JP5999376B2 - Device mounting substrate, semiconductor module, and device mounting substrate manufacturing method - Google Patents

Device mounting substrate, semiconductor module, and device mounting substrate manufacturing method Download PDF

Info

Publication number
JP5999376B2
JP5999376B2 JP2013535885A JP2013535885A JP5999376B2 JP 5999376 B2 JP5999376 B2 JP 5999376B2 JP 2013535885 A JP2013535885 A JP 2013535885A JP 2013535885 A JP2013535885 A JP 2013535885A JP 5999376 B2 JP5999376 B2 JP 5999376B2
Authority
JP
Japan
Prior art keywords
oxide film
substrate
thickness
insulating resin
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013535885A
Other languages
Japanese (ja)
Other versions
JPWO2013046617A1 (en
Inventor
泰浩 小原
泰浩 小原
正幸 長松
正幸 長松
幸太郎 出口
幸太郎 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2013046617A1 publication Critical patent/JPWO2013046617A1/en
Application granted granted Critical
Publication of JP5999376B2 publication Critical patent/JP5999376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

本発明は、素子搭載用基板、半導体モジュールおよび素子搭載用基板の製造方法に関する。   The present invention relates to an element mounting substrate, a semiconductor module, and a method for manufacturing the element mounting substrate.

パワー系半導体素子の発熱を放熱するためには、絶縁層として放熱特性に優れたセラミクス材料を用いることが望ましいが、セラミクス基板はコストが非常に高い。制御系半導体素子はパワー系半導体素子よりも発熱が小さいため、パワー系半導体素子と制御系半導体素子とを高価なセラミクス基板の上に搭載することはオーバースペックであるばかりか、パワー系半導体素子と制御系半導体素子と熱伝導が良好なセラミクス基板の上に混載するとパワー系半導体素子で生じた熱が制御系半導体素子に伝播することにより、制御系半導体素子が高温となり、制御系半導体素子が暴走するという問題が生じる。このような課題を解決する手段として、絶縁樹脂にセラミクスフィラーを充填した絶縁樹脂層が特許文献1に記載されている。   In order to dissipate heat generated by the power semiconductor element, it is desirable to use a ceramic material having excellent heat dissipation characteristics as the insulating layer, but the ceramic substrate is very expensive. Since the control system semiconductor element generates less heat than the power system semiconductor element, mounting the power system semiconductor element and the control system semiconductor element on an expensive ceramic substrate is not only an overspec, but also with the power system semiconductor element. When mixed with a control system semiconductor element and a ceramic substrate with good thermal conductivity, heat generated in the power system semiconductor element propagates to the control system semiconductor element, causing the control system semiconductor element to reach a high temperature and causing the control system semiconductor element to run out of control. Problem arises. As means for solving such a problem, Patent Document 1 discloses an insulating resin layer in which an insulating resin is filled with a ceramic filler.

特開2003−303940号公報JP 2003-303940 A 特開平5−191001号公報Japanese Patent Laid-Open No. 5-191001 特開2008−159647号公報JP 2008-159647 A

特許文献1にも記載されている通り、フィラーを充填した絶縁層で放熱特性と絶縁耐圧特性とを両立させることは困難な技術である。   As described in Patent Document 1, it is difficult to achieve both heat dissipation characteristics and dielectric strength characteristics with an insulating layer filled with a filler.

