JP6007681B2 - 冷却モジュールおよび半導体装置 - Google Patents

冷却モジュールおよび半導体装置 Download PDF

Info

Publication number
JP6007681B2
JP6007681B2 JP2012191956A JP2012191956A JP6007681B2 JP 6007681 B2 JP6007681 B2 JP 6007681B2 JP 2012191956 A JP2012191956 A JP 2012191956A JP 2012191956 A JP2012191956 A JP 2012191956A JP 6007681 B2 JP6007681 B2 JP 6007681B2
Authority
JP
Japan
Prior art keywords
semiconductor element
cooling module
flow path
conductive member
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012191956A
Other languages
English (en)
Other versions
JP2014049634A (ja
Inventor
塩賀 健司
健司 塩賀
水野 義博
義博 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2012191956A priority Critical patent/JP6007681B2/ja
Publication of JP2014049634A publication Critical patent/JP2014049634A/ja
Application granted granted Critical
Publication of JP6007681B2 publication Critical patent/JP6007681B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本願は、冷却モジュールおよび半導体装置に関する。
コンピュータ等の電子装置に搭載されるLSI(Large Scale Integration)等の半導
体素子には、基板に接合される面の反対側の面にヒートスプレッダやヒートシンク等の放熱部材を接触させた空冷の冷却方式が比較的多く適用されている。よって、半導体素子の高速化や高機能化に伴って半導体素子の発熱量が増加すると、放熱部材の大型化や形状の複雑化により、電子装置の実装設計に影響を与える虞がある。
また、近年では、半導体素子の高速化や高機能化に対応するため、例えば、TSV(Through Silicon Via)技術を使って半導体素子を積層する手法が提案されている(例えば
、非特許文献1を参照)。図18は、従来技術に係る半導体素子を積層した半導体装置を示した図の一例である。積層された各半導体素子121A〜Eを冷却する場合、ヒートシンク122のような放熱部材を用いた冷却方式では、放熱部材に比較的近い半導体素子121Aから冷却が行なわれる。このため、放熱部材から比較的遠い半導体素子121Eは冷却されにくい。
そこで、例えば、半導体素子の内外に形成した微細な流路に冷媒を流して半導体素子を冷却する手法が提案されている。図19は、従来技術に係る半導体素子に形成した微細な流路を示した図の一例である。例えば、MEMS(Micro Electro Mechanical Systems)技術を活用したシリコンエッチングにより、半導体素子121A〜Eに形成された各TSV123間に微細な流路(「マイクロチャネル」と呼ばれることもある)105を形成し、流路105内に冷媒を流通する。各半導体素子121A〜Eを流路105内の冷媒で冷却すれば、特定の半導体素子が高温になることを防止することが可能である。
この他の手法としては、例えば、積層した各半導体素子の間に、微細な流路を形成した板を挿入して各半導体素子を冷却する手法(例えば、特許文献1−2を参照)が提案されている。
山地泰弘,安藤達也,森藤忠洋,佐藤知稔,高橋健司、「3次元積層モジュールにおける熱設計」、電子情報通信学会技術研究報告(CPM)[電子部品・材料]、一般社団法人電子情報通信学会、2001年12月13日、信学技報Vol.101, No.516、p.45−52
特表2009−512215号公報 特開昭62−12146号公報 特開2008−205251号公報
半導体素子の内外に形成した流路に冷媒を流して冷却を行う場合、冷媒に接触する部分を電気的に絶縁することが求められる。また、半導体素子の内外に流路を形成することは、半導体装置の製造プロセスを複雑化する。更に、複雑な製造プロセスを経る過程で蓄積
される熱履歴により、半導体装置に反りやうねりが発生する可能性がある。製造プロセスを経る過程で発生した反りやうねりは、例えば、半導体装置の基板への実装を困難にする虞がある。
また、流路を形成した部材を各半導体素子間に挟み込む場合、当該部材自体が熱抵抗となって冷却効果が低下する可能性や、各半導体素子間に挟み込んだ各部材の流路へ冷媒を分配する分岐経路を設けることにより冷却システムが複雑化する可能性がある。
