JP6011688B2 - 膜電極接合体の製造方法 - Google Patents

膜電極接合体の製造方法 Download PDF

Info

Publication number
JP6011688B2
JP6011688B2 JP2015139307A JP2015139307A JP6011688B2 JP 6011688 B2 JP6011688 B2 JP 6011688B2 JP 2015139307 A JP2015139307 A JP 2015139307A JP 2015139307 A JP2015139307 A JP 2015139307A JP 6011688 B2 JP6011688 B2 JP 6011688B2
Authority
JP
Japan
Prior art keywords
catalyst
electrode assembly
catalyst layer
catalyst ink
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015139307A
Other languages
English (en)
Other versions
JP2015228378A (ja
Inventor
恒政 西田
恒政 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015139307A priority Critical patent/JP6011688B2/ja
Publication of JP2015228378A publication Critical patent/JP2015228378A/ja
Application granted granted Critical
Publication of JP6011688B2 publication Critical patent/JP6011688B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、固体高分子型燃料電池に用いられる膜電極接合体の製造方法に関するものである。
燃料ガスと酸化剤ガスとの電気化学反応によって発電する燃料電池がエネルギ源として注目されている。この燃料電池には、電解質膜として固体高分子膜を用いた固体高分子型燃料電池がある。そして、固体高分子型燃料電池には、一般に、電解質膜の両面に電極(触媒層)が形成された膜電極接合体が用いられる。
ところで、燃料電池では、発電時に、上記電気化学反応によって、水(生成水)が生成される。そして、この生成水が膜電極接合体における電極内に過剰に滞留すると、反応ガス(燃料ガス、酸化剤ガス)の供給が阻害され、フラッディングが発生する。このため、膜電極接合体では、電極内からの排水性を向上させるための種々の技術が提案されている。例えば、下記特許文献1に記載された技術では、触媒層を、孔径が小さい微細孔を有する第1の層と、孔径が大きい微細孔を有する第2の層とによって構成している。
図9は、従来の膜電極接合体の構成を示す説明図である。図9(a)に、膜電極接合体における触媒層14Rの表面状態を示した。また、図9(b)に、触媒層14Rの断面構造を示した。図9(b)に示したように、従来の膜電極接合体(下記特許文献1に記載された膜電極接合体)では、電解質膜12の表面に形成された触媒層14Rは、開口幅が狭いひび割れ14crkR(孔径が小さい微細孔)を有する第1の層14r1と、開口幅が広いひび割れ14crkR(孔径が大きい微細孔)を有する第2の層14r2とによって構成されている。このような構成によって、従来の膜電極接合体では、触媒層14Rの内部からの排水性を向上させている。なお、図9(a)に示したように、触媒層14Rの面内において、ひび割れ14crkRは、網目状に連続的に形成される。
特開2009−146772号公報
しかし、上述した従来の膜電極接合体(図9参照)では、触媒層14Rにおいて、第1の層14r1における微細孔(ひび割れ14crkR)と第2の層における微細孔(ひび割れ14crkR)との接続部分が階段状になる。このため、その階段部分(図9(b)中に破線で示した領域R)に生成水が滞留して、フラッディングを招く場合があった。つまり、膜電極接合体における触媒層の内部からの排水性について、改善の余地があった。また、上述した従来の膜電極接合体では、氷点下での発電時に、ひび割れ14crkRの内部に滞留した生成水の一部が凍結し、この凍結部位が伝播することによって、凍結部位が拡大して、燃料電池の発電性能が低下する場合があった。
本発明は、上述の課題を解決するためになされたものであり、膜電極接合体において、触媒層の内部からの排水性を向上させることを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
(1)本発明の第1の形態は、固体高分子型燃料電池に用いられる膜電極接合体の製造方法であって、
触媒を担持した導電性粒子とプロトン伝導性を有するアイオノマーとを分散溶媒に分散させてなる触媒インクを、電解質膜の表面に塗工する塗工工程と、