本発明はこうした課題に鑑みてなされたものであり、その目的は、発熱量の多い半導体素子であるパワー系半導体素子と発熱量の少ない半導体素子である制御系半導体素子とが混載されている素子搭載用基板において、パワー系半導体素子搭載部で必要とされる放熱特性および絶縁耐圧特性を満足するとともに、パワー系半導体素子の発熱が制御系半導体素子に伝播することを抑制することができる技術の提供にある。ここで、パワー系半導体素子にはたとえばパワーMOSFET、IGBT、などのパワートランジスタやLED素子、制御系半導体素子にはたとえばゲートドライブICや照度センサを用いることができる。   The present invention has been made in view of such problems, and an object thereof is an element in which a power semiconductor element that is a semiconductor element that generates a large amount of heat and a control semiconductor element that is a semiconductor element that generates a small amount of heat are mounted together. In the mounting substrate, a technology capable of satisfying the heat radiation characteristics and the withstand voltage characteristics required in the power semiconductor element mounting portion and suppressing the heat generated by the power semiconductor element from propagating to the control semiconductor element. On offer. Here, for example, a power transistor or an LED element such as a power MOSFET or IGBT can be used as the power semiconductor element, and a gate drive IC or an illuminance sensor can be used as the control semiconductor element.

本発明のある態様は、素子搭載用基板である。当該素子搭載用基板は、金属基板と、金属基板の表面が酸化されてなる酸化膜と、金属基板の一方の主表面側の酸化膜上に設けられた絶縁樹脂層と、絶縁樹脂層上に設けられた配線層と、を備え、少なくとも一部の前記酸化膜の膜厚が他の部分の前記酸化膜の膜厚よりも厚いことを特徴とする。   One embodiment of the present invention is an element mounting substrate. The element mounting substrate includes a metal substrate, an oxide film formed by oxidizing the surface of the metal substrate, an insulating resin layer provided on an oxide film on one main surface side of the metal substrate, and an insulating resin layer. And a wiring layer provided, wherein at least a part of the oxide film is thicker than another part of the oxide film.

本発明の他の態様は、半導体モジュールである。当該半導体モジュールは、上述した態様の素子搭載用基板と、当該素子搭載用基板の配線層が形成された側の主表面上に搭載され、配線層と電気的に接続された半導体素子と、を備えたことを特徴とする。   Another embodiment of the present invention is a semiconductor module. The semiconductor module includes an element mounting substrate of the above-described aspect and a semiconductor element mounted on the main surface of the element mounting substrate on the side where the wiring layer is formed and electrically connected to the wiring layer. It is characterized by having.

本発明のさらに他の態様は、素子搭載用基板の製造方法である。当該素子搭載用基板の製造方法は、金属基板の所定領域に突起部を形成する工程と、金属基板に形成された突起部の表面を粗化する工程と、金属基板の表面に酸化処理を施して酸化膜を形成する工程と、酸化膜上に絶縁樹脂層を積層する工程と、絶縁樹脂層上に金属層を積層し、当該金属層を選択的に除去して配線層を形成する工程と、を含むことを特徴とする。   Yet another embodiment of the present invention is a method for manufacturing an element mounting substrate. The element mounting substrate manufacturing method includes a step of forming a protrusion in a predetermined region of a metal substrate, a step of roughening the surface of the protrusion formed on the metal substrate, and an oxidation treatment on the surface of the metal substrate. Forming an oxide film, laminating an insulating resin layer on the oxide film, laminating a metal layer on the insulating resin layer, and selectively removing the metal layer to form a wiring layer; , Including.

本発明によれば、発熱量の少ない半導体素子である制御系半導体素子の温度上昇を引き起こすことなく、発熱量の多い半導体素子であるパワー系半導体素子の絶縁耐圧と放熱性の両方を確保できる。   According to the present invention, it is possible to ensure both the withstand voltage and heat dissipation of a power semiconductor element that is a semiconductor element with a large amount of heat generation without causing a temperature rise of the control system semiconductor element that is a semiconductor element with a small amount of heat generation.

実施の形態1に係る素子搭載用基板を含む半導体モジュールの概略構成を示す断面模式図である。2 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module including an element mounting substrate according to Embodiment 1. FIG. 図2(A)〜図2(D)は、実施の形態1に係る素子搭載用基板および半導体モジュールの製造方法を説明するための工程模式図である。2A to 2D are process schematic diagrams for explaining a method for manufacturing the element mounting substrate and the semiconductor module according to the first embodiment. 図3(A)〜図3(C)は、実施の形態1に係る素子搭載用基板および半導体モジュールの製造方法を説明するための工程模式図である。3A to 3C are process schematic diagrams for explaining a method for manufacturing the element mounting substrate and the semiconductor module according to the first embodiment. 図4(A)〜図4(B)は、実施の形態1に係る素子搭載用基板および半導体モジュールの製造方法を説明するための工程模式図である。4A to 4B are process schematic diagrams for explaining a method for manufacturing the element mounting substrate and the semiconductor module according to the first embodiment. 実施の形態2に係る素子搭載用基板を含む半導体モジュールの概略構成を示す断面模式図である。6 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module including an element mounting substrate according to Embodiment 2. FIG. 図6(A)〜図2(C)は、実施の形態2に係る素子搭載用基板および半導体モジュールの製造方法を説明するための工程模式図である。6A to 2C are process schematic diagrams for explaining a method for manufacturing the element mounting substrate and the semiconductor module according to the second embodiment. 実施の形態3に係る素子搭載用基板を含む半導体モジュールの概略構成を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module including an element mounting substrate according to a third embodiment.

以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素、部材、処理には同様の符号を付し、適宜説明を省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, similar components, members, and processes are denoted by the same reference numerals, and description thereof is omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

(実施の形態1)
図1は、実施の形態1に係る素子搭載用基板を含む半導体モジュールの概略構成を示す断面模式図である。本実施の形態に係る半導体モジュール1は、素子搭載用基板100と、素子搭載用基板100の一方の主表面上に搭載された半導体素子200,210を備える。半導体素子200は、例えばトランジスタ、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等のパワー系半導体素子である。半導体素子210は、例えば制御IC等の制御系半導体素子である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module including an element mounting substrate according to the first embodiment. The semiconductor module 1 according to the present embodiment includes an element mounting substrate 100 and semiconductor elements 200 and 210 mounted on one main surface of the element mounting substrate 100. The semiconductor element 200 is a power semiconductor element such as a transistor, an IGBT (Insulated Gate Bipolar Transistor), or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). The semiconductor element 210 is a control semiconductor element such as a control IC, for example.

素子搭載用基板100は、金属基板110と、酸化膜120と、絶縁樹脂層130と、配線層140とを備える。   The element mounting substrate 100 includes a metal substrate 110, an oxide film 120, an insulating resin layer 130, and a wiring layer 140.

金属基板110は、アルミニウム、アルミニウム合金などの熱伝導性が良好な金属で構成された基板である。本実施の形態では、金属基板110はアルミニウム基板である。金属基板110の厚さは、例えば0.5mm〜2mmである。   The metal substrate 110 is a substrate made of a metal having good thermal conductivity such as aluminum or an aluminum alloy. In the present embodiment, metal substrate 110 is an aluminum substrate. The thickness of the metal substrate 110 is, for example, 0.5 mm to 2 mm.

