアミノ基の一部又は全部が芳香族エステル基、芳香族カルバモイル基、芳香族エーテル基、及びカルボニル基のいずれかで置き換えられた多糖誘導体が挙げられ、例えばセルロースのフェニルカルバメート誘導体、セルロースのフェニルエステル誘導体、アミロースのフェニルカルバメート誘導体、及びアミロースのフェニルエステル誘導体が挙げられる。これらの誘導体におけるフェニル基は炭素数1〜20の炭化水素、及びハロゲンからなる群から選ばれる一以上の置換基を有していてもよい。
前記担体は、多孔質体であることが、分離性能を高める観点から好ましい。前記担体としては、例えば架橋ポリスチレン、架橋アクリル系ポリマー、エポキシ重合物等の合成高分子、セルロースやそれを架橋によって強化した架橋セルロース、架橋アガロース、架橋デキストラン、及び架橋マンナン架橋体等の多糖、及び、アルミナ、シリカゲル、メソポーラスシリカゲル、ゼオライト、珪藻土、溶融シリカ、粘度鉱物、ジルコニア、金属等の無機物、が挙げられる。
分離剤の粒径は、クロマトグラフ媒体における分離の目的に応じて決めることができ、通常、10μm以上であることが好ましく、10〜100μmであることがより好ましく、20〜100μmであることがさらに好ましい。各分離剤の粒径は、通常の粒径測定装置で測定される平均粒径を採用することができるが、カタログ値であってもよい。一方、例えば合成反応のモニター用途で使用する場合などで、より分離スポットの分離度を要求する場合には、10μmよりも小さな分離剤を使用することもできる。そのような用途で用いる場合の分離剤の粒径としては、2〜8μmのものが好ましく、3〜6μmのものがより好ましく用いられる。
クロマトグラフ媒体がプレート状のTLCである場合、分離剤層はTLCプレートを作製する公知の方法を用いて、例えば、前記分離剤と塗布用溶剤とを含有するスラリーを、スプレッダを用いて支持体の表面に塗布することによって、又は前記スラリーを支持体の表面に噴霧することによって、又は支持体を前記分離剤と塗布用溶剤とを含有するスラリー中に浸す(ディッピングする)ことによって形成することができる。
クロマトグラフ媒体が筒状の場合には、例えば、カラム管等の管の内面に、被浸透層を構成する材料を塗布や印刷により形成させた後に、分離剤やバインダ等を含む材料を充填することによって分離剤層を形成させることで、分離剤層上に被浸透層が積層され、被浸透層の周壁にカラム管が存在するクロマトグラフ媒体を得ることができる。
一方、クロマトグラフ媒体が柱状の場合、例えば分離剤やバインダを含む材料を棒状の基材の周面に塗布したり、分離剤や塗布用溶剤を含むスラリーを棒状の基材に塗布したりして分離剤層を形成させた後、被浸透層を構成する材料を、塗布や印刷により分離剤層の周面に積層させることで、基材に分離剤層が積層され、該分離剤層上に被浸透層が積層された柱状のクロマトグラフ媒体を得ることができる。
また、クロマトグラフ媒体が、予め成形された基材を用いずに柱状に形成される場合には、以下のような態様が挙げられる。
まず、少なくとも表面に前記分離剤を有する柱状の多孔質体を形成する。このような多孔質体は、分離剤による柱状の多孔質体、及び、担体による柱状の多孔質体とこれに担持される前記分離剤、のいずれかによって形成することができる。
分離剤による柱状の多孔質体は、例えば特開平4−93336号公報に記載されている方法を利用して、分離剤の粒子が不溶な溶剤に可溶なプラスチック粒子と分離剤とを混合し、得られた混合物を加熱加圧処理して成型し、得られた成形体から可溶性のプラスチックを溶剤処理によって除去することによって形成することができる。
前記担体による柱状の多孔質体は、担体粒子の接合や担体による柱状体の多孔質化によって形成することができる、担体粒子の接合による多孔質体は、担体粒子が高分子や多糖等の有機化合物である場合には、前記の方法を利用して形成することができる。前記担体による柱状体の多孔質化による多孔質体は、例えば特許第3397255号公報や特許第3317749号公報に記載されている方法、いわゆるゾル−ゲル法を利用して形成することができる。
前記担体による柱状の多孔質体への分離剤の担持は、例えば、担体に分離剤を物理的に吸着させる、又は化学的に結合させて、多孔質体の細孔の表面を修飾、改質する公知の方法を利用して行うことができる。
上記の操作により作製された、少なくとも表面に前記分離剤を有する柱状の多孔質体の周面に被浸透層を構成する材料を、塗布や印刷することで積層させることにより、被浸透層を形成させることで、通液性を有する柱状のクロマトグラフ媒体を得ることもできる。
前記塗布用溶剤には、水、有機溶媒、及びこれらの混合溶媒を用いることができる。有機溶媒としては、アルコール系、グリコールエーテル系、炭化水素系、ケトン、エステルといった有機溶剤を用いることができる。例えば、α-テルピオネール、ブチルカルピトールアセテート、ブチルカルビトール、トルエン、シクロヘキサン、メトルエチルケトン、メチルプロピレングリコールが挙げられる。
前記塗布用溶剤として好ましく用いられるのは、水溶性の有機溶剤と水との混合溶剤であり、より好ましくはアルコールと水の混合溶剤である。前記混合溶剤におけるアルコールの含有量は、0.1〜50質量%であることが好ましく、1〜45質量%であることがより好ましく、2〜40質量%であることがさらに好ましい。
用いることのできるアルコールとしては、例えば、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、1−ペンタノール及び3−メチル−3−メトキシブタノールが挙げられる。
前記スラリーにおける塗布用溶剤の含有量は、形成される分離剤層の均一性、層の厚さ、及び、経済的な観点、から決定することができ、分離剤100質量部に対して10〜5,000質量部であることが好ましく、50〜1,000質量部であることがより好ましく、100〜300質量部であることがさらに好ましい。
このような範囲内であれば、流動性の高いスラリー状の材料だけでなく、例えば筒状や柱状のクロマトグラフ媒体を作製する際には、塗布用溶剤の含有量が少ない粘度の高い材料も使用することができる。
前記スラリーは、形成される分離剤層の強度の向上の観点から、バインダをさらに含有することが好ましい。前記バインダには、基板の表面において分離剤の層を形成する結着性をもたらす成分を用いることができる。このようなバインダとしては、石膏やコロイダルシリカ等の無機系バインダ、ミクロフィブリル化セルロース等の有機繊維、及び、アルカリ水溶性共重合体、ヒドロキシエチルセルロースやカルボキシメチルセルロース等の増粘剤、ポリビニルアルコール、アクリル酸等の有機系バインダが挙げられる。バインダは一種でも二種以上でもよい。