前記電解質膜側と前記触媒インク側の両側から加熱して前記電解質膜に塗工された触媒インクを前記電解質膜側と前記触媒インク側の両側から乾燥させて触媒層を形成する乾燥工程であって、前記電解質膜側の温度が前記触媒インクの表面側の温度よりも高い状態で、前記電解質膜に塗工された触媒インクを乾燥させることにより、前記触媒層に、前記触媒層の表面のうちで前記電解質膜に接する第1表面から前記第1表面とは反対側にある第2表面にかけて開口幅が連続的に広くなる複数のひび割れを形成する乾燥工程と、
を備える膜電極接合体の製造方法である。
(2)本発明の第2の形態は、固体高分子型燃料電池に用いられる膜電極接合体の製造方法であって、
触媒を担持した導電性粒子とプロトン伝導性を有するアイオノマーとを分散溶媒に分散させてなる触媒インクを、シート状の基材上に塗工する塗工工程と、
前記触媒インクの表面側と前記基材側の両側から加熱して前記基材上に塗工された触媒インクを前記触媒インクの表面側と前記基材側の両側から乾燥させて触媒層を形成する乾燥工程であって、前記触媒インクの表面側の温度が前記基材側の温度よりも高い状態で、前記基材上に塗工された触媒インクを乾燥させることにより、前記触媒層に、前記触媒層の表面のうちで前記基材と反対側の第1表面から前記基材と接する第2表面にかけて開口幅が連続的に広くなる複数のひび割れを形成する乾燥工程と、
前記乾燥工程によって作製された触媒層を、電解質膜に転写する転写工程と、
を備える膜電極接合体の製造方法である。
これらの第1と第2の形態の製造方法によれば、触媒層に、触媒層の厚さ方向に貫通する複数のひび割れであって、触媒層の電解質膜側から触媒層の表面側にかけて開口幅が連続的に広くなる複数のひび割れを形成することができる。このひび割れの内部には、先に説明した上記特許文献1に記載された技術のような階段部分、すなわち、開口幅が段階的広くなる部分がない。換言すれば、上記ひび割れの内部には、電解質膜の表面に対して平行な面がない。したがって、膜電極接合体によって、触媒層の内部からの排水性を向上させることができる。そして、フラッディングや、氷点下での発電時の発電性能の低下を抑制することができる。
[適用例1]
固体高分子型燃料電池に用いられる膜電極接合体であって、
電解質膜と、
前記電解質膜の表面に形成された触媒層と、
を備え、
前記触媒層は、前記触媒層の厚さ方向に貫通する複数の微細貫通孔であって、前記電解質膜側から前記触媒層の表面側にかけて、開口幅が連続的に広くなる複数の微細貫通孔を備える、
膜電極接合体。
適用例1の膜電極接合体では、触媒層が、開口幅が連続的に広くなる複数の微細貫通孔を備えており、この微細貫通孔の内部には、先に説明した上記特許文献1に記載された技術のような階段部分、すなわち、開口幅が段階的広くなる部分がない。換言すれば、上記微細貫通孔の内部には、電解質膜の表面に対して平行な面がない。したがって、適用例1の膜電極接合体によって、触媒層の内部からの排水性を向上させることができる。そして、フラッディングや、氷点下での発電時の発電性能の低下を抑制することができる。
[適用例2]
適用例1記載の膜電極接合体であって、
前記触媒層の表面における前記微細貫通孔の開口幅は、1〜10(μm)であり、
前記触媒層の表面における前記微細貫通孔の開口長さは、1〜500(μm)である、
膜電極接合体。
適用例2の膜電極接合体によって、上記開口幅、開口長さが上記数値範囲よりも小さい場合に発生する反応ガスの供給不足による発電電圧の低下や、上記開口幅、開口長さが上記数値範囲よりも大きい場合に発生する反応ガスの供給過剰によるドライアップ(電解質膜の乾燥)を抑制することができる。
[適用例3]
適用例1または2記載の膜電極接合体であって、
前記触媒層の厚さは、5〜15(μm)である、
膜電極接合体。
適用例3の膜電極接合体によって、触媒層の厚さが上記数値範囲よりも小さい場合に発生する微細貫通孔の閉塞による反応ガスの供給不足や、触媒層の厚さが上記数値範囲よりも大きい場合に発生するプロトンの移動距離が長くなることによる発電電圧の低下を抑制することができる。
[適用例4]
燃料電池セルであって、
適用例1ないし3のいずれかに記載の膜電極接合体を備える、
燃料電池セル。
適用例4の燃料電池セルによって、膜電極接合体における触媒層の内部からの排水性を向上させ、フラッディングや、氷点下での発電時の発電性能の低下を抑制することができる。
[適用例5]
固体高分子型燃料電池に用いられる膜電極接合体の製造方法であって、
触媒を担持した導電性粒子とプロトン伝導性を有するアイオノマーとを分散溶媒に分散させてなる触媒インクを、電解質膜の表面に塗工する塗工工程と、
前記電解質膜側の温度が前記触媒インクの表面側の温度よりも高い状態で、前記電解質膜に塗工された触媒インクを乾燥させる乾燥工程と、
を備える膜電極接合体の製造方法。
[適用例6]
固体高分子型燃料電池に用いられる膜電極接合体の製造方法であって、
触媒を担持した導電性粒子とプロトン伝導性を有するアイオノマーとを分散溶媒に分散させてなる触媒インクを、シート状の基材上に塗工する塗工工程と、
前記触媒インクの表面側の温度が前記基材側の温度よりも高い状態で、前記基材上に塗工された触媒インクを乾燥させる乾燥工程と、
前記乾燥工程によって作製された触媒層を、電解質膜に転写する転写工程と、
を備える膜電極接合体の製造方法。
適用例5,6の膜電極接合体の製造方法によって、適用例1の膜電極接合体を製造することができる。
[適用例7]