そこで、本願は、半導体素子の内外に流路を形成することなく、半導体素子を効果的に冷却可能な冷却モジュールおよび半導体装置を提供することを目的とする。
本願は、次のような冷却モジュールを開示する。
半導体素子の表面と対峙する被接合面を外側に有し、冷媒が流通する流路を内側に有する中空部材と、
前記被接合面のうち、前記半導体素子に取り付けられたはんだバンプに対応する部位に配置され、前記はんだバンプが溶着される被溶着面の裏側の熱交換面が前記流路内に露出している熱伝導性部材と、を備える、
冷却モジュール。
また、本願は、次のような半導体装置を開示する。
半導体素子と、
前記半導体素子の表面と対峙する被接合面を外側に有し、冷媒が流通する流路を内側に有する中空部材と、
前記被接合面のうち、前記半導体素子に取り付けられたはんだバンプに対応する部位に配置され、前記はんだバンプが溶着される被溶着面の裏側の熱交換面が前記流路内に露出している熱伝導性部材と、を備える、
半導体装置。
上記冷却モジュールおよび半導体装置であれば、半導体素子の内外に流路を形成することなく、半導体素子を効果的に冷却することが可能となる。
冷却モジュールを示した図の一例である。 中空部材を形成するための基板を示した図の一例である。 熱伝導性部材を形成したい部位に孔を加工した基板を示した図の一例である。 シード層およびレジストを形成した基板を示した図の一例である。 熱伝導性部材を形成した基板を示した図の一例である。 流路を形成した基板を示した図の一例である。 カバー部材を接合した基板を示した図の一例である。 冷却モジュールを適用した半導体装置を示した図の一例である。 冷却モジュールに冷媒を供給する冷却システムを示した図の一例である。 冷却モジュールの第1変形例を示した図の一例である。 冷却モジュールの第2変形例を示した図の一例である。 冷却モジュールを適用した半導体装置の変形例を示した図の一例である。 ヒートシンクを取り付けただけの従来の冷却方式の熱抵抗(比較例1)を表した図である。 冷却モジュールを用いた半導体装置の冷却方式の熱抵抗を表した図である。 半導体素子の回路面の裏側の面にヒートシンクを取り付けただけの従来の冷却方式の熱抵抗(比較例2)を表した図である。 積層体のTSVにCuを用いた場合の熱伝導率の見積もりを示したグラフである。 本変形例に係る半導体装置と、電子回路から電気的に絶縁されている従来のサーマルビアを使用した半導体装置(比較例3)の熱コンダクタンスの見積もりを示したグラフである。 従来技術に係る半導体素子を積層した半導体装置の一例を示した図の一例である。 従来技術に係る半導体素子に形成した微細な流路を示した図の一例である。
以下、実施形態について説明する。以下に示す実施形態は、単なる例示であり、本願の技術的範囲を以下の態様に限定するものではない。
<冷却モジュールの実施形態>
図1は、冷却モジュールを示した図の一例である。冷却モジュール1は、中空部材2と熱伝導性部材3とを備える。中空部材2は、半導体素子の表面と対峙する被接合面4を外側に有し、冷媒が流通する流路5を内側に有する。熱伝導性部材3は、被接合面4のうち、半導体素子の表面に取り付けられたはんだバンプに対応する部位に配置され、はんだバンプが溶着される被溶着面6の裏側の熱交換面7が流路5内に露出している。熱伝導性部材3は、少なくとも中空部材2を形成する材料よりも熱伝導率の高い材料で形成される。熱伝導性部材3は、例えば、導電性の材料で形成された場合、電極パッドのような態様を呈することになるが、電極としての役割を奏するものではない。
また、熱伝導性部材3は、はんだバンプと接合可能な形状であれば、図1に示すように被溶着面6側が凹状のものに限定されるものでなく、例えば、電極パッドのように平坦状に形成されていてもよい。熱伝導性部材3の配置や材質、大きさは、冷却効率や生産効率等の観点に基づいて適宜選択される。
冷却モジュール1は、例えば、以下のような製造方法で製造することが可能である。
図2は、中空部材2を形成するための基板を示した図である。冷却モジュール1を製造する際は、板状の基板10を用意する。基板10の材質は如何なるものであってもよく、例えば、シリコンやプラスチック、ガラス等を適用可能である。なお、基板10がシリコンであれば、流路5や熱伝導性部材3を半導体素子と同様の製造プロセスで形成可能である。
図3は、被接合面4のうち熱伝導性部材3を形成したい部位に孔を加工した基板10を示した図の一例である。板状の基板10を用意した後は、熱伝導性部材3を形成したい部位に凹状の孔11を形成する。孔11を形成する際の加工方法は如何なるものであってもよく、例えば、Si DRIE(Deep Reactive Ion Etching of Silicon)プロセスやサンドブ
ラスト、ドリル加工等を適用可能である。
図4は、シード層およびレジストを形成した基板10を示した図の一例である。孔11を形成した後は、シード層12を成膜し、次いで孔11を取り囲むようにパターニングしたレジスト13を形成する。シード層12は、次工程のめっき処理を行う際の導体となる材料であれば如何なるもので形成されていてもよく、例えば、CuやCu/Tiを適用す
ることが可能である。