前記スラリーにおけるバインダの含有量は、形成される分離剤層の強度と、分離剤層における移動相の適正な上昇速度との観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、分離剤100質量部に対して0.1〜50質量部であることが好ましく、1〜30質量部であることがより好ましく、1〜20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、分離剤100質量部に対して0.1〜50質量部であることが好ましく、0.5〜10質量部であることがより好ましく、1〜5質量部であることがさらに好ましい。
本発明のクロマトグラフ媒体における分離剤層の厚さは、十分な分離特性を得る観点から、20〜5000μmであることが好ましく、50〜3000μmであることがより好ましい。
また、本発明のクロマトグラフ媒体では、サンプルの分離性能を良好に保つ観点から、分離剤層の厚さよりも被浸透層の厚さが小さい方が好ましい。
本発明における分離剤層と被浸透層の厚さの比は、サンプルの分離性能を良好に保つ観点から、分離剤層を1としたとき、0.002〜0.8であることが好ましく、0.005〜0.5であることがより好ましく、0.006〜0.4であることが特に好ましい。
前記被浸透層は、目的物質及び分離剤層とは異なる光学応答性を有する。ここで「異なる光学応答性」とは、紫外線の照射又は発色試薬の発色処理による一方の光学的応答と他方の光学的応答とが、色や明るさによって光学的に識別できる程度に異なることを言う。
また被浸透層は、分離剤層においてスポットを形成している成分の少なくとも一部が浸透する層である。
また、被浸透層を構成する材料は、クロマトグラフ媒体上における分離剤層における目的物質の分離特性、即ち、移動相と分離剤層の間の目的物質の分配に影響を与えないものであることが、クロマトグラフ媒体上における目的物質のスポットをブロードにしないために重要である。
このことから、被浸透層の構成材料は、例えば分離剤層で用いられる分離剤が担体に担持されたものである場合、その担体と同じものであることが好ましい。また、被浸透層の構成材料は、後述する材料の中から、移動相と分離剤層の間の目的物質の分配に影響を与えないものを適宜選んで使用することができる。
前記被浸透層は、前記分離剤層の上に積層されているが、クロマトグラフ媒体の展開方向において不連続に積層されていることが、分離剤層と被浸透層との相互作用であるバイパス作用を減少させ、目的物質のスポットがブロードになることを防ぎ、良好な分離を得る(以下、分離特性とも言う)観点から好ましい。本発明でいう不連続に積層されているとは、クロマトグラフ媒体の展開方向に沿って、前記被浸透層が連続して積層されておらず、間隔を有して積層されていることを意味し、その間隔は等間隔であってもそうでなくてもよい。
その間隔としては、目的物質が浸透し、これを検出するのに十分な解像度を得るために、0.015mm以上であることが好ましく、0.02mm以上であることがより好ましく、0.05mm以上であることが特に好ましい。一方、目的物質の被浸透層への拡散による分離剤層との相互作用を抑え、目的物質の良好な分離を確保するためには、4mm以下であることが好ましく、3mm以下であることがより好ましく、2mm以下であることが特に好ましい。
また、目的物質が浸透し、検出するのに十分な面積を確保する観点から、被浸透層の空隙容積(材料内部の空隙容積(内部空隙)と材料間の空隙容積(外部空隙)を合わせたもの)の層全体の体積に占める割合が、0.1〜0.9であることが好ましく、0.2〜0.8であることがより好ましい。
また、本発明のクロマトグラフ媒体における被浸透層は、前記分離剤層の上にドット状に積層されていることが好ましい。本発明でいうドット状とは、例えば円形、略円形、略楕円形、各辺が直線だけでなく曲線であるものを含む略三角形、略四角形等の略多角形等であってもよい形状の不連続な多数の点又は小区域から形成される模様であり、各ドットの大きさ、或いは密度などは特に限定されるものではない。ドットの形状は、クロマトグラフ媒体における目的物質の分離特性を均一にする観点から、規則性を有することが好ましい。更に、各ドットの配列も規則性を有することが好ましい。
ドットの形状としては、円形〜略円形であることが、目的物質の浸透性の観点から特に好ましく、またその配列としては、図5や6に示されるように、規則性を有することが上述のようにクロマトグラフ媒体における目的物質の分離特性を均一にする観点から好ましい。
ドットの形状が円形である場合、その平均径は0.01〜5mmであることが、目的物質の浸透性及び分離特性の観点から好ましく、0.01〜4mmであることがより好ましく、0.02〜3mmであることがさらに好ましく、0.05〜1mmであることが特に好ましい。
一方、ドットの形状が円形以外のものである場合、その最大径の平均径が0.02〜6mmであることが、円形の場合と同様の理由で好ましく、0.05〜5mmであることがより好ましく、0.05〜1.5mmであることがさらに好ましい。
本発明でいう最大径とは、例えば楕円形の場合、その最も長い軸の長さを意味するが、より一般的には、平行な2つの平面で、その形状を上面から見て任意の方向に挟んだときの2つの平面間の距離の最大値である。
また被浸透層がドット状に積層されている場合、その各ドット間の間隔(ピッチ)は、分離剤層との相互作用を減らす観点及び浸透層に浸透する目的物質の検出の際の解像度の観点から、好ましくは0.01〜6mm、より好ましくは0.01〜4mm、さらに好ましくは0.02〜3mmであり、0.05〜1.0mmであることが特に好ましい。
ドットが円型である場合、ピッチは上記と同様の理由で、好ましくは0.01〜6mm、より好ましくは0.02〜3mmであり、さらに好ましくは0.05〜1mであり、0.06〜1mmであることが特に好ましい。
また、ドットの密度を線数(1インチ当たりのドット個数)で表すと、好ましくは5〜2000、より好ましくは10〜400であり、さらに好ましくは20〜300である。
本発明のクロマトグラフ媒体における被浸透層は、上記のドット状以外にも、クロマトグラフ媒体の展開方向と交差する帯状の列として積層されている態様も好ましい。このように積層されていることで、目的物質の分離特性を十分に保った上で、目的物質の被浸透層への十分な浸透を得ることができる。
前記帯状の列を形成する帯の形状としては、例えば直線、波線及びこれらの破線を挙げることができる。この帯の幅は特に制限されるものではないが、目的物質の分離特性を保ち、かつ、目的物質の検出に十分な解像度を得る観点から、0.01〜15mmであること好ましく、0.02〜10mmであることがより好ましい。
また、帯と帯の間隔については、特に制限されるものではないが、目的物質の均一な分離特性を得る観点から、等間隔であることが好ましく、その間隔としては0.01〜3mmであること好ましく、0.02〜2mmであることがより好ましい。
本発明のクロマトグラフ媒体における被浸透層は、その層を構成する材料として多孔質体を用いることができる。
そのような多孔質体は、目的物質の十分な浸透性を確保する観点から、ガス吸着法により測定される細孔容積が0.1ml/g以上であることが好ましく、0.2ml/g以上であることがより好ましく、0.3〜0.9ml/gであることが特に好ましい。
上記のような細孔容積を有する多孔質体としては、後述する好ましい多孔質体であるシリカゲルやセラミックスの市販品でカタログ値として上記範囲を満たすものを用いてもよいし、シリカを含むものであればフッ化水素水溶液やアルカリ水溶液による処理を行って調整してもよいし、セラミックスであればその造粒時の焼成条件、酸溶液での処理などを行って調整することもできる。
また、多孔質体の粒径としては、これを含むスラリーの凝集を防ぐ観点から、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが特に好ましい。一方、多孔質体の粒径の上限値としては、これを含むスラリーを例えばスクリーン印刷する際の透過性や、被浸透層の表面の仕上がりの観点から100μm以下であることが好ましく、70μm以下であることがより好ましく、50μm以下であることが特に好ましい。
多孔質体の粒径は、通常の粒径測定装置で測定される平均粒径を採用することができるが、カタログ値であってもよい。
本発明で用いられる多孔質体は、シリカゲル、メソポーラスシリカゲル、ゼオライト、セルロース、珪藻土、溶融シリカ、粘土鉱物、アルミナ、ジルコニアやその他のセラミックス、例えばセピオライト、アタパルジャイト、パリゴルスカイト、SiO、MgOを主成分とするタルク、SiOを主成分とするカオリナイト、モンモリロナイト等の各種粘土鉱物を、破砕した後、造粒し、必要に応じて酸処理を施してさらに焼成して得られるものなどが挙げられる。これらはいずれも市販品を用いることができ、カタログ値として上記の細孔容積や粒径を有するものを用いることができる。
これらのうち、上記細孔容積や粒径を有するものが好ましく用いられ、溶剤との親和性の観点から、シリカゲルを用いることが好ましい。
本発明で用いることのできるシリカゲルは、例えば、シランカップリング剤で表面処理されたシリカゲル、例えばオクタデシルシリル基、アミノプロピルシリル基で修飾したシリカゲルも使用することができる。このような表面処理されたシリカゲルは、分離剤層と移動相の間での目的物質の分配に影響を与えない傾向があることから好ましく用いられる。
また、上記の多孔質体は、分離剤層と移動相の間での目的物質の分配に影響を与えないものを選択することが、クロマトグラフ媒体上における目的物質のスポットをブロードにしない観点から好ましい。
また、本発明のクロマトグラフ媒体における被浸透層は、その層を構成する材料が、後述する蛍光指示薬あるいは発色試薬そのものであってもよい。また、これらの蛍光指示薬あるいは発色試薬と、バインダ及び必要に応じて、例えば粒径0.1〜100μmのガラス、プラスチック、金属、およびセラミックのような支持体を混合して得られる組成物を、積層することによっても被浸透層とすることができる。
このような組成物におけるバインダの含有量は、形成される被浸透層の強度と、被浸透層における分離剤層と被浸透層との相互作用であるバイパス作用を減少させる観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、蛍光指示薬あるいは発色試薬の100質量部に対して0.1〜50質量部であることが好ましく、0.5〜30質量部であることがより好ましく、1〜20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、蛍光指示薬あるいは発色試薬の100質量部に対して0.1〜50質量部であることが好ましく、0.5〜10質量部であることがより好ましく、1〜5質量部であることがさらに好ましい。
また、前記支持体については、これを含有させる場合、蛍光指示薬あるいは発色試薬の100質量部に対して0.1〜0.9質量部であることが好ましく、0.2〜0.8質量部であることがより好ましく、0.3〜0.7質量部であることが特に好ましい。
本発明のクロマトグラフ媒体における被浸透層は、種々の方法によって積層することができる。例えば被浸透層は、クロマトグラフ媒体がプレート状のTLCであり、被浸透層が多孔質体を構成材料として含む場合には、TLCプレートの分離剤層上に多孔質体を含むスラリーを塗布し、乾燥させることによって作製することができる。また、後述する蛍光指示薬あるいは発色試薬そのものや、これらとバインダ、および必要に応じて支持体を含有する組成物を被浸透層とする場合も、同じ方法を用いることができる。
また、本発明のクロマトグラフ媒体において、被浸透層がクロマトグラフ媒体の展開方向に不連続に積層されている場合には、例えば印刷技術を用いて、被浸透層を積層することができる。
印刷技術としては、シルクスクリーン印刷のようなスクリーン印刷やインクジェット印刷を挙げることができる。
スクリーン印刷では、スクリーン版として、開口部の形状として上記の積層の態様で説明したものを有するもの(クロマトグラフ媒体の展開方向に不連続に開口しているものや、種々の形状を有するドットや帯状の列を開口部として有しているもの)を用いることができる。シルクスクリーン印刷のようなスクリーン印刷では、被浸透層を比較的安価で簡単な操作で積層させることができることから、好ましく用いられる。
スクリーン版は、後述する多孔質体を含むスラリーを印刷インキとして用い得るものであれば、特にその材料が限定されるものではない。そのようなスクリーン版として、例えばメタルマスクが挙げられる。
一方、インクジェット印刷を用いる場合も、印刷に用いるインクとして、後述する多孔質体を含むスラリーを用いること以外は、通常用いられているインクジェット印刷の技術を用いることができる。
一方、筒状や柱状のクロマトグラフ媒体を作製する場合には、分離剤層上に多孔質体を含むスラリーを塗布し、乾燥させることによって作製することができる。また、蛍光指示薬あるいは発色試薬そのものや、これらとバインダ、および必要に応じて支持体を含有する組成物を被浸透層とする場合も、同じ方法を用いることができる。
また、筒状や柱状のクロマトグラフ媒体において、被浸透層がクロマトグラフ媒体の展開方向に不連続に積層されている場合には、例えば印刷技術を用いて、被浸透層を積層することができる。そのような印刷技術としては、上述したスクリーン印刷を用いることができ、スクリーン版としては、上述した開口部及び柔軟性を有し、分離剤層の周面に巻き付けることができるものを用いることが好ましい。
上記のようなスクリーン印刷技術を用いた場合には、スクリーン版に文字や目盛などの所望の開口部を設けることで、被浸透層上の該当部分に被浸透層が積層されず、分離剤層が露出して被浸透層とは異なる光学応答性を持つことで、紫外線を照射した際にそのような文字や目盛を確認することができる。これにより、クロマトグラフ媒体の利便性を高めることができる。
スラリーの塗布や上記印刷技術で積層された被浸透層の厚さ(平均厚さ)は、十分な浸透性を確保する観点や、多孔質体が例えば透明や半透明のものを用いる場合には、目的物質のスポット検出の際に分離剤層の光学応答性の影響を受けないようにするために、0.005mm以上であることが好ましく、0.01mm以上であることがさらに好ましい。
一方、被浸透層の厚さ(平均厚さ)は、目的物質のスポットの拡散の防止の観点から0.2mm以下であることが好ましく、0.15mm以下であることがさらに好ましい。
分離剤層上に被浸透層を積層するために、上記で説明した塗布や印刷の技術を用いることができるが、これらの技術においては、多孔質体を含むスラリー、蛍光指示薬あるいは発色試薬を含有する溶液、または蛍光指示薬あるいは発色試薬とバインダ及び必要に応じて支持体を含有する組成物を調製し、これを塗布液、印刷インキとして用いることができる。
多孔質体を含むスラリーを調製する際に用いる材料としては、溶剤と必要に応じてバインダが挙げられる。そのような溶剤やバインダは、分離剤層を形成する際に用いることができるものと、同じものを用いることができる。
上記蛍光指示薬としては、例えば、タングステン酸マグネシウムやマンガン含有ケイ酸亜鉛等が挙げられ、これを含有する溶液ないしスラリーを調製する際の溶剤としては、例えば、スクリーン印刷のインク溶剤として使用されるアルコール系、グリコールエーテル系、炭化水素系、ケトン、エステルといった有機溶媒を使用することができる。例えば、α-テルピオネール、ブチルカルピトールアセテート、ブチルカルビトール、トルエン、シクロヘキサン、メトルエチルケトン、メチルプロピレングリコールが挙げられる。印刷途中でスラリーの流動性を悪化させたり、スクリーンの目詰まりを引き起こしたりしないように、流動性、沸点、蒸発速度といった物性を考慮して適当な溶剤を選定する。
一方、発色試薬としては、アニスアルデヒド溶液、リンモリブデン酸溶液、ヨウ素溶液、ニンヒドリン溶液、カメレオン溶液、DNPH溶液、塩化マンガン溶液、及びブロモクレゾールグリーン溶液が挙げられる。
蛍光指示薬あるいは発色試薬とバインダ及び必要に応じて支持体を含有する組成物を用いる場合には、上記の蛍光指示薬あるいは発色試薬の溶液に上記バインダを含有する組成物を溶解乃至懸濁させて塗布液、印刷インキとすることができる。
被浸透層を形成する構成材料として、多孔質体を含む場合、それを含むスラリーで用いる溶剤としては、アルコール系、グリコールエーテル系、炭化水素系、ケトン、エステルといった有機溶剤を単独で用いることができる。例えば、アルコールを用いる場合には好ましくは水溶性の有機溶剤と水との混合溶剤であり、より好ましくはアルコールと水の混合溶剤である。前記混合溶剤におけるアルコールの含有量は、0.1〜50質量%であることが好ましく、1〜45質量%であることがより好ましく、2〜40質量%であることがさらに好ましい。
用いることのできるアルコールとしては、例えば、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、1−ペンタノール及び3−メチル−3−メトキシブタノールが挙げられる。
前記スラリーにおける溶剤の含有量は、形成される被浸透層の均一性、層の厚さ、及び、経済的な観点から決定することができ、多孔質体100質量部に対して10〜5,000質量部であることが好ましく、50〜1,000質量部であることがより好ましく、100〜300質量部であることがさらに好ましい。
前記スラリーは、形成される被浸透層の強度の向上の観点から、バインダをさらに含有することが好ましい。前記バインダには、分離剤層上において多孔質体の層を形成する結着性をもたらす成分を用いることができる。このようなバインダとしては、石膏やコロイダルシリカ等の無機系バインダ、ミクロフィブリル化セルロース等の有機繊維、及び、アルカリ水溶性共重合体、ヒドロキシエチルセルロースやカルボキシメチルセルロース等の増粘剤、ポリビニルアルコール、アクリル酸等の有機系バインダが挙げられる。バインダは一種でも二種以上でもよい。
前記スラリーにおけるバインダの含有量は、形成される被浸透層の強度と、被浸透層に対する分離剤層からの移動相の適正な上昇速度との観点から、バインダの種類に応じて適宜に決めることができる。例えば石膏であれば、バインダの含有量は、多孔質体100質量部に対して0.1〜50質量部であることが好ましく、0.5〜30質量部であることがより好ましく、1〜20質量部であることがさらに好ましい。また、例えばカルボキシメチルセルロース等の有機系のバインダであれば、バインダの含有量は、多孔質体100質量部に対して0.1〜50質量部であることが好ましく、0.5〜10質量部であることがより好ましく、1〜5質量部であることがさらに好ましい。
被浸透層が、多孔質体を構成材料として含む場合、紫外線の照射による光学応答性によってスポットを検出する場合には、蛍光指示薬を、多孔質体を含むスラリーに含有させることで被浸透層に光学応答性を持たせることができる。このような蛍光指示薬としては、公知の蛍光指示薬を用いることができ、例えば、前記タングステン酸マグネシウムや、マンガン含有ケイ酸亜鉛等が挙げられる。蛍光指示薬の含有量は、目的物質の分離が可能な範囲で決めることができ、一般には前記多孔質体100質量部に対して0.1〜10質量部であることが好ましく、1〜8質量部であることが目的物質と被浸透層のコントラストを最適なものにする観点から特に好ましい。
また、被浸透層が、多孔質体を構成材料として含み、発色反応によってスポットを検出する場合には、発色試薬を、多孔質体を含むスラリーに含有させることで被浸透層に光学応答性を持たせることができる。このような発色試薬としては、公知のリンモリブデン酸、ニンヒドリン等が挙げられる。発色試薬の含有量は、目的物質の分離が可能な範囲で決めることができ、一般には前記多孔質体100質量部に対して0.1〜10質量部であることが好ましく、1〜8質量部であることが目的物質と被浸透層のコントラストを最適なものにする観点から特に好ましい。