適用例5または6記載の膜電極接合体の製造方法であって、
前記触媒インクの粘度は、7〜12(Pa・s)である、
膜電極接合体の製造方法。
適用例7の膜電極接合体の製造方法によって、触媒インクの粘度が上記数値範囲よりも小さい場合(触媒インクの流動性が高い場合)の触媒層の形成寸法精度の低下や、触媒インクの粘度が上記数値範囲よりも大きい場合(触媒インクの流動性が低い場合)の触媒層表面の面粗さの増加、すなわち、触媒層と接合されるガス拡散層や電解質膜との接触抵抗の増加を抑制することができる。
[適用例8]
適用例5ないし7のいずれかに記載の膜電極接合体の製造方法であって、
レーザー回折散乱法によって測定された前記触媒インクの粒度分布における累積90体積%径は、5〜20(μm)である、
膜電極接合体の製造方法。
適用例8の膜電極接合体の製造方法によって、レーザー回折散乱法によって測定された触媒インクの粒度分布における累積90体積%径(D90)が上記数値範囲よりも小さい場合(触媒層における導電性粒子の密度が高い場合)の反応ガスの供給不足や、上記粒径が上記数値範囲よりも大きい場合に導電性粒子が電解質膜に与えるダメージを抑制することができる。
本発明は、上述の膜電極接合体、燃料電池セル、膜電極接合体の製造法としての構成の他、膜電極接合体の表面にガス拡散層を接合してなる膜電極ガス拡散層接合体、この膜電極ガス拡散層接合体を備える燃料電池セル、膜電極ガス拡散層接合体の製造方法の発明として構成することもできる。なお、それぞれの態様において、先に示した種々の付加的要素を適用することが可能である。
本発明の一実施例としての燃料電池100の概略構成を示す説明図である。 膜電極接合体10の構成を示す説明図である。 第1実施例としての膜電極接合体10の製造工程を示す説明図である。 触媒インクの乾燥速度比((電解質膜12側の乾燥速度)/(触媒層14の表面側の乾燥速度))とひびの角度θとの関係を示す説明図である。 第1実施例の膜電極接合体10の製造方法によって、触媒層14にひび割れ14crkが形成されるときに、電解質膜12側から触媒層14の表面側にかけて、開口幅Wが連続的に広くなるメカニズムを示す説明図である。 触媒インクの粒径(D90)を5〜20(μm)とする理由を説明するための説明図である。 第2実施例としての膜電極接合体10の製造工程を示す説明図である。 触媒インクの乾燥速度比((触媒層14の表面側の乾燥速度)/(テフロンシート300側の乾燥速度))とひびの角度θとの関係を示す説明図である。 従来の膜電極接合体の構成を示す説明図である。
以下、本発明の実施の形態について、実施例に基づき以下の順序で説明する。
A.燃料電池の構成:
図1は、本発明の一実施例としての燃料電池100の概略構成を示す説明図である。図1では、燃料電池100の断面構造を模式的に示した。図示するように、この燃料電池100は、膜電極接合体10の両面に、アノード側ガス拡散層20a、および、カソード側ガス拡散層20cを接合してなる膜電極ガス拡散層接合体を、アノード側セパレータ30a、および、カソード側セパレータ30cで挟持することによって構成されている。
膜電極接合体10は、プロトン伝導性を有する電解質膜12の両面に、アノード側触媒層14a、および、カソード側触媒層14cを接合することによって構成されている(以下、アノード側触媒層14a、および、カソード側触媒層14cを総称して、触媒層14とも言う)。触媒層14は、電解質膜12の表面に、触媒インクを塗布して乾燥させることによって形成される。触媒インクは、触媒を担持した導電性粒子と、プロトン伝導性を有するアイオノマーとを、水やアルコールなどの分散溶媒に分散させてなる。本実施例では、触媒として、白金を用いるものとした。また、本実施例では、導電性粒子として、カーボンブラックを用いるものとした。白金を担持したカーボンブラックを、白金担持カーボンとも言う。また、本実施例では、プロトン伝導性を有するアイオノマーとして、ナフィオン(登録商標)を用いるものとした。
なお、本実施例では、電解質膜12として、ナフィオン(登録商標)等の固体高分子からなる電解質膜を用いるものとした。電解質膜12として、他の固体高分子からなり電解質膜を用いるようにしてもよい。また、本実施例では、アノード側ガス拡散層20a、および、カソード側ガス拡散層20cとして、カーボンクロスを用いるものとした。アノード側ガス拡散層20a、および、カソード側ガス拡散層20cとして、カーボンペーパ等、ガス拡散性、および、導電性を有する他の材料を用いるものとしてもよい。アノード側ガス拡散層20a、および、カソード側ガス拡散層20cの触媒層14との当接面には、触媒層14の表面からの排水性を向上させるために、図示しない撥水層が設けられている。また、アノード側セパレータ30a、および、カソード側セパレータ30cの材料としては、カーボンや、金属など、導電性を有する種々の材料を適用可能である。
B.膜電極接合体の構成:
図2は、膜電極接合体10の構成を示す説明図である。図2(a)に、膜電極接合体10における触媒層14の表面状態を示した。また、図2(b)に、触媒層14に形成されたひび割れ14crkを示した。また、図2(c)に、膜電極接合体10の断面構造を示した。本実施例の膜電極接合体10において、触媒層14の厚さは、5〜15(μm)であるものとした。
図2(a)に示したように、触媒層14の面内には、複数のひび割れ14crkが独立して形成されている。図2(a)には、19個のひび割れ14crkが描かれている。そして、複数のひび割れ14crkは、図2(c)に示したように、触媒層14の厚さ方向に貫通している。本実施例では、膜電極接合体10の表面におけるひび割れ14crkの開口幅Wは、1〜10(μm)であるものとした。また、本実施例では、膜電極接合体10の表面におけるひび割れ14crkの開口長さは、1〜500(μm)であるものとした。
ここで、膜電極接合体10の表面におけるひび割れ14crkの開口長さとは、他のひび割れ14crkと連結していない独立したひび割れ14crkを膜電極接合体10の表面から見たときの全体の長さである。例えば、膜電極接合体10の表面からみたときに、図2(b)に示した、点P1と点P2とを結ぶ線分S1(ひび割れ)と、点P2と点P3とを結ぶ線分S2(ひび割れ)とからなるひび割れ14crkでは、線分S1の長さと線分S2の長さとの和が、ひび割れ14crkの開口長さとなる。また、膜電極接合体10の表面におけるひび割れ14crkの開口幅とは、ひび割れ14crkを膜電極接合体10の表面から見たときの開口長さの方向に垂直な方向の幅(例えば、平均値)である。図2(b)に示した例では、線分S1,S2の幅Wが、ひび割れ14crkの開口幅である。
そして、触媒層14において、ひび割れ14crkは、図2(c)に示したように、電解質膜12側から触媒層14の表面側にかけて、開口幅Wが連続的に広くなっている。換言すれば、電解質膜12とひび割れ14crkとのなす角度θが鋭角になっている(以下、電解質膜12とひび割れ14crkとのなす角度を、ひびの角度とも言う)。そして、ひび割れ14crkの内部には、開口幅が段階的に広くなる階段部分がない。換言すれば、ひび割れ14crkの内部には、電解質膜12の表面に対して平行な面がない。電解質膜12の触媒層14において、ひび割れ14crkが上述した開口幅Wが連続的に広くなる形状を有することによって、触媒層14の内部からの排水性を向上させることができる。ひび割れ14crkは、[課題を解決するための手段]における微細貫通孔に相当する。
上述した触媒層14を備える膜電極接合体10は、例えば、以下に説明する製造工程によって製造される。
C.膜電極接合体の製造工程(第1実施例):
図3は、第1実施例としての膜電極接合体10の製造工程を示す説明図である。まず、電解質膜12の表面に触媒インクを塗工する(ステップS100)。本実施例では、触媒インクの粘度は、7〜12(Pa・s)であるものとした。また、レーザー回折散乱法によって測定された触媒インクの粒度分布における累積90体積%径(D90)は、5〜20(μm)であるものとした。触媒インクの粒径(D90)を、5〜20(μm)とする理由については、後から説明する。
次に、触媒インクが塗工された電解質膜12を、バックシート200に載せて、電解質膜12に塗工された触媒インクを乾燥させる(ステップS110)。このとき、電解質膜12側の温度が触媒インク(触媒層14)の表面側の温度よりも高い状態で、触媒インクを乾燥させる。換言すれば、電解質膜12側の乾燥速度を、触媒インク(触媒層14)の表面側の乾燥速度よりも速くして、触媒インクを乾燥させる。本実施例では、ステップS110の枠内に示したように、電解質膜12側に高温の熱板を配置し、触媒インク(触媒層14)の表面側に低温の熱板を配置して、触媒インクの乾燥を行うものとした。このように触媒インクを乾燥させることによって、図2(c)に示したひび割れ14crkが触媒層14に形成される。なお、触媒層14にひび割れ14crkが形成されるときに、電解質膜12側から触媒層14の表面側にかけて、開口幅Wが連続的に広くなるメカニズムについては、後から説明する。
ここで、ひびの角度θと触媒インクの乾燥速度との関係について説明する。図4は、触媒インクの乾燥速度比((電解質膜12側の乾燥速度)/(触媒層14の表面側の乾燥速度))とひびの角度θとの関係を示す説明図である。なお、触媒インクの乾燥速度比((電解質膜12側の乾燥速度)/(触媒層14の表面側の乾燥速度))は、電解質膜12側に配置される熱板の温度と、触媒インク(触媒層14)の表面側に配置される熱板の温度との比に近似される。図示するように、触媒インクの乾燥速度比((電解質膜12側の乾燥速度)/(触媒層14の表面側の乾燥速度))が大きいほど、ひびの角度θが小さくなる。
図5は、第1実施例の膜電極接合体10の製造方法によって、触媒層14にひび割れ14crkが形成されるときに、電解質膜12側から触媒層14の表面側にかけて、開口幅Wが連続的に広くなるメカニズムを示す説明図である。図示するように、電解質膜12の表面に塗工された触媒インクにおいて、電解質膜12側の温度が触媒層14の表面側の温度よりも高いと、電解質膜12側の触媒インクの乾燥速度は、触媒層14の表面側のインクの乾燥速度よりも速くなる。すると、触媒インクに含まれるアイオノマーは、ハッチングで模式的に示したように、高温側、すなわち、電解質膜12側に偏る。そして、触媒インクに含まれる白金担持カーボン(図中に丸で示した)とアイオノマーとの接触面積が偏り、触媒層14の強度も偏る。すなわち、アイオノマーの量が少なくなる触媒層14の表面側の触媒層14の強度が、アイオノマーの量が多くなる電解質膜12側の触媒層14の強度よりも弱くなる。この結果、触媒層14における内部応力によって、ひびの角度θが鋭角となる。
図6は、触媒インクの粒径(D90)を、5〜20(μm)とする理由を説明するための説明図である。図6(a)に、触媒インクの粒径(D90)と、触媒層14に形成されるひび割れ14crkの単位面積当たりの数との関係を示した。なお、触媒インクの粒径(D90)以外の触媒層14の形成条件は、先に説明した膜電極接合体10の製造工程における条件と同じである。また、図6(b)に、触媒層14に形成されるひび割れ14crkの単位面積当たりの数と、膜電極接合体10を備える燃料電池100の氷点下発電継続時間との関係を示した。氷点下発電継続時間とは、氷点下環境下で発電を行う場合に、発電を継続することができる時間である。氷点下環境下での発電時に、生成水の凍結によって、触媒層14内部への反応ガスの供給が遮断されると、発電を継続することができなくなる。
図6(a)に示したように、触媒インクの粒径(D90)が大きいほど、触媒層14に形成されるひび割れ14crkの単位面積当たりの数は増加する。図示した例では、触媒インクの粒径(D90)が5(μm)である場合の触媒層14に形成されるひび割れ14crkの単位面積当たりの数は、K5である。また、触媒インクの粒径(D90)が20(μm)である場合の触媒層14に形成されるひび割れ14crkの単位面積当たりの数は、K20である。そして、触媒インクの粒径(D90)が20(μm)を超えると、触媒層14に形成されるひび割れ14crkの単位面積当たりの数は、ほぼ飽和する。
また、図6(b)に示したように、触媒層14に形成されるひび割れ14crkの単位面積当たりの数が多いほど、燃料電池100の氷点下発電継続時間が長くなる。そして、触媒層14に形成されるひび割れ14crkの単位面積当たりの数がほぼ飽和値(K20)になると、燃料電池100の氷点下発電継続時間も飽和する。
なお、図示は省略するが、触媒インクの粒径(D90)が、20(μm)を超えると、触媒インクに含まれる白金担持カーボンが電解質膜12に与えるダメージが、看過できない程度に大きくなる。また、触媒インクの粒径(D90)が、5(μm)未満である場合には、触媒層14における白金担持カーボンの密度が高くなり、反応ガスの供給不足が生じる。これらのことから、本実施例では、触媒層14の形成に用いられる触媒インクの粒径(D90)を、5〜20(μm)とした。
以上説明した第1実施例の製造方法によって製造された膜電極接合体10を備える燃料電池100では、膜電極接合体10における触媒層14が、開口幅Wが連続的に広くなる複数のひび割れ14crkを備えており、このひび割れ14crkの内部には、開口幅が段階的広くなる階段部分がない。換言すれば、ひび割れ14crkの内部には、電解質膜12の表面に対して平行な面がない。したがって、第1実施例の燃料電池100によって、触媒層14の内部からの排水性を向上させることができる。そして、フラッディングや、氷点下での発電時の発電性能の低下を抑制することができる。
また、第1実施例の燃料電池100では、膜電極接合体10において、触媒層14の表面におけるひび割れ14crkの開口幅は、1〜10(μm)であり、触媒層14の表面におけるひび割れ14crkの開口長さは、1〜500(μm)であるものとした。こうすることによって、上記開口幅、開口長さが上記数値範囲よりも小さい場合に発生する反応ガスの供給不足による発電電圧の低下や、上記開口幅、開口長さが上記数値範囲よりも大きい場合に発生する反応ガスの供給過剰によるドライアップ(電解質膜の乾燥)を抑制することができる。
また、第1実施例の燃料電池100では、膜電極接合体10において、触媒層14の厚さは、5〜15(μm)であるものとした。こうすることによって、触媒層14の厚さが上記数値範囲よりも小さい場合に発生するひび割れ14crkの閉塞による反応ガスの供給不足や、触媒層14の厚さが上記数値範囲よりも大きい場合に発生するプロトンの移動距離が長くなることによる発電電圧の低下を抑制することができる。
また、第1実施例の燃料電池100では、膜電極接合体10の製造工程において、触媒インクの粘度は、7〜12(Pa・s)であるものとした。こうすることによって、触媒インクの粘度が上記数値範囲よりも小さい場合(触媒インクの流動性が高い場合)の触媒層14の形成寸法精度の低下や、触媒インクの粘度が上記数値範囲よりも大きい場合(触媒インクの流動性が低い場合)の触媒層14の表面の面粗さの増加、すなわち、触媒層14と接合されるガス拡散層(アノード側ガス拡散層20a、カソード側ガス拡散層20c)との接触抵抗の増加を抑制することができる。
また、第1実施例の燃料電池100では、膜電極接合体10の製造工程において、レーザー回折散乱法によって測定された触媒インクの粒度分布における累積90体積%径(D90)は、5〜20(μm)であるものとした。こうすることによって、触媒インクの粒径(D90)が上記数値範囲よりも小さい場合(触媒層14における白金担持カーボンの密度が高い場合)の反応ガスの供給不足や、触媒インクの粒径(D90)が上記数値範囲よりも大きい場合に白金担持カーボンが電解質膜12に与えるダメージを抑制することができる。
D.膜電極接合体の製造工程(第2実施例):