図5は、熱伝導性部材3を形成した基板10を示した図の一例である。シード層12およびレジスト13を形成した後は、めっき処理を行うことにより、シード層12の表面のうちレジスト13に覆われていない孔11の部分にめっき層である熱伝導性部材3が形成される。めっき処理に用いる材料は特に限定されるものでなく、例えば、Ti等を用いることが可能である。
図6は、流路5を形成した基板10を示した図の一例である。熱伝導性部材3を形成した後は、熱伝導性部材3が形成されている被接合面4の裏側の面に、深さが熱伝導性部材3に到達する程度の凹状の孔である流路5を形成する。流路5を形成する際の加工方法は如何なるものであってもよく、例えば、Si DRIEプロセスやサンドブラスト、ドリル加工
等を適用可能である。深さが熱伝導性部材3に到達する程度の凹状の孔を形成することにより、熱伝導性部材3の熱交換面7が流路5に露出することになる。
流路5をシリコンエッチングにより形成する際は、例えば、紫外線を照射すると粘着力が低下するUVテープや加熱すると発砲する熱発泡テープで、基板10を支持台座に固定する。支持台座は、如何なる材質のものであってもよいが、例えば、テンパックスガラスであれば耐熱性等に優れるので好適である。そして、支持台座に固定した基板10に、熱伝導性部材3が露出するまでエッチングを施す。
図7は、カバー部材を接合した基板10を示した図の一例である。流路5を形成した後は、流路5を覆う板状のカバー部材14を基板10に接合する。これにより、単なる凹状の孔であった流路5は、冷媒を流すことが可能な流通経路となる。カバー部材14の接合方法は、冷媒の漏れ防止の観点から決定される設計強度を確保可能なものであれば如何なるものであってもよく、例えば、常温接合や陽極接合などの方法を適用可能である。なお、基板10やカバー部材14が熱可塑性樹脂であれば、樹脂溶着接合などの方法を用いることも可能である。
冷却モジュール1は、上記一連の製造方法により製造可能である。なお、冷却モジュール1の製造方法は、このような方法に限定されるものでなく、その他の方法で製造してもよい。
<半導体装置の実施形態>
図8は、冷却モジュール1を適用した半導体装置を示した図の一例である。半導体装置20は、集積回路が形成されている半導体素子21と、半導体素子21を冷却する冷却モジュール1とを備える。冷却モジュール1は、被接合面4が半導体素子21の表面に対峙する状態となるように半導体素子21に搭載されている。半導体素子21には、半導体素子21を搭載する基板と電気的に接続するためのはんだバンプ22Eの他に、半導体素子21の熱を冷却モジュール1へ伝熱することを目的とするはんだバンプ22Tが接合されている。
はんだバンプ22Tは、冷却モジュール1に設けられている熱伝導性部材3の被溶着面6に溶着されている。はんだバンプ22Tは、半導体素子21のTSV23に接触しているパッド24にアライメントボンディングされたものである。TSV23やパッド24、はんだバンプ22T、熱伝導性部材3は、半導体装置20に使われている材料の中でも熱伝導性に優れる金属系の材料によって形成される。よって、半導体素子21内で発生する熱は、TSV23、パッド24、はんだバンプ22T、熱伝導性部材3を経由して冷媒へ伝達される。
なお、TSV23は、半導体素子21の回路と電気的に繋がっていてもよいし、繋がっていなくてもよい。但し、半導体素子21の回路から電気的に絶縁されたものか、或いは、接地されたものであれば、導電性の水等を冷媒として使用することが可能である。
冷却モジュール1には、冷媒を流すための配管を接続する接続口25I,25Oが設けられる。接続口25Iから流入する冷媒が流路5内を通過し、接続口25Oから流出すると、熱伝導性部材3の熱交換面7に接触する冷媒が熱伝導性部材3の熱を除去することになる。
上記冷却モジュール1によれば、熱伝導性部材3を設けることなく、中空部材をTIM(Thermal Interface Material)などの熱接触用材料で半導体素子に熱接触させた場合に比べ、半導体素子21を効果的に冷却することが可能となる。また、上記冷却モジュール1は、熱伝導性部材3の被溶着面6が外側に向かって広げるように開口しているため、冷却モジュール1を半導体素子21に実装する際に位置決めが適切になされ、ひずみや反りが矯正される。
なお、はんだバンプ22Tを配置する間隔や、TSV23やパッド24、はんだバンプ22T、熱伝導性部材3の材質、大きさは、冷却効率や生産効率等の観点に基づいて適宜選択される。
図9は、冷却モジュール1に冷媒を供給する冷却システムを示した図の一例である。冷却システム30は、冷却モジュール1を経由する冷媒循環配管31の途中にポンプ32およびラジエータ33を備える。ポンプ32は、液体の冷媒を循環させるポンプであり、半導体装置20の発熱状態に応じて作動する。冷媒循環配管31は、如何なる材質で形成されていてもよく、例えば、ブチルゴムやフッ素ゴムなどの樹脂材、或いは、CuやSUSのような金属材により形成可能である。ラジエータ33は、冷媒を空気で冷却する空冷式のラジエータであり、管内を流れる冷媒の熱をフィンで放熱し、冷媒を冷却する。ポンプ32の作動により冷媒が循環すると、熱伝導性部材3の熱交換面7に接触しながら通過する流路5内の冷媒が、熱伝導性部材3の熱を除去する。冷却システム30は、熱伝導性部材3の熱を除去した冷媒を、ラジエータ33で冷却した後に再び冷却モジュール1へ送ることで、半導体装置20を冷却し続ける。