酸化膜120は、金属基板110の表面が酸化されてなる絶縁性の膜である。本実施の形態では、酸化膜120は、酸化アルミニウム(アルミナ)で構成されている。酸化膜120は、金属基板110の上面および下面を被覆している。素子搭載用基板100の主表面を平面視したときに、半導体素子200と重畳する領域、言い換えると半導体素子200の下部において金属基板110の配線層140が設けられた側の主表面(金属基板110の上面)を被覆する酸化膜120(以下、この領域を酸化膜120aと呼んで他の部分と区別する)の膜厚H1が当該領域の周囲の酸化膜120の膜厚H2より厚い。本実施の形態では、酸化膜120aは半導体素子200と重畳する領域全体に形成されているが、酸化膜120aは半導体素子200と重畳する領域の一部に形成されていてもよい。また、酸化膜120aは半導体素子200と重畳しない領域の一部を含んで形成されてもよい。   The oxide film 120 is an insulating film formed by oxidizing the surface of the metal substrate 110. In the present embodiment, oxide film 120 is made of aluminum oxide (alumina). The oxide film 120 covers the upper and lower surfaces of the metal substrate 110. When the main surface of the element mounting substrate 100 is viewed in plan, the main surface on the side where the wiring layer 140 of the metal substrate 110 is provided in the region overlapping with the semiconductor element 200, in other words, the lower part of the semiconductor element 200 (metal substrate 110 The thickness H1 of the oxide film 120 (hereinafter referred to as the oxide film 120a and distinguished from other portions) covering the upper surface of the oxide film 120 is thicker than the thickness H2 of the oxide film 120 around the region. In this embodiment, the oxide film 120 a is formed over the entire region overlapping with the semiconductor element 200, but the oxide film 120 a may be formed over part of the region overlapping with the semiconductor element 200. In addition, the oxide film 120 a may be formed to include a part of a region that does not overlap with the semiconductor element 200.

酸化膜120aの膜厚H1は、酸化膜120aを除く酸化膜120の膜厚H2に対して、例えば1.02倍から2倍である。   The film thickness H1 of the oxide film 120a is, for example, 1.02 to 2 times the film thickness H2 of the oxide film 120 excluding the oxide film 120a.

金属基板110の一方の主表面側の酸化膜120上には、絶縁樹脂層130が設けられている。絶縁樹脂層130は、酸化膜120の上面上に積層されている。絶縁樹脂層130としては、例えばBTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂が例示される。素子搭載用基板100の放熱性向上の観点から、絶縁樹脂層130は高熱伝導性を有することが望ましい。このため、絶縁樹脂層130は、アルミナ、窒化アルミニウム、シリカ、などを高熱伝導性フィラーとして含有することが好ましい。これにより、特にパワー系半導体素子である半導体素子200で発生した熱を効率的に放熱することができる。   An insulating resin layer 130 is provided on the oxide film 120 on one main surface side of the metal substrate 110. The insulating resin layer 130 is stacked on the upper surface of the oxide film 120. Examples of the insulating resin layer 130 include melamine derivatives such as BT resin, thermosetting resins such as liquid crystal polymers, epoxy resins, PPE resins, polyimide resins, fluororesins, phenol resins, and polyamide bismaleimides. From the viewpoint of improving the heat dissipation of the element mounting substrate 100, the insulating resin layer 130 desirably has high thermal conductivity. For this reason, the insulating resin layer 130 preferably contains alumina, aluminum nitride, silica, or the like as a highly thermally conductive filler. Thereby, especially the heat generated in the semiconductor element 200 which is a power semiconductor element can be radiated efficiently.

しかし、絶縁樹脂層130の厚さは、例えば、50μm〜250μmである。上述したように、酸化膜120aの膜厚が周囲より厚くなっている分だけ、半導体素子200の下部における絶縁樹脂層130の膜厚H3は、半導体素子210の下部における絶縁樹脂層130の膜厚H4より薄くなっている。   However, the thickness of the insulating resin layer 130 is, for example, 50 μm to 250 μm. As described above, the thickness H3 of the insulating resin layer 130 in the lower portion of the semiconductor element 200 is equivalent to the thickness of the insulating resin layer 130 in the lower portion of the semiconductor element 210 by the amount that the oxide film 120a is thicker than the surroundings. It is thinner than H4.

絶縁樹脂層130上には、配線層140が設けられている。配線層140は、例えば銅で構成され、所定の配線パターン形状を有する。配線層140の厚さは、例えば10μm〜150μmである。   A wiring layer 140 is provided on the insulating resin layer 130. The wiring layer 140 is made of copper, for example, and has a predetermined wiring pattern shape. The thickness of the wiring layer 140 is, for example, 10 μm to 150 μm.