図7は、第2実施例としての膜電極接合体10の製造工程を示す説明図である。まず、シート状の基材であるテフロンシート300(「テフロン」は登録商標)の表面に触媒インクを塗工する(ステップS200)。なお、触媒インクは、第1実施例と同じである。
次に、テフロンシート300に塗工された触媒インクを乾燥させる(ステップS210)。このとき、触媒インク(触媒層14)の表面側の温度がテフロンシート300側の温度よりも高い状態で、触媒インクを乾燥させる。換言すれば、触媒インク(触媒層14)の表面側の乾燥速度を、テフロンシート300側の乾燥速度よりも速くして、触媒インクを乾燥させる。本実施例では、ステップS210の枠内に示したように、触媒インク(触媒層14)の表面側に高温の熱板を配置し、テフロンシート300側に低温の熱板を配置して、触媒インクの乾燥を行うものとした。このように触媒インクを乾燥させることによって、第1実施例と同様に、乾燥速度比による触媒インク中のアイオノマーの偏りによって、触媒層14の表面側からテフロンシート300側にかけて、開口幅Wが連続的に広くなる複数のひび割れ14crkが触媒層14に形成される。
そして、テフロンシート300上に形成された触媒層14を、電解質膜12上に転写する(ステップS200)。こうすることによって、触媒層14の表裏が反転されて、電解質膜12側から触媒層14の表面側にかけて、開口幅Wが連続的に広くなる複数のひび割れ14crkを備える触媒層14が電解質膜12上に接合される。
なお、ステップS210において、触媒層14の電解質膜12に接合される側の表面とひび割れ14crkとのなす角度(ひびの角度)θと、触媒インクの乾燥速度比との関係は、第1実施例と同様である(図4)。図8は、触媒インクの乾燥速度比((触媒層14の表面側の乾燥速度)/(テフロンシート300側の乾燥速度))とひびの角度θとの関係を示す説明図である。なお、触媒インクの乾燥速度比((触媒層14の表面側の乾燥速度)/(テフロンシート300側の乾燥速度))は、触媒インク(14)の表面側に配置される熱板の温度と、テフロンシート300側に配置される熱板の温度との比に近似される。図示するように、触媒インクの乾燥速度比((触媒層14の表面側の乾燥速度)/(テフロンシート300側の乾燥速度))が大きいほど、ひびの角度θが小さくなる。
以上説明した第2実施例の製造方法によって製造された膜電極接合体10を備える燃料電池100によっても、第1実施例と同様に、触媒層14の内部からの排水性を向上させることができる。そして、フラッディングや、氷点下での発電時の発電性能の低下を抑制することができる。
E.変形例:
以上、本発明のいくつかの実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形が可能である。
E1.変形例1:
上記第1実施例の膜電極接合体10の製造工程では、電解質膜12側に高温の熱板を配置し、触媒インク(触媒層14)の表面側に低温の熱板を配置して、触媒インクの乾燥を行うものとしたが、本発明は、これに限られない。本発明では、電解質膜12側の温度が触媒インク(触媒層14)の表面側の温度よりも高い状態で、触媒インクを乾燥させればよい。したがって、例えば、触媒インク(触媒層14)の表面側からの加熱を行わないようにしてもよい。ただし、触媒インク(触媒層14)の表面側からの加熱も行うことによって、触媒インクの乾燥時間を短縮することができる。
E2.変形例2:
上記第2実施例の膜電極接合体10の製造工程では、触媒インク(触媒層14)の表面側に高温の熱板を配置し、テフロンシート300側に低温の熱板を配置して、触媒インクの乾燥を行うものとしたが、本発明は、これに限られない。本発明では、触媒インク(触媒層14)の表面側の温度がテフロンシート300側の温度よりも高い状態で、触媒インクを乾燥させればよい。したがって、例えば、テフロンシート300側からの加熱を行わないようにしてもよい。ただし、テフロンシート300側からの加熱も行うことによって、触媒インクの乾燥時間を短縮することができる。
E3.変形例3:
上記実施例では、膜電極接合体10において、上述した複数のひび割れ14crkを備える触媒層14を、アノード側触媒層14a、および、カソード側触媒層14cに適用するものとしたが、本発明は、これに限られない。アノード側触媒層14a、および、カソード側触媒層14cのいずれか一方に、上述した複数のひび割れ14crkを備える触媒層14を適用するようにしてもよい。
E4.変形例4:
上記実施例では、燃料電池100は、膜電極接合体10の両面に、アノード側ガス拡散層20a、および、カソード側ガス拡散層20cを接合してなる膜電極ガス拡散層接合体を備えるものとしたが、本発明は、これに限られない。アノード側ガス拡散層20a、および、カソード側ガス拡散層20cの少なくとも一方を省略するようにしてもよい。
100…燃料電池
10…膜電極接合体
12…電解質膜
14,14R…触媒層
14crk,14crkR…ひび割れ
14a…アノード側触媒層
14c…カソード側触媒層
14r1…第1の層
14r2…第2の層
20a…アノード側ガス拡散層
20c…カソード側ガス拡散層
30a…アノード側セパレータ
30c…カソード側セパレータ
200…バックシート
300…テフロンシート
R…領域
W…開口幅

Claims (4)

  1. 固体高分子型燃料電池に用いられる膜電極接合体の製造方法であって、
    触媒を担持した導電性粒子とプロトン伝導性を有するアイオノマーとを分散溶媒に分散させてなる触媒インクを、電解質膜の表面に塗工する塗工工程と、
    前記電解質膜側と前記触媒インク側の両側から加熱して前記電解質膜に塗工された触媒インクを前記電解質膜側と前記触媒インク側の両側から乾燥させて触媒層を形成する乾燥工程であって、前記電解質膜側の温度が前記触媒インクの表面側の温度よりも高い状態で、前記電解質膜に塗工された触媒インクを乾燥させることにより、前記触媒層に、前記触媒層の表面のうちで前記電解質膜に接する第1表面から前記第1表面とは反対側にある第2表面にかけて開口幅が連続的に広くなる複数のひび割れを形成する乾燥工程と、
    を備える膜電極接合体の製造方法。
  2. 固体高分子型燃料電池に用いられる膜電極接合体の製造方法であって、
    触媒を担持した導電性粒子とプロトン伝導性を有するアイオノマーとを分散溶媒に分散させてなる触媒インクを、シート状の基材上に塗工する塗工工程と、
    前記触媒インクの表面側と前記基材側の両側から加熱して前記基材上に塗工された触媒インクを前記触媒インクの表面側と前記基材側の両側から乾燥させて触媒層を形成する乾燥工程であって、前記触媒インクの表面側の温度が前記基材側の温度よりも高い状態で、前記基材上に塗工された触媒インクを乾燥させることにより、前記触媒層に、前記触媒層の表面のうちで前記基材と反対側の第1表面から前記基材と接する第2表面にかけて開口幅が連続的に広くなる複数のひび割れを形成する乾燥工程と、
    前記乾燥工程によって作製された触媒層を、電解質膜に転写する転写工程と、
    を備える膜電極接合体の製造方法。
  3. 請求項1または2記載の膜電極接合体の製造方法であって、
    前記触媒インクの粘度は、7〜12(Pa・s)である、
    膜電極接合体の製造方法。
  4. 請求項1ないし3のいずれか一項に記載の膜電極接合体の製造方法であって、
    レーザー回折散乱法によって測定された前記触媒インクの粒度分布における累積90体積%径は、5〜20(μm)である、
    膜電極接合体の製造方法。
JP2015139307A 2015-07-13 2015-07-13 膜電極接合体の製造方法 Active JP6011688B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139307A JP6011688B2 (ja) 2015-07-13 2015-07-13 膜電極接合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139307A JP6011688B2 (ja) 2015-07-13 2015-07-13 膜電極接合体の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012024622A Division JP2013161737A (ja) 2012-02-08 2012-02-08 膜電極接合体、燃料電池セル、および、膜電極接合体の製造方法

Publications (2)

Publication Number Publication Date
JP2015228378A JP2015228378A (ja) 2015-12-17
JP6011688B2 true JP6011688B2 (ja) 2016-10-19

Family

ID=54885713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139307A Active JP6011688B2 (ja) 2015-07-13 2015-07-13 膜電極接合体の製造方法

Country Status (1)

Country Link
JP (1) JP6011688B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102141881B1 (ko) * 2016-03-30 2020-08-06 코오롱인더스트리 주식회사 고분자 전해질 연료 전지용 나노구조 전극 및 이의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332294B2 (ja) * 2008-04-30 2013-11-06 凸版印刷株式会社 膜電極接合体の製造方法
WO2011099285A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 膜-触媒層接合体の製造方法及び装置
JP2013073892A (ja) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd 燃料電池用膜電極接合体の製造方法

Also Published As

Publication number Publication date
JP2015228378A (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
JP5069927B2 (ja) 燃料電池用膜電極接合体およびその製造方法
JP2013020939A (ja) 燃料電池用ガス拡散層
Kang et al. Development of an advanced MEA to use high-concentration methanol fuel in a direct methanol fuel cell system
KR20140006718A (ko) 기체확산층용 탄소기재, 이를 이용한 기체확산층, 및 이를 포함하는 연료전지용 전극
JP2011519134A (ja) 陽子交換膜燃料電池の触媒層のポリマコーティング
JP6741917B2 (ja) 燃料電池用触媒層及び燃料電池
KR20200030470A (ko) 전기 화학 반응기 유동 가이드의 제조 프로세스
US7625661B2 (en) Diffusion media with continuous micro-porous layers incorporating non-uniformity
JP5862485B2 (ja) 燃料電池用ガス拡散層の形成方法
JP6011688B2 (ja) 膜電極接合体の製造方法
JP5193478B2 (ja) ガス拡散電極、膜−電極接合体とその製造方法、および固体高分子型燃料電池
JP2013161737A (ja) 膜電極接合体、燃料電池セル、および、膜電極接合体の製造方法
JP6135644B2 (ja) 膜電極接合体および燃料電池
JP5362947B2 (ja) 固体高分子電解質膜および燃料電池
JP2015079639A (ja) 電解質膜・電極構造体
JP2015050073A (ja) 燃料電池用のガス拡散層の製造方法
JP2017037745A (ja) 電池用ガス拡散層、電池部材、膜−電極接合体、燃料電池、及び電池用ガス拡散層の製造方法
JP2009037860A (ja) 燃料電池およびそれに用いるセパレータ
JP5183130B2 (ja) 燃料電池
DE112011101367T5 (de) Membranelektrodenanordnung für eine Brennstoffzelle und Brennstoffzelle, die diese Verwendet
JP2020107397A (ja) 燃料電池セル
JP7272314B2 (ja) 燃料電池用の積層体
JP3738831B2 (ja) 燃料電池用電極および燃料電池
JP5589884B2 (ja) 燃料電池
JP5439947B2 (ja) 膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160905

R151 Written notification of patent or utility model registration

Ref document number: 6011688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151