JP6081301B2 - 超音波診断装置及び画像データの補正方法 - Google Patents

超音波診断装置及び画像データの補正方法 Download PDF

Info

Publication number
JP6081301B2
JP6081301B2 JP2013134193A JP2013134193A JP6081301B2 JP 6081301 B2 JP6081301 B2 JP 6081301B2 JP 2013134193 A JP2013134193 A JP 2013134193A JP 2013134193 A JP2013134193 A JP 2013134193A JP 6081301 B2 JP6081301 B2 JP 6081301B2
Authority
JP
Japan
Prior art keywords
transmitter
position sensor
change
probe
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013134193A
Other languages
English (en)
Other versions
JP2014028132A (ja
Inventor
田中 豪
豪 田中
和哉 赤木
和哉 赤木
修 中嶋
修 中嶋
小笠原 勝
勝 小笠原
省吾 福田
省吾 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Medical Systems Corp filed Critical Toshiba Medical Systems Corp
Priority to JP2013134193A priority Critical patent/JP6081301B2/ja
Priority to CN201380032661.6A priority patent/CN104379064B/zh
Priority to PCT/JP2013/067563 priority patent/WO2014003071A1/ja
Publication of JP2014028132A publication Critical patent/JP2014028132A/ja
Priority to US14/582,253 priority patent/US10932753B2/en
Application granted granted Critical
Publication of JP6081301B2 publication Critical patent/JP6081301B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明の実施の形態は、超音波診断装置及び画像データの補正方法に関する。
従来、超音波診断装置においては、無侵襲な診断装置として、癌へのリスクの高い疾患を有する患者に対しての定期的な観察などに利用されている。例えば、超音波画像診断装置は、肝炎や肝硬変など、肝癌へのリスクが高い疾患を有する患者に対しての定期的な観察などに利用されている。
近年、上述した超音波診断装置による観察と並行して、X線CT(Computed Tomography)装置や、MRI(Magnetic Resonance Imaging)装置による検査が実施されている。X線CT装置や、MRI装置による検査では、例えば、造影剤を用いて実施された検査において、癌の疑いを呈する病巣が検出されることがある。かかる場合、この病巣を超音波画像下での穿刺による細胞診によって確定診断に至るケースが多くなってきている。
そこで、例えば、超音波プローブによってスキャンされる断面と病巣が検出されたCT画像又はMRI画像とを磁気式の位置センサーを用いて位置合わせし、CT画像又はMRI画像を参照画像として、病巣の位置に超音波プローブをナビゲーションする技術を備えた超音波診断装置が知られている。しかしながら、従来技術においては、トランスミッタが動くたびに位置合わせを実行しなければならず、診断効率が低下する場合があった。
特開平10−151131号公報
本発明が解決しようとする課題は、トランスミッタが動いた場合であっても位置合わせを不要とすることができ、診断効率を向上させることができる超音波診断装置及び画像データの補正方法を提供することである。
実施の形態の超音波診断装置は、トランスミッタと、位置センサーと、関連付け手段と、検出手段と、補正手段とを備える。トランスミッタは、基準信号を送信する。位置センサーは、前記基準信号を受信することにより、3次元空間上の位置情報を取得する。関連付け手段は、医用画像診断装置によって生成された3次元画像データのうち任意の断面と、超音波プローブによってスキャンされる断面との位置合わせに基づいて前記3次元画像データと前記3次元空間とを関連付ける。検出手段は、前記位置センサーが取得した位置情報に基づいて、前記関連付けられた3次元空間上で前記トランスミッタの位置が変化したことを検出する。補正手段は、前記トランスミッタの位置の変化が検出された場合に、当該トランスミッタの位置の変化量に基づいて、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正する。
図1は、第1の実施形態に係る超音波診断装置の全体構成を説明するための図である。 図2Aは、第1の実施形態に係る画像の位置合わせの一例を説明するための図である。 図2Bは、第1の実施形態に係る位置合わせされた画像の並列表示の一例を示す図である。 図3は、従来技術に係る課題を説明するための図である。 図4は、第1の実施形態に係る位置情報取得装置及び制御部の構成の一例を説明するための図である。 図5は、第1の実施形態に係る第1の補正処理の一例を説明するための図である。 図6は、第1の実施形態に係る第2の補正処理の一例を説明するための図である。 図7は、第1の実施形態に係る超音波診断装置による処理の手順を示すフローチャートである。 図8は、第2の実施形態に係る位置情報取得装置及び制御部の構成の一例を説明するための図である。 図9は、第2の実施形態に係る超音波診断装置による処理の手順を示すフローチャートである。 図10は、第3の実施形態に係る補正処理の一例を説明するための図である。 図11は、第3の実施形態に係る超音波診断装置による処理の手順を示すフローチャートである。
(第1の実施形態)
まず、第1の実施形態に係る超音波診断装置の全体構成について、図1を用いて説明する。図1は、第1の実施形態に係る超音波診断装置1の全体構成を説明するための図である。図1に示すように、第1の実施形態に係る超音波診断装置1は、超音波プローブ11と、入力装置12と、モニタ13と、位置情報取得装置14と、装置本体100とを有し、ネットワークに接続されている。
超音波プローブ11は、複数の圧電振動子を有し、これら複数の圧電振動子は、後述する装置本体100が有する送受信部110から供給される駆動信号に基づき超音波を発生し、さらに、被検体Pからの反射波を受信して電気信号に変換する。また、超音波プローブ11は、圧電振動子に設けられる整合層と、圧電振動子から後方への超音波の伝播を防止するバッキング材などを有する。例えば、超音波プローブ11は、セクタ型、リニア型又はコンベックス型などの超音波プローブである。
超音波プローブ11から被検体Pに超音波が送信されると、送信された超音波は、被検体Pの体内組織における音響インピーダンスの不連続面で次々と反射され、反射波信号として超音波プローブ11が有する複数の圧電振動子にて受信される。受信される反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの差に依存する。なお、送信された超音波パルスが移動している血流や心臓壁などの表面で反射された場合の反射波信号は、ドプラ効果により、移動体の超音波送信方向に対する速度成分に依存して、周波数偏移を受ける。
なお、本実施形態は、複数の圧電振動子が一列で配置された1次元超音波プローブである超音波プローブ11により、被検体Pを2次元でスキャンする場合であっても、1次元超音波プローブの複数の圧電振動子を機械的に揺動する超音波プローブ11や複数の圧電振動子が格子状に2次元で配置された2次元超音波プローブである超音波プローブ11により、被検体Pを3次元でスキャンする場合であっても、適用可能である。
入力装置12は、トラックボール、スイッチ、ボタン、タッチコマンドスクリーンなどを有し、超音波診断装置1の操作者からの各種設定要求を受け付け、装置本体100に対して受け付けた各種設定要求を転送する。例えば、入力装置12は、超音波画像と、X線CT画像などとの位置合わせに係る各種操作を受付ける。
モニタ13は、超音波診断装置1の操作者が入力装置12を用いて各種設定要求を入力するためのGUI(Graphical User Interface)を表示したり、装置本体100において生成された超音波画像とX線CT画像などとを並列表示したりする。
位置情報取得装置14は、超音波プローブ11の位置情報を取得する。具体的には、位置情報取得装置14は、超音波プローブ11がどこに位置するかを示す位置情報を取得する。位置情報取得装置14としては、例えば、磁気センサーや、赤外線センサー、光学センサー、カメラなどである。
装置本体100は、超音波プローブ11が受信した反射波に基づいて超音波画像を生成する装置であり、図1に示すように、送受信部110と、Bモード処理部120と、ドプラ処理部130と、画像生成部140と、画像メモリ150と、制御部160と、内部記憶部170と、インターフェース部180とを有する。
送受信部110は、トリガ発生回路、遅延回路およびパルサ回路などを有し、超音波プローブ11に駆動信号を供給する。パルサ回路は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。また、遅延回路は、超音波プローブ11から発生される超音波をビーム状に集束して送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルサ回路が発生する各レートパルスに対し与える。また、トリガ発生回路は、レートパルスに基づくタイミングで、超音波プローブ11に駆動信号(駆動パルス)を印加する。すなわち、遅延回路は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面からの送信方向を任意に調整する。
また、送受信部110は、アンプ回路、A/D変換器、加算器などを有し、超音波プローブ11が受信した反射波信号に対して各種処理を行なって反射波データを生成する。アンプ回路は、反射波信号をチャンネルごとに増幅してゲイン補正処理を行ない、A/D変換器は、ゲイン補正された反射波信号をA/D変換して受信指向性を決定するのに必要な遅延時間を与え、加算器は、A/D変換器によって処理された反射波信号の加算処理を行なって反射波データを生成する。加算器の加算処理により、反射波信号の受信指向性に応じた方向からの反射成分が強調される。
このように、送受信部110は、超音波の送受信における送信指向性と受信指向性とを制御する。なお、送受信部110は、後述する制御部160の制御により、遅延情報、送信周波数、送信駆動電圧、開口素子数などを瞬時に変更可能な機能を有している。特に、送信駆動電圧の変更においては、瞬時に値を切り替えることが可能であるリニアアンプ型の発振回路、又は、複数の電源ユニットを電気的に切り替える機構によって実現される。また、送受信部110は、1フレームもしくはレートごとに、異なる波形を送信して受信することも可能である。
Bモード処理部120は、送受信部110からゲイン補正処理、A/D変換処理および加算処理が行なわれた処理済み反射波信号である反射波データを受信し、対数増幅、包絡線検波処理などを行なって、信号強度が輝度の明るさで表現されるデータ(Bモードデータ)を生成する。
ドプラ処理部130は、送受信部110から受信した反射波データから速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワーなどの移動体情報を多点について抽出したデータ(ドプラデータ)を生成する。
画像生成部140は、Bモード処理部120が生成したBモードデータや、ドプラ処理部130が生成したドプラデータから、超音波画像を生成する。具体的には、画像生成部140は、超音波スキャンの走査線信号列を、テレビなどに代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)することで、Bモードデータやドプラデータから表示用の超音波画像(Bモード画像やドプラ画像)を生成する。また、画像生成部140は、後述する制御部160の制御のもと、内部記憶部170に記憶された他のモダリティのボリュームデータから2次元画像(例えば、MPR画像など)を生成する。
画像メモリ150は、画像生成部140によって生成された造影像や組織像などの画像データを記憶する。また、画像メモリ150は、画像生成部140によって生成された他のモダリティの2次元画像(例えば、MPR画像など)データを記憶する。また、画像メモリ150は、後述する画像生成部140による処理結果を記憶する。さらに、画像メモリ150は、送受信部110を経た直後の出力信号(RF:Radio Frequency)や画像の輝度信号、種々の生データ、ネットワークを介して取得した画像データなどを必要に応じて記憶する。画像メモリ150が記憶する画像データのデータ形式は、後述する制御部160によりモニタ13に表示されるビデオフォーマット変換後のデータ形式であっても、Bモード処理部120及びドプラ処理部130によって生成されたRawデータである座標変換前のデータ形式でもよい。
制御部160は、超音波診断装置1における処理全体を制御する。具体的には、制御部160は、入力装置12を介して操作者から入力された各種設定要求や、内部記憶部170から読込んだ各種制御プログラムおよび各種設定情報に基づき、送受信部110、Bモード処理部120、ドプラ処理部130および画像生成部140の処理を制御したり、画像メモリ150が記憶する超音波画像などをモニタ13にて表示するように制御したりする。また、制御部160は、例えば、DICOM(Digital Imaging and Communications in Medicine)規格に則って、他のモダリティ(例えば、X線CT装置、MRI装置など)の3次元画像データ(ボリュームデータ)を、ネットワークを介して送受信する。さらに、制御部160は、医用画像診断装置によって生成された3次元画像データのうち任意の断面と、超音波プローブによってスキャンされる断面との位置合わせに基づいて3次元画像データと3次元空間とを関連付ける。なお、3次元画像データと3次元空間との関連付けの詳細については後述する。
内部記憶部170は、超音波送受信、画像処理および表示処理を行なうための制御プログラムや、診断情報(例えば、患者ID、医師の所見など)や、診断プロトコルなどの各種データを記憶する。さらに、内部記憶部170は、必要に応じて、画像メモリ150が記憶する画像の保管などにも使用される。また、内部記憶部170は、制御部160の制御によって取得された他のモダリティのボリュームデータを記憶する。また、内部記憶部170は、制御部160による処理に用いられる各種情報を記憶する。なお、各種情報については、後述する。
インターフェース部180は、入力装置12、位置情報取得装置14、ネットワークと装置本体100との間での各種情報のやり取りを制御するインターフェースである。例えは、インターフェース部180は、制御部160に対する位置情報取得装置14が取得した位置情報の転送を制御する。
以上、第1の実施形態に係る超音波診断装置の全体構成について説明した。かかる構成のもと、第1の実施形態に係る超音波診断装置1は、以下、詳細に説明する位置情報取得装置14及び制御部160の処理により、トランスミッタが動いた場合であっても位置合わせを不要とすることができ、診断効率を向上させることが可能となるように構成されている。
ここで、まず、CT画像又はMRI画像を参照画像として診断を行う場合の画像の位置合わせについて、図2A及び図2Bを用いて説明する。図2Aは、第1の実施形態に係る画像の位置合わせの一例を説明するための図である。図2Bは、第1の実施形態に係る位置合わせされた画像の並列表示の一例を示す図である。ここで、図2A及び図2Bにおいては、他のモダリティの画像としてX線CT装置によって収集されたボリュームデータから生成されたMPR画像(以下、CT画像と記す)を用いる場合について示す。例えば、CT画像を参照画像として診断や治療が行われる場合には、図2Aに示すように、超音波プローブに取り付けたセンサーを用いて、X線CT装置によって収集されたボリュームデータと超音波画像とが関連付けられる。
例えば、磁気センサーが用いられる場合、まず、トランスミッタによって形成された3次元の磁場における磁気センサーが取り付けられた超音波プローブ11の3軸(X、Y、Z)と、ボリュームデータの3軸との軸合わせが行われる。一例を挙げると、磁気センサーが取り付けられた超音波プローブを被検体に対して垂直にあて、その状態でセットボタンを押下することで、その時の磁気センサーの向きを垂直としてセットする。
次に、CT画像に描出された特徴部分と同一の特徴部分が超音波画像上で描出されるように超音波プローブ11を移動させて、再度セットボタンを押下することで、その時の磁気センサーの位置(座標)と、ボリュームデータにおける位置(座標)とを関連付ける。特徴部分としては、例えば、血管や、剣状突起などが用いられる。
上述したように磁気センサーの向き及び座標を他のモダリティにおけるボリュームデータの座標と関連付けることで、超音波プローブ11が現時点の走査面と略同一位置の2次元画像を他のモダリティのボリュームデータから生成することが可能となる。例えば、図2Bに示すように、超音波プローブの移動に伴って変化する超音波画像(右側の画像)と同じ断面のMPR画像(左側の画像)を表示させることが可能になる。そして、例えば、他のモダリティの画像において検出された癌の疑いを呈する病巣を腫瘍範囲(ROI)としてMPR画像上に描画し登録することで、略同一位置の超音波画像上にマークを付与させることができる。或いは、超音波画像上でROIを描画することで、MPR画像の略同一位置にマークを付与することができる。医師は、画像上異なる特性を有する超音波画像とMPR画像とを見比べながら、両画像に付与されたマークをもとに穿刺を実施することが可能となる。
しかしながら、上述した技術は、位置センサーの位置を定義するための3次元空間を形成するトランスミッタを移動させないことが前提となっている。すなわち、磁気センサーの位置(座標)と、ボリュームデータにおける位置(座標)とを関連付ける位置合わせが実行された後にトランスミッタが移動した場合には、両者の間に位置ずれが発生することとなる。図3は、従来技術に係る課題を説明するための図である。なお、図3においては、X−Y平面上でトランスミッタが移動した場合について示す。
例えば、図3の(A)に示すように、トランスミッタによって形成された空間における位置センサーの座標(X1,Y1)と、X線CT装置によって収集されたボリュームデータ内の座標(X´1,Y´1)とが位置合わせされたとする。これにより、図3の(A)に示すように、超音波プローブによる走査面と略同一位置のMPR画像がボリュームデータから生成される。
ここで、例えば、図3の(B)に示すように、トランスミッタがX−Y平面上で移動した場合、トランスミッタによって形成される3次元空間がずれてしまい、実空間上の位置が図3の(A)の位置と同一位置にある(動いていない)超音波プローブ(位置センサー)の3次元空間上での座標が、(X2,Y2)となる。このような位置ずれの結果、ボリュームデータから生成されるMPR画像が(X2,Y2)に対応する座標(X´2,Y´2)を含む画像となってしまい、実際に超音波プローブによって走査されている面とは異なる位置のMPR画像が表示されることとなる。
従って、従来技術においては、トランスミッタが移動するごとに、上述した位置合わせを実施することとなり、診断効率が低下する。例えば、上述した技術を用いて検査や治療が行われる場合、検査・治療開始後に、より精度を高めるためにトランスミッタの位置を変える場合がある。具体的には、トランスミッタが送信する磁場の強度はトランスミッタから遠ざかるほど弱まるため、超音波プローブ11の位置検出精度は、超音波プローブ11に取り付けられた磁気センサーがトランスミッタから遠いほど低くなってしまう。
そこで、診断部位とトランスミッタの距離が遠い場合には、事前にトランスミッタを診断部位に近づけておき、超音波プローブ11(診断部位)とトランスミッタが近い状態で撮像を行うことが好適である。またあるいは、被検体が寝かされるベッドのポールが金属で構成されている場合は、ポールが磁場を乱す原因となってしまうため、トランスミッタをポールから離れた位置に設置して撮像を行うことが好適である。これらの場合に、従来技術では、トランスミッタを移動させるごとに、位置合わせを実行することとなる。そこで、第1の実施形態に係る超音波診断装置1は、トランスミッタの移動に伴う位置合わせを無くすことで、参照画像を参照しながら実施される診断における診断効率を向上させることが可能となるように構成されている。
以下、第1の実施形態に係る位置情報取得装置14及び制御部160の処理について、図4などを用いて説明する。図4は、第1の実施形態に係る位置情報取得装置14及び制御部160の構成の一例を説明するための図である。第1の実施形態に係る位置情報取得装置14は、図4に示すように、トランスミッタ14aと、位置センサー14bと、固定位置センサー14cと、制御装置14dとを有し、図示しないインターフェース部180を介して制御部160に接続される。
トランスミッタ14aは、基準信号を送信する。具体的には、トランスミッタ14aは、任意の位置に配置され、自装置を中心として外側に向かって磁場を形成する。位置センサー14bは、基準信号を受信することにより、3次元空間上の位置情報を取得する。具体的には、位置センサー14bは、超音波プローブ11の表面に装着され、トランスミッタ14aによって形成された3次元の磁場を検出して、検出した磁場の情報を信号に変換して、制御装置14dに出力する。
固定位置センサー14cは、基準信号を受信することにより、3次元空間上の位置情報を取得する。具体的には、固定位置センサー14cは、トランスミッタ14aによって形成された3次元の磁場を検出して、検出した磁場の情報を信号に変換して、制御装置14dに出力する。ここで、固定位置センサー14cは、3次元の磁場内の任意の位置に固定される。例えば、固定位置センサー14cは、被検体Pが横臥するベッドから非金属のアームなどを使って磁場内に配置される。または、固定位置センサー14cは、超音波診断装置1に配置される場合であってもよい。かかる場合には、例えば、固定位置センサー14cは、超音波診断装置1に備えられたトランスミッタ14aを支持するアームの非可動部分に配置される場合であってもよく、又は、超音波診断装置1において、磁場内の非磁性体及び非金属部分に配置される場合であってもよい。また、固定位置センサー14cは、トランスミッタ14aがポールによって支持された場合に、当該ポールの支柱などの非可動部分に配置される場合であってもよい。
また、固定位置センサー14cは、被検体に配置される場合であってもよい。例えば、固定位置センサー14cは、診断中の患者において、動きのない所定の部分に配置される場合でもよい。かかる場合には、被検体に対する固定位置センサー14cの位置が固定であることから、仮に被検体が移動した場合に、固定位置センサー14cの座標の変化量に基づいて患者の移動量を算出し、算出した移動量を用いて、例えば、ボリュームデータと超音波画像との関連付けを補正することも可能である。上述したように、固定位置センサー14cは、種々の位置に配置することができ、種々の状況に臨機応変に対応することができる。
制御装置14dは、位置センサー14b及び固定位置センサー14cから受信した信号に基づいて、トランスミッタ14aを原点とする空間における位置センサー14b及び固定位置センサー14cの座標及び向きを算出し、算出した座標及び向きを制御部160に出力する。なお、被検体Pの診断は、超音波プローブ11に装着された位置センサー14bが、トランスミッタ14aの磁場を正確に検出することが可能な磁場エリア内で行われる。
制御部160は、検出部161と、補正部162と、表示制御部163とを有し、図示しないバス又はインターフェース部180を介して、位置情報取得装置14及び内部記憶部170と接続される。
内部記憶部170は、トランスミッタ14aによって形成される磁場における固定位置センサー14cの座標の情報を記憶する。具体的には、内部記憶部170は、検出部161によって取得され、格納される固定位置センサー14cの座標を記憶する。
検出部161は、固定位置センサー14cが取得した位置情報に基づいて、関連付けられた3次元空間上でトランスミッタの位置が変化したことを検出する。すなわち、検出部161は、医用画像診断装置によって生成された3次元画像データと、トランスミッタ14aによって生成される3次元空間とを関連付けることで、3次元画像データから生成される医用画像の断面と、超音波プローブ11によってスキャンされる断面とが位置合わせされた状態で、トランスミッタ14aの位置が変化したことを検出する。具体的には、検出部161は、トランスミッタ14aによって生成された3次元空間内の任意の位置に固定された固定位置センサー14cの座標の変化を検出することで、当該トランスミッタ14aの位置の変化を検出する。
より具体的には、検出部161は、まず、他のモダリティによって収集されたボリュームデータと、超音波プローブ11の走査面との位置合わせが実行された場合に、トランスミッタ14aによって形成された磁場における固定位置センサー14cの座標(以下、初期座標と記す)を制御装置14dから取得して、内部記憶部170に格納する。そして、検出部161は、所定のタイミングで取得される固定位置センサー14cの座標を取得して、内部記憶部170に記憶された初期座標との変化量を算出する。
ここで、検出部161は、算出した変化量が所定の閾値を超えていた場合に、トランスミッタ14aの位置が変化したと判定する。一方、算出した変化量が所定の閾値を超えていない場合には、検出部161は、トランスミッタ14aの位置が変化していないと判定する。すなわち、第1の実施形態に係る検出部161は、トランスミッタ14aによって形成される磁場内で固定された固定位置センサー14c座標の変化をトランスミッタ14aの位置の変化として検出する。
なお、上述したトランスミッタ14aの位置の変化を判定するための閾値は、操作者又は設計者によって任意に設定される。例えば、閾値は、固定位置センサー14cの座標の収集精度に応じて設定される場合であってもよい。一般に、磁気センサーによって検出される位置情報には揺らぎがあるため、これを考慮して閾値が設定されることが望ましい。
補正部162は、トランスミッタの位置の変化が検出された場合に、当該トランスミッタ14aの位置の変化量に基づいて、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。具体的には、補正部162は、固定位置センサー14cの座標の変化量に基づいて、超音波プローブ11に取り付けられた位置合わせのための位置センサー14bの座標を変換することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。また、補正部162は、固定位置センサー14cの座標の変化量に基づいて、3次元画像データと、3次元空間との関連付けを補正することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。
上述したように、第1の実施形態に係る補正部162は、制御装置14dによって位置センサー14bの座標が取得されるごとに、取得された座標に対して検出部161によって算出された変化量に基づく座標変換を行うことで位置ずれを補正する第1の補正処理と、ボリュームデータの座標に対して検出部161によって算出された変化量に基づく座標変換を行うことで位置ずれを補正する第2の補正処理とを実行する。
以下、第1の実施形態に係る補正部162によって実行される第1の補正処理及び第2の補正処理の一例について図5及び図6を用いて説明する。図5は、第1の実施形態に係る第1の補正処理の一例を説明するための図である。また、図6は、第1の実施形態に係る第2の補正処理の一例を説明するための図である。なお、図5及び図6において、X−Y平面上のトランスミッタ14aの位置が変化した場合の例について示す。
まず、第1の補正処理の場合について説明する。かかる場合、例えば、図5の(A)に示すように、トランスミッタ14aによって形成された空間における位置センサー14bの座標(X1,Y1)と、X線CT装置によって収集されたボリュームデータ内の座標(X´1,Y´1)とが位置合わせされたとする。これにより、超音波プローブ11による走査面と略同一位置のMPR画像がボリュームデータから生成される。
ここで、第1の実施形態に係る超音波診断装置1においては、上述したように、固定位置センサー14cが磁場内に固定されており、図5の(A)に示すように、固定位置センサー14cの座標(X3,Y3)が取得される。検出部161は、位置センサー14bの座標(X1,Y1)と、ボリュームデータ内の座標(X´1,Y´1)とが位置合わせされた際の固定位置センサー14cの座標(X3,Y3)を取得して、内部記憶部170に格納する。
そして、例えば、図5の(B)に示すように、トランスミッタ14aがX−Y平面上で位置が変化した場合、トランスミッタ14aによって形成される3次元空間がずれ、位置センサー14bの座標(X1,Y1)が(X2,Y2)となる。ここで、第1の実施形態においては、図5の(A)に示すように、固定位置センサー14cの座標(X3,Y3)も(X4,Y4)と変化する。検出部162は、固定位置センサー14cの座標(X4,Y4)を取得して、内部記憶部170に記憶された固定位置センサーの初期座標(X3,Y3)からの変化量を算出する。ここで、算出した変化量が所定の閾値を超えていた場合に、検出部161は、トランスミッタ14aの位置が変化したと判定する。
そして、補正部162は、検出部161によってトランスミッタ14aの位置が変化したと判定された場合に、検出部161によって算出された変化量を用いて位置ずれを補正する。すなわち、補正部162は、図5の(B)に示すように、固定位置センサー14cの座標(X4,Y4)を初期座標(X3,Y3)に変換するための変換係数「M1」を位置センサー14bの座標(X2,Y2)にかけることで位置センサー14bの座標を(X1,Y1)に変換する。これにより、トランスミッタ14aの位置が変化した後に取得される位置センサー14bの座標を、トランスミッタ14aの位置が変化する前の座標に戻すことができ、超音波プローブ11による走査面と略同一位置のMPR画像をボリュームデータから生成することができる。
次に、第2の補正処理の場合について説明する。かかる場合、第1の補正処理と同様に、検出部161によってトランスミッタ14aの位置の変化が検出される。そして、補正部162は、検出部161によって算出された変化量を用いて位置ずれを補正する。例えば、図6の(A)に示すように、トランスミッタ14aによって形成された空間における位置センサー14bの座標(X1,Y1)と、X線CT装置によって収集されたボリュームデータ内の座標(X´1,Y´1)とが位置合わせされ、固定位置センサー14cの座標(X3,Y3)が取得されるとする。
そして、図5と同様にトランスミッタ14aの位置が変化した後、補正部162は、図6の(B)に示すように、固定位置センサー14cの初期座標(X3,Y3)を座標(X4,Y4)に変換するための変換係数「M2」を位置センサー14bの座標(X1,Y1)にかけることで座標(X2,Y2)を算出する。そして、補正部162は、算出した座標(X2,Y2)とボリュームデータ内の座標(X´1,Y´1)とを再度位置合わせする。これにより、トランスミッタ14aの位置が変化した後の磁場における座標と、ボリュームデータとを再度関連付けることができる。すなわち、第2の補正処理では、位置センサー14bの座標が取得されるごとに補正処理を行う必要がなく、処理負荷の増大を抑止することができる。
図4に戻って、表示制御部163は、他のモダリティのボリュームデータから生成された2次元画像(例えば、MPR画像など)と、超音波画像とをモニタ13にて並列表示する。例えば、表示制御部163は、超音波プローブ11による走査面と略同一位置のMPR画像をモニタ13にて並列表示する。
また、表示制御部163は、検出部161によってトランスミッタ14aの位置が変化したと判定された場合に、モニタ13にメッセージを表示する。例えば、表示制御部163は、「トランスミッタが移動しました」とする警告メッセージをモニタ13に表示する。また、例えば、表示制御部163は、「トランスミッタの移動による位置ずれを補正しました」とするメッセージをモニタ13に表示する。
また、例えば、表示制御部163は、「トランスミッタが移動しました」とする警告メッセージとともに、ユーザに対して「トランスミッタの位置を修正してください」とするメッセージをモニタ13に表示する。そして、ユーザによってトランスミッタ14aが正しい位置に戻された場合に、表示制御部163は、「トランスミッタが正常な位置に戻りました」とするメッセージをモニタ13に表示する。ここで、表示制御部163は、元の位置とユーザが動かした位置との一致率(トランスミッタ14aがどの程度正しい位置に戻っているかを示す指標)をモニタ13に表示することも可能である。これにより、ユーザは、一致率を確認しながら、トランスミッタ14aを手動で動かし、より正確な位置に戻すことが可能である。なお、表示制御部163によって表示される一致率は、数値(%)であってもよい。或いは、表示制御部163によって表示される一致率は、トランスミッタ14aの元の位置(位置合わせされた位置)を原点とするXY平面のグラフを表示して、トランスミッタ14aの現在の位置をグラフ上にプロットしたものであってもよい。かかる場合には、ユーザは、プロットされた点が原点と重なるようにトランスミッタ14aを移動させればよい。また、X軸を示すバーと、Y軸を示すバーとを表示し、それぞれの軸方向におけるトランスミッタの移動量を表示してもよい。すなわち、ユーザは、それらのバーを確認しながら、トランスミッタをX軸及びY軸方向に移動させればよい。
次に、第1の実施形態に係る超音波診断装置1の処理について説明する。図7は、第1の実施形態に係る超音波診断装置1による処理の手順を示すフローチャートである。なお、図7においては、位置センサー14b及び固定位置センサー14cがトランスミッタ14aの磁場を正確に検出することが可能な磁場エリア内にある場合の処理について示す。
図7に示すように、第1の実施形態に係る超音波診断装置1においては、ボリュームデータの座標と磁場の座標とが位置合わせされると(ステップS101肯定)、検出部161が、固定位置センサー14cの位置情報(磁場における座標)を取得して(ステップS102)、内部記憶部170に格納する。
そして、位置情報取得装置14によって所定のタイミングで固定位置センサー14cの位置情報が取得される。ここで、固定位置センサー14cの位置情報を取得するタイミングは、任意に設定することができる。例えば、スキャンを実行している場合には、常時、固定位置センサー14cの位置情報を取得するように設定してもよい。また、フリーズボタンが押下された場合に、取得を中断して、フリーズが解除された際に位置情報を取得するようにしてもよい。或いは、補正モードのON、OFFをボタン操作で実行するようにし、補正モードがONになっている場合には、常時取得されるようにしてもよい。
上述したタイミングで固定位置センサー14cの位置情報が取得されると、検出部161は、トランスミッタ14aが移動したか否かを判定する(ステップS103)。ここで、トランスミッタ14aが移動したと判定した場合には(ステップS103肯定)、検出部161は、固定位置センサー14cの座標の変化量を算出する(ステップS104)。そして、補正部162は、固定位置センサー14cの変化量に基づいて、超音波プローブ11の位置、すなわち、位置センサー14bによって取得される座標を補正する(ステップS105)。
一方、トランスミッタ14aが移動していないと判定した場合には(ステップS103否定)、検出部161は、継続してトランスミッタ14aが移動したか否かを判定する(ステップS103)。なお、上述した処理の手順では、第1の補正処理を実行する場合について示しているが、第2の補正処理が実行される場合には、ステップS105において、固定位置センサー14cの位置の変化量に基づいて、ボリュームデータにおける座標と磁場における座標との関連付けが補正される。
上述したように、第1の実施形態によれば、トランスミッタ14aは、基準信号を送信する。位置センサー14b及び固定位置センサー14cは、基準信号を受信することにより、3次元空間上の位置情報を取得する。制御部160は、医用画像診断装置によって生成された3次元画像データのうち任意の断面と、超音波プローブ11によってスキャンされる断面との位置合わせに基づいて3次元画像データと3次元空間とを関連付ける。検出部161は、固定位置センサー14cが取得した位置情報に基づいて、関連付けられた3次元空間上でトランスミッタ14aの位置が変化したことを検出する。補正部162は、トランスミッタ14aの位置の変化が検出された場合に、当該トランスミッタ14aの位置の変化量に基づいて、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。従って、第1の実施形態に係る超音波診断装置1は、トランスミッタの移動に伴う位置合わせを無くすことができ、参照画像を参照しながら実施される診断における診断効率を向上させることを可能にする。
また、第1の実施形態によれば、検出部161は、トランスミッタ14aによって生成された3次元空間内の任意の位置に固定された固定位置センサー14cの座標の変化を検出することで、当該トランスミッタ14aの位置の変化を検出する。そして、補正部162は、固定位置センサー14cの座標の変化量に基づいて、超音波プローブ11に取り付けられた位置合わせのための位置センサー14bの座標を変換することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。従って、第1の実施形態に係る超音波診断装置1は、固定位置センサー14cを用いる簡単な構成で、トランスミッタ14aの移動に伴う位置合わせを無くすことを可能にする。
また、第1の実施形態によれば、補正部162は、固定位置センサー14cの座標の変化量に基づいて、ボリュームデータと、3次元空間との関連付けを補正することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。従って、第1の実施形態に係る超音波診断装置1は、位置センサー14bの座標をその都度補正することなく、超音波プローブ11による走査面と略同一位置の2次元画像をボリュームデータから生成することを可能にする。その結果、第1の実施形態に係る超音波診断装置1は、処理負荷を低減することを可能にする。
(第2の実施形態)
上述した第1の実施形態では、トランスミッタ14aの位置の変化の検出を固定位置センサー14cによって実行する場合について説明した。第2の実施形態では、トランスミッタ14aの位置の変化の検出を固定トランスミッタで検出する場合について説明する。図8は、第2の実施形態に係る位置情報取得装置14及び制御部160の構成の一例を説明するための図である。なお、第2の実施形態に係る位置情報取得装置14及び制御部160は、第1の実施形態に係る位置情報取得装置14及び制御部160と比較して、固定位置センサー14cが省略される点と、固定トランスミッタ14eを新たに有する点と、及び検出部161による処理内容が異なる。以下、これらを中心に説明する。
固定トランスミッタ14eは、任意の位置に配置され、自装置を中心として外側に向かって磁場を形成する。具体的には、固定トランスミッタ14eは、超音波プローブ11が走査される位置に磁場が形成される位置に配置される。ここで、固定トランスミッタ14eは、トランスミッタ14aによって形成される磁場と干渉しないように、磁場を形成する。例えば、固定トランスミッタ14eは、トランスミッタ14aによって形成される磁場と重ならないように、磁場発生のタイミングをずらしたり、送信周波数を変えたりして、磁場を発生させる。なお、これらの制御は、操作者や設計者によって任意に設定され、制御装置14dに実行される。
第2の実施形態に係る検出部161は、トランスミッタ14aによって生成された3次元空間における超音波プローブ11に取り付けられた位置合わせのための位置センサー14bの座標と、トランスミッタ14aとは異なる補正用の固定トランスミッタ14eによって生成された3次元空間における位置センサー14bの座標との対応関係の変化を検出する。
具体的には、検出部161は、まず、他のモダリティによって収集されたボリュームデータと、超音波プローブ11の走査面との位置合わせが実行された場合に、トランスミッタ14aによって形成された磁場における位置センサー14bの座標と、固定トランスミッタ14eによって形成された磁場における位置センサー14bの座標とを制御装置14dから取得して、2つの座標の対応関係を算出する。例えば、検出部161は、2つの座標間の距離などを算出して、内部記憶部170に格納する。そして、検出部161は、所定のタイミングで取得される位置センサー14bの2つの座標を取得して、座標間の距離を算出して、内部記憶部170に記憶された距離との変化量を算出する。
ここで、検出部161は、算出した変化量が所定の閾値を超えていた場合に、トランスミッタ14aの位置が変化したと判定する。一方、算出した変化量が所定の閾値を超えていない場合には、検出部161は、トランスミッタ14aの位置が変化していないと判定する。すなわち、第2の実施形態に係る検出部161は、トランスミッタ14aによって形成される磁場内の位置センサー14bの座標と、固定トランスミッタ14eによって形成される磁場内の位置センサー14bの座標との位置関係の変化をトランスミッタ14aの位置の変化として検出する。
なお、上述したトランスミッタ14aの位置の変化を判定するための閾値は、操作者又は設計者によって任意に設定される。例えば、閾値は、位置センサー14bの座標の収集精度に応じて設定される場合であってもよい。
第2の実施形態に係る補正部162は、検出部161によってトランスミッタ14aの位置が変化したと判定された場合に、検出部161によって算出された対応関係の変化量に基づいて、ボリュームデータと、3次元空間との関連付けを補正することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。
例えば、補正部162は、検出部161によって算出された2つの座標間の距離が内部記憶部170によって記憶された距離になるように、トランスミッタ14aによって形成される磁場の座標を変換することで、位置ずれを補正する。
次に、第2の実施形態に係る超音波診断装置1による処理の手順を説明する。図9は、第2の実施形態に係る超音波診断装置による処理の手順を示すフローチャートである。なお、図9においては、位置センサー14bがトランスミッタ14a及びトランスミッタ14eの磁場を正確に検出することが可能な磁場エリア内にある場合の処理について示す。
図9に示すように、第2の実施形態に係る超音波診断装置1においては、ボリュームデータの座標と磁場の座標とが位置合わせされると(ステップS201肯定)、検出部161が、トランスミッタ14a及び固定トランスミッタ14eによって形成された3次元空間(磁場)それぞれにおける位置センサー14bの位置情報(座標)を取得する(ステップS202)。そして、検出部161は、2つの座標の対応関係を内部記憶部170に格納する。
そして、位置情報取得装置14によって所定のタイミングで、トランスミッタ14a及び固定トランスミッタ14eによって形成された磁場それぞれにおける位置センサー14bの位置情報が取得される。ここで、位置センサー14bの位置情報を取得するタイミングは、第1の実施形態と同様に、任意に設定することができる。
上述したタイミングで位置センサー14bの位置情報が取得されると、検出部161は、トランスミッタ14aが移動したか否かを判定する(ステップS203)。ここで、トランスミッタ14aが移動したと判定した場合には(ステップS203肯定)、検出部161は、トランスミッタ14a及び固定トランスミッタ14eによって形成された磁場それぞれにおける移動前後の位置センサー14bの対応関係からトランスミッタ14aの変化量を算出する(ステップS204)。そして、補正部162は、トランスミッタ14aの変化量に基づいて、トランスミッタ14aの位置を補正する(ステップS205)。
一方、トランスミッタ14aが移動していないと判定した場合には(ステップS203否定)、検出部161は、継続してトランスミッタ14aが移動したか否かを判定する(ステップS203)。
上述したように、第2の実施形態によれば、検出部161、トランスミッタ14aによって生成された3次元空間における超音波プローブ11に取り付けられた位置合わせのための位置センサー14bの座標と、トランスミッタ14aとは異なる補正用の固定トランスミッタ14eによって生成された3次元空間における位置センサー14bの座標との対応関係の変化を検出することで、トランスミッタ14aの位置の変化を検出する。そして、補正部162は、対応関係の変化量に基づいて、ボリュームデータと、3次元空間との関連付けを補正することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。従って、第2の実施形態に係る超音波診断装置1は、固定トランスミッタ14eを用いる簡単な構成で、トランスミッタ14aの移動に伴う位置合わせを無くすことを可能にする。
(第3の実施形態)
上述した第1の実施形態及び第2の実施形態では、トランスミッタ14aの位置の変化の検出を、固定位置センサー14c又は固定トランスミッタ14eによって実行する場合について説明した。第3の実施形態では、新たに固定位置センサー14c及び固定トランスミッタ14eを用いることなく、トランスミッタ14aの位置の変化を検出する場合について説明する。なお、第3の実施形態に係る位置情報取得装置14及び制御部160の構成は、第1の実施形態に係る位置情報取得装置14及び制御部160の構成(図4参照)から固定位置センサー14cを除いたものであることから、図示を省略する。
第3の実施形態に係る超音波診断装置1では、第1の実施形態に係る固定位置センサー14cの役割を位置センサー14bに持たせたものである。すなわち、第3の実施形態では、位置センサー14bを磁場内で固定させた状態で、トランスミッタ14aの位置を変化させ、位置センサー14bの座標の変化量を用いて補正する。本手法は、例えば、検査・治療開始後に、より精度を高めるために、操作者によってトランスミッタの位置を変える場合などに用いることができる。例えば、入力装置12は、トランスミッタ14aの位置の変化の開始及び終了を示す入力操作を受け付ける。そして、検出部161は、トランスミッタ14aの位置の変化の開始を示す入力操作が受け付けられた時点において位置センサー14bが取得した位置情報と、トランスミッタ14aの位置の変化の終了を示す入力操作が受け付けられた時点において位置センサー14bが取得した位置情報とからトランスミッタ14aの位置の変化量を算出する。そして、補正部162は、検出部161によって算出されたトランスミッタ14aの位置の変化量に基づいて、位置ずれを補正する。
図10は、第3の実施形態に係る補正処理の一例を説明するための図である。なお、図10においては、X−Y平面上のトランスミッタ14aの位置が変化した場合の例について示す。例えば、図10の(A)に示すように、トランスミッタ14aによって形成された空間における位置センサー14bの座標(X1,Y1)と、X線CT装置によって収集されたボリュームデータ内の座標(X´1,Y´1)とが位置合わせされたとする。これにより、超音波プローブ11による走査面と略同一位置のMPR画像がボリュームデータから生成される。
ここで、より精度を高めるために、操作者がトランスミッタ14aの位置を変化させたいと所望した場合、操作者は、例えば、入力装置12に備えられた補正ボタンを押下する。補正ボタンが押下されると、表示制御部163は、例えば、モニタ13に「トランスミッタを移動させるので超音波プローブ(位置センサー)を固定してください」とするメッセージを表示して、操作者に超音波プローブ11を固定させる。
ここで、第3の実施形態に係る検出部161は、例えば、図10の(A)に示すように、位置センサー14bの座標(X1,Y1)を取得して、内部記憶部170に格納する。位置センサー14bの座標(X1,Y1)が記憶されると、表示制御部163は、例えば、モニタ13に「トランスミッタを移動させてください」とするメッセージを表示して、操作者にトランスミッタ14aを移動させる。
そして、検出部161は、例えば、図10の(B)に示すように、トランスミッタ14aがX−Y平面上で位置が変化した後の位置センサー14bの座標(X2,Y2)を取得する。ここで、検出部162は、取得した位置センサー14bの座標(X2,Y2)と、内部記憶部170に記憶された座標(X1,Y1)との変化量を算出する。
そして、第3の実施形態に係る補正部162は、検出部161によって算出された変化量を用いて位置ずれを補正する。例えば、補正部162は、図10の(B)に示すように、位置センサー14bの座標(X1,Y1)を座標(X2,Y2)に変換するための変換係数「M」を算出する。そして、補正部162は、算出した変換係数「M」を用いて補正を実行する。これにより、トランスミッタ14aの位置が変化した後の磁場における座標と、ボリュームデータとを再度関連付けることができる。
次に、第3の実施形態に係る超音波診断装置1による処理の手順を説明する。図11は、第3の実施形態に係る超音波診断装置1による処理の手順を示すフローチャートである。なお、図11においては、位置センサー14bがトランスミッタ14aの磁場を正確に検出することが可能な磁場エリア内にある場合の処理について示す。
図11に示すように、第3の実施形態に係る超音波診断装置1においては、補正ボタンが押下されると(ステップS301肯定)、表示制御部163が、超音波プローブ11の固定メッセージをモニタ13に表示する(ステップS302)。そして、検出部161が、移動前の位置センサー14bの位置情報(座標)を取得する(ステップS303)。そして、検出部161は、取得した座標を内部記憶部170に格納する。
そして、表示制御部163は、トランスミッタ14aの移動メッセージをモニタ13に表示させる(ステップS304)。その後、検出部161は、補正終了ボタンが押下されたか否かを判定する(ステップS305)。ここで、補正終了ボタンが押下された場合に(ステップS305肯定)、検出部161は、移動後の位置センサー14bの位置情報を取得する(ステップS306)。そして、補正部162は、移動前後の位置センサー14bの変化量に基づいて、超音波プローブ11の位置を補正する(ステップS307)。
一方、補正終了ボタンが押下されていないと判定した場合には(ステップS305否定)、検出部161は、継続して補正終了ボタンが押下されたか否かを判定する(ステップS305)。
上述したように、第3の実施形態によれば、第3の実施形態に係る超音波診断装置1は、固定位置センサー14c及び固定トランスミッタ14eを用いずに、トランスミッタ14aの移動に伴う補正を実行する。従って、第3の実施形態に係る超音波診断装置1は、既存の位置情報取得装置を用いて、診断効率を向上させることを可能にする。
(第4の実施形態)
さて、これまで第1、第2及び第3の実施形態について説明したが、上述した第1、第2及び第3の実施形態以外にも、種々の異なる形態にて実施されてよいものである。
(1)トランスミッタの位置の変化の検出
上述した第1の実施形態及び第2の実施形態では、固定位置センサー14c及び固定トランスミッタ14eをそれぞれ用いて、トランスミッタ14aの位置の変化を検出する場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、トランスミッタ14aを固定するアーム部分の移動を機械的に測定することでトランスミッタ14aの位置の変化を検出する場合であってもよい。
かかる場合には、例えば、トランスミッタを固定するアームの可動域にギアを配置し、ギアがどれくらい動いたかを検出する検出装置をセットする。そして、検出部161は、検出装置から、アームの移動に伴うギアの動きを取得して、取得したギアの動きをトランスミッタ14aの位置の変化として検出する。補正部162は、ギアの移動量に基づいて、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。
また、例えば、カメラを用いた画像処理によってトランスミッタ14aの位置の変化を検出する場合であってもよい。かかる場合には、超音波診断装置1は、トランスミッタ14aと基準点とを撮影するためのカメラをさらに備える。例えば、カメラは複数設けられ、トランスミッタ14a及び基準点を複数の視点から撮影する。ここで、基準点は固定されたものであればどのようなものであってもよい。そして、検出部161は、各カメラによって撮影された映像から画像認識のパターンマッチングによりトランスミッタ14aと基準点との相対的な位置関係を特定する。そして、検出部161は、特定したトランスミッタ14aと基準点との対応関係(例えば、距離など)の変化により、トランスミッタ14aの位置の変化を検出する。
補正部162は、検出部161によって検出されたトランスミッタ14aと基準点との対応関係の変化量に基づいて、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。
(2)位置センサー
上述した第1、第2及び第3の実施形態では、位置センサーとして磁気センサーを用いる場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、赤外線センサーを用いる場合であってもよい。
(3)補正対象
上述した第1、第2及び第3の実施形態では、トランスミッタ14aが2次元(X−Y平面)で移動した際の補正について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、3次元で移動した場合の補正も上記と同様に実行することができる。
(4)自動補正
上述した第1、第2及び第3の実施形態では、トランスミッタ14aが手動で移動する場合の実施形態について説明した。しかしながら、実施形態はこれに限定されるものではなく、例えば、トランスミッタ14aが自動で移動するアーム上に配置された場合にも同様に補正することが可能である。かかる場合には、トランスミッタ14aの位置の変化を検出した場合に、自動で位置を元に戻すように制御してもよい。
(5)固定トランスミッタ
上述した第2の実施形態では、2つのトランスミッタのうち、一方をボリュームデータとの位置合わせに用いるトランスミッタとし、他方を固定トランスミッタとして用いる場合について説明した。しかしながら、実施形態はこれに限定されるものではなく、トランスミッタの精度に応じて、2つのトランスミッタが切り替えられる場合であってもよい。例えば、検出部161は、トランスミッタ14a及び固定トランスミッタ14eによって生成された3次元空間それぞれの精度に基づいて、トランスミッタ14aと固定トランスミッタ14eとを切り替えて用いる。
一例を挙げると、検出部161は、トランスミッタ14a及び固定トランスミッタ14eによってそれぞれ発生された磁場の歪(例えば、クオリティ値など)を監視し、固定トランスミッタ14eによって発生された磁場の歪がトランスミッタ14aによって発生された磁場の歪よりも歪が小さい場合に、各トランスミッタを切り替えて用いる。すなわち、検出部161は、トランスミッタ14aによって形成された磁場における位置センサー14bの座標と、固定トランスミッタ14eによって形成された磁場における位置センサー14bの座標とを制御装置14dから取得して、2つの座標の対応関係を算出する。そして、検出部161は、所定のタイミングで取得される位置センサー14bの2つの座標を取得して、座標間の距離を算出し、算出した変化量が所定の閾値を超えていた場合に、固定トランスミッタ14eの位置が変化したと判定する。一方、算出した変化量が所定の閾値を超えていない場合には、検出部161は、固定トランスミッタ14eの位置が変化していないと判定する。すなわち、検出部161は、トランスミッタ14aによって形成される磁場内の位置センサー14bの座標と、トランスミッタ14eによって形成される磁場内の位置センサー14bの座標との位置関係の変化を固定トランスミッタ14eの位置の変化として検出する。
そして、補正部162は、検出部161によって検出された固定トランスミッタ14eの位置の変化量に応じて、位置ずれを補正する。なお、上記したトランスミッタの切り替えを行なう場合、医用画像診断装置によって収集されたボリュームデータと超音波画像との位置合わせの段階で、トランスミッタ14aにおける超音波画像とボリュームデータとの対応関係、及び、固定トランスミッタ14eにおける超音波画像とボリュームデータとの対応関係が予め記憶される。そして、補正部162は、予め記憶されたどちらかの対応関係に対して補正処理を実行する。これにより、本願の超音波診断装置1は、より正確な位置合わせと補正を行なうことを可能にする。
また、上記したトランスミッタの切り替えは、随時実行される場合であってもよいが、例えば、操作者によってフリーズボタンが押下された場合に、実行されるようにしてもよい。かかる場合には、操作者によってフリーズボタンが押下された場合に、検出部161は、トランスミッタ14a及び固定トランスミッタ14eによってそれぞれ発生された磁場の歪を比較して、歪が小さいほうのトランスミッタをボリュームデータと超音波画像との位置合わせに用いるように、切り替える。これにより、本願の超音波診断装置1は、診断中に切り替えが発生することを抑止し、処理負荷を低減して、スムーズな切り替えを可能にする。
(6)固定位置センサー
上述した第1の実施形態では、固定位置センサー14cを新たに設ける場合について説明したが、実施形態はこれに限定されるものではなく、例えば、操作されていない超音波プローブに取り付けられた位置センサーを固定位置センサー14cとして用いる場合であってもよい。かかる場合には、例えば、位置センサーは、位置センサー14aとしての第1のプローブ位置センサーと、固定位置センサー14cとしての第2のプローブ位置センサーが用いられる。そして、例えば、検出部161は、トランスミッタ14aによって生成された3次元空間内の任意の位置に配置された操作されていない超音波プローブに取り付けられた第2のプローブ位置センサーの座標の変化を検出することで、トランスミッタ14aの位置の変化を検出する。そして、補正部162は、第2のプローブ位置センサーの座標の変化量に基づいて、操作されている超音波プローブ11に取り付けられた位置合わせのための第1のプローブ位置センサーの座標を変換することで、医用画像の断面と、超音波プローブ11によってスキャンされる断面との位置ずれを補正する。
なお、第2のプローブ位置センサーを用いる補正処理は、上述したように変化量に基づく座標変換を行うことで位置ずれを補正する場合(第1の実施形態における第1の補正処理)であってもよく、或いは、ボリュームデータの座標に対して検出部161によって算出された変化量に基づく座標変換を行うことで位置ずれを補正する場合(第1の実施形態における第2の補正処理)であってもよい。また、上述した第2のプローブ位置センサーを用いる場合には、第2のプローブ位置センサーが取り付けられる操作されていない超音波プローブは、プローブホルダに置かれている場合であってもよく、或いは、所定の固定場所に配置される場合であってもよい。ここで、いずれの場合であっても、配置場所は、磁場内において磁性体及び金属が近くにない場所となる。
以上述べた少なくともひとつの実施形態の超音波診断装置によれば、トランスミッタが動いた場合であっても位置合わせを不要とすることができ、診断効率を向上させることが可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 超音波診断装置
11 超音波プローブ
12 入力装置
14 位置情報取得装置
14a トランスミッタ
14b 位置センサー
14c 固定位置センサー
14d 制御装置
100 装置本体
160 制御部
161 検出部
162 補正部
163 表示制御部

Claims (13)

  1. 基準信号を送信するトランスミッタと、
    前記基準信号を受信することにより、3次元空間上の位置情報を取得する位置センサーと、
    医用画像診断装置によって生成された3次元画像データのうち任意の断面と、超音波プローブによってスキャンされる断面との位置合わせに基づいて前記3次元画像データと前記3次元空間とを関連付ける関連付け手段と、
    前記位置センサーが取得した位置情報に基づいて、前記関連付けられた3次元空間上で前記トランスミッタの位置が変化したことを検出する検出手段と、
    前記トランスミッタの位置の変化が検出された場合に、当該トランスミッタの位置の変化量に基づいて、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正する補正手段と、
    を備えたことを特徴とする超音波診断装置。
  2. 前記位置センサーは、少なくとも固定位置センサーとプローブ位置センサーとを含み、
    前記検出手段は、前記トランスミッタによって生成された3次元空間内の任意の位置に固定された固定位置センサーの座標の変化を検出することで、当該トランスミッタの位置の変化を検出し、
    前記補正手段は、前記固定位置センサーの座標の変化量に基づいて、前記超音波プローブに取り付けられた位置合わせのためのプローブ位置センサーの座標を変換することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1に記載の超音波診断装置。
  3. 前記補正手段は、前記固定位置センサーの座標の変化量に基づいて、前記3次元画像データと、前記3次元空間との関連付けを補正することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項2に記載の超音波診断装置。
  4. 前記固定位置センサーは、被検体が横臥するベッド、装置本体、前記トランスミッタを支持するポール、又は、前記被検体上に配置されることを特徴とする請求項2又は3に記載の超音波診断装置。
  5. 前記位置センサーは、少なくともプローブ位置センサーを含み、
    前記検出手段は、前記トランスミッタによって生成された3次元空間における前記超音波プローブに取り付けられた位置合わせのためのプローブ位置センサーの座標と、前記トランスミッタとは異なる補正用の固定トランスミッタによって生成された3次元空間における前記プローブ位置センサーの座標との対応関係の変化を検出することで、前記トランスミッタの位置の変化を検出し、
    前記補正手段は、前記対応関係の変化量に基づいて、前記3次元画像データと、前記3次元空間との関連付けを補正することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1に記載の超音波診断装置。
  6. 前記検出手段は、前記トランスミッタ及び前記固定トランスミッタによって生成された3次元空間それぞれの精度に基づいて、前記トランスミッタと前記固定トランスミッタとを切り替えて用いることを特徴とする請求項5に記載の超音波診断装置。
  7. 前記トランスミッタの位置の変化の開始及び終了を示す入力操作を受け付ける受け付け手段をさらに備え、
    前記検出手段は、前記トランスミッタの位置の変化の開始を示す入力操作が受け付けられた時点において前記位置センサーが取得した位置情報と、前記トランスミッタの位置の変化の終了を示す入力操作が受け付けられた時点において前記位置センサーが取得した位置情報とから前記トランスミッタの位置の変化量を算出し、
    前記補正手段は、検出手段によって算出された前記トランスミッタの位置の変化量に基づいて、前記位置ずれを補正することを特徴とする請求項1に記載の超音波診断装置。
  8. 前記位置センサーは、少なくとも第1のプローブ位置センサーと第2のプローブ位置センサーとを含み、
    前記検出手段は、前記トランスミッタによって生成された3次元空間内の任意の位置に配置された操作されていない超音波プローブに取り付けられた第2のプローブ位置センサーの座標の変化を検出することで、前記トランスミッタの位置の変化を検出し、
    前記補正手段は、前記第2のプローブ位置センサーの座標の変化量に基づいて、操作されている超音波プローブに取り付けられた位置合わせのための第1のプローブ位置センサーの座標を変換することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1に記載の超音波診断装置。
  9. 前記位置センサーは、少なくともプローブ位置センサーを含み、
    前記検出手段は、前記トランスミッタを固定する固定器具の移動を検出することで、前記トランスミッタの位置の変化を検出し、
    前記補正手段は、前記固定器具の移動量に基づいて、前記超音波プローブに取り付けられた位置合わせのためのプローブ位置センサーの座標を変換することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1に記載の超音波診断装置。
  10. 前記位置センサーは、少なくともプローブ位置センサーを含み、
    前記検出手段は、映像に含まれる前記トランスミッタの位置情報に基づいて、当該プローブ位置センサーの位置の変化を検出し、
    前記補正手段は、前記トランスミッタの位置の変化量に基づいて、前記超音波プローブに取り付けられた位置合わせのためのプローブ位置センサーの座標を変換することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1に記載の超音波診断装置。
  11. 前記補正手段は、前記3次元画像データと、前記3次元空間との関連付けに用いられた変換係数を補正することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1〜6のいずれか一つに記載の超音波診断装置。
  12. 前記補正手段は、前記プローブ位置センサーによって検出された位置情報を補正することで、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正することを特徴とする請求項1〜6のいずれか一つに記載の超音波診断装置。
  13. 画像データを補正するコンピュータによって実行される補正方法であって、
    医用画像診断装置によって生成された3次元画像データのうち任意の断面と、超音波プローブによってスキャンされる断面との位置合わせに基づいて前記3次元画像データと、トランスミッタによって送信される基準信号に基づく3次元空間とを関連付ける関連付け工程と、
    前記基準信号を受信することにより、3次元空間上の位置情報を取得する位置センサーが取得した位置情報に基づいて、前記関連付けられた3次元空間上で前記トランスミッタの位置が変化したことを検出する検出工程と、
    前記トランスミッタの位置の変化が検出された場合に、当該トランスミッタの位置の変化量に基づいて、前記医用画像の断面と、前記超音波プローブによってスキャンされる断面との位置ずれを補正する補正工程と、
    を含んだことを特徴とする画像データの補正方法。
JP2013134193A 2012-06-27 2013-06-26 超音波診断装置及び画像データの補正方法 Active JP6081301B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013134193A JP6081301B2 (ja) 2012-06-27 2013-06-26 超音波診断装置及び画像データの補正方法
CN201380032661.6A CN104379064B (zh) 2012-06-27 2013-06-26 超声波诊断装置以及图像数据的校正方法
PCT/JP2013/067563 WO2014003071A1 (ja) 2012-06-27 2013-06-26 超音波診断装置及び画像データの補正方法
US14/582,253 US10932753B2 (en) 2012-06-27 2014-12-24 Ultrasound diagnosis apparatus and method for correcting mis-registration of image data with position sensors

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012143824 2012-06-27
JP2012143824 2012-06-27
JP2013134193A JP6081301B2 (ja) 2012-06-27 2013-06-26 超音波診断装置及び画像データの補正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017004460A Division JP6316995B2 (ja) 2012-06-27 2017-01-13 超音波診断装置及び画像データの補正方法

Publications (2)

Publication Number Publication Date
JP2014028132A JP2014028132A (ja) 2014-02-13
JP6081301B2 true JP6081301B2 (ja) 2017-02-15

Family

ID=49783212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134193A Active JP6081301B2 (ja) 2012-06-27 2013-06-26 超音波診断装置及び画像データの補正方法

Country Status (4)

Country Link
US (1) US10932753B2 (ja)
JP (1) JP6081301B2 (ja)
CN (1) CN104379064B (ja)
WO (1) WO2014003071A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10912537B2 (en) * 2014-03-11 2021-02-09 Koninklijke Philips N.V. Image registration and guidance using concurrent X-plane imaging
JP6510200B2 (ja) * 2014-08-25 2019-05-08 キヤノンメディカルシステムズ株式会社 超音波診断装置及び制御プログラム
JP6612873B2 (ja) * 2014-12-11 2019-11-27 コーニンクレッカ フィリップス エヌ ヴェ 追跡型インターベンショナルプロシージャにおける最適なキャリブレーションの自動選択
JP6420678B2 (ja) * 2015-01-30 2018-11-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
JP6405058B2 (ja) * 2015-03-31 2018-10-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療イメージング装置
CN106333707B (zh) * 2015-07-09 2020-12-01 深圳迈瑞生物医疗电子股份有限公司 超声多普勒图谱校正方法、装置及超声诊断系统
KR102530174B1 (ko) * 2016-01-21 2023-05-10 삼성메디슨 주식회사 초음파 영상 장치 및 그 제어 방법
CN107169929A (zh) * 2016-03-07 2017-09-15 安克生医股份有限公司 一种适用于不同超声波机型影像之无回音区域及高回音亮点量化特征的校正方法
JP6721707B2 (ja) * 2016-03-23 2020-07-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血流速度の測定を改善するための方法及び装置
US10299699B2 (en) * 2016-11-28 2019-05-28 Biosense Webster (Israel) Ltd. Computerized tomography image correction
JP2018092240A (ja) * 2016-11-30 2018-06-14 株式会社デンソー 位置検出システム
JP6976869B2 (ja) * 2018-01-15 2021-12-08 キヤノンメディカルシステムズ株式会社 超音波診断装置及びその制御プログラム
CA3117848A1 (en) * 2018-11-18 2020-05-22 Trig Medical Ltd. Spatial registration method for imaging devices
KR20200104103A (ko) * 2019-02-26 2020-09-03 삼성메디슨 주식회사 초음파 영상과 타 모달리티(modality) 영상을 정합하는 초음파 영상 장치 및 그 동작 방법
JP7401323B2 (ja) * 2020-01-27 2023-12-19 富士フイルムヘルスケア株式会社 超音波ct装置、および、その制御方法
US20220317294A1 (en) * 2021-03-30 2022-10-06 GE Precision Healthcare LLC System And Method For Anatomically Aligned Multi-Planar Reconstruction Views For Ultrasound Imaging
CN113180608A (zh) * 2021-05-08 2021-07-30 上海科技大学 基于电磁场空间定位的光声成像系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3871747B2 (ja) 1996-11-25 2007-01-24 株式会社日立メディコ 超音波診断装置
US6524260B2 (en) * 2001-03-19 2003-02-25 Ortho Scan Technologies Inc. Contour mapping system and method particularly useful as a spine analyzer and probe therefor
CN102512209B (zh) * 2003-05-08 2015-11-11 株式会社日立医药 超声诊断设备
CN100548223C (zh) * 2003-05-08 2009-10-14 株式会社日立医药 超声诊断设备
JP5117051B2 (ja) * 2004-12-20 2013-01-09 株式会社日立メディコ 超音波診断システム及びその方法
KR20070110965A (ko) * 2006-05-16 2007-11-21 주식회사 메디슨 초음파 영상과 외부 의료영상의 합성 영상을디스플레이하기 위한 초음파 시스템
EP2104919A2 (en) * 2006-11-27 2009-09-30 Koninklijke Philips Electronics N.V. System and method for fusing real-time ultrasound images with pre-acquired medical images
US8734349B2 (en) * 2007-11-14 2014-05-27 Koninklijke Philips N.V. System and method for quantitative 3D CEUS analysis
WO2010037436A1 (en) * 2008-09-30 2010-04-08 Mediri Gmbh 3d motion detection and correction by object tracking in ultrasound images
CN101836862B (zh) * 2009-03-16 2014-03-26 上海微创医疗器械(集团)有限公司 人体腔室内壁三维标测方法及其设备和系统
US8675939B2 (en) * 2010-07-13 2014-03-18 Stryker Leibinger Gmbh & Co. Kg Registration of anatomical data sets
US9282933B2 (en) * 2010-09-17 2016-03-15 Siemens Corporation Magnetic resonance elastography for ultrasound image simulation
CA2819257C (en) * 2010-12-14 2019-09-24 Hologic, Inc. System and method for fusing three dimensional image data from a plurality of different imaging systems for use in diagnostic imaging
JP6104902B2 (ja) * 2011-06-22 2017-03-29 シンセス・ゲーエムベーハーSynthes GmbH 位置決定用超音波ct位置合わせ
WO2013101562A2 (en) * 2011-12-18 2013-07-04 Metritrack, Llc Three dimensional mapping display system for diagnostic ultrasound machines
JP6071599B2 (ja) 2012-02-01 2017-02-01 東芝メディカルシステムズ株式会社 超音波診断装置、画像処理装置及びプログラム

Also Published As

Publication number Publication date
CN104379064A (zh) 2015-02-25
US20150112196A1 (en) 2015-04-23
CN104379064B (zh) 2017-09-15
US10932753B2 (en) 2021-03-02
WO2014003071A1 (ja) 2014-01-03
JP2014028132A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6081301B2 (ja) 超音波診断装置及び画像データの補正方法
JP6316995B2 (ja) 超音波診断装置及び画像データの補正方法
JP6081299B2 (ja) 超音波診断装置
JP6109556B2 (ja) 超音波診断装置及び画像処理プログラム
JP2015164516A (ja) 医用画像処理装置、医用画像診断装置及び医用画像処理方法
JP2013111434A (ja) 画像処理装置、超音波診断装置及び画像処理プログラム
JP6125380B2 (ja) 超音波診断装置、医用画像処理装置及び画像処理プログラム
JP5954786B2 (ja) 超音波診断装置及び画像データの表示制御プログラム
JP5981246B2 (ja) 超音波診断装置及びセンサ選定装置
JP6176818B2 (ja) 超音波診断装置及び座標変換プログラム
KR20100117698A (ko) 초음파 영상을 정렬시키는 초음파 시스템 및 방법
JP6305773B2 (ja) 超音波診断装置、画像処理装置及びプログラム
KR101656776B1 (ko) 초음파 진단 장치 및 초음파 진단 장치의 동작 방법
JP2014045943A (ja) 超音波診断装置及び画像データの補正方法
JP2018192246A (ja) 超音波診断装置および超音波診断支援プログラム
KR20120046539A (ko) 바디 마크를 제공하는 초음파 시스템 및 방법
JP2013143978A (ja) 超音波診断装置
JP6334013B2 (ja) 超音波診断装置
JP2019195447A (ja) 超音波診断装置及び医用情報処理プログラム
JP6538130B2 (ja) 画像処理装置及びプログラム
JP2012143356A (ja) 超音波診断装置及びプログラム
JP5645742B2 (ja) 超音波診断装置及びその制御プログラム
JP2019081111A (ja) 超音波画像診断装置及びプログラム
JP2014239841A (ja) 超音波診断装置、医用画像処理装置及び制御プログラム
JP6419413B2 (ja) 超音波診断装置及び位置合わせプログラム

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160513

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20161021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350