素子搭載用基板100の配線層140が形成された側の主表面上には、半導体素子200,210が搭載されている。半導体素子200,210は、下面側の素子電極(図示せず)が、たとえばはんだ150を介して配線層140(電極)と電気的に接続されている。はんだの換わりに金属ペースト、もしくは接着剤などを用いてもよい。また、半導体素子200,210の上面側の素子電極(図示せず)は、それぞれ、たとえばアルミニウム線152により配線層140にワイヤボンディング接続されている。アルミニウム線の換わりに銅線や金線などを用いてもよい。なお、本実施の形態では、半導体素子210の上面側の素子電極の一つに接続されたアルミニウム線152と、半導体素子200の上面側の素子電極の一つに接続されたアルミニウム線152とが配線層140の一部にともに接続されている。例えば、半導体素子200の動作を制御するための制御信号が半導体素子210から半導体素子200に送信され、半導体素子200は当該制御信号にしたがってスイッチング動作を行う。   Semiconductor elements 200 and 210 are mounted on the main surface of the element mounting substrate 100 on the side where the wiring layer 140 is formed. In the semiconductor elements 200 and 210, element electrodes (not shown) on the lower surface side are electrically connected to the wiring layer 140 (electrodes) via solder 150, for example. A metal paste or an adhesive may be used instead of solder. In addition, element electrodes (not shown) on the upper surface side of the semiconductor elements 200 and 210 are connected to the wiring layer 140 by, for example, an aluminum wire 152 by wire bonding. A copper wire or a gold wire may be used instead of the aluminum wire. In the present embodiment, an aluminum wire 152 connected to one of the element electrodes on the upper surface side of the semiconductor element 210 and an aluminum wire 152 connected to one of the element electrodes on the upper surface side of the semiconductor element 200 are provided. Both are connected to a part of the wiring layer 140. For example, a control signal for controlling the operation of the semiconductor element 200 is transmitted from the semiconductor element 210 to the semiconductor element 200, and the semiconductor element 200 performs a switching operation according to the control signal.

(素子搭載用基板および半導体モジュールの製造方法)
実施の形態1に係る素子搭載用基板を含む半導体モジュールの製造方法について、図2(A)〜図2(D)、図3(A)〜図3(C)および図4(A)〜図4(B)を参照して説明する。
(Element mounting substrate and semiconductor module manufacturing method)
2A to FIG. 2D, FIG. 3A to FIG. 3C, and FIG. 4A to FIG. 4 regarding a method for manufacturing a semiconductor module including the element mounting substrate according to the first embodiment. This will be described with reference to 4 (B).

まず、図2(A)に示すように、アルミニウムを主材料とする金属板109を用意する。金属板109は、個々の金属基板110に打ち抜き加工される前の大板サイズであり、例えば100mm〜1000mm四方の大きさである。続いて、図2(B)に示すように、上述した半導体素子200の搭載予定領域に複数の突起部111を形成する。突起部111の高さは、例えば、0.1〜0.2mmである。突起部111を形成する手法は特に限定されないが、例えば、プレスによる金型加工が挙げられる。   First, as shown in FIG. 2A, a metal plate 109 containing aluminum as a main material is prepared. The metal plate 109 has a large plate size before being punched into individual metal substrates 110, and has a size of, for example, 100 mm to 1000 mm square. Subsequently, as shown in FIG. 2B, a plurality of protrusions 111 are formed in the above-described region where the semiconductor element 200 is to be mounted. The height of the protrusion 111 is, for example, 0.1 to 0.2 mm. Although the method of forming the protrusion 111 is not particularly limited, for example, die processing by a press can be mentioned.

次に、図2(C)に示すように、金属板109を例えば硫酸溶液400中に浸漬して、金属板109の表面にエッチング処理(スライトエッチング)を施す。金属板109に形成された突起部111には金属板109の凹凸加工の際に大きな加工歪みが発生し、結晶にダメージが加わる。そのため、突起部111には、金属板109の他の領域に比べて微小な結晶粒が多く形成される。したがって、金属板109の表面にエッチング処理を施すと、突起部111の表面に他の領域に比べてより微細な凹凸が形成される。   Next, as shown in FIG. 2C, the metal plate 109 is immersed in, for example, a sulfuric acid solution 400, and the surface of the metal plate 109 is subjected to an etching process (slight etching). The protrusion 111 formed on the metal plate 109 undergoes a large processing distortion during the uneven processing of the metal plate 109, and damages the crystal. Therefore, a lot of fine crystal grains are formed in the protrusion 111 as compared with other regions of the metal plate 109. Therefore, when the surface of the metal plate 109 is subjected to an etching process, finer irregularities are formed on the surface of the protrusion 111 than in other regions.

次に、金属板109の表面に酸化処理を施して酸化膜120を形成する。本実施の形態では、図2(D)に示すように、電源(図示せず)の正極に接続した金属板109を、例えばシュウ酸溶液410に浸漬する。また、電源の負極に接続した陰極端子420を金属板109の両主表面側にそれぞれ所定の間隔で対向配置し、シュウ酸溶液410に浸漬する。そして、金属板109に陽極酸化処理を施して、金属板109の表面に酸化アルミニウムからなる酸化皮膜を形成する。なお、金属板109の酸化処理は、中性またはアルカリ性の処理液中で陽極としての金属板109と陰極との間に交流を印加し、プラズマ放電(マイクロアーク)を発生させることで金属板109の表面を酸化するプラズマ酸化処理により行ってもよい。   Next, an oxidation process is performed on the surface of the metal plate 109 to form an oxide film 120. In this embodiment, as shown in FIG. 2D, a metal plate 109 connected to the positive electrode of a power source (not shown) is immersed in, for example, an oxalic acid solution 410. Further, the cathode terminal 420 connected to the negative electrode of the power source is disposed to face both main surface sides of the metal plate 109 at predetermined intervals, and is immersed in the oxalic acid solution 410. Then, the metal plate 109 is anodized to form an oxide film made of aluminum oxide on the surface of the metal plate 109. In the oxidation treatment of the metal plate 109, an alternating current is applied between the metal plate 109 as the anode and the cathode in a neutral or alkaline treatment solution to generate plasma discharge (micro arc), thereby generating the metal plate 109. You may carry out by the plasma oxidation process which oxidizes the surface of this.

金属板109の酸化処理によって、金属板109の表層が酸化膜120となる。その結果、図3(A)に示すように、金属板109の表面が酸化膜120で被覆された状態となる。上述のように、金属板109は、突起部111の表面に他の領域に比べてより微細な凹凸が形成されている。したがって、突起部111が他の領域に比べてより酸化されやすい。そのため、突起部111が形成された領域には、他の領域よりも膜厚の厚い酸化膜120aが形成される。   By the oxidation treatment of the metal plate 109, the surface layer of the metal plate 109 becomes the oxide film 120. As a result, the surface of the metal plate 109 is covered with the oxide film 120 as shown in FIG. As described above, the metal plate 109 is provided with finer irregularities on the surface of the protrusion 111 than in other regions. Therefore, the protrusion 111 is more easily oxidized than other regions. Therefore, an oxide film 120a having a larger film thickness than other regions is formed in the region where the protrusion 111 is formed.

次に、図3(B)に示すように、金属板109の上面側に設けられた酸化膜120上に、絶縁樹脂フィルムからなる絶縁樹脂層130を配置する。また、絶縁樹脂層130の上方に銅箔等の金属箔141を配置する。そして、プレス装置を用いて、金属基板110、絶縁樹脂層130および金属箔141を圧着する。   Next, as shown in FIG. 3B, an insulating resin layer 130 made of an insulating resin film is disposed on the oxide film 120 provided on the upper surface side of the metal plate 109. Further, a metal foil 