また、本発明では、上記のクロマトグラフ媒体が一枚の基材の複数領域上に積層されたTLCプレートも提供する(図10参照)。このようなTLCプレートによれば、様々な分離剤層や被浸透層の組み合わせを同一基材上に積層することができ、同一の展開液による目的物質の分離特性を観察することができる。分離剤層や、被浸透層の積層方法については、目的とするクロマトグラフ媒体が複数種類ある場合には、これが互いに接触して層が重なったりしないようにすること以外は、上述した方法を用いることができる。
また、本発明では、図11に概略が示されているように、一枚の基材上に分離剤層と被浸透層が積層され、基材の端部側に被浸透層が積層されていない領域を有するTLC材料も提供する(図11参照)。このようなTLC材料によれば、例えば、図11で破線で示されている箇所に溝を設け、この溝に沿って当該TLC材料を適当な方法、例えば手によって割ったり、プレートカッターで切断することで、基材、分離剤層及び被浸透層を有し、分離剤層の一部が被浸透層で積層されていない領域を有する、図5で例示されるTLCプレートを得ることができる。
ここで用いることができる基材、分離剤層、被浸透層やそれらの積層方法については、上述したものを用いることができる。また、TLC材料において、溝を設ける場所についても特に限定されるものではない。
本発明のクロマトグラフ媒体は、その態様により形状が異なるが、基本的には通常のTLCプレートの使用方法と同じ使用方法を用いることにより、試料中の目的物質の分離及び検出を行うことができる。ただし、試料のスポッティングを被浸透層が積層されていない領域で行う。
試料中の目的物質の分離及び検出は、クロマトグラフ媒体の展開方向(クロマトグラフ媒体がTLCプレートの場合で、その形状として長方形のものを用いる場合には、長手方向が好ましい)へ移動相を用いて試料を展開させる工程と、該クロマトグラフ媒体上の移動相を乾燥させる工程と、移動した目的物質の各成分のスポットを紫外線の照射又は発色試薬の発色処理によって検出する工程と、を含む方法によって行うことができる。
本発明のクロマトグラフを用いて試料を移動相を用いて展開させると、試料中の目的物質の分離が行われると同時に、分離剤層上の被浸透層に目的物質が浸透する。
なお、本発明における目的物質は、被浸透層とは異なる光学応答性を有し、分離剤層と同じ光学応答性を有する。
本発明のクロマトグラフ媒体では、試料中の目的物質のエクストラクト成分とラフィネート成分の分離と光学的な検出を、単一のクロマトグラフィー上で行うことができる。従来の2つの分離剤層を有するTLCプレートと比較すると、従来のプレートでは、各分離剤層における試料中の目的物質の各成分の移動速度の相違によって目的物質がブロードになる問題があったが、本発明では、そのような問題が生じず、ラフィネート成分及びエクストラクト成分の両成分を、確実に検出することができる。また本発明では、クロマトグラフ媒体がプレート状のものであれば、複数の試料を並べて点着し、同時に展開させたときの各試料における分離状態をそれぞれ確実に検出することができる。また被浸透層に浸透した特定のスポットを含む部分(分離剤層も含む)を採取し、抽出操作を行うことによって、目的物質の各成分の分取に用いることもできる。
<実施例1>
まず、株式会社ダイセル製CHIRALPAK IA(同社の登録商標)の充填剤(「IA充填剤」とも言う)4.00gと、石膏0.60gと、2%CMC(カルボキシメチルセルロース)1110(株式会社ダイセル製)水溶液4.00gと、20%スノーテックスC(日産化学工業株式会社製)水溶液0.60gとを、水0.40g、エタノール1.60gの混合溶液に添加し、超音波を照射しながら十分に攪拌して第一のスラリーを調製した。
また、シリカゲル2.00g(ダイソー株式会社製液体クロマトグラフィー用、IR−60−5/20−U)、3%CMC(カルボキシメチルセルロース)1110(株式会社ダイセル製)水溶液2.00g、マンガン含有ケイ酸亜鉛0.08gとを、水1.42g、エタノール1.20gの混合溶液に添加し、超音波を照射しながら十分に攪拌して第二のスラリーを調製した。
これらのスラリーのうち、第一のスラリーを、TLCプレート作製用スプレッダを用いて6枚直列に並べたガラス板の表面に均一に塗布し、第一のスラリー層を風乾し、真空ポンプで引きながら60℃で3時間真空乾燥することによって、第一のスラリーによる分離剤層を積層した。 次に分離剤層の上に第二のスラリーをメタルマスク(東京プロセスサービス)により塗布した。スクリーン版として、ピッチが0.6mmで、孔径0.4mmの円形状の開口部を規則的に有するもの(図5参照)を使用した。なお、第二のスラリーは、TLCプレートの下側縁から、該TLCプレートの展開方向の長さの1.5cmまでの間を除く領域に均一に塗布し、第二のスラリー層を風乾し、真空ポンプで引きながら60℃で3時間真空乾燥することによって、分離剤層の上に第二のスラリーの層である被浸透層がドット状に積層されたTLCプレート1を作製した。
TLCプレート1の幅は5cm、長さは10cmとした。これにより、TLCプレートの下側縁から、該TLCプレートの展開方向の長さの1/6.6までの領域(下側縁から1.5cmまでの間)に、被浸透層が存在せず、分離剤層が露出していた。TLCプレート1における分離剤層の厚さは150μm、被浸透層の厚さは20μmであった。
第一のスラリーによる分離剤層がIA充填剤による層であり、第二のスラリーによる被浸透層が前記シリカゲルの層である。また、IA充填剤の平均粒径は20μmであり、シリカゲルの平均粒径は14.4μmである。
トランス−スチルベンオキサイド(t−SO)のラセミ体が1%、トレガー塩基(TB)のラセミ体が1%、フラバノン(FLV)のラセミ体が1%の酢酸エチル溶液の約3μLを、TLCプレート1の展開方向を縦とした時の下から約3.0cmの位置(被浸透層が存在しない領域)に点着した。n−ヘキサンとエタノールを体積比で9:1で含有する混合溶剤を展開液として収容した展開槽内に、試料のスポットを下にしてTLCプレート1を収容し、TLCプレート1の展開方向に試料中のトランス−スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。
この展開の後、TLCプレート1を冷風で乾燥し、TLCプレート1に紫外線を照射したところ、トランス−スチルベンオキサイドのラフィネート成分Rt−SO及びエクストラクト成分Et−SOのスポットと、トレガー塩基のラフィネート成分RTB及びエクストラクト成分ETBのスポットと、フラバノンのラフィネート成分RFLV及びエクストラクト成分EFLVが、被浸透層上にそれぞれ濃緑色〜黒色のスポットとして確認された(図1)。
被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1−Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表1に示す。
<比較例1>
実施例1のTLCプレートにおいて、被浸透層が存在しない領域を設けず、分離剤層上の全面に被浸透層を設けたこと以外は実施例1と同様の原料、手順によりTLCプレート3を作製した。そして、目的物質のスポッティングを被浸透層上に行ったこと以外は実施例1と同様の操作、展開液を用いて、トランス−スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1−Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表1に示す。
<実施例2>
実施例1で作製したTLCプレート1と同様の原料、手順を用いて作製したTLCプレート2を用い、展開液としてメタノールを用いた以外は実施例1と同様の手順により、TLCプレート1の展開方向に試料中のトランス−スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値、k’値、α値を求めた。それぞれの光学異性体についての結果を表2に示す。
<比較例2>
実施例1のTLCプレートにおいて、被浸透層が存在しない領域を設けず、分離剤層上の全面に被浸透層を設けたこと以外は実施例1と同様の原料、手順によりTLCプレート4を作製した。そして、目的物質のスポッティングを被浸透層上に行い、展開液としてメタノールを用いた以外は実施例1と同様の手順により、トランス−スチルベンオキサイド、トレガー塩基及びフラバノンの光学異性体を展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1−Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表2に示す。
実施例1、2及び比較例1、2の結果から、TLCプレートの下側縁から展開方向の長さの特定範囲に被浸透層を設けず、分離剤層を露出させ、その露出した分離剤層に目的物質を点着して展開させた場合には、目的物質の良好な分離特性が得られる。
<実施例3(a)>
実施例1で作製したTLCプレート1と同様の原料、手順を用いて作製したTLCプレート5を用い、実施例1と同様の操作、展開液(n−ヘキサンとエタノールを体積比で9:1で含有する混合溶剤)により、ベンゾインエチルエーテル、トランス−スチルベンオキサイド、トレガー塩基及びフラバノンを展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値を求めた。さらにk’=(1−Rf)/Rfの関係からk’値を求めた。さらにk’値を用いてα値を求めた。それぞれの光学異性体についての結果を表3に示す。
<実施例3(b)>
実施例1で作製したTLCプレート1の作製に用いた原料のうち、第二のスラリーに含有させたシリカゲルをアミノプロピルシリル化シリカゲル(製品名:IR−60−5/20−APS、会社名:ダイソー株式会社)を用いた以外は同様の原料、手順を用いて作製したTLCプレート6を用い、実施例1と同様の操作、展開液(n−ヘキサンとエタノールを体積比で9:1で含有する混合溶剤)により、ベンゾインエチルエーテル、トランス−スチルベンオキサイド、トレガー塩基及びフラバノンを展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値、k’値、α値を求めた。それぞれの光学異性体についての結果を表3に示す。
<実施例4(a)>
実施例1で作製したTLCプレート1と同様の原料、手順を用いて作製したTLCプレート7を用い、展開液をn−ヘキサンとイソプロピルアルコール(2−プロパノール)を体積比で9:1で含有する混合溶剤に変更した以外は実施例1と同様の操作により、ベンゾインエチルエーテル、トランス−スチルベンオキサイド、トレガー塩基及びフラバノンを展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値、k’値、α値を求めた。それぞれの光学異性体についての結果を表4に示す。
<実施例4(b)>
実施例1で作製したTLCプレート1の作製に用いた原料のうち、第一のスラリーに含有させたシリカゲルをアミノプロピルシリル化シリカゲル(製品名:IR−60−5/20−APS、会社名:ダイソー株式会社)を用いた以外は同様の原料、手順を用いて作製したTLCプレート8を用い、展開液をn−ヘキサンとイソプロピルアルコール(2−プロパノール)を体積比で9:1で含有する混合溶剤に変更した以外は実施例1と同様の操作により、ベンゾインエチルエーテル、トランス−スチルベンオキサイド、トレガー塩基及びフラバノンを展開させた。その後、実施例1と同様に、被浸透層における試料の点着位置、展開液の到達位置、及びスポットの中心位置とから、各スポットのRf値、k’値、α値を求めた。それぞれの光学異性体についての結果を表4に示す。
実施例3及び4の結果から、被浸透層を構成する材料として、シリカゲルに替えて表面処理されたシリカゲルを用いた場合には、目的物質の分離特性についてシリカゲルを用いた場合と同等乃至優れていることがわかった。
TLCは、カラムクロマトグラフィーによる分離条件の主な検討手段として従来より用いられており、また目的物質の分取にも用いられている。本発明は、光学的な応答によって分離状態の検出が困難であった分離剤による目的物質の分離状態を従来に比べて確実かつ簡便に検出できることから、このような分離剤の用途のさらなる拡大やこのような分離剤を用いる分離精製技術のさらなる発展に貢献することが期待される。
t−SO:トランス−スチルベンオキサイド
TB:トレガー塩基
FLV:フラバノン
BEE:ベンゾインエチルエーテル
1:被浸透層
2:分離剤層
3:基材
4:紫外線照射方向
5、5’:スポッティング方向

Claims (19)

  1. 目的物質を分離するための分離剤層と、該分離剤層に面して積層され、該分離剤層で分離された目的物質が浸透するための被浸透層とを有するクロマトグラフ媒体であって、
    前記分離剤層の一部に前記被浸透層が積層されていない領域があり、
    前記分離剤層は、前記目的物質に対する分離性と紫外線に対する光学応答性とを有し、
    前記被浸透層は、前記目的物質と前記分離剤層とは異なる光学応答性を有する、クロマトグラフ媒体。
  2. 前記分離剤層の一部に前記被浸透層が積層されていない領域が、前記クロマトグラフ媒体における前記目的物質を展開させるための展開液が浸漬する浸漬端部から、該クロマトグラフ媒体の展開方向の長さの1/2までの間の領域に存在する、請求項1に記載のクロマトグラフ媒体。
  3. 前記被浸透層は、クロマトグラフ媒体の展開方向に不連続に積層されている、請求項1または2に記載のクロマトグラフ媒体。
  4. 前記被浸透層は、前記分離剤層の上にドット状に積層されている、請求項1〜3のいずれか一項に記載のクロマトグラフ媒体。
  5. 前記ドット状に積層されている被浸透層は、該ドットの平均径が0.01〜5mmであり、ドット間のピッチが0.015〜5mmである、請求項4に記載のクロマトグラフ媒体。
  6. 前記被浸透層は、前記分離剤層の上に、クロマトグラフ媒体の展開方向と交差する帯状の列として積層されている、請求項1〜3のいずれか一項に記載のクロマトグラフ媒体。
  7. 前記帯状の列を形成する帯は、直線、波線及びそれらの破線から選ばれる請求項6に記載のクロマトグラフ媒体。
  8. 前記被浸透層の厚みが、前記分離剤層よりも薄い、請求項1〜7のいずれか一項に記載のクロマトグラフ媒体。
  9. 前記分離剤層を構成する分離剤が、光学異性体用分離剤である、請求項1〜8のいずれか一項に記載のクロマトグラフ媒体。
  10. 前記光学異性体用分離剤が、多糖と多糖の水酸基或いはアミノ基の一部又は全部と置き換わった芳香族エステル基、芳香族カルバモイル基、芳香族エーテル基、及びカルボニル基のいずれかとからなる多糖誘導体を含むことを特徴とする請求項9に記載のクロマトグラフ媒体。
  11. 前記被浸透層は、多孔質体及び蛍光指示薬もしくは発色試薬を構成材料として含む、請求項1〜10のいずれか一項に記載のクロマトグラフ媒体。
  12. 前記多孔質体が、シリカゲルまたは表面処理されたシリカゲルである、請求項11に記載のクロマトグラフ媒体。
  13. 前記被浸透層がさらにバインダを構成材料として含む、請求項11または12に記載のクロマトグラフ媒体。
  14. 前記被浸透層上に目盛及び/または文字が存在する、請求項1〜13のいずれか一項に記載のクロマトグラフ媒体。
  15. 前記目盛及び/または文字が、前記被浸透層とは異なる光学応答性を有する、請求項14に記載のクロマトグラフ媒体。
  16. 前記分離剤層に面して、または、前記被浸透層に面して、前記クロマトグラフ媒体を支持するための基材を有する、請求項1〜15のいずれか一項に記載のクロマトグラフ媒体。
  17. 前記クロマトグラフ媒体がプレート状、筒状または柱状である、請求項1〜16のいずれか一項に記載のクロマトグラフ媒体。
  18. 請求項1〜15のいずれか一項に記載のクロマトグラフ媒体と、該クロマトグラフ媒体を支持するための基材とを有し、前記基材上の複数領域に前記クロマトグラフ媒体が積層されてなる、TLCプレート。
  19. 請求項1〜15のいずれか一項に記載のクロマトグラフ媒体と該クロマトグラフ媒体を支持するための基材とからなる、TLC材料。
JP2013553296A 2012-01-11 2013-01-09 クロマトグラフ媒体 Active JP6118269B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012003378 2012-01-11
JP2012003378 2012-01-11
PCT/JP2013/050176 WO2013105572A1 (ja) 2012-01-11 2013-01-09 クロマトグラフ媒体

Publications (2)

Publication Number Publication Date
JPWO2013105572A1 JPWO2013105572A1 (ja) 2015-05-11
JP6118269B2 true JP6118269B2 (ja) 2017-04-19

Family

ID=48781519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013553296A Active JP6118269B2 (ja) 2012-01-11 2013-01-09 クロマトグラフ媒体

Country Status (5)

Country Link
US (1) US9726649B2 (ja)
EP (1) EP2803995B1 (ja)
JP (1) JP6118269B2 (ja)
CN (1) CN104040333B (ja)
WO (1) WO2013105572A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019095425A (ja) * 2017-11-24 2019-06-20 キヤノン株式会社 クロマトグラフィー用のキット

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591805A (en) * 1969-02-20 1971-07-06 Schoeffel Instrument Corp Thin layer chromatographic plate having preadjusted spectral transmissivity and emissivity and preadjusted opaque and nonopaque intervals
CH574603A5 (ja) 1972-05-08 1976-04-15 Ciba Geigy Ag
US4313906A (en) * 1979-08-17 1982-02-02 Whatman, Inc. Two dimensional two phase thin layer chromatography plate and method
US4348286A (en) * 1981-07-17 1982-09-07 Analtech, Incorporated Large sample thin layer chromatography
JPS60226832A (ja) * 1984-04-02 1985-11-12 Daicel Chem Ind Ltd 多糖の脂肪族エステルを含む分離剤
JPS6293660A (ja) * 1985-10-19 1987-04-30 Mito Kagaku Gijutsu Kenkyusho:Kk 液体クロマトグラフイ−カラムおよび液体クロマトグラフイ−装置
JPH0743363B2 (ja) * 1989-07-31 1995-05-15 株式会社島津製作所 クロマトグラフの転写方法
JP2833096B2 (ja) * 1990-01-31 1998-12-09 株式会社島津製作所 Lc/ir測定方法
JPH0493336A (ja) 1990-08-09 1992-03-26 Hitachi Chem Co Ltd 多孔質体の製造方法
JP3140138B2 (ja) 1992-02-25 2001-03-05 ダイセル化学工業株式会社 薄層クロマトグラム
JP3317749B2 (ja) 1993-01-18 2002-08-26 直弘 曽我 無機系多孔質カラム
JP3397255B2 (ja) 1993-07-30 2003-04-14 直弘 曽我 無機系多孔質体の製造方法
DE4330564B4 (de) * 1993-09-09 2005-03-17 Merck Patent Gmbh Codierter Träger für die Dünnschichtchromatographie
US6319676B1 (en) * 1995-05-02 2001-11-20 Carter Wallace, Inc. Diagnostic detection device and method
US6194221B1 (en) * 1996-11-19 2001-02-27 Wyntek Diagnostics, Inc. Hybrid one-step immunochromatographic device and method of use
US6787366B1 (en) * 1996-12-11 2004-09-07 The United States Of America As Represented By The Secretary Of The Army Microspot test kit and method for chemical testing
CN101014852B (zh) * 2004-05-21 2012-10-24 恰根科学股份有限公司 样品递呈装置
US20090061507A1 (en) * 2006-10-23 2009-03-05 Ho Winston Z Fluorescence-based lateral flow device with improved sensitivity
US7935538B2 (en) * 2006-12-15 2011-05-03 Kimberly-Clark Worldwide, Inc. Indicator immobilization on assay devices
KR20090118983A (ko) * 2007-02-23 2009-11-18 다이셀 가가꾸 고교 가부시끼가이샤 광학 이성체 분리용 충전제
JP2010190573A (ja) * 2007-06-18 2010-09-02 Tsurui Chemical Co Ltd 質量分析用プレートとそれを用いた薄層クロマトグラフィ−質量分析方法及び装置
US20110244597A1 (en) * 2008-11-28 2011-10-06 Konica Minolta Medical & Graphic, Inc. Immunochromatographic medium and immunochromatographic method
DE202010018503U1 (de) * 2009-08-03 2017-03-14 Boards & More Gmbh System zum Trimmen eines Kites
CN102812355A (zh) * 2010-02-26 2012-12-05 杨百翰大学 制备薄层色谱板的方法
EP2579034B1 (en) * 2010-05-27 2016-11-02 Daicel Corporation Sample detection method by thin-layer chromatography, thin-layer chromatography plate, and method for producing same
US9671377B2 (en) 2011-10-05 2017-06-06 Daicel Corporation Thin-layer chromatography plate

Also Published As

Publication number Publication date
US20140360927A1 (en) 2014-12-11
EP2803995A4 (en) 2015-10-14
US9726649B2 (en) 2017-08-08
CN104040333B (zh) 2016-06-08
WO2013105572A1 (ja) 2013-07-18
JPWO2013105572A1 (ja) 2015-05-11
CN104040333A (zh) 2014-09-10
EP2803995B1 (en) 2022-09-07
EP2803995A1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5941405B2 (ja) 薄層クロマトグラフィーによる試料の検出方法、薄層クロマトグラフィープレート、及びその製造方法
Namera et al. Monolith as a new sample preparation material: recent devices and applications
JP6118271B2 (ja) クロマトグラフ媒体
JP6118269B2 (ja) クロマトグラフ媒体
EP2592414B1 (en) Separation/detection column and kit thereof
JP6025734B2 (ja) 薄層クロマトグラフィープレート
JP6043718B2 (ja) スポット検出用セット、スポット検出方法、及び被転写シート
Kaykhaii et al. Miniaturized solid phase extraction
Aratani et al. Application of direct spectrophotometry to the analysis of chromatograms: III. A new micro thin-layer chromatoplate and its application to the analysis of tocopherols
CN104422656A (zh) 测量组件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170324

R150 Certificate of patent or registration of utility model

Ref document number: 6118269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150