なお、冷却モジュール1に冷媒を供給する冷却システムは、このような態様に限定されるものではない。冷却モジュール1に冷媒を供給する冷却システムは、例えば、ヒートポンプを使ったものや、流路5を通過した冷媒をそのまま系外へ排出するものであってもよい。
<冷却モジュールの第1変形例>
図10は、冷却モジュール1の第1変形例を示した図の一例である。冷却モジュール1は、例えば、図10に示すように、中空部材2の内部が複数の流路5に分かれており、各々の流路5に熱伝導性部材3が配置されていてもよい。複数の流路5は、例えば、Si DRIEプロセスやサンドブラストで形成する場合であれば、流路形成のためのレジストを予め
パターニングしておくことにより形成可能である。中空部材2の流路5を適宜分けることにより、半導体素子21の表面の温度分布に対応したパターンの流路5を形成し、温度分布のばらつきを抑制する冷却を実現することが可能となる。
<冷却モジュールの第2変形例>
図11は、冷却モジュール1の第2変形例を示した図の一例である。冷却モジュール1は、例えば、図11に示すように、流路5の底面が、熱伝導性部材3の一部である金属膜8で覆われるようにしてもよい。流路5の底面が、熱伝導性部材3の一部である金属膜8
に覆われていれば、冷媒に接触する熱伝導性部材3の熱交換面7が拡大するため、熱伝導性部材3の熱を冷媒で速やかに除去することが可能となる。
なお、金属膜8は、表面が平坦に形成されていてもよいが、例えば、伝熱面積を拡大するために凹凸が形成されていてもよい。
<半導体装置の変形例>
図12は、冷却モジュール1を適用した半導体装置の変形例を示した図の一例である。半導体装置20は、集積回路が形成されている半導体素子21を多数重ねた積層体26と、半導体素子21を冷却する冷却モジュール1とを備える。積層体26を形成する各半導体素子21には、上側あるいは下側に積層される半導体素子21と電気的に繋がるためのTSV23が設けられている。半導体素子を積層した一般的な多層式の半導体装置の場合、層間を電気的に繋ぐTSVのうち約90%は電力供給あるいは接地の役割を司る。そこで、本変形例に係る半導体装置20では、例えば、接地の役割を司るTSV23(全TSV23の約45%)を、各半導体素子21の熱の冷却モジュール1への伝熱目的に併用している。このため、本変形例に係る半導体装置20は、TSV23の一部がはんだバンプ22Tを介して冷却モジュール1に接合されている。なお、冷却モジュール1や冷媒の電位レベルを電源の電位レベルとする場合であれば、電力供給の役割を司るTSV23を冷却モジュール1への伝熱目的に併用することが可能である。また、冷却モジュール1や冷媒が非導電性であれば、電力供給や接地の役割を司るTSV23のみならず、信号伝送の役割を司るTSV23についても冷却モジュール1への伝熱目的に併用することが可能である。
TSV23やはんだバンプ22Tが設けられていない場合、冷却モジュール1から比較的近い半導体素子21が冷却されることになる。しかし、本変形例に係る半導体装置20の積層体26は、各半導体素子21の熱がTSV23およびはんだバンプ22Tにより冷却モジュール1に伝達される。このため、冷却モジュール1から比較的近い上層部の半導体素子21の他、冷却モジュール1から比較的遠い下層部の半導体素子21についても冷却が期待できる。また、積層体26の内部には冷媒を流す流路等が形成されていないため、半導体素子21を積層する際のひずみや反りが少なく、積層工程における実装位置のずれや反りを予防可能である。
半導体素子21を多数重ねた積層体26を冷却モジュール1で冷却する本方式は、積層体26内に形成した微細な流路に冷媒を流して冷却する方式と比較して簡易である。また、本方式は、TSVにより伝熱される熱がTIM等を介することなく冷媒に直接伝わるので、積層体26の上にヒートシンク等を取り付けて冷却する従来の方式と比較すると熱伝達経路の熱抵抗が小さい。よって、本方式は、従来の方式と比較すると冷却能力が高い。
図13は、冷却モジュール1を用いた半導体装置20の冷却方式の熱抵抗を表した図である。また、図14は、ヒートシンクを取り付けただけの従来の冷却方式の熱抵抗(比較例1)を表した図である。従来から用いられているTIMおよびヒートシンクを用いた比較例1に係る冷却方式の場合、半導体素子に形成されているトランジスタ等の熱源から冷媒である空気までの間に、再配線層や保護膜、TIM、ヒートスプレッダ、放熱フィンといった各種の部材が存在する。一方、冷却モジュール1を用いた半導体装置20の冷却方式の場合、半導体素子に形成されているトランジスタ等の熱源から冷却モジュール1内の冷媒までの間には、TSV等の導電性部材しか存在しない。
熱抵抗の試算条件として、例えば、半導体素子周りを以下のような条件にした場合を考える。
半導体素子の厚さ:0.3mm
半導体素子のサイズ:21mm角
はんだバンプ数:10,000個(そのうち、伝熱に用いるTSVは4,500個)
はんだバンプの高さ:0.04mm、ピッチ0.2mm
半導体素子周りをこのような条件とした場合、冷却モジュール1を用いた半導体装置20の冷却方式の熱抵抗は、
TSV=k・A/L=386(W/mK)・(0.1mm×0.1mm)/0.1m

=0.0386 (W/K)≒0.04(W/K)
となる。
一方、比較例1の熱抵抗は、一般的な値を用いるとRLINE=0.1(W/K)、RPAS
=0.2(W/K)、RTIM=0.03(W/K)、RSP=0.07(W/K)、RFIN=0.05(W/K)であるから、合計すると全熱抵抗は0.45W/Kとなる。
算出した各熱抵抗を比較すると明らかなように、冷却モジュール1を用いた半導体装置20の冷却方式の熱抵抗は、比較例1の熱抵抗の1/10程度であり、冷却効率の向上が見込めることが判る。
図15は、半導体素子の回路面の裏側の面にヒートシンクを取り付けただけの従来の冷却方式の熱抵抗(比較例2)を表した図である。半導体素子の回路面の裏側の面に取り付けたヒートシンクで冷却を行う方式の場合の熱抵抗は、一般的な値を用いるとRS=0.
1(W/K)であるから、合計すると全熱抵抗は0.25W/Kとなる。
算出した各熱抵抗を比較すると明らかなように、冷却モジュール1を用いた半導体装置20の冷却方式の熱抵抗は、比較例2の熱抵抗の1/6程度であり、冷却効率の向上が見込めることが判る。
図16は、積層体26のTSV23にCuを用いた場合の熱伝導率の見積もりを示したグラフである。図16のグラフは、積層体26の半導体素子21の積層数を4とし、はんだバンプ22Tの材料をSn−Ag−Cuとした場合の、半導体素子21の厚さ(=TSV23の高さ)とビア1本分の熱伝導率との関係を見積もっている。半導体素子21の厚さが300μmではんだバンプ22Tの高さが40μmの場合、熱伝導率は195W/mKとなり、Cuの熱伝導率の約1/2になる。本変形例に係る半導体装置20では、熱源である各半導体素子21の熱を、電力供給、信号伝送あるいは接地の役割を司るTSV23を使って冷却モジュール1へ伝達している。積層体26内に伝熱目的のサーマルビアを配置しようとする場合、半導体素子21内の配線設計の制約から、半導体素子21内に形成できるサーマルビアの本数や大きさ(直径)が制限される。ところが、本変形例に係る半導体装置20では、電力供給、信号伝送あるいは接地の役割を司るTSV23を積層体26の冷却に使用することで、電子回路から電気的に絶縁されている従来のサーマルビアを使用した場合よりも設計自由度を向上させている。
図17は、本変形例に係る半導体装置20と、電子回路から電気的に絶縁されている従来のサーマルビアを使用した半導体装置(比較例3)の熱コンダクタンスの見積もりを示したグラフである。見積もり計算条件は以下に示す通りである。
・LSI積層数:4
・LSI厚さ:0.3mm
・LSI素子サイズ:21mm角
・はんだバンプ数:10,000個(そのうち、伝熱用TSVは4,500個)
・はんだバンプ高さ0.04mm、ピッチ0.2mm
また、比較例3の半導体装置に設けた、電子回路から電気的に絶縁させている従来のサーマルビア(Cu製)の本数は、半導体素子の中に現実的に形成可能な本数である100本と仮定した。図17のグラフから明らかなように、本変形例に係る半導体装置20は、比較例3に比べて熱コンダクタンスが著しく高いことが判る。例えば、ビア直径が0.1mmの場合、4500本あるTSV23の熱コンダクタンスは、100本しか設けられていないサーマルビアの約20倍であり、熱伝導性が良くなって冷却効率が向上することが図17のグラフに示されている。例えば、比較例3において、本変形例に係る半導体装置20のTSV23と同等の熱コンダクタンスを得るには、サーマルビア(100本)の直径を0.6mmにする必要があり、半導体素子内の多くの領域がサーマルビアに占有されることになる。すなわち、半導体素子の回路設計に大きな影響を与える。しかし、本変形例に係る半導体装置20であれば、電力供給、信号伝送あるいは接地の役割を司るTSV23を積層体26の冷却に使用しているので、比較例3のようにサーマルビアを使用した場合に比べて回路設計の自由度が向上する。
以下、第1実施例について説明する。本第1実施例では、基板10として厚さ500μmのシリコン基板を用意する。そして、フォトリソグラフィプロセスにより、凹状の孔11を形成する部分を開口させたレジストをパターニングする。そして、C48ガスとSF6ガスを用いたボッシュ法により基板10をエッチングし、深さ120μmの孔11を基
板10に形成する。レジストを除去した後はスパッタリングを行い、Tiが100nm、Cuが300nmの膜厚のシード層12を成膜する。そして、フォトリソグラフィプロセスにより、熱伝導性部材3を形成する部分を開口させたレジストをパターニングする。次に、Niを使っためっき成膜(40μm)を行ない、孔11の部分にめっき層である熱伝導性部材3を形成する。そして、レジストを除去した後にシード層12をウェットエッチングにより除去する。
次に、基板10の被接合面4をテンパックスガラスにUVテープで貼りつけ、基板10を固定する。次に、基板10の被接合面4の裏側の面にレジストをパターニングした後、熱伝導性部材3が露出する深さ(380μm)まで基板10をエッチングする。そして、UV光をUVテープに照射して基板10の固定状態を解除し、あらかじめ接続口25I,25Oが設けられているカバー部材14を基板10に常温接合し、冷却モジュール1を完成させる。
このような製造プロセスを経て製造された冷却モジュール1を半導体素子21に取り付け、冷却システム30にて冷却を行った結果、従来からある空冷方式等に比べて半導体素子21が効果的に冷却されることが確認された。
第1実施例では基板10に厚さ500μmのシリコン基板を用いたが、本第2実施例では厚さ1mmのポリカーボネートを用意する。そして、切削機械加工により、深さ100μmの孔11を基板10に形成する。その後は、第1実施例と同様、シード層12を成膜し、レジストをパターニングしてめっき成膜を行い、孔11の部分に熱伝導性部材3を形成する。そして、基板10をテンパックスガラス製の支持台座に固定し、ポリカーボネート製の基板10の被接合面4の裏側の面に、熱伝導性部材3が露出するまで切削機械加工を施す。その後、基板10を支持台座から取り外し、あらかじめ接続口25I,25Oが設けられているポリカーボネート製のカバー部材14を基板10に溶着接合し、冷却モジュール1を完成させた。
このような製造プロセスを経て製造された冷却モジュール1を半導体素子21に取り付け、冷却システム30にて冷却を行った結果、従来からある空冷方式等に比べて半導体素子21が効果的に冷却されることが確認された。
第1実施例では基板10に厚さ500μmのシリコン基板を用い、第2実施例では厚さ1mmのポリカーボネートを用いたが、本第3実施例では、厚さ500μmのテンパックスガラス基板を用意する。そして、フォトリソグラフィプロセスにより、凹状の孔11を形成する部分を開口させたレジストをパターニングする。そして、サンドブラスト法により基板10をエッチングし、深さ120μmの孔11を基板10に形成する。レジストを除去した後はスパッタリングを行い、Crが50nm、Cuが300nmの膜厚のシード層12を成膜する。そして、フォトリソグラフィプロセスにより、熱伝導性部材3を形成する部分を開口させたレジストをパターニングする。次に、Niを使っためっき成膜(40μm)を行ない、孔11の部分にめっき層である熱伝導性部材3を形成する。そして、レジストを除去した後にシード層12をウェットエッチングにより除去する。
次に、基板10の被接合面4をテンパックスガラスにUVテープで貼りつけて基板10を固定する。そして、基板10の被接合面4の裏側の面に流路形成のためのレジストをパターニングした後、熱伝導性部材3が露出する深さ(380μm)まで基板10をサンドブラスト法によりエッチングする。そして、UV光をUVテープに照射して基板10の固定状態を解除し、あらかじめ接続口25I,25Oが設けられているカバー部材14を基板10に陽極接合し、冷却モジュール1を完成させる。
このような製造プロセスを経て製造された冷却モジュール1を半導体素子21に取り付け、冷却システム30にて冷却を行った結果、従来からある空冷方式等に比べて半導体素子21が効果的に冷却されることが確認された。
本第4実施例は、第1実施例とほぼ同様の工法で冷却モジュール1を作成するが、更に、図11に示した第2変形例に係る冷却モジュール1のように流路5の底面をCuの薄膜で覆い、金属膜8を形成する。
すなわち、熱伝導性部材3が露出する深さまで基板10をエッチングして流路5を形成した後、スパッタリング法により厚さ200nmのCu薄膜のシード層を成膜する。そして、シード層の上にレジストをパターニングしてからCuめっきを行い、厚さ30μmの金属膜8を形成する。その後は、第1実施例と同様、カバー部材14を基板10に接合し、第2変形例に係る冷却モジュール1のように流路5の底面をCuの薄膜で覆った冷却モジュール1を完成させる。
このような製造プロセスを経て製造された冷却モジュール1を半導体素子21に取り付け、冷却システム30にて冷却を行った結果、金属膜8により半導体素子21が更に効果的に冷却されることが確認された。
なお、上記実施例1〜4の説明で示した寸法や材質等は、単なる例示であり、実施形態に係る冷却モジュール1を上記各実施例の態様に限定するものではない。
<その他>
なお、本願は、以下のような付記的事項を含む。
(付記1)
半導体素子の表面と対峙する被接合面を外側に有し、冷媒が流通する流路を内側に有す
る中空部材と、
前記被接合面のうち、前記半導体素子に取り付けられたはんだバンプに対応する部位に配置され、前記はんだバンプが溶着される被溶着面の裏側の熱交換面が前記流路内に露出している熱伝導性部材と、を備える、
冷却モジュール。
(付記2)
前記熱伝導性部材の前記被溶着面は、外部に向けて開口が広がる凹状に形成されている、
付記1に記載の冷却モジュール。
(付記3)
前記熱交換面は、前記流路の内部に形成された金属膜の表面に形成されている、
付記1または2に記載の冷却モジュール。
(付記4)
前記熱伝導性部材の前記被溶着面に溶着される前記はんだバンプは、半導体素子を積層した積層体の最上層の半導体素子を貫通するビアに溶着されているはんだバンプである、
付記1から3の何れか一項に記載の冷却モジュール。
(付記5)
前記ビアは、前記積層体の各層の半導体素子同士を電気的に接続するためのビアである、
付記4に記載の冷却モジュール。
(付記6)
半導体素子と、
前記半導体素子の表面と対峙する被接合面を外側に有し、冷媒が流通する流路を内側に有する中空部材と、
前記被接合面のうち、前記半導体素子に取り付けられたはんだバンプに対応する部位に配置され、前記はんだバンプが溶着される被溶着面の裏側の熱交換面が前記流路内に露出している熱伝導性部材と、を備える、
半導体装置。
(付記7)
前記熱伝導性部材の前記被溶着面は、外部に向けて開口が広がる凹状に形成されている、
付記6に記載の半導体装置。
(付記8)
前記熱交換面は、前記流路の内部に形成された金属膜の表面に形成されている、
付記6または7に記載の半導体装置。
(付記9)
前記熱伝導性部材の前記被溶着面に溶着される前記はんだバンプは、半導体素子を積層した積層体の最上層の半導体素子を貫通するビアに溶着されているはんだバンプである、
付記6から8の何れか一項に記載の半導体装置。
(付記10)
前記ビアは、前記積層体の各層の半導体素子同士を電気的に接続するためのビアである、
付記9に記載の半導体装置。
1・・冷却モジュール:2・・中空部材:3・・熱伝導性部材:4・・被接合面:5,105・・流路:6・・被溶着面:7・・熱交換面:8・・金属膜:10・・基板:11・・孔:12・・シード層:13・・レジスト:14・・カバー部材:20・・半導体装置:21,121A〜E・・半導体素子:22E,22T・・はんだバンプ:23,123・・TSV:24・・パッド:25I,25O・・接続口:26・・積層体:30・・冷
却システム:31・・冷媒循環配管:32・・ポンプ:33・・ラジエータ:122・・ヒートシンク

Claims (9)

  1. 半導体素子の表面と対峙する被接合面を外側に有し、冷媒が流通する流路を内側に有する中空部材と、
    前記被接合面のうち、前記半導体素子に取り付けられたはんだバンプに対応する部位に配置され、前記はんだバンプが溶着される被溶着面の裏側の熱交換面が前記流路内に露出している熱伝導性部材と、を備え、
    前記中空部材は、前記半導体素子に搭載され、
    前記熱交換面は、前記被溶着面の裏面である、
    冷却モジュール。
  2. 前記熱伝導性部材の前記被溶着面は、外部に向けて開口が広がる凹状に形成されている、
    請求項1に記載の冷却モジュール。
  3. 前記熱交換面は、前記流路の内部に形成された金属膜の表面に形成されている、
    請求項1または2に記載の冷却モジュール。
  4. 前記熱伝導性部材の前記被溶着面に溶着される前記はんだバンプは、半導体素子を積層した積層体の最上層の半導体素子を貫通するビアに溶着されているはんだバンプである、
    請求項1から3の何れか一項に記載の冷却モジュール。
  5. 前記ビアは、前記積層体の各層の半導体素子同士を電気的に接続するためのビアである、
    請求項4に記載の冷却モジュール。
  6. 前記熱伝導性部材は、前記流路を形成する部材の一部である、
    請求項1から5の何れか一項に記載の冷却モジュール。
  7. 前記中空部材は、前記半導体素子の最上部に搭載される、
    請求項1から6の何れか一項に記載の冷却モジュール。
  8. 前記中空部材は、シリコンで形成される、
    請求項1から7の何れか一項に記載の冷却モジュール。
  9. 半導体素子と、
    前記半導体素子の表面と対峙する被接合面を外側に有し、冷媒が流通する流路を内側に有する中空部材と、
    前記被接合面のうち、前記半導体素子に取り付けられたはんだバンプに対応する部位に配置され、前記はんだバンプが溶着される被溶着面の裏側の熱交換面が前記流路内に露出している熱伝導性部材と、を備え、
    前記中空部材は、前記半導体素子に搭載され、
    前記熱交換面は、前記被溶着面の裏面である、
    半導体装置。
JP2012191956A 2012-08-31 2012-08-31 冷却モジュールおよび半導体装置 Expired - Fee Related JP6007681B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191956A JP6007681B2 (ja) 2012-08-31 2012-08-31 冷却モジュールおよび半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191956A JP6007681B2 (ja) 2012-08-31 2012-08-31 冷却モジュールおよび半導体装置

Publications (2)

Publication Number Publication Date
JP2014049634A JP2014049634A (ja) 2014-03-17
JP6007681B2 true JP6007681B2 (ja) 2016-10-12

Family

ID=50608994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191956A Expired - Fee Related JP6007681B2 (ja) 2012-08-31 2012-08-31 冷却モジュールおよび半導体装置

Country Status (1)

Country Link
JP (1) JP6007681B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710460B2 (ja) * 2005-07-20 2011-06-29 株式会社村田製作所 セラミック多層基板、その製造方法、およびパワー半導体モジュール
JP5023735B2 (ja) * 2007-02-21 2012-09-12 富士通株式会社 冷却板および電子装置
JP2011249430A (ja) * 2010-05-24 2011-12-08 Panasonic Corp 半導体装置及び半導体装置の製造方法
JP5740903B2 (ja) * 2010-10-19 2015-07-01 富士通株式会社 電子装置、半導体装置、サーマルインターポーザ及びその製造方法

Also Published As

Publication number Publication date
JP2014049634A (ja) 2014-03-17

Similar Documents

Publication Publication Date Title
JP6162316B2 (ja) 冷却剤チャネルを有する積層ウェハ
JP5009085B2 (ja) 半導体装置
CN104025289B (zh) 包括集成散热器的无凸块构建层封装
US8358016B2 (en) Semiconductor package having an internal cooling system
KR101524173B1 (ko) 반도체 장치 및 이 반도체 장치의 제조 방법
TWI413222B (zh) 堆疊互連散熱器
US7978473B2 (en) Cooling apparatus with cold plate formed in situ on a surface to be cooled
JP2014509451A (ja) 熱電モジュールを含む回路アセンブリ
TWM593647U (zh) 具有熱管理之堆疊矽封裝組件
JP6083516B2 (ja) マイクロチャネル熱交換装置及び電子機器
TWI636535B (zh) 具有嵌埋式熱電裝置之玻璃中介層
JP2006310363A (ja) パワー半導体装置
JP2008153400A (ja) 回路基板、その製造方法及び半導体装置
JP6119111B2 (ja) 回路基板、回路基板の製造方法、電子装置及び電子装置の製造方法
JP5891707B2 (ja) 半導体装置とその製造方法
JP6007681B2 (ja) 冷却モジュールおよび半導体装置
Steller et al. Microfluidic Interposer for High Performance Fluidic Chip Cooling
JP2014120516A (ja) 半導体装置
JP6277598B2 (ja) 冷却モジュール、積層半導体集積回路装置及び冷却モジュールの製造方法
CN114256178A (zh) 一种高功率芯片散热结构及其制备方法
JP6430153B2 (ja) 半導体装置、インターポーザ及びその製造方法
JP2007243079A (ja) 放熱型プリント配線板及びその製造方法
JP2013062285A (ja) 半導体装置及びその製造方法
JP2011171686A (ja) 放熱部付き金属ベースプリント基板
KR20230174805A (ko) 열전도 부재가 임베디드된 방열 반도체 패키지 및 그 제조방법 그리고 그 제조에 이용하는 유도 가열 솔더링장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6007681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees