JP6024121B2 - シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム - Google Patents

シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム Download PDF

Info

Publication number
JP6024121B2
JP6024121B2 JP2012038716A JP2012038716A JP6024121B2 JP 6024121 B2 JP6024121 B2 JP 6024121B2 JP 2012038716 A JP2012038716 A JP 2012038716A JP 2012038716 A JP2012038716 A JP 2012038716A JP 6024121 B2 JP6024121 B2 JP 6024121B2
Authority
JP
Japan
Prior art keywords
cyanate ester
naphthol
resin composition
ester resin
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012038716A
Other languages
English (en)
Other versions
JP2013173839A (ja
Inventor
泰 佐藤
泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2012038716A priority Critical patent/JP6024121B2/ja
Publication of JP2013173839A publication Critical patent/JP2013173839A/ja
Application granted granted Critical
Publication of JP6024121B2 publication Critical patent/JP6024121B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

本発明は得られる硬化物の耐熱性、低誘電率、低誘電正接に優れるシアン酸エステル樹脂、プリント配線基板、半導体封止材、塗料、注型用途等に好適に用いる事が出来る硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及びビルドアップフィルムに関する。
近年、電子工業や通信、コンピューターなどの分野において使用される周波数はギガヘルツ帯のような高周波領域になりつつある。このような高周波領域で用いられる電気用積層板などの絶縁層には低誘電率、低誘電正接の材料が求められている。このため各種の低誘電率、低誘電正接樹脂が開発されてきた。中でもシアン酸エステル化合物は熱硬化性樹脂として、硬化後の誘電率、誘電正接の誘電特性が優れている。代表的なシアン酸エステル化合物としては、2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)誘導体であるビスフェノールA型シアン酸エステル化合物が知られている(下記特許文献1参照)。
しかし、該化合物を含む従来のシアン酸エステル樹脂組成物では、一般に電子回路基板のマトリックス樹脂として用いられるエポキシ樹脂組成物、ポリエステル樹脂組成物、フェノール樹脂組成物、ポリイミド樹脂組成物等に比べて、高周波領域とくにギガヘルツ帯での誘電特性に優れるものの、現在要求されている一層高い誘電特性を満足するレベルにない。加えて、近年、環境問題に対する法規制等により、鉛を使用しない高融点はんだが主流となっており、この鉛フリーはんだは従来の共晶はんだよりも使用温度が約20〜40℃高くなることから、電子回路基板のマトリックス樹脂には、より高い耐熱性が要求されているところ、前記シアン酸エステル樹脂組成物は充分な耐熱性が得られないものであった。
特開2002−69156号公報
従って、本発明が解決しようとする課題は、その硬化物において優れた耐熱性と、誘電特性とを発現させるシアン酸エステル樹脂、これらの性能を兼備した硬化性樹脂組成物、その硬化物、並びに、優れた耐熱性と誘電特性とを兼備した、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルムを提供することにある。
本発明者らは、上記課題を解決するため、鋭意検討した結果、ナフトールとホルムアルデヒドとを所定の条件下に反応させて得られるカリックスアレーン型ナフトール化合物をシアン酸エステル化した樹脂構造を有するシアン酸エステル樹脂が、その硬化物において、低誘電率、低誘電正接を有しつつ、かつ、優れた耐熱性を兼備させることができることを見出し、本発明を完成するに至った。
即ち、本発明は、下記構造式1
Figure 0006024121

(式中、Rはそれぞれ独立的に、水素原子、アルキル基、アルコキシ基を表し、nは 2〜10の整数である。)
で表わされる樹脂構造を有するシアン酸エステル樹脂に関する。
本発明は、更に、前記シアン酸エステル樹脂(A)、及び硬化促進剤(B)を必須成分とすることを特徴とする硬化性樹脂組成物に関する。
本発明は、更に、前記硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物に関する。
本発明は、更に、前記硬化性樹脂組成物におけるシアン酸エステル樹脂(A)、及び硬化促進剤(B)に加え、更に無機質充填材(C)を組成物中70〜95質量%となる割合で含有する硬化性樹脂組成物からなることを特徴とする半導体封止材料に関する。
本発明は、更に、前記硬化性樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることによって得られるプリプレグに関する。
本発明は、更に、前記硬化性樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板に関する。
本発明は、更に、前記硬化性樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることを特徴とするビルドアップフィルムに関する。
本発明によれば、その硬化物において優れた耐熱性と、誘電特性とを発現させるシアン酸エステル樹脂、これらの性能を兼備した硬化性樹脂組成物、その硬化物、並びに、優れた耐熱性と誘電特性とを兼備した、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルムを提供できる。
図1は、実施例1で得られたナフトール化合物(A−1)のGPCチャートである。 図2は、実施例1で得られたナフトール化合物(A−1)のMSスペクトルである。 図3は、実施例2で得られたナフトール樹脂(A−3)のGPCチャートである。 図4は、実施例3で得られたナフトール樹脂(A−5)のGPCチャートである。
以下、本発明を詳細に説明する。
本発明で用いるシアン酸エステル樹脂(A)は、前記した通り、下記構造式1
Figure 0006024121

(式中、Rはそれぞれ独立的に、水素原子、アルキル基、アルコキシ基を表し、nは2〜10の整数である。)
で表わされる樹脂構造を有するものである。
このように前記シアン酸エステル樹脂(A)は、所謂、カリックスアレーン型の環状構造を有しており、そのため前記シアン酸エステル樹脂(A)の硬化物における分子運動が抑制される結果、優れた耐熱性を発現する。なお、上記構造式1において、ナフタレン環上のメチレン基の結合位置は任意の部位は、同一環上に2つの結合部位を有するものであることが前記シアン酸エステル樹脂(A)の製造が容易なものとなる点から好ましく、特に該ナフタレン環の2,4−位においてメチレン基が結合しているものであることが、規則的な分子構造が形成され硬化物の耐熱性に優れる点から好ましい。
また、前記構造式1中のnは2〜10の整数であるが、化学構造の対象性に優れ耐熱性の向上効果が顕著に現れる点から2,4,6,又は8であることが好ましく、特に4であることが最も好ましい。
かかる前記シアン酸エステル樹脂(A)は、MSスペクトルにおいて理論構造の分子量を確認することにより構造を同定することができる。
前記構造式1中のRは、前記した通り、水素原子、アルキル基、又はアルコキシ基である。ここで、前記アルキル基としては、メチル基、エチル基、i−プロピル基、t−ブチル基等の炭素原子数1〜4のアルキル基、前記アルコキシ基としては、メトキシ基、エトキシ基、i−プロピルオキシ基、t−ブチルオキシ基等の炭素原子数1〜4のアルコキシ基が挙げられる。本発明では、Rとして、特に、水素原子、メチル基、エチル基、メトキシ基であることが好ましく、なかでも、硬化物の耐熱性に優れる点から水素原子であることが好ましい。
また、構造式1中のシアナト基の結合位置は、ナフタレン骨格の1位であることが最終的に得られる前記シアン酸エステル樹脂(A)の硬化物における耐熱性に優れる点から好ましい
上記した本発明の前記シアン酸エステル樹脂(A)は、以下の方法により製造することができる。
即ち、ナフトール化合物とホルムアルデヒドとを両者のモル比(ナフトール化合物/ホルムアルデヒド)が1.0/1.0〜1.0/2.0となる割合で、塩基性触媒の存在下に反応させてカリックスアレーン型のナフトール化合物を得(工程1)、次いで、得られたカリックスアレーン型のナフトール化合物と、ハロゲン化シアンとを反応させる(工程2)方法により製造することができる。
ここで、前記工程1の反応は、具体的には20〜100℃の温度条件で行うことができる。
また、工程1で用いられるナフトール化合物は、具体的には、α−ナフトール或いは、これらの芳香核にメチル基、エチル基、i−プロピル基、t−ブチル基等の炭素原子数1〜4のアルキル基が置換した化合物、メトキシ基、エトキシ基、i−プロピルオキシ基、t−ブチルオキシ基等の炭素原子数1〜4のアルコキシ基が置換した化合物が挙げられる。具体的には、α−ナフトール、1−ヒドロキシ−3−メチルナフタレン、1−ヒドロキシ−5−メチルナフタレン、1−ヒドロキシ−6−メチルナフタレン、1−ヒドロキシ−5−エチルナフタレン、1−ヒドロキシ−6−エチルナフタレン、1−ヒドロキシ−5−ブチルナフタレン、1−ヒドロキシ−6−ブチルナフタレン、1−ヒドロキシ−5−プロピルナフタレン、1−ヒドロキシ−6−プロピルナフタレン、1−ヒドロキシ−5−メトキシナフタレン、1−ヒドロキシ−6−メトキシナフタレン、1−ヒドロキシ−5−エトキシナフタレン、1−ヒドロキシ−6−エトキシナフタレン、1−ヒドロキシ−5−プロピルオキシナフタレン、1−ヒドロキシ−6−プロピルオキシナフタレン、1−ヒドロキシ−5−ブチルオキシナフタレン、1−ヒドロキシ−6−ブチルオキシナフタレン等のα−ナフトール化合物が挙げられるが、最終的に得られる前記シアン酸エステル樹脂(A)の硬化物における耐熱性の点からα−ナフトールが好ましい。
また、本発明では、上記α−ナフトール化合物とβ−ナフトール化合物とを併用してもよく、その場合、α−ナフトール化合物1モルに対してβ−ナフトール化合物が1.2モル以下となる割合であることが前記した耐熱性の点から好ましい。
一方、工程1で用いられるホルムアルデヒド源としては、例えば、ホルマリン、パラホルムアルデヒド、トリオキサン等が挙げられる。ここで、ホルマリンは水希釈性や製造時の作業性の点から30〜60質量%のホルマリンであることが好ましい。
工程1で用いられる塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特に触媒活性に優れる点から水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物が好ましい。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。
また、工程1における塩基性触媒の使用量は、前記ナフトール化合物1モルに対して0.02モル以上となる割合であることがカリックスアレーン構造の形成が容易なものとなる点から好ましい。更に、最も好ましい分子構造であるナフトール型カリックス(4)アレーン化合物の選択性を高めることができる点から、前記モル比(ナフトール化合物/ホルムアルデヒド)は1.0以下であることが好ましい。ここで、ナフトール型カリックス(4)アレーン化合物とは、ナフトール化合物の4分子がメチレン結合を介して結合し、環状構造を形成している化合物である。
次に、工程2として、工程1で得られたカリックスアレーン型ナフトール化合物を、ハロゲン化シアンと反応させてシアナト化することにより、目的とする前記シアン酸エステル樹脂(A)とすることができる。具体的には、例えばカリックスアレーン型ナフトール化合物中のフェノール性水酸基の1モルに対し、ハロゲン化シアンを1.05モル〜1.5モルとなる割合で用い、反応させることによって得ることができる。
ここで、ハロゲン化シアンとしては、塩化シアン、臭化シアン等が挙げられる。また、上記反応は、塩基性触媒の存在下を行うことが、反応性が良好となる点から好ましく、ここで用いる塩基性触媒としては、トリエチルアミンやトリメチルアミン等の3級アミン類;水酸化ナトリウムや水酸化カリウム等のアルカリ金属水酸化物などの塩基性物質が挙げられる。
上記反応においては、有機溶媒存在下で反応することが好ましい。その際使用する有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族系溶媒やメチルエチルケトンやメチルイソブチルケトンなどのケトン系溶媒が挙げられる。
上記条件にて反応を行った後に、反応液に適量の水を加えて生成塩を溶解する。その後、水洗を繰り返して系内の生成塩を除去した後に、脱水や濾別でさらに精製して、有機溶媒を蒸留で除去して目的とするシアン酸エステル樹脂(A)を得ることができる。
このようにして得られるシアン酸エステル樹脂(a1)は、該シアン酸エステル樹脂(A)中のシアナト基当量は175〜400g/eq.の範囲であることが耐熱性、低誘電率、低誘電正接が良好となる点から好ましく、特に180〜300g/eq.の範囲であることが好ましい。
また、本発明では、前記シアン酸エステル樹脂(A)に加え、更に、前記シアン酸エステル樹脂(A)の他のナフタレン系シアン酸エステル樹脂(A’)(以下、これを「ナフタレン系シアン酸エステル樹脂(A’)」と略記する。)を用いることが、組成物の溶剤溶解性が向上し、プリント配線基板用組成物の調整が容易となる点から好ましい。
ここで用いるナフタレン系シアン酸エステル樹脂(A’)は、具体的には、2,7−ジシアナトナフタレン、α−ナフトールノボラック型シアン酸エステル樹脂、β−ナフトールノボラック型シアン酸エステル樹脂、α−ナフトール/β−ナフトール共縮合型ノボラックのポリシアン酸エステル、ナフトールアラルキル型シアン酸エステル樹脂、1,1−ビス(2,7−ジシアナト−1−ナフチル)アルカン等が挙げられる。これらのなかでも特に前記シアン酸エステル樹脂(A)との相溶性に優れる点から、2,7−ジシアナトナフタレン、α−ナフトールノボラック型シアン酸エステル樹脂、β−ナフトールノボラック型シアン酸エステル樹脂、又は、α−ナフトール/β−ナフトール共縮合型ノボラックのポリシアン酸エステルが好ましい。とりわけ、本発明においては前記シアン酸エステル樹脂(A)の前駆体であるカリックスアレーン型ナフトール化合物を製造する際、α−ナフトールと共にβ−ナフトールを併用し、該カリックスアレーン型ナフトール化合物とα−ナフトール/β−ナフトール共縮合型ノボラックとの混合物を得、次いで、これをシアナト化することにより、前記シアン酸エステル樹脂(A)とα−ナフトール/β−ナフトール共縮合型ノボラックのポリシアン酸エステルとの混合物を製造したものが溶剤溶解性に優れる点から好ましい。
ここで、前記前記シアン酸エステル樹脂(A)とナフタレン系シアン酸エステル樹脂(A’)との存在割合は、両者の前駆体混合物のナフトール樹脂をGPCにより測定した場合における、ナフタレン系シアン酸エステル樹脂(A’)の前駆体ナフトール樹脂の面積比率基準の含有率が3〜50%となる割合であることが、硬化物の耐熱性と溶剤溶解性とに優れる点から好ましい。
なお、前記前記シアン酸エステル樹脂(A)とナフタレン系シアン酸エステル樹脂(A’)とを混合物として使用する場合、該混合物は、シアナト基当量が180〜300/eq.であることが耐熱性に優れる点から好ましい。
次に、本発明で用いる硬化促進剤(B)は、具体的には、フェノール類、アミン類、ルイス酸類、3級スルホニウム塩、4級アンモニウム塩、4級ホスホニウム塩、エポキシ基含有化合物などが挙げられる。これらの中でも、ノニルフェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、ベンジルジメチルアミン、銅、鉛、スズ、マンガン、ニッケル、鉄、亜鉛、コバルト等のカルボン酸塩、チタンテトラ-n-ブトキシドとそのポリマー、銅、ニッケル、コバルト等のペンタジオナート塩、臭化テトラブチルアンモニウム、塩化テトラブチルホスホニウム、オクチル酸亜鉛が、反応時にシアン酸エステル樹脂(A)との相溶性が高く、反応が円滑に進行する上で好ましい。また、反応速度が早く進行する面からは、エポキシ化合物が特に好ましい。
前記硬化促進剤(B)の使用量は、例えば、シアン酸エステル樹脂(A)100質量部あたり0.001〜1.00質量部であることが好ましい。
本発明の硬化性樹脂組成物において、前記シアン酸エステル樹脂(A)及び前記硬化促進剤(B)に加え、或いは、前記シアン酸エステル樹脂(A)、及び前記硬化促進剤(B)に加え、更にエポキシ樹脂(C)を併用することが、有機溶剤への溶解性や成形性が良好なものとなる点から好ましい。
ここで用いるエポキシ樹脂(C)は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。
これらのなかでもフェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂や、ナフタレン骨格を含有するナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂や、結晶性のビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、キサンテン型エポキシ樹脂や、アルコキシ基含有芳香環変性ノボラック型エポキシ樹脂(ホルムアルデヒドでグリシジル基含有芳香環及びアルコキシ基含有芳香環が連結された化合物)等が耐熱性に優れる硬化物が得られる点から特に好ましい。
前記エポキシ樹脂(C)を用いる場合、その使用量は、本発明の硬化性樹脂組成物中、20〜80質量%となる範囲であることが好ましい。
また、エポキシ樹脂(C)を用いる場合、エポキシ樹脂用硬化剤を併用してもよい。ここで用いるエポキシ樹脂用硬化剤は、具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
エポキシ樹脂(C)を用いる場合、必要に応じて本発明の硬化性樹脂組成物に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
また、前記硬化性樹脂組成物は、シアン酸エステル樹脂(A)及び前記硬化促進剤(B)に加え、更にビスマレイミド(D)を含んでいてもよい。
ここで用いるビスマレイミド(D)とは、1分子中に2個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体的な例としては、N−シクロヘキシルマレイミド、N−メチルマレイミド、N−n−ブチルマレイミド、N−ヘキシルマレイミド、N−tert−ブチルマレイミド等のN−脂肪族マレイミド;N−フェニルマレイミド、N−(P−メチルフェニル)マレイミド、N−ベンジルマレイミド等のN−芳香族マレイミド;4,4’―ジフェニルメタンビスマレイミド、4,4’―ジフェニルスルホンビスマレイミド、m―フェニレンビスマレイミド、
ビス(3−メチル−4−マレイミドフェニル)メタン、ビス(3−エチル−4−マレイミドフェニル)メタン、ビス(3、5−ジメチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ビス(3,5−ジエチル−4−マレイミドフェニル)メタン等のビスマレイミド類が挙げられる。
これらの中でも特に硬化物の耐熱性が良好なものとなる点からビスマレイミド類が好ましく、特に4,4’−ジフェニルメタンビスマレイミド、ビス(3,5−ジメチル−4−マレイミドフェニル)メタン、ビス(3−エチル−5−メチル−4−マレイミドフェニル)メタン、ビス(3、5−ジエチル−4−マレイミドフェニル)メタンが好ましい。
上記ビスマレイミド(D)を用いる場合、必要に応じて、硬化促進剤を用いることができる。ここで使用できる硬化促進剤としては、アミン化合物、フェノール化合物、酸無水物、イミダゾール類、有機金属塩などが挙げられる。
以上詳述した本発明の硬化性樹脂組成物は、特にプリント配線基板用ワニスにする場合、上記各成分の他に有機溶剤(E)を配合することが好ましい。ここで使用し得る前記有機溶剤(E)としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤(E)として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分30〜60質量%となる割合で使用することが好ましい。
また、上記熱硬化性樹脂組成物は、難燃性を発揮させるために、例えばプリント配線板の分野においては、信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
それらの配合量としては、リン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
本発明の硬化性樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、硬化性樹脂組成物の全体量に対して20質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明の硬化性樹脂組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
本発明の硬化性樹脂組成物は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
本発明の硬化性樹脂組成物が用いられる用途としては、半導体封止材料、プリント配線板材料、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム等が挙げられる。また、これら各種用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高耐熱性、低熱膨張性、及び溶剤溶解性といった特性からプリント配線板材料やビルドアップ用接着フィルムに用いることが好ましい。
本発明の硬化性樹脂組成物から半導体封止材料を調整するには、前記シアン酸エステル樹脂(A)、及び硬化促進剤(B)、及び無機充填剤等の配合剤を、必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に溶融混合して得ることができる。その際、無機充填剤としては、通常、溶融シリカが用いられるが、パワートランジスタ、パワーIC用高熱伝導半導体封止材としては、溶融シリカよりも熱伝導率の高い結晶シリカ,アルミナ,窒化ケイ素などの高充填化、または溶融シリカ、結晶性シリカ、アルミナ、窒化ケイ素などが挙げられる。その充填率は硬化性樹脂組成物100質量部当たり、無機充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法が挙げられる。
ここで、本発明の硬化性樹脂組成物からプリント回路基板を製造するには、前記有機溶剤(E)を含むワニス状の硬化性樹脂組成物を、更に有機溶剤(E)を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性樹脂組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜300℃で10分〜3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
本発明の硬化性樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
本発明の硬化性樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜300℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の硬化性樹脂組成物からビルドアップフィルムを製造する方法は、例えば、本発明の硬化性樹脂組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用のビルドアップフィルムとする方法が挙げられる。
本発明の硬化性樹脂組成物をビルドアップフィルムに用いる場合、該フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
ここで、多層プリント配線板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性樹脂組成物を調製した後、支持フィルム(Y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(X)を形成させることにより製造することができる。
形成される層(X)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
なお、本発明における層(X)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
上記した支持フィルム(Y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(Y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(X)が保護フィルムで保護されている場合はこれらを剥離した後、層(X)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×104〜107.9×10N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
本発明の硬化物を得る方法としては、一般的な硬化性樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、20〜300℃の温度範囲で加熱すればよい。
次に本発明を実施例、比較例により具体的に説明する。尚、GPC、IR、MSスペクトルは以下の条件にて測定した。
1)GPC:測定条件は以下の通り。
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折径)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
2)IR :FT−IR(日本分光株式会社製「FT/IR−550」)にて測定。
3)MS :島津バイオテック製 AXIMA―TOF2
測定モード:linear
積算回数:50回
試料組成:sample/DHBA/NaTFA/THF=9.4mg/104.7mg/6.3mg/1ml
実施例1
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、α−ナフトール216質量部(1.50モル)、37質量%ホルムアルデヒド水溶液146質量部(1.80モル)、イソプロピルアルコール121質量部、49%水酸化ナトリウム水溶液46質量部(0.56モル)を仕込み、室温下、窒素を吹き込みながら撹拌した。その後、80℃に昇温し1時間攪拌した。反応終了後、第1リン酸ソーダ40質量部を添加して中和した後、冷却し結晶物をろ別した。その後、水200質量部で3回洗浄を繰り返した後に、加熱減圧下乾燥してナフトール化合物(A−1)224質量部得た。得られたナフトール化合物(A−1)のGPCチャートを図1に、MSスペクトルを図2に示す。ナフトール化合物(A−1)の水酸基当量は156グラム/当量であった。MSスペクトルから下記構造式
Figure 0006024121

で表されるn=4を示す624のピークが検出された。
続いて、滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、臭化シアン106g(1.0モル)とナフトール化合物(A−1)78g(0.5モル)を仕込みアセトン1000gに溶解させた後、−3℃に冷却した。次に、トリエチルアミン111g(1.1モル)を滴下ロートに仕込み、攪拌しながらフラスコ内温が10℃以上にならない様な速度で滴下した。滴下終了後、2時間10℃以下の温度下で攪拌し、生じた沈澱を濾過により除いた後、大量の水に注ぎ再沈した。これを塩化メチレンで抽出し、水洗することによりシアン酸エステル樹脂(A−2)を76g得た。この化合物のIRスペクトルは2264cm−1(シアン酸エステル基)の吸収を示し、かつ水酸基の吸収は示さず、またMSスペクトルが724のピークを示したことから、下記構造式のn=4で表される目的のシアン酸エステル樹脂であることが確認された。
Figure 0006024121





実施例2
α−ナフトール216質量部(1.50モル)をα−ナフトール144質量部(1.00モル)とβ−ナフトール72質量部(0.50モル)にした以外は実施例1と同様にして、ナフトール樹脂(A−3)を得た。得られたナフトール樹脂(A−3)のGPCチャートを図3に示す。得られたナフトール樹脂(A−3)の水酸基当量は158グラム/当量であった。
続いて、滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、臭化シアン106g(1.0モル)とナフトール樹脂(A−3)79g(0.5モル)を仕込みアセトン1000gに溶解させた後、−3℃に冷却した。次に、トリエチルアミン111g(1.1モル)を滴下ロートに仕込み、攪拌しながらフラスコ内温が10℃以上にならない様な速度で滴下した。滴下終了後、2時間10℃以下の温度下で攪拌し、生じた沈澱を濾過により除いた後、大量の水に注ぎ再沈した。これを塩化メチレンで抽出し、水洗することによりシアン酸エステル樹脂(A−4)を80g得た。この化合物のIRスペクトルは2264cm−1(シアン酸エステル基)の吸収を示し、かつ水酸基の吸収は示さず、またMSスペクトルが724のピークを示したことから、下記構造式のn=4で表される目的のシアン酸エステル樹脂であることが確認された。
Figure 0006024121





また、GPCチャートから前記構造式1におけるn=4体の含有率は34.1%であった。従って、前記シアン酸エステル樹脂混合物(A−3)は、前記構造式1においてn=4のシアン酸エステル樹脂とα−ナフトール/β−ナフトール共縮合型ノボラックのシアン酸エステル樹脂との混合物であることが判明した。
実施例3
α−ナフトール216質量部(1.50モル)をα−ナフトール108質量部(0.75モル)とβ−ナフトール108質量部(0.75モル)にした以外は実施例1と同様にして、ナフトール樹脂(A−5)200質量部を得た。得られたナフトール樹脂(A−5)のGPCチャートを図4に示す。得られたナフトール樹脂(A−3)の水酸基当量は158グラム/当量であった。
続いて、滴下ロート、温度計、攪拌装置、加熱装置、冷却還流管を取り付けた4つ口フラスコに窒素ガスを流しながら、臭化シアン106g(1.0モル)とナフトール樹脂(A−5)79g(0.5モル)を仕込みアセトン1000gに溶解させた後、−3℃に冷却した。次に、トリエチルアミン111g(1.1モル)を滴下ロートに仕込み、攪拌しながらフラスコ内温が10℃以上にならない様な速度で滴下した。滴下終了後、2時間10℃以下の温度下で攪拌し、生じた沈澱を濾過により除いた後、大量の水に注ぎ再沈した。これを塩化メチレンで抽出し、水洗することによりシアン酸エステル樹脂(A−6)を77g得た。この化合物のIRスペクトルは2264cm−1(シアン酸エステル基)の吸収を示し、かつ水酸基の吸収は示さず、またMSスペクトルが724のピークを示したことから、下記構造式のn=4で表される目的のシアン酸エステル樹脂であることが確認された。GPCチャートから前記構造式1におけるn=4体の含有率は6.9%であった。
Figure 0006024121


実施例4〜8、比較例1〜2
シアン酸エステル樹脂として、LONZA製「BA−200」(ビスフェノールA型シアン酸エステル樹脂)、硬化促進剤としてオクチル酸亜鉛を用いて表1に示した組成で配合し、プレスで200℃の温度で10分間成型した後、200℃の温度で5時間後硬化して作成した。耐熱性、誘電率、誘電正接は下記の方法で測定し結果を表1に示した。尚、表1中の配合量は質量基準である。
<耐熱性(ガラス転移温度)>
粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。

<誘電率及び誘電正接の測定>
JIS−C−6481に準拠し、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後23℃、湿度50%の室内に24時間保管した後の試験片の1GHzでの誘電率および誘電正接を測定した。
Figure 0006024121
表1の脚注:
A−2:実施例1で得られたシアン酸エステル樹脂(A−2)
A−4:実施例2で得られたシアン酸エステル樹脂混合物(A−4)
A−6:実施例3で得られたシアン酸エステル樹脂混合物(A−6)
N−680:クレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N−680」、軟化点87℃)
BA−200:LONZA製「BA−200」(ビスフェノールA型シアン酸エステル樹脂)

Claims (13)

  1. 下記構造式1
    Figure 0006024121
    (式中、Rはそれぞれ独立的に、水素原子、アルキル基、アルコキシ基を表し、nは2〜10の整数である。構造式1中のシアナト基の結合位置は、ナフタレン骨格の1位である。
    で表わされる樹脂構造を有するシアン酸エステル樹脂。
  2. シアン酸エステル樹脂(A)と硬化促進剤(B)とを必須成分とする硬化性樹脂組成物であって、前記シアン酸エステル樹脂(A)として、請求項1記載のシアン酸エステル樹脂を用いることを特徴とする硬化性樹脂組成物。
  3. 前記シアン酸エステル樹脂(A)及び硬化促進剤(B)に加え、更に、2,7−ジシアナトナフタレン、α−ナフトールノボラック型シアン酸エステル樹脂、β−ナフトールノボラック型シアン酸エステル樹脂、α−ナフトール/β−ナフトール共縮合型ノボラックのポリシアン酸エステル、ナフトールアラルキル型シアン酸エステル樹脂、又は1,1−ビス(2,7−ジシアナト−1−ナフチル)アルカンであるナフタレン系シアン酸エステル樹脂(A’)を含む請求項2記載の硬化性樹脂組成物。
  4. 前記シアン酸エステル樹脂(A)とナフタレン系シアン酸エステル樹脂(A’)との存在割合が、両者の混合物をGPCにより測定した場合における、
    ナフタレン系シアン酸エステル樹脂(A’)の面積比率基準の含有率が3〜50%となる割合である請求項3記載の硬化性樹脂組成物。
  5. 前記シアン酸エステル樹脂(A)とナフタレン系シアン酸エステル樹脂(A’)との混合物がシアナト基当量175〜400g/eq.の範囲にあるものである請求項3記載の硬化性樹脂組成物。
  6. 請求項2記載の各成分に加え、更にエポキシ樹脂(C)を含むことを特徴とする硬化性樹脂組成物。
  7. 請求項2〜6の何れか1つに記載の硬化性樹脂組成物を硬化反応させてなることを特徴とする硬化物。
  8. 請求項2〜6の何れか1つに記載の硬化性樹脂組成物における各成分に、更に無機質充填材を組成物中70〜95質量%となる割合で含有する硬化性樹脂組成物からなることを特徴とする半導体封止材料。
  9. 請求項2〜6の何れか1つに記載の硬化性樹脂組成物を有機溶剤に希釈したものを補強基材に含浸し、得られる含浸基材を半硬化させることによって得られるプリプレグ。
  10. 請求項2〜6の何れか1つに記載の硬化性樹脂組成物を有機溶剤に希釈したワニスを得、これを板状に賦形したものと銅箔とを加熱加圧成型することにより得られる回路基板。
  11. 請求項2〜6の何れか1つに記載の硬化性樹脂組成物を有機溶剤に希釈したものを基材フィルム上に塗布し、乾燥させることを特徴とするビルドアップフィルム。
  12. α−ナフトールとホルムアルデヒドとを両者のモル比(α−ナフトール/ホルムアルデヒド)が1.0/1.0〜1.0/2.0となる割合で、塩基性触媒の存在下に反応させてカリックスアレーン型のナフトール化合物を得(工程1)、次いで、得られたカリックスアレーン型のナフトール化合物と、ハロゲン化シアンとを反応させる(工程2)ことを特徴とする下記構造式1
    Figure 0006024121
    (式中、R はそれぞれ独立的に、水素原子、アルキル基、アルコキシ基を表し、nは2〜10の整数である。構造式1中のシアナト基の結合位置は、ナフタレン骨格の1位である。)
    で表わされる樹脂構造を有するシアン酸エステル樹脂の製造方法。
  13. α−ナフトールとホルムアルデヒドとを両者のモル比(α−ナフトール/ホルムアルデヒド)が1.0/1.0〜1.0/2.0となる割合で、塩基性触媒の存在下に反応させてカリックスアレーン型のナフトール化合物を得(工程1)、次いで、得られたカリックスアレーン型のナフトール化合物と、ハロゲン化シアンとを反応させ(工程2)下記構造式1
    Figure 0006024121
    (式中、R はそれぞれ独立的に、水素原子、アルキル基、アルコキシ基を表し、nは2〜10の整数である。構造式1中のシアナト基の結合位置は、ナフタレン骨格の1位である。)
    で表わされる樹脂構造を有するシアン酸エステル樹脂を得たのち、さらに硬化促進剤(B)を混合する硬化性樹脂組成物の製造方法。
JP2012038716A 2012-02-24 2012-02-24 シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム Active JP6024121B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038716A JP6024121B2 (ja) 2012-02-24 2012-02-24 シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038716A JP6024121B2 (ja) 2012-02-24 2012-02-24 シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム

Publications (2)

Publication Number Publication Date
JP2013173839A JP2013173839A (ja) 2013-09-05
JP6024121B2 true JP6024121B2 (ja) 2016-11-09

Family

ID=49267045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038716A Active JP6024121B2 (ja) 2012-02-24 2012-02-24 シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム

Country Status (1)

Country Link
JP (1) JP6024121B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675051B (zh) * 2014-10-10 2019-10-21 日商迪愛生股份有限公司 萘酚型杯芳烴化合物及其製造方法、感光性組成物、光阻材料、及塗膜
TW201734071A (zh) * 2015-12-11 2017-10-01 Dainippon Ink & Chemicals 酚醛清漆型樹脂及抗蝕劑膜
CN108219132A (zh) * 2016-12-15 2018-06-29 中国航空工业集团公司济南特种结构研究所 一种含杯状空腔分子结构氰酸酯的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653819B2 (ja) * 1990-05-10 1994-07-20 日本電気株式会社 カリックスアレーンおよび/またはカリックスアレーン誘導体のフィルムおよびその製造法
JP3435496B2 (ja) * 1992-07-29 2003-08-11 鐘淵化学工業株式会社 硬化性難燃樹脂組成物、これより製造したプリプレグ及び難燃電気用積層板
CA2147075A1 (en) * 1994-04-28 1995-10-29 Genesis Group Inc. Chromotropic acid-formaldehyde and 1-naphthol-formaldehyde polymeric compounds
JP3478704B2 (ja) * 1997-06-04 2003-12-15 キヤノン株式会社 静電荷像現像用トナー
JP2004277671A (ja) * 2003-03-19 2004-10-07 Sumitomo Bakelite Co Ltd プリプレグおよびそれを用いたプリント配線板
CN1184247C (zh) * 2003-07-08 2005-01-12 北京玻璃钢研究设计院 酚醛氰酸酯树脂及其合成方法以及酚醛氰酸酯烧蚀材料组合物
JP4407823B2 (ja) * 2004-02-18 2010-02-03 三菱瓦斯化学株式会社 新規なシアネートエステル化合物、難燃性樹脂組成物、およびその硬化物
JP2010031089A (ja) * 2008-07-25 2010-02-12 Hitachi Chem Co Ltd カリックスアレーン誘導体、カリックスアレーン誘導体の製造方法、エポキシ樹脂組成物及び電子部品装置
JP2010174242A (ja) * 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd ビフェニルアラルキル型シアン酸エステル樹脂、並びにビフェニルアラルキル型シアン酸エステル樹脂を含む樹脂組成物、及び、当該樹脂組成物を用いてなるプリプレグ、積層板、樹脂シート、多層プリント配線板、並びに半導体装置
JP5648847B2 (ja) * 2011-02-04 2015-01-07 Dic株式会社 ナフトール型カリックス(4)アレーン化合物の製造方法

Also Published As

Publication number Publication date
JP2013173839A (ja) 2013-09-05

Similar Documents

Publication Publication Date Title
JP4930656B2 (ja) フェノール樹脂組成物、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2012087266A (ja) リン原子含有オリゴマー、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5776465B2 (ja) ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5146793B2 (ja) リン原子含有オリゴマー組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5024642B2 (ja) 新規フェノール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5402091B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、新規フェノール樹脂、及びその製造方法
JP2012201798A (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、及びナフトール樹脂
JP5326861B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板
JP6024121B2 (ja) シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム
JP6111776B2 (ja) シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、プリプレグ、回路基板、半導体封止材料、及びビルドアップフィルム
JP5966903B2 (ja) シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、プリプレグ、回路基板、半導体封止材料、及びビルドアップフィルム
JP6098908B2 (ja) 硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム
JP5850228B2 (ja) 硬化性樹脂組成物、その硬化物、シアン酸エステル樹脂、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム
JP5929660B2 (ja) ビフェノール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6257020B2 (ja) フェニルフェノール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5880921B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板
JP5348060B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2013173838A (ja) シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム
JP6044829B2 (ja) シアン酸エステル樹脂、硬化性樹脂組成物、その硬化物、プリプレグ、回路基板、半導体封止材料、及びビルドアップフィルム。
JP6464721B2 (ja) シアン酸エステル化合物、シアン酸エステル樹脂、シアン酸エステル化合物の製造方法、硬化性樹脂組成物、その硬化物、ビルドアップ用接着フィルム、半導体封止材料、プリプレグ、及び回路基板
JP6403003B2 (ja) シアン酸エステル化合物、シアン酸エステル樹脂、硬化性組成物、その硬化物、ビルドアップフィルム、半導体封止材料、プリプレグ、回路基板、及びシアン酸エステル樹脂の製造方法
JP6032476B2 (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6048035B2 (ja) クレゾール−ナフトール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5994404B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014024978A (ja) 硬化性組成物、硬化物、及びプリント配線基板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R151 Written notification of patent or utility model registration

Ref document number: 6024121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250