JP6055354B2 - 基板の処理方法 - Google Patents

基板の処理方法 Download PDF

Info

Publication number
JP6055354B2
JP6055354B2 JP2013070435A JP2013070435A JP6055354B2 JP 6055354 B2 JP6055354 B2 JP 6055354B2 JP 2013070435 A JP2013070435 A JP 2013070435A JP 2013070435 A JP2013070435 A JP 2013070435A JP 6055354 B2 JP6055354 B2 JP 6055354B2
Authority
JP
Japan
Prior art keywords
substrate
separation layer
adhesive layer
support plate
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013070435A
Other languages
English (en)
Other versions
JP2014194986A (ja
Inventor
松下 淳
淳 松下
達弘 御嶽
達弘 御嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2013070435A priority Critical patent/JP6055354B2/ja
Publication of JP2014194986A publication Critical patent/JP2014194986A/ja
Application granted granted Critical
Publication of JP6055354B2 publication Critical patent/JP6055354B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明は基板の処理方法に関する。
近年、ICカード、携帯電話などの電子機器の薄型化、小型化、軽量化などが要求されている。これらの要求を満たすためには、組み込まれる半導体チップについても薄型の半導体チップを使用しなければならない。このため、半導体チップの基となる基板の厚さ(膜厚)は現状では125μm〜150μmであるが、次世代のチップ用には25μm〜50μmにしなければならないといわれている。したがって、上記の膜厚のウエハ基板を得るためには、ウエハ基板の薄板化工程が必要不可欠である。
ウエハ基板は、薄板化により強度が低下するので、薄板化したウエハ基板の破損を防ぐために、製造プロセス中は、ウエハ基板にサポートプレートを貼り合わされた状態で自動搬送しながら、公知のリソグラフィ工程等によりウエハ基板上に回路等の構造物を実装する。そして、製造プロセス後に、ウエハ基板をサポートプレートから分離する。したがって、製造プロセス中は、ウエハ基板とサポートプレートとが強固に接着していることが好ましいが、製造プロセス後には、サポートプレートからウエハ基板を円滑に分離できることが好ましい。
ウエハ基板とサポートプレートとを強固に接着した場合、接着材料によっては、ウエハ基板上に実装した構造物を破損させることなく、ウエハ基板からサポートプレートを分離することは困難である。したがって、製造プロセス中にはウエハ基板とサポートプレートとの強固な接着を実現しつつ、製造プロセス後にはウエハ基板上に実装した素子を破損させることなく分離するという、非常に困難な仮止め技術の開発が求められている。
例えば、特許文献1では、半導体ウエハと支持体とを、接着剤層と高熱変換層とを介して貼り合せる技術が記載されている。
また、特許文献2では、ウエハの平坦度が良好になるようにウエハと保持プレートとを仮止めする技術が記載されている。
特開2005−159155号公報(2005年6月16日公開) 特開2001−189292号公報(2001年7月10日公開)
積層体が、接着層と支持体との間に分離層を備える場合、表面が露出した分離層が原因となって、ウエハを汚染するおそれがある。
例えば、特許文献1に記載の技術では、様々な薬品等による処理に際して光熱変換層が変質して剥がれ、積層体の基板の上に再付着することによって基板を汚染することがある。
また、積層体全体を化学気相堆積(CVD)処理することがある。このとき、蒸着したシリコン酸化膜等のシリコン化合物が分離層から剥がれて、積層体の基板の上に再付着することによって基板を汚染することがある。
特許文献2はそもそも分離層がないから、これらの汚染の解決に資する技術は開示されていない。
本発明は、このような問題に鑑みて成されたものであり、積層体における分離層の表面が露出していることが原因となって生じる汚染を抑えることを目的とする。
上記の課題を解決するために、本発明に係る基板の処理方法は、基板、接着層、分離層及び支持体がこの順に積層してなる積層体を形成する積層体形成工程と、上記積層体をプラズマ処理するプラズマ処理工程と、を包含することを特徴とする。
本発明によれば、積層体における分離層の表面が露出していることが原因となって生じる汚染を抑えることができる。
本発明に係る基板の処理方法に包含される工程のうち、積層体形成工程までの各工程の一実施形態を説明する図である。 本発明に係る基板の処理方法に包含される工程のうち、プラズマ処理工程と基板薄化工程の一実施形態を説明する図である。 本発明に係る基板の処理方法の一実施形態によって処理された積層体の断面を模式的に説明する図である。 本発明に係る基板の処理方法の一実施形態によって処理された積層体の断面を模式的に説明する図である。
<第1の実施形態>
本発明に係る基板の処理方法の一実施形態(第1の実施形態)は、基板11、接着層13、分離層14及びサポートプレート12がこの順に積層してなる積層体1を形成する積層体形成工程と、積層体1をプラズマ処理するプラズマ処理工程と、を包含する。
以下、第1の実施形態について、図1及び図2を参照して説明する。図1は、本発明に係る基板の処理方法に包含される工程のうち、積層体形成工程までの各工程の一実施形態を説明する図である。図2は、本発明に係る基板の処理方法に包含される工程のうち、プラズマ処理工程と基板薄化工程の一実施形態を説明する図である。
図1が示す積層体形成工程までの各工程は、分離層形成工程(図1の(1)及び(2))、接着層形成工程(図1の(3)及び(4))、接着層周端部除去工程(図1の(5))、及び積層体形成工程(図1の(6))を包含する。
〔分離層形成工程〕
図1の(1)及び(2)に示すように、分離層形成工程は、サポートプレート12の片面上に分離層14を形成する工程である。
(サポートプレート)
サポートプレート12は、基板11を支持する支持体である。サポートプレート12は、基板11を暫定的に支持するものであり、基板11の薄化、搬送、実装等のプロセス時に、基板11の破損又は変形を防ぐために必要な強度を有していればよい。
なお、実施形態1では、サポートプレート12は、光透過性を有するものを使用する。そのため、積層体1の外からサポートプレート12に向けて光を照射したときに、該光がサポートプレート12を通過して分離層14に到達する。また、サポートプレート12は、必ずしも全ての光を透過させる必要はなく、分離層14に吸収されるべき(所定の波長を有している)光を透過させることができればよい。
以上のような観点から、実施形態1において、サポートプレート12としては、ガラス、アクリル樹脂からなるもの等が挙げられる。
(分離層)
分離層14は、サポートプレート12を介して照射される光を吸収することによって変質する材料から形成されている層である。本明細書において、分離層14が「変質する」とは、分離層14をわずかな外力を受けて破壊され得る状態、又は分離層14と接する層との接着力が低下した状態にさせる現象を意味する。光を吸収することによって生じる分離層14の変質の結果として、分離層14は、光の照射を受ける前の強度又は接着性を失う。よって、わずかな外力を加える(例えば、サポートプレート12を持ち上げるなど)ことによって、分離層14が破壊されて、サポートプレート12と基板11とを容易に分離することができる。
また、分離層14の変質は、吸収した光のエネルギーによる(発熱性又は非発熱性の)分解、架橋、立体配置の変化又は官能基の解離(そして、これらにともなう分離層の硬化、脱ガス、収縮又は膨張)等であり得る。分離層14の変質は、分離層14を構成する材料による光の吸収の結果として生じる。よって、分離層14の変質の種類は、分離層14を構成する材料の種類に応じて変化し得る。
分離層14は、サポートプレート12における、接着層13を介して基板11が貼り合わされる側の表面に設ける。
分離層14の厚さは、例えば、0.05μm以上、50μm以下であることがより好ましく、0.3μm以上、1μm以下であることがさらに好ましい。分離層14の厚さが0.05μm以上、50μm以下の範囲内に収まっていれば、短時間の光の照射及び低エネルギーの光の照射によって、分離層14に所望の変質を生じさせることができる。また、分離層14の厚さは、生産性の観点から1μm以下の範囲内に収まっていることが特に好ましい。
なお、積層体1において、分離層14とサポートプレート12との間に他の層がさらに形成されていてもよい。この場合、他の層は光を透過する材料から構成されていればよい。これによって、分離層14への光の入射を妨げることなく、積層体1に好ましい性質などを付与する層を、適宜追加することができる。分離層14を構成している材料の種類によって、用い得る光の波長が異なる。よって、他の層を構成する材料は、すべての光を透過させる必要はなく、分離層14を構成する材料を変質させ得る波長の光を透過させることができる材料から適宜選択し得る。
また、分離層14は、光を吸収する構造を有する材料のみから形成されていることが好ましいが、本発明における本質的な特性を損なわない範囲において、光を吸収する構造を有していない材料を添加して、分離層14を形成してもよい。また、分離層14における接着層13に対向する側の面が平坦である(凹凸が形成されていない)ことが好ましく、これにより、分離層14の形成が容易に行なえ、且つ貼り付けにおいても均一に貼り付けることが可能となる。
分離層14は、以下に示すような分離層14を構成する材料を予めフィルム状に形成したものをサポートプレート12に貼り合わせて用いてもよいし、サポートプレート12上に分離層14を構成する材料を塗布してフィルム状に固化したものを用いてもよい。サポートプレート12上に分離層14を構成する材料を塗布する方法は、分離層14を構成する材料の種類に応じて、化学気相成長(CVD)法による堆積等の従来公知の方法から適宜選択することができる。
分離層14は、レーザから照射される光を吸収することによって変質するものであってもよい。すなわち、分離層14を変質させるために分離層14に照射される光は、レーザから照射されたものであってもよい。分離層14に照射する光を発射するレーザの例としては、YAGレーザ、ビーレーザ、ガラスレーザ、YVOレーザ、LDレーザ、ファイバーレーザ等の固体レーザ、色素レーザ等の液体レーザ、COレーザ、エキシマレーザ、Arレーザ、He−Neレーザ等の気体レーザ、半導体レーザ、自由電子レーザ等のレーザ光、又は、非レーザ光等が挙げられる。分離層14に照射する光を発射するレーザは、分離層14を構成している材料に応じて適宜選択することが可能であり、分離層14を構成する材料を変質させ得る波長の光を照射するレーザを選択すればよい。
(フルオロカーボン)
分離層14の材料としてはフルオロカーボンが好ましい。分離層14がフルオロカーボンを含んで構成されることにより、耐薬品性を向上することができる。また、フルオロカーボンからなる分離層14は、光を吸収することによって変質するようになっており、その結果として、光の照射を受ける前の強度又は接着性を失う。よって、わずかな外力を加える(例えば、サポートプレート12を持ち上げるなど)ことによって、分離層14が破壊されて、サポートプレート12と基板11とを容易に分離することができる。
また、一つの観点からいえば、分離層14を構成するフルオロカーボンは、プラズマCVD法によって好適に成膜され得る。なお、フルオロカーボンは、C(パーフルオロカーボン)及びC(x、y及びzは整数)を含み、これらに限定されないが、例えば、CHF、CH、C、C、C、C等で有り得る。また、分離層14を構成するために用いるフルオロカーボンに対して、必要に応じて窒素、ヘリウム、アルゴン等の不活性ガス、アルカン、アルケンなどの炭化水素、及び、酸素、二酸化炭素、水素を添加してもよい。また、これらのガスを複数種混合して用いてもよい(フルオロカーボン、水素、窒素の混合ガス等)。また、分離層14は、単一種のフルオロカーボンから構成されていてもよいし、2種類以上のフルオロカーボンから構成されていてもよい。
フルオロカーボンは、その種類によって固有の範囲の波長を有する光を吸収する。分離層14に用いたフルオロカーボンが吸収する範囲の波長の光を分離層に照射することにより、フルオロカーボンを好適に変質させ得る。なお、分離層14における光の吸収率は80%以上であることが好ましい。
分離層14に照射する光としては、フルオロカーボンが吸収可能な波長に応じて、例えば、YAGレーザ、ビーレーザ、ガラスレーザ、YVOレーザ、LDレーザ、ファイバーレーザ等の固体レーザ、色素レーザ等の液体レーザ、COレーザ、エキシマレーザ、Arレーザ、He−Neレーザ等の気体レーザ、半導体レーザ、自由電子レーザ等のレーザ光、又は、非レーザ光を適宜用いればよい。フルオロカーボンを変質させ得る波長としては、これに限定されるものではないが、例えば、600nm以下の範囲のものを用いることができる。
(光吸収性を有している構造をその繰り返し単位に含んでいる重合体)
分離層14は、光吸収性を有している構造をその繰り返し単位に含んでいる重合体を含有していてもよい。該重合体は、光の照射を受けて変質する。該重合体の変質は、上記構造が照射された光を吸収することによって生じる。分離層14は、重合体の変質の結果として、光の照射を受ける前の強度又は接着性を失っている。よって、わずかな外力を加える(例えば、サポートプレート12を持ち上げるなど)ことによって、分離層14が破壊されて、サポートプレート12と基板11とを容易に分離することができる。
光吸収性を有している上記構造は、光を吸収して、繰り返し単位として該構造を含んでいる重合体を変質させる化学構造である。該構造は、例えば、置換若しくは非置換のベンゼン環、縮合環又は複素環からなる共役π電子系を含んでいる原子団である。より詳細には、該構造は、カルド構造、又は上記重合体の側鎖に存在するベンゾフェノン構造、ジフェニルスルフォキシド構造、ジフェニルスルホン構造(ビスフェニルスルホン構造)、ジフェニル構造若しくはジフェニルアミン構造であり得る。
上記構造が上記重合体の側鎖に存在する場合、該構造は以下の式によって表され得る。
Figure 0006055354
(式中、Rはそれぞれ独立して、アルキル基、アリール基、ハロゲン、水酸基、ケトン基、スルホキシド基、スルホン基又はN(R)(R)であり(ここで、R及びRはそれぞれ独立して、水素原子又は炭素数1〜5のアルキル基である)、Zは、存在しないか、又はCO−、−SO−、−SO−若しくはNH−であり、nは0又は1〜5の整数である。)
また、上記重合体は、例えば、以下の式のうち、(a)〜(d)の何れかによって表される繰り返し単位を含んでいるか、(e)によって表されるか、又は(f)の構造をその主鎖に含んでいる。
Figure 0006055354
(式中、lは1以上の整数であり、mは0又は1〜2の整数であり、Xは、(a)〜(e)において上記の“化1”に示した式のいずれかであり、(f)において上記の“化1”に示した式のいずれかであるか、又は存在せず、Y及びYはそれぞれ独立して、−CO−又はSO−である。lは好ましくは10以下の整数である。)
上記の“化1”に示されるベンゼン環、縮合環及び複素環の例としては、フェニル、置換フェニル、ベンジル、置換ベンジル、ナフタレン、置換ナフタレン、アントラセン、置換アントラセン、アントラキノン、置換アントラキノン、アクリジン、置換アクリジン、アゾベンゼン、置換アゾベンゼン、フルオリム、置換フルオリム、フルオリモン、置換フルオリモン、カルバゾール、置換カルバゾール、N−アルキルカルバゾール、ジベンゾフラン、置換ジベンゾフラン、フェナンスレン、置換フェナンスレン、ピレン及び置換ピレンが挙げられる。例示した置換基が置換を有している場合、その置換基は、例えば、アルキル、アリール、ハロゲン原子、アルコキシ、ニトロ、アルデヒド、シアノ、アミド、ジアルキルアミノ、スルホンアミド、イミド、カルボン酸、カルボン酸エステル、スルホン酸、スルホン酸エステル、アルキルアミノ及びアリールアミノから選択される。
上記の“化1”に示される置換基のうち、フェニル基を2つ有している5番目の置換基であって、Zが−SO−である場合の例としては、ビス(2,4‐ジヒドロキシフェニル)スルホン、ビス(3,4‐ジヒドロキシフェニル)スルホン、ビス(3,5‐ジヒドロキシフェニル)スルホン、ビス(3,6‐ジヒドロキシフェニル)スルホン、ビス(4‐ヒドロキシフェニル)スルホン、ビス(3‐ヒドロキシフェニル)スルホン、ビス(2‐ヒドロキシフェニル)スルホン、及びビス(3,5‐ジメチル‐4‐ヒドロキシフェニル)スルホンなどが挙げられる。
上記の“化1”に示される置換基のうち、フェニル基を2つ有している5番目の置換基であって、Zが−SO−である場合の例としては、ビス(2,3‐ジヒドロキシフェニル)スルホキシド、ビス(5‐クロロ‐2,3‐ジヒドロキシフェニル)スルホキシド、ビス(2,4‐ジヒドロキシフェニル)スルホキシド、ビス(2,4‐ジヒドロキシ‐6‐メチルフェニル)スルホキシド、ビス(5‐クロロ‐2,4‐ジヒドロキシフェニル)スルホキシド、ビス(2,5‐ジヒドロキシフェニル)スルホキシド、ビス(3,4‐ジヒドロキシフェニル)スルホキシド、ビス(3,5‐ジヒドロキシフェニル)スルホキシド、ビス(2,3,4‐トリヒドロキシフェニル)スルホキシド、ビス(2,3,4‐トリヒドロキシ‐6‐メチルフェニル)‐スルホキシド、ビス(5‐クロロ‐2,3,4‐トリヒドロキシフェニル)スルホキシド、ビス(2,4,6‐トリヒドロキシフェニル)スルホキシド、ビス(5‐クロロ‐2,4,6‐トリヒドロキシフェニル)スルホキシドなどが挙げられる。
上記の“化1”に示される置換基のうち、フェニル基を2つ有している5番目の置換基であって、Zが−C(=O)−である場合の例としては、2,4‐ジヒドロキシベンゾフェノン、2,3,4‐トリヒドロキシベンゾフェノン、2,2’,4,4’‐テトラヒドロキシベンゾフェノン、2,2’,5,6’‐テトラヒドロキシベンゾフェノン、2‐ヒドロキシ‐4‐メトキシベンゾフェノン、2‐ヒドロキシ‐4‐オクトキシベンゾフェノン、2‐ヒドロキシ‐4‐ドデシルオキシベンゾフェノン、2,2’‐ジヒドロキシ‐4‐メトキシベンゾフェノン、2,6‐ジヒドロキシ‐4‐メトキシベンゾフェノン、2,2’‐ジヒドロキシ‐4,4’‐ジメトキシベンゾフェノン、4‐アミノ‐2’‐ヒドロキシベンゾフェノン、4‐ジメチルアミノ‐2’‐ヒドロキシベンゾフェノン、4‐ジエチルアミノ‐2’‐ヒドロキシベンゾフェノン、4‐ジメチルアミノ‐4’‐メトキシ‐2’‐ヒドロキシベンゾフェノン、4‐ジメチルアミノ‐2’,4’‐ジヒドロキシベンゾフェノン、及び4‐ジメチルアミノ‐3’,4’‐ジヒドロキシベンゾフェノンなどが挙げられる。
上記構造が上記重合体の側鎖に存在している場合、上記構造を含んでいる繰り返し単位の、上記重合体に占める割合は、分離層14の光の透過率が0.001%以上、10%以下になる範囲にある。該割合がこのような範囲に収まるように重合体が調製されていれば、分離層14が十分に光を吸収して、確実かつ迅速に変質し得る。すなわち、積層体1からのサポートプレート12の除去が容易であり、該除去に必要な光の照射時間を短縮させることができる。
上記構造は、その種類の選択によって、所望の範囲の波長を有している光を吸収することができる。例えば、上記構造が吸収可能な光の波長は、100nm以上、2000nm以下であることがより好ましい。この範囲のうち、上記構造が吸収可能な光の波長は、より短波長側であり、例えば、100nm以上、500nm以下である。例えば、上記構造は、好ましくはおよそ300nm以上、370nm以下の波長を有している紫外光を吸収することによって、該構造を含んでいる重合体を変質させ得る。
上記構造が吸収可能な光は、例えば、高圧水銀ランプ(波長:254nm以上、436nm以下)、KrFエキシマレーザ(波長:248nm)、ArFエキシマレーザ(波長:193nm)、F2エキシマレーザ(波長:157nm)、XeClレーザ(波長:308nm)、XeFレーザ(波長:351nm)若しくは固体UVレーザ(波長:355nm)から発せられる光、又はg線(波長:436nm)、h線(波長:405nm)若しくはi線(波長:365nm)などである。
上述した分離層14は、繰り返し単位として上記構造を含んでいる重合体を含有しているが、分離層14はさらに、上記重合体以外の成分を含み得る。該成分としては、フィラー、可塑剤、及びサポートプレート12の剥離性を向上し得る成分などが挙げられる。これらの成分は、上記構造による光の吸収、及び重合体の変質を妨げないか、又は促進する、従来公知の物質又は材料から適宜選択される。
(無機物)
分離層14は、無機物からなっていてもよい。分離層14は、無機物によって構成されることにより、光を吸収することによって変質するようになっており、その結果として、光の照射を受ける前の強度又は接着性を失う。よって、わずかな外力を加える(例えば、サポートプレート12を持ち上げるなど)ことによって、分離層14が破壊されて、サポートプレート12と基板11とを容易に分離することができる。
上記無機物は、光を吸収することによって変質する構成であればよく、例えば、金属、金属化合物及びカーボンからなる群より選択される1種類以上の無機物を好適に用いることができる。金属化合物とは、金属原子を含む化合物を指し、例えば、金属酸化物、金属窒化物であり得る。このような無機物の例示としては、これに限定されるものではないが、金、銀、銅、鉄、ニッケル、アルミニウム、チタン、クロム、SiO、SiN、Si、TiN、及びカーボンからなる群より選ばれる1種類以上の無機物が挙げられる。なお、カーボンとは炭素の同素体も含まれ得る概念であり、例えば、ダイヤモンド、フラーレン、ダイヤモンドライクカーボン、カーボンナノチューブ等であり得る。
上記無機物は、その種類によって固有の範囲の波長を有する光を吸収する。分離層14に用いた無機物が吸収する範囲の波長の光を分離層に照射することにより、上記無機物を好適に変質させ得る。
無機物からなる分離層14に照射する光としては、上記無機物が吸収可能な波長に応じて、例えば、YAGレーザ、ビーレーザ、ガラスレーザ、YVOレーザ、LDレーザ、ファイバーレーザ等の固体レーザ、色素レーザ等の液体レーザ、COレーザ、エキシマレーザ、Arレーザ、He−Neレーザ等の気体レーザ、半導体レーザ、自由電子レーザ等のレーザ光、又は、非レーザ光を適宜用いればよい。
無機物からなる分離層14は、例えばスパッタ、化学蒸着(CVD)、メッキ、プラズマCVD、スピンコート等の公知の技術により、サポートプレート12上に形成され得る。無機物からなる分離層14の厚さは特に限定されず、使用する光を十分に吸収し得る膜厚であればよいが、例えば、0.05μm以上、10μm以下の膜厚とすることがより好ましい。また、分離層14を構成する無機物からなる無機膜(例えば、金属膜)の両面又は片面に予め接着剤を塗布し、サポートプレート12及び基板11に貼り付けてもよい。
なお、分離層14として金属膜を使用する場合には、分離層14の膜質、レーザ光源の種類、レーザ出力等の条件によっては、レーザの反射や膜への帯電等が起こり得る。そのため、反射防止膜や帯電防止膜を分離層14の上下又はどちらか一方に設けることで、それらの対策を図ることが好ましい。
(赤外線吸収性の構造を有する化合物)
分離層14は、赤外線吸収性の構造を有する化合物によって形成されていてもよい。該化合物は、赤外線を吸収することにより変質する。分離層14は、化合物の変質の結果として、赤外線の照射を受ける前の強度又は接着性を失っている。よって、わずかな外力を加える(例えば、支持体を持ち上げるなど)ことによって、分離層14が破壊されて、サポートプレート12と基板11とを容易に分離することができる。
赤外線吸収性を有している構造又は赤外線吸収性を有している構造を含む化合物としては、例えば、アルカン、アルケン(ビニル、トランス、シス、ビニリデン、三置換、四置換、共役、クムレン、環式)、アルキン(一置換、二置換)、単環式芳香族(ベンゼン、一置換、二置換、三置換)、アルコール及びフェノール類(自由OH、分子内水素結合、分子間水素結合、飽和第二級、飽和第三級、不飽和第二級、不飽和第三級)、アセタール、ケタール、脂肪族エーテル、芳香族エーテル、ビニルエーテル、オキシラン環エーテル、過酸化物エーテル、ケトン、ジアルキルカルボニル、芳香族カルボニル、1,3−ジケトンのエノール、o−ヒドロキシアリールケトン、ジアルキルアルデヒド、芳香族アルデヒド、カルボン酸(二量体、カルボン酸アニオン)、ギ酸エステル、酢酸エステル、共役エステル、非共役エステル、芳香族エステル、ラクトン(β−、γ−、δ−)、脂肪族酸塩化物、芳香族酸塩化物、酸無水物(共役、非共役、環式、非環式)、第一級アミド、第二級アミド、ラクタム、第一級アミン(脂肪族、芳香族)、第二級アミン(脂肪族、芳香族)、第三級アミン(脂肪族、芳香族)、第一級アミン塩、第二級アミン塩、第三級アミン塩、アンモニウムイオン、脂肪族ニトリル、芳香族ニトリル、カルボジイミド、脂肪族イソニトリル、芳香族イソニトリル、イソシアン酸エステル、チオシアン酸エステル、脂肪族イソチオシアン酸エステル、芳香族イソチオシアン酸エステル、脂肪族ニトロ化合物、芳香族ニトロ化合物、ニトロアミン、ニトロソアミン、硝酸エステル、亜硝酸エステル、ニトロソ結合(脂肪族、芳香族、単量体、二量体)、メルカプタン及びチオフェノール及びチオール酸などの硫黄化合物、チオカルボニル基、スルホキシド、スルホン、塩化スルホニル、第一級スルホンアミド、第二級スルホンアミド、硫酸エステル、炭素−ハロゲン結合、Si−A結合(Aは、H、C、O又はハロゲン)、P−A結合(Aは、H、C又はO)、又はTi−O結合であり得る。
上記炭素−ハロゲン結合を含む構造としては、例えば、−CHCl、−CHBr、−CHI、−CF−、−CF、−CH=CF、−CF=CF、フッ化アリール、及び塩化アリールなどが挙げられる。
上記Si−A結合を含む構造としては、SiH、SiH、SiH、Si−CH、Si−CH−、Si−C、SiO−脂肪族、Si−OCH、Si−OCHCH、Si−OC、Si−O−Si、Si−OH、SiF、SiF、及びSiFなどが挙げられる。Si−A結合を含む構造としては、特に、シロキサン骨格及びシルセスキオキサン骨格を形成していることが好ましい。
上記P−A結合を含む構造としては、PH、PH、P−CH、P−CH−、P−C、A −P−O(Aは脂肪族又は芳香族)、(AO)−P−O(Aはアルキル)、P−OCH、P−OCHCH、P−OC、P−O−P、P−OH、及びO=P−OHなどが挙げられる。
上記構造は、その種類の選択によって、所望の範囲の波長を有している赤外線を吸収することができる。具体的には、上記構造が吸収可能な赤外線の波長は、例えば1μm以上、20μm以下の範囲内であり、2μm以上、15μm以下の範囲内をより好適に吸収できる。さらに、上記構造がSi−O結合、Si−C結合及びTi−O結合である場合には、9μm以上、11μm以下の範囲内であり得る。なお、各構造が吸収できる赤外線の波長は当業者であれば容易に理解することができる。例えば、各構造における吸収帯として、非特許文献:SILVERSTEIN・BASSLER・MORRILL著「有機化合物のスペクトルによる同定法(第5版)−MS、IR、NMR、UVの併用−」(1992年発行)第146頁〜第151頁の記載を参照することができる。
分離層14の形成に用いられる、赤外線吸収性の構造を有する化合物としては、上述のような構造を有している化合物のうち、塗布のために溶媒に溶解でき、固化されて固層を形成できるものであれば、特に限定されるものではない。しかしながら、分離層14における化合物を効果的に変質させ、サポートプレート12と基板11との分離を容易にするには、分離層14における赤外線の吸収が大きいこと、すなわち、分離層14に赤外線を照射したときの赤外線の透過率が低いことが好ましい。具体的には、分離層14における赤外線の透過率が90%より低いことが好ましく、赤外線の透過率が80%より低いことがより好ましい。
一例を挙げて説明すれば、シロキサン骨格を有する化合物としては、例えば、下記化学式(1)で表される繰り返し単位及び下記化学式(2)で表される繰り返し単位の共重合体である樹脂、あるいは下記化学式(1)で表される繰り返し単位及びアクリル系化合物由来の繰り返し単位の共重合体である樹脂を用いることができる。
Figure 0006055354
(化学式(2)中、Rは、水素、炭素数10以下のアルキル基、又は炭素数10以下のアルコキシ基である。)
中でも、シロキサン骨格を有する化合物としては、上記化学式(1)で表される繰り返し単位及び下記化学式(3)で表される繰り返し単位の共重合体であるt−ブチルスチレン(TBST)−ジメチルシロキサン共重合体がより好ましく、上記式(1)で表される繰り返し単位及び下記化学式(3)で表される繰り返し単位を1:1で含む、TBST−ジメチルシロキサン共重合体がさらに好ましい。
Figure 0006055354
また、シルセスキオキサン骨格を有する化合物としては、例えば、下記化学式(4)で表される繰り返し単位及び下記化学式(5)で表される繰り返し単位の共重合体である樹脂を用いることができる。
Figure 0006055354
(化学式(4)中、Rは、水素又は炭素数1以上、10以下のアルキル基であり、化学式(5)中、Rは、炭素数1以上、10以下のアルキル基、又はフェニル基である。)
シルセスキオキサン骨格を有する化合物としては、このほかにも、特開2007−258663号公報(2007年10月4日公開)、特開2010−120901号公報(2010年6月3日公開)、特開2009−263316号公報(2009年11月12日公開)及び特開2009−263596号公報(2009年11月12日公開)において開示されている各シルセスキオキサン樹脂を好適に利用することができる。
中でも、シルセスキオキサン骨格を有する化合物としては、下記化学式(6)で表される繰り返し単位及び下記化学式(7)で表される繰り返し単位の共重合体がより好ましく、下記化学式(6)で表される繰り返し単位及び下記化学式(7)で表される繰り返し単位を7:3で含む共重合体がさらに好ましい。
Figure 0006055354
シルセスキオキサン骨格を有する重合体としては、ランダム構造、ラダー構造、及び籠型構造があり得るが、何れの構造であってもよい。
また、Ti−O結合を含む化合物としては、例えば、(i)テトラ−i−プロポキシチタン、テトラ−n−ブトキシチタン、テトラキス(2−エチルヘキシルオキシ)チタン、及びチタニウム−i−プロポキシオクチレングリコレートなどのアルコキシチタン;(ii)ジ−i−プロポキシ・ビス(アセチルアセトナト)チタン、及びプロパンジオキシチタンビス(エチルアセトアセテート)などのキレートチタン;(iii)i−CO−[−Ti(O−i−C−O−]−i−C、及びn−CO−[−Ti(O−n−C−O−]−n−Cなどのチタンポリマー;(iv)トリ−n−ブトキシチタンモノステアレート、チタニウムステアレート、ジ−i−プロポキシチタンジイソステアレート、及び(2−n−ブトキシカルボニルベンゾイルオキシ)トリブトキシチタンなどのアシレートチタン;(v)ジ−n−ブトキシ・ビス(トリエタノールアミナト)チタンなどの水溶性チタン化合物などが挙げられる。
中でも、Ti−O結合を含む化合物としては、ジ−n−ブトキシ・ビス(トリエタノールアミナト)チタン(Ti(OC[OCN(COH))が好ましい。
上述した分離層14は、赤外線吸収性の構造を有する化合物を含有しているが、分離層14はさらに、上記化合物以外の成分を含み得る。該成分としては、フィラー、可塑剤、及びサポートプレート12の剥離性を向上し得る成分などが挙げられる。これらの成分は、上記構造による赤外線の吸収、及び化合物の変質を妨げないか、又は促進する、従来公知の物質又は材料から適宜選択される。
(赤外線吸収物質)
分離層14は、赤外線吸収物質を含有していてもよい。分離層14は、赤外線吸収物質を含有して構成されることにより、光を吸収することによって変質するようになっており、その結果として、光の照射を受ける前の強度又は接着性を失う。よって、わずかな外力を加える(例えば、サポートプレート12を持ち上げるなど)ことによって、分離層14が破壊されて、サポートプレート12と基板11とを容易に分離することができる。
赤外線吸収物質は、赤外線を吸収することによって変質する構成であればよく、例えば、カーボンブラック、鉄粒子、又はアルミニウム粒子を好適に用いることができる。赤外線吸収物質は、その種類によって固有の範囲の波長を有する光を吸収する。分離層14に用いた赤外線吸収物質が吸収する範囲の波長の光を分離層14に照射することにより、赤外線吸収物質を好適に変質させ得る。
〔接着層形成工程〕
図1の(3)及び(4)に示すように、接着層形成工程は、基板11の、積層体1においてサポートプレート12と対向する側の面に接着層13を形成する工程である。なお、接着層形成工程は、分離層形成工程よりも前に行ってもよいし、後に行ってもよいし、並行して行ってもよい。
(基板)
基板11は、サポートプレート12に支持された状態(積層体1が構成された状態)で、薄化、実装等のプロセスに供されるものである。一実施形態において、基板11はウエハであるが、本発明に係る積層体が備える基板は、ウエハに限定されず、薄いフィルム基板、フレキシブル基板等の任意の基板を採用することができる。また、基板11における接着層13側の面には、電気回路等の電子素子の微細構造が形成されていてもよい。
(接着層)
接着層13は、基板11を、サポートプレート12及び分離層14に対して接着固定するものである。また、接着層13は、基板11の表面を覆って保護するものであってもよい。
接着層13の形成方法としては、基板11に接着剤を塗布してもよいし、接着剤が両面に塗布された接着テープを貼り付けてもよい。接着剤の塗布方法としては、特に限定されないが、例えば、スピンコート法、ディッピング法、ローラーブレード法、ドクターブレード法、スプレー法、スリットノズル法による塗布法等が挙げられる。また、接着剤を塗布した後、加熱により乾燥させてもよい。
接着層の厚さは、貼り付けの対象となる基板11及びサポートプレート12の種類、貼り付け後の基板11に施される処理等に応じて適宜設定すればよいが、10〜150μmの範囲内であることが好ましく、15〜100μmの範囲内であることがより好ましい。
接着剤として、例えばアクリル系、ノボラック系、ナフトキン系、炭化水素系、ポリイミド系、エラストマー等の、当該分野において公知の種々の接着剤が、本発明に係る接着層13を構成する接着剤として使用可能である。以下では、本実施の形態における接着層13が含有する樹脂の組成について説明する。
接着層13が含有する樹脂としては、接着性を備えたものであればよく、例えば、炭化水素樹脂、アクリル−スチレン系樹脂、マレイミド系樹脂、エラストマー樹脂等、又はこれらを組み合わせたものなどが挙げられる。
(炭化水素樹脂)
炭化水素樹脂は、炭化水素骨格を有し、単量体組成物を重合してなる樹脂である。炭化水素樹脂として、シクロオレフィン系ポリマー(以下、「樹脂(A)」ということがある)、ならびに、テルペン樹脂、ロジン系樹脂及び石油樹脂からなる群より選ばれる少なくとも1種の樹脂(以下、「樹脂(B)」ということがある)等が挙げられるが、これに限定されない。
樹脂(A)としては、シクロオレフィン系モノマーを含む単量体成分を重合してなる樹脂であってもよい。具体的には、シクロオレフィン系モノマーを含む単量体成分の開環(共)重合体、シクロオレフィン系モノマーを含む単量体成分を付加(共)重合させた樹脂などが挙げられる。
樹脂(A)を構成する単量体成分に含まれる前記シクロオレフィン系モノマーとしては、例えば、ノルボルネン、ノルボルナジエンなどの二環体、ジシクロペンタジエン、ジヒドロキシペンタジエンなどの三環体、テトラシクロドデセンなどの四環体、シクロペンタジエン三量体などの五環体、テトラシクロペンタジエンなどの七環体、又はこれら多環体のアルキル(メチル、エチル、プロピル、ブチルなど)置換体、アルケニル(ビニルなど)置換体、アルキリデン(エチリデンなど)置換体、アリール(フェニル、トリル、ナフチルなど)置換体等が挙げられる。これらの中でも特に、ノルボルネン、テトラシクロドデセン、又はこれらのアルキル置換体からなる群より選ばれるノルボルネン系モノマーが好ましい。
樹脂(A)を構成する単量体成分は、上述したシクロオレフィン系モノマーと共重合可能な他のモノマーを含有していてもよく、例えば、アルケンモノマーを含有することが好ましい。アルケンモノマーとしては、例えば、エチレン、プロピレン、1−ブテン、イソブテン、1−ヘキセン、α−オレフィンなどが挙げられる。アルケンモノマーは、直鎖状であってもよいし、分岐鎖状であってもよい。
また、樹脂(A)を構成する単量体成分として、シクロオレフィンモノマーを含有することが、高耐熱性(低い熱分解、熱重量減少性)の観点から好ましい。樹脂(A)を構成する単量体成分全体に対するシクロオレフィンモノマーの割合は、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、20モル%以上であることがさらに好ましい。また、樹脂(A)を構成する単量体成分全体に対するシクロオレフィンモノマーの割合は、特に限定されないが、溶解性及び溶液での経時安定性の観点からは80モル%以下であることが好ましく、70モル%以下であることがより好ましい。
また、樹脂(A)を構成する単量体成分として、直鎖状又は分岐鎖状のアルケンモノマーを含有してもよい。樹脂(A)を構成する単量体成分全体に対するアルケンモノマーの割合は、溶解性及び柔軟性の観点からは10〜90モル%であることが好ましく、20〜85モル%であることがより好ましく、30〜80モル%であることがさらに好ましい。
なお、樹脂(A)は、例えば、シクロオレフィン系モノマーとアルケンモノマーとからなる単量体成分を重合させてなる樹脂のように、極性基を有していない樹脂であることが、高温下でのガスの発生を抑制するうえで好ましい。
単量体成分を重合するときの重合方法や重合条件等については、特に制限はなく、常法に従い適宜設定すればよい。
樹脂(A)として用いることのできる市販品としては、例えば、ポリプラスチックス株式会社製の「TOPAS」、三井化学株式会社製の「APEL」、日本ゼオン株式会社製の「ZEONOR」及び「ZEONEX」、JSR株式会社製の「ARTON」などが挙げられる。
樹脂(A)のガラス転移点(Tg)は、60℃以上であることが好ましく、70℃以上であることが特に好ましい。樹脂(A)のガラス転移点が60℃以上であると、積層体が高温環境に曝されたときに接着層の軟化をさらに抑制することができる。
樹脂(B)は、テルペン系樹脂、ロジン系樹脂及び石油樹脂からなる群より選ばれる少なくとも1種の樹脂である。具体的には、テルペン系樹脂としては、例えば、テルペン樹脂、テルペンフェノール樹脂、変性テルペン樹脂、水添テルペン樹脂、水添テルペンフェノール樹脂等が挙げられる。ロジン系樹脂としては、例えば、ロジン、ロジンエステル、水添ロジン、水添ロジンエステル、重合ロジン、重合ロジンエステル、変性ロジン等が挙げられる。石油樹脂としては、例えば、脂肪族又は芳香族石油樹脂、水添石油樹脂、変性石油樹脂、脂環族石油樹脂、クマロン・インデン石油樹脂等が挙げられる。これらの中でも、水添テルペン樹脂、水添石油樹脂がより好ましい。
樹脂(B)の軟化点は特に限定されないが、80〜160℃であることが好ましい。樹脂(B)の軟化点が80℃以上であると、積層体が高温環境に曝されたときに軟化することを抑制することができ、接着不良を生じない。一方、樹脂(B)の軟化点が160℃以下であると、積層体を剥離するときの剥離速度が良好なものとなる。
樹脂(B)の分子量は特に限定されないが、300〜3000であることが好ましい。樹脂(B)の分子量が300以上であると、耐熱性が充分なものとなり、高温環境下において脱ガス量が少なくなる。一方、樹脂(B)の分子量が3000以下であると、積層体を剥離するときの剥離速度が良好なものとなる。なお、本実施形態における樹脂(B)の分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)で測定されるポリスチレン換算の分子量を意味するものである。
なお、樹脂として、樹脂(A)と樹脂(B)とを混合したものを用いてもよい。混合することにより、耐熱性及び剥離速度が良好なものとなる。例えば、樹脂(A)と樹脂(B)との混合割合としては、(A):(B)=80:20〜55:45(質量比)であることが、剥離速度、高温環境時の熱耐性、及び柔軟性に優れるので好ましい。
(アクリル−スチレン系樹脂)
アクリル−スチレン系樹脂としては、例えば、スチレン又はスチレンの誘導体と、(メタ)アクリル酸エステル等とを単量体として用いて重合した樹脂が挙げられる。
(メタ)アクリル酸エステルとしては、例えば、鎖式構造からなる(メタ)アクリル酸アルキルエステル、脂肪族環を有する(メタ)アクリル酸エステル、芳香族環を有する(メタ)アクリル酸エステルが挙げられる。鎖式構造からなる(メタ)アクリル酸アルキルエステルとしては、炭素数15〜20のアルキル基を有するアクリル系長鎖アルキルエステル、炭素数1〜14のアルキル基を有するアクリル系アルキルエステル等が挙げられる。アクリル系長鎖アルキルエステルとしては、アルキル基がn−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基等であるアクリル酸又はメタクリル酸のアルキルエステルが挙げられる。なお、当該アルキル基は、分岐状であってもよい。
炭素数1〜14のアルキル基を有するアクリル系アルキルエステルとしては、既存のアクリル系接着剤に用いられている公知のアクリル系アルキルエステルが挙げられる。例えば、アルキル基が、メチル基、エチル基、プロピル基、ブチル基、2−エチルヘキシル基、イソオクチル基、イソノニル基、イソデシル基、ドデシル基、ラウリル基、トリデシル基等からなるアクリル酸又はメタクリル酸のアルキルエステルが挙げられる。
脂肪族環を有する(メタ)アクリル酸エステルとしては、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、1−アダマンチル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等が挙げられるが、イソボルニルメタアクリレート、ジシクロペンタニル(メタ)アクリレートがより好ましい。
芳香族環を有する(メタ)アクリル酸エステルとしては、特に限定されるものではないが、芳香族環としては、例えばフェニル基、ベンジル基、トリル基、キシリル基、ビフェニル基、ナフチル基、アントラセニル基、フェノキシメチル基、フェノキシエチル基等が挙げられる。また、芳香族環は、炭素数1〜5の鎖状又は分岐状のアルキル基を有していてもよい。具体的には、フェノキシエチルアクリレートが好ましい。
(マレイミド系樹脂)
マレイミド系樹脂としては、例えば、単量体として、N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−イソプロピルマレイミド、N−n−ブチルマレイミド、N−イソブチルマレイミド、N−sec−ブチルマレイミド、N−tert−ブチルマレイミド、N−n−ペンチルマレイミド、N−n−ヘキシルマレイミド、N−n−へプチルマレイミド、N−n−オクチルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミドなどのアルキル基を有するマレイミド、N−シクロプロピルマレイミド、N−シクロブチルマレイミド、N−シクロペンチルマレイミド、N−シクロヘキシルマレイミド、N−シクロヘプチルマレイミド、N−シクロオクチルマレイミド等の脂肪族炭化水素基を有するマレイミド、N−フェニルマレイミド、N−m−メチルフェニルマレイミド、N−o−メチルフェニルマレイミド、N−p−メチルフェニルマレイミド等のアリール基を有する芳香族マレイミド等を重合して得られた樹脂が挙げられる。
例えば、下記化学式(8)で表される繰り返し単位及び下記化学式(9)で表される繰り返し単位の共重合体であるシクロオレフィンコポリマーを接着成分の樹脂として用いることができる。
Figure 0006055354
(化学式(9)中、nは0又は1〜3の整数である。)
このようなシクロオレフィンコポリマーとしては、APL 8008T、APL 8009T、及びAPL 6013T(全て三井化学株式会社製)などを使用することができる。
(エラストマー)
エラストマーは、主鎖の構成単位としてスチレン単位を含んでいることが好ましく、当該「スチレン単位」は置換基を有していてもよい。置換基としては、例えば、炭素数1〜5のアルキル基、炭素数1〜5のアルコキシ基、炭素数1〜5のアルコキシアルキル基、アセトキシ基、カルボキシル基等が挙げられる。また、当該スチレン単位の含有量が14重量%以上、50重量%以下の範囲であることがより好ましい。さらに、エラストマーは、重量平均分子量が10,000以上、200,000以下の範囲であることが好ましい。
スチレン単位の含有量が14重量%以上、50重量%以下の範囲であり、エラストマーの重量平均分子量が10,000以上、200,000以下の範囲であれば、後述する炭化水素系の溶剤に容易に溶解するので、より容易且つ迅速に接着層を除去することができる。また、スチレン単位の含有量及び重量平均分子量が上記の範囲であることにより、ウエハがレジストリソグラフィー工程に供されるときに曝されるレジスト溶剤(例えばPGMEA、PGME等)、酸(フッ化水素酸等)、アルカリ(TMAH等)に対して優れた耐性を発揮する。
なお、エラストマーには、上述した(メタ)アクリル酸エステルをさらに混合してもよい。
また、スチレン単位の含有量は、より好ましくは17重量%以上であり、また、より好ましくは40重量%以下である。
重量平均分子量のより好ましい範囲は20,000以上であり、また、より好ましい範囲は150,000以下である。
エラストマーとしては、スチレン単位の含有量が14重量%以上、50重量%以下の範囲であり、エラストマーの重量平均分子量が10,000以上、200,000以下の範囲であれば、種々のエラストマーを用いることができる。例えば、ポリスチレン−ポリ(エチレン/プロピレン)ブロックコポリマー(SEP)、スチレン−イソプレン−スチレンブロックコポリマー(SIS)、スチレン−ブタジエン−スチレンブロックコポリマー(SBS)、スチレン−ブタジエン−ブチレン−スチレンブロックコポリマー(SBBS)、及び、これらの水添物、スチレン−エチレン−ブチレン−スチレンブロックコポリマー(SEBS)、スチレン−エチレン−プロピレン−スチレンブロックコポリマー(スチレン−イソプレン−スチレンブロックコポリマー)(SEPS)、スチレン−エチレン−エチレン−プロピレン−スチレンブロックコポリマー(SEEPS)、スチレンブロックが反応架橋型のスチレン−エチレン−エチレン−プロピレン−スチレンブロックコポリマー(SeptonV9461(株式会社クラレ製))、スチレンブロックが反応架橋型のスチレン−エチレン−ブチレン−スチレンブロックコポリマー(反応性のポリスチレン系ハードブロックを有する、SeptonV9827(株式会社クラレ製))等であって、スチレン単位の含有量及び重量平均分子量が上述の範囲であるものを用いることができる。
また、エラストマーの中でも水添物がより好ましい。水添物であれば熱に対する安定性が向上し、分解や重合等の変質が起こりにくい。また、炭化水素系溶剤への溶解性及びレジスト溶剤への耐性の観点からもより好ましい。
また、エラストマーの中でも両端がスチレンのブロック重合体であるものがより好ましい。熱安定性の高いスチレンを両末端にブロックすることでより高い耐熱性を示すからである。
より具体的には、エラストマーは、スチレン及び共役ジエンのブロックコポリマーの水添物であることがより好ましい。熱に対する安定性が向上し、分解や重合等の変質が起こりにくい。また、熱安定性の高いスチレンを両末端にブロックすることでより高い耐熱性を示す。さらに、炭化水素系溶剤への溶解性及びレジスト溶剤への耐性の観点からもより好ましい。
本発明に係る接着剤組成物に含まれるエラストマーとして用いられ得る市販品としては、例えば、株式会社クラレ製「セプトン(商品名)」、株式会社クラレ製「ハイブラー(商品名)」、旭化成株式会社製「タフテック(商品名)」、JSR株式会社製「ダイナロン(商品名)」等が挙げられる。
本発明に係る接着剤組成物に含まれるエラストマーの含有量としては、例えば、接着剤組成物全量を100重量部として、50重量部以上、99重量部以下が好ましく、60重量部以上、99重量部以下がより好ましく、70重量部以上、95重量部以下が最も好ましい。これらの範囲にすることにより、耐熱性を維持しつつ、ウエハと支持体とを好適に貼り合わせることができる。
また、エラストマーは、複数の種類を混合してもよい。つまり、本発明に係る接着剤組成物は複数の種類のエラストマーを含んでもよい。複数の種類のエラストマーのうち少なくとも一つが、主鎖の構成単位としてスチレン単位を含んでいればよい。また、複数の種類のエラストマーのうち少なくとも一つが、スチレン単位の含有量が14重量%以上、50重量%以下の範囲である、又は、重量平均分子量が10,000以上、200,000以下の範囲であれば、本発明の範疇である。また、本発明に係る接着剤組成物において、複数の種類のエラストマーを含む場合、混合した結果、スチレン単位の含有量が上記の範囲となるように調整してもよい。例えば、スチレン単位の含有量が30重量%である株式会社クラレ製のセプトン(商品名)のSepton4033と、スチレン単位の含有量が13重量%であるセプトン(商品名)のSepton2063とを重量比1対1で混合すると接着剤組成物に含まれるエラストマー全体に対するスチレン含有量は21〜22重量%となり、従って14重量%以上となる。また、例えば、スチレン単位が10重量%のものと60重量%のものとを1対1で混合すると35重量%となり、上記の範囲内となる。本発明はこのような形態でもよい。また、本発明に係る接着剤組成物に含まれる複数の種類のエラストマーは、全て上記の範囲でスチレン単位を含み、且つ、上記の範囲の重量平均分子量であることが最も好ましい。
なお、光硬化性樹脂(例えば、UV硬化性樹脂)以外の樹脂を用いて接着層13を形成することが好ましい。これは、光硬化性樹脂が、接着層13の剥離又は除去の後に、基板11の微小な凹凸の周辺に残渣として残ってしまう場合があり得るからである。特に、特定の溶剤に溶解する接着剤が接着層13を構成する材料として好ましい。これは、基板11に物理的な力を加えることなく、接着層13を溶剤に溶解させることによって除去可能なためである。接着層13の除去に際して、強度が低下した基板11からでさえ、基板11を破損させたり、変形させたりせずに、容易に接着層13を除去することができる。
(希釈溶剤)
分離層、接着層を形成するときの希釈溶剤として、例えば、ヘキサン、ヘプタン、オクタン、ノナン、メチルオクタン、デカン、ウンデカン、ドデカン、トリデカン等の直鎖状の炭化水素、炭素数4から15の分岐状の炭化水素、例えば、シクロヘキサン、シクロヘプタン、シクロオクタン、ナフタレン、デカヒドロナフタレン、テトラヒドロナフタレン等の環状炭化水素、p−メンタン、o−メンタン、m−メンタン、ジフェニルメンタン、1,4−テルピン、1,8−テルピン、ボルナン、ノルボルナン、ピナン、ツジャン、カラン、ロンギホレン、ゲラニオール、ネロール、リナロール、シトラール、シトロネロール、メントール、イソメントール、ネオメントール、α−テルピネオール、β−テルピネオール、γ−テルピネオール、テルピネン−1−オール、テルピネン−4−オール、ジヒドロターピニルアセテート、1,4−シネオール、1,8−シネオール、ボルネオール、カルボン、ヨノン、ツヨン、カンファー、d−リモネン、l−リモネン、ジペンテン等のテルペン系溶剤;γ−ブチロラクトン等のラクトン類;アセトン、メチルエチルケトン、シクロヘキサノン(CH)、メチル−n−ペンチルケトン、メチルイソペンチルケトン、2−ヘプタノン等のケトン類;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等の多価アルコール類;エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、又はジプロピレングリコールモノアセテート等のエステル結合を有する化合物、前記多価アルコール類又は前記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等のモノアルキルエーテル又はモノフェニルエーテル等のエーテル結合を有する化合物等の多価アルコール類の誘導体(これらの中では、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)が好ましい);ジオキサンのような環式エーテル類や、乳酸メチル、乳酸エチル(EL)、酢酸メチル、酢酸エチル、酢酸ブチル、メトキシブチルアセテート、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等のエステル類;アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル等の芳香族系有機溶剤等を挙げることができる。
(その他の成分)
接着層を構成する接着剤は、本質的な特性を損なわない範囲において、混和性のある他の物質をさらに含んでいてもよい。例えば、接着剤の性能を改良するための付加的樹脂、可塑剤、接着補助剤、安定剤、着色剤、熱重合禁止剤及び界面活性剤等、慣用されている各種添加剤をさらに用いることができる。
〔接着層周端部除去工程〕
図1の(5)に示すように、接着層周端部除去工程は、接着層形成工程において基板11の片面上に接着層13を形成した後、接着層13の基板11上における周端部を除去する工程である。これにより、後の積層体形成工程において、基板11とサポートプレート12とを貼り合わせたときに、接着層13が、積層体1からはみ出してしまうことを好適に抑制することができる。
一例において、接着層13の膜厚を例えば50μmとした場合、基板の周端から2mm以下、好ましくは0.5mm以上、0.8mm以下の範囲の幅で、接着層13の基板11上における周端部を除去することが好ましい。これにより、積層体形成工程において、接着層13が、積層体1からはみ出すことを好適に抑制することができる。
基板11上における周端部に形成された接着層13を除去する方法としては、公知の方法を用いればよく、特に限定されないが、例えば、接着層13の周端部に対して溶解液をスプレーしてもよいし、ディスペンスノズルを用いて分離層14の周端部に溶解液を供給してもよい。また、溶解液のスプレー、供給等は、基板11を回転させながら行ってもよい。
なお、接着層13の溶解液は、接着剤の種類に応じて適宜選択すればよく、特に限定されないが、例えば、上述した希釈溶剤として使用される溶剤を用いることができ、特に、直鎖状の炭化水素、炭素数4から15の分岐状の炭化水素、モノテルペン類、ジテルペン類等の環状の炭化水素(テルペン類)を好適に使用することができる。
〔積層体形成工程〕
図1の(6)に示すように、積層体形成工程は、基板11と、その内周部に分離層14が形成されたサポートプレート12とを、接着層13を介して貼り合わせることにより、基板11、接着層13、分離層14及びサポートプレート12がこの順に積層してなる積層体1を形成する工程である。
基板11とサポートプレート12とを貼り合わせる方法は特に限定されないが、例えば、基板11の接着層13が形成された面と、サポートプレート12の分離層14が形成された面とを互いに押し付けてもよい。一例において、減圧環境下にて、加熱された一対のプレート部材によって、接着層13と分離層14とが向き合うように重ねられた基板11とサポートプレート12とを挟み込んでもよい。
以上により、積層体形成工程において、図3の(1)に示すような、基板11、接着層13、分離層14及びサポートプレート12がこの順に積層してなる積層体1を形成することができる。
次に、図2及び図3を用いて、積層体に対する処理について説明する。図2は、本実施形態に係る基板11の処理方法に包含される工程のうち、プラズマ処理工程と基板薄化工程を説明する図である。図3は、本実施形態に係る基板11の処理方法によって処理された積層体1の断面を模式的に説明する図である。
図2が示す各工程は、積層体形成工程によって形成された積層体1(図2の(1))のプラズマ処理工程(図2の(2))、及び基板薄化工程(図2の(3))を包含する。基板薄化工程によって基板11が薄化した積層体1(図2の(4))に、所望の処理を行なう。
〔プラズマ処理工程〕
本発明に係る基板の処理方法の一実施形態(第1の実施形態)が包含するプラズマ処理工程では、分離層14のうち接着層13との接触部よりも外側に存在する部分を少なくとも除去する。
これによって、積層体1における分離層14の表面が露出している部分が、様々な薬品等による処理に際して分離層14が変質して剥がれ、積層体1の基板11の上に再付着することによって基板11を汚染することを抑えることができる。
また、積層体全体1を化学気相堆積(CVD)処理するに際して、蒸着したシリコン酸化膜等のシリコン化合物が、プラズマ処理工程によって露出した部分を除去されていない分離層14から剥がれて積層体1の基板11の上に再付着することによって基板11を汚染することを抑えることができる。
つまり、積層体1における分離層14の表面が露出していることが原因となって生じる汚染を抑えることができる。
図3の(1)に示す通り、プラズマ処理工程を行なう前の積層体1における分離層14は、サポートプレート12上であって接着層13との接触部より外側にまで形成されている。プラズマ処理工程(図2の(2))によって、図3の(2)に示す通り、積層体1は、接着層13との接触部よりも外側に存在する分離層14を除去される。
プラズマ処理工程で使用されるガスとしては、典型的には酸素ガスを挙げることができる。また、酸素ガスに、窒素ガス及び水素ガスから選択される少なくとも1種を混合した混合ガスを用いることもできる。例えば、酸素ガスに、混合ガス全体に対して10%未満の窒素ガスを含有させた混合ガスを好適に用いることができる。また、例えば、酸素ガスに水素を含有させた混合ガスを用いる場合には、混合ガス全体に対して5%以上、20%以下の割合で水素を添加することが好ましい。このとき、酸素ガスに対して、水素と窒素とが混合された気体を添加するようにしてもよい。
プラズマ処理工程の真空条件は、0.1torr以上、5torr以下の範囲内であることが好ましく、0.5torr以上、2torr以下の範囲内であることがより好ましい。真空条件の範囲を当該範囲内とすることによって、プラズマ発生電極におけるアーキングのような異常放電を防止することができ、プラズマを発生するために十分な量のガスを保持することができる。
プラズマの発生に用いるガスの流量は、プラズマ処理装置にもよるが、1リットル/分以上、5リットル/分以下の範囲であることがより好ましく、2リットル/分以上、4リットル/分以下の範囲であることがさらに好ましい。プラズマの発生に用いるガスの流量を当該範囲内とすることによって、接着層13との接触部よりも外側に存在する分離層14をプラズマによって好適に除去することができる。
プラズマ処理工程において、印加する高周波電圧の周波数は特に限定されないが、1MHz以上、27.12MHz以下の範囲内の高周波電圧を好適に使用することができる。
第1の実施形態が包含するプラズマ処理工程では、20秒以上、120秒以下の範囲内でプラズマ処理することが好ましい。さらに好ましくは、20秒以上、90秒以下、最も好ましくは、30秒以上、60秒以下の範囲内でプラズマ処理を行なうとよい。プラズマ処理する時間を20秒以上、120秒以内の範囲内とすることによって、分離層14のうち接着層13との接触部よりも外側に存在する部分を好適に除去することができる。
プラズマ処理工程を行なった後の積層体1は、図3の(2)に示す通り、接着層13との接触部分に存在する分離層14を除去されている。このため、後に所望の工程を行なうに際して、薬品等に接することで分離層14が変質し、分離層14の剥離物が発生することを防ぐことができる。また、フルオロカーボンのように耐薬品性の高い材料を分離層14に採用しても、接着層13との接触部分より外側に存在する当該フルオロカーボンからなる分離層14は除去される。このため、その後、当該積層体1に化学気相堆積法(CVD法)によってシリコン酸化膜やシリコン窒化膜等を形成しても、シリコン酸化膜等は積層体1から剥離しない。従って、シリコン酸化膜等の剥離物による基板11の汚染を防止することができる。つまり、フルオロカーボンを分離層14に使用することによって、第1の実施形態に係る基板の処理方法は、より効果的に実施することができる。
また、プラズマ処理工程による接着層13より外側に存在する分離層14の除去は、アルカリ水性溶液等の薬品等によって分離層を除去する従来の方法とは異なり、適切に分離層14を除去するための条件を設定しやすい。また、アルカリ水性溶液等の廃液を生じることもない。
〔基板薄化工程〕
第1の実施形態が包含する基板薄化工程は、積層体1における基板11の露出面をグラインダーで研削して基板11を所望の厚さに加工する工程である(図2の(3))。研削加工を施した後であっても、基板11の外周部は接着層13に保護されており、より詳細には、接着層13に埋め込まれた状態となっている(図3の(3))。すなわち、基板11に研削加工を施している間も、基板11の端部は接着層13によって固定されており、端部がぐらついたりせずに安定な状態を保っている。これにより、研削加工の際に、基板11の端部に割れや欠けが発生することを防ぐことができる。
以上により、薄化された基板11を備える積層体1を得ることができる(図2の(4))。
(その他の工程)
また、上記の基板薄化工程によって、基板11を所望の厚さに加工した後、化学気相手堆積(CVD)法によって、シリコン膜、シリコン酸化膜、シリコン窒化膜等を基板11の表面上に形成する。上記の通り、積層体1は、サポートプレート12上の、接着層13より外側に形成された分離層14を、プラズマ処理工程によって除去されている。また、サポートプレート12は、シリコン膜等との密着性が良好であるため、積層体1のサポートレート12からシリコン膜等が剥離することはない。このため、これらシリコン被膜を形成した後のレジストリソグラフィー工程において、シリコン被膜が剥離することにより基板11が汚染されることはない。
<第2の実施形態>
本発明に係る基板の処理方法のもう一つの実施形態(第2の実施形態)は、基板11、接着層13、分離層14及びサポートプレート12がこの順に積層してなる積層体1を形成する積層体形成工程と、積層体1をプラズマ処理するプラズマ処理工程と、を包含し、上記プラズマ処理工程の前に、基板11を薄化する基板薄化工程を含む。
第1の実施形態の場合と同様に、第2の実施形態は、図1の(1)〜(6)に示す積層体形成工程までの各工程を包含する。ただし、本実施形態では、図1の各工程によって形成された積層体1(図2の(1))に対して、基板薄化工程(図2の(3))を行なった後に、プラズマ処理工程(図2の(2))を行なう点で第1の実施形態と異なる。なお、第1の実施形態と同様の部材については、同じ部材番号を付し、説明を省略する。
また、後述する通り、第2の実施形態では、本発明に係る基板の処理方法が包含するプラズマ処理工程によって、接着層13の外周部と分離層14の外周部とは、自己調整によって位置合わせすることができる。従って、予め積層体形成工程において、接着層13によって分離層14を覆うための精密な工程を必要としない。
図4を参照して第2の実施形態における積層体形成工程より後の各工程について説明する。図4は、本発明に係る基板の処理方法の一実施形態(第2の実施形態)によって処理された積層体の断面を模式的に説明する図である。
〔基板薄化工程〕
第2の実施形態が包含する基板薄化工程は、プラズマ処理工程の前に行なわれる。基板薄化工程では、第1の実施形態の場合と同様に図4の(1)に示す積層体1における基板11の露出面をグラインダーで研削し、基板11を所望の厚さに加工する。図4の(2)に示す通り、基板薄化工程後の積層体1は、基板11が所望の厚さに研削されており、基板11の外周部の接着層13が、基板11を埋め込むように存在する。
〔プラズマ処理工程〕
第2の実施形態が包含するプラズマ処理工程では、接着層13が14分離層の外周部を覆うまでプラズマ処理する。
第2の実施形態が包含するプラズマ処理工程で使用するガスの種類、真空条件、ガスの流量、高周波電圧の周波数は、第1の実施形態におけるプラズマ処理工程の条件に準じる。第2の実施形態では、プラズマ処理工程に要する時間が第1の実施形態と異なる。
また、第2の実施形態においては、基板薄化工程(図2の(3))の後にプラズマ処理工程(図2の(2))を行なう。
これによって、第1の実施形態と同様に、分離層14のうち接着層13との接触部よりも外側に存在する部分を少なくとも除去する。このため、第1の実施形態と同様に、積層体1における分離層14の表面が露出していることが原因となって生じる汚染を抑えることができる。
さらに第2の実施形態では、予め基板薄化工程において基板11を薄く加工することによって、分離層14と接着層13との接触部分の外周部はプラズマに当たりやすくなる。このため、接着層13の外周部より内側の分離層14にまでプラズマを接触させることができる。このため、第2の実施形態のプラズマ処理工程における積層体1では、融解した接着層13は、分離層14の外周部を覆うように流動する(図4の(3))。従って、積層体1において、接着層13とサポートプレート12の接触面を設けることができ、その後の様々な工程において、外部からの強い力によってサポートプレート12が基板11から剥離することを抑えることができる。
第2の実施形態が包含するプラズマ処理工程では、45秒以上、180秒以下の範囲内でプラズマ処理することが好ましい。さらに好ましくは、60秒以上、120秒以下の範囲内でプラズマ処理するとよい。45秒以上、180秒以下の範囲内でプラズマ処理を行なうことによって、第2の実施形態では、積層体1における接着層13との接触部よりも外側に存在する分離層14をプラズマによって好適に除去するのみならず、基板11の端部に基板11を埋め込むように存在する接着層13を融解する。このため、融解した接着層13は流動し、接着層13との接触部よりも外側に存在する部分を除去された分離層14の外周部を覆う(図4の(3))。
第2の実施形態が包含するプラズマ処理工程では、接着層13を150℃以上、200℃以下の範囲内で加熱する。当該プラズマ処理工程では、当該プラズマ処理による温度によっても接着層13の融解が生じる。このため、接着層13を150℃以上、200℃以下の範囲内で加熱することによっても、好適に接着層13を融解させ、融解した接着層13によって分離層14の外周部を覆うことができる。
第2の実施形態では、本発明に係る基板の処理方法が包含するプラズマ処理工程によって、接着層13の外周部と分離層14の外周部とは、自己調整によって位置合わせすることができる。
当該プラズマ処理工程では、接着層13との接触部よりも外側に存在する分離層14を除去する。つまりこれは、積層体1を形成した後に、分離層14の外周部と接着層13の外周部との距離が周に渡って均一になるように分離層14を自己調整によって位置合わせすることでもある。このため、積層体形成工程(図1の(6))において、分離層14の外周部を接着層13が覆うように貼り合せるために、分離層14を備えるサポートプレート12と、接着層13を備える基板11とに対して高度な位置合わせをする必要がない。また、分離層14と接着層13とのずれを考慮する必要がないため、分離層14の外周部を覆うための接着層13の幅を、例えば0.5mmから2mm程度になるように余裕をもたせて設計する必要がない。
また、上述のように分離層14を自己調整によって位置合わせすることができるため、接着層13をわずかに融解し、流動させることによって、接着層13の幅が0.1mm以上、2mm以下の範囲内という、従来技術よりも10分の1程度の幅の接着層13によって精度よく分離層14の外周部を覆うことができる。つまり、接着層13が、分離層14を覆い、サポートプレート12と接触しているため、分離層14にフルオロカーボンを用いた場合でも、その後の工程において外部からの強い力を受けることでサポートプレート12が分離することはない。また、フルオロカーボン以外の他の分離層の材料を使用しても、好適に分離層14を薬品等から保護することができる。さらに、上記自己調整によって、積層体1におけるサポートプレート12と接着層13の接触面積を必要以上に大きくしなくてよいため、後のレーザ光照射により分離層14を変質させることで、外部から大きな力を加える必要なく好適に基板11とサポートプレート12とを分離することができる。
(その他の工程)
第1の実施形態の場合と同様に、積層体1は、サポートプレート12上の、接着層13より外側に形成された分離層14を、プラズマ処理工程によって除去されている。また、サポートプレート12は、シリコン膜等の密着性が良好であるため、積層体1のサポートレート12から、シリコン膜等が剥離することはない。このため、これらシリコン被膜等を形成した後のレジストリソグラフィー工程において、シリコン被膜等が剥離することにより基板11が汚染されることはない。また、第2の実施形態では、積層体1の分離層14は、接着層13によって覆われているため、その後の様々な処理工程において、積層体1が外部から強い力を受けたとしてもサポートプレート12が分離することはない。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明に係る基板の処理方法は、例えば、微細化された半導体装置の製造工程において好適に利用することができる。
1 積層体
11 基板
12 サポートプレート(支持体)
13 接着層
14 分離層

Claims (7)

  1. 基板、接着層、分離層及び支持体がこの順に積層してなる積層体を形成する積層体形成工程と、
    上記積層体をプラズマ処理するプラズマ処理工程と、を包含し、
    上記プラズマ処理工程では、上記分離層のうち上記接着層との接触部よりも外側に存在する部分を少なくとも除去することを特徴とする基板の処理方法。
  2. 上記分離層は、フルオロカーボンを含んでいることを特徴とする請求項1に記載の基板の処理方法。
  3. 上記プラズマ処理工程では、20秒以上、120秒以下の範囲内でプラズマ処理することを特徴とする請求項1又は2に記載の基板の処理方法。
  4. 上記プラズマ処理工程では、上記接着層が上記分離層の外周部を覆うまでプラズマ処理することを特徴とする請求項1又は2に記載の基板の処理方法。
  5. 上記プラズマ処理工程では、45秒以上、180秒以下の範囲内でプラズマ処理することを特徴とする請求項に記載の基板の処理方法。
  6. 上記プラズマ処理工程の前に、上記基板を薄化する基板薄化工程を含むことを特徴とする請求項4又は5に記載の基板の処理方法。
  7. 上記プラズマ処理工程では、上記接着層を150℃以上、200℃以下の範囲内で加熱することを特徴とする請求項4〜6のいずれか1項に記載の基板の処理方法。
JP2013070435A 2013-03-28 2013-03-28 基板の処理方法 Expired - Fee Related JP6055354B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013070435A JP6055354B2 (ja) 2013-03-28 2013-03-28 基板の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070435A JP6055354B2 (ja) 2013-03-28 2013-03-28 基板の処理方法

Publications (2)

Publication Number Publication Date
JP2014194986A JP2014194986A (ja) 2014-10-09
JP6055354B2 true JP6055354B2 (ja) 2016-12-27

Family

ID=51840047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070435A Expired - Fee Related JP6055354B2 (ja) 2013-03-28 2013-03-28 基板の処理方法

Country Status (1)

Country Link
JP (1) JP6055354B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046407B2 (en) 2011-06-10 2018-08-14 Fanuc Corporation Wire electric discharge machine for taper-machining tilted workpiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364531B1 (ja) * 2017-06-23 2018-07-25 東京応化工業株式会社 積層体の製造方法、電子装置の製造方法、積層体、及び積層体製造システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183689A (ja) * 2003-12-19 2005-07-07 Seiko Epson Corp 支持基板、搬送体、半導体装置の製造方法、半導体装置、回路基板、並びに電子機器
JP5252283B2 (ja) * 2008-10-15 2013-07-31 富士電機株式会社 半導体装置の製造方法及びそのための装置
JP5756334B2 (ja) * 2010-10-29 2015-07-29 東京応化工業株式会社 積層体、およびその積層体の分離方法
JP6088230B2 (ja) * 2012-12-05 2017-03-01 東京応化工業株式会社 積層体の形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046407B2 (en) 2011-06-10 2018-08-14 Fanuc Corporation Wire electric discharge machine for taper-machining tilted workpiece

Also Published As

Publication number Publication date
JP2014194986A (ja) 2014-10-09

Similar Documents

Publication Publication Date Title
JP5977532B2 (ja) 支持体分離方法及び支持体分離装置
JP6088230B2 (ja) 積層体の形成方法
JP6437805B2 (ja) 積層体の製造方法、封止基板積層体の製造方法及び積層体
JP6216727B2 (ja) 支持体分離方法
JP6125317B2 (ja) モールド材の処理方法及び構造体の製造方法
JP6470414B2 (ja) 支持体分離装置及び支持体分離方法
JP6564301B2 (ja) 支持体分離方法
WO2013172110A1 (ja) 支持体分離方法および支持体分離装置
JP2018014361A (ja) 支持体分離装置および支持体分離方法
JP6261508B2 (ja) 積層体、積層体の分離方法、および分離層の評価方法
JP6214182B2 (ja) 基板の処理方法
JP6030358B2 (ja) 積層体
JP6180239B2 (ja) 積層体の製造方法及び積層体
JP6162976B2 (ja) 基板の処理方法
JP6006569B2 (ja) 積層体及び積層体の製造方法
JP6055354B2 (ja) 基板の処理方法
JP6691816B2 (ja) 封止体の製造方法
JP6244183B2 (ja) 処理方法
JP6298393B2 (ja) 支持体分離方法
JP6364531B1 (ja) 積層体の製造方法、電子装置の製造方法、積層体、及び積層体製造システム
JP2017144615A (ja) 積層体、積層体の製造方法、及び基板の処理方法
JP6295066B2 (ja) 処理方法
JP2015046514A (ja) 積層体の製造方法及び積層体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6055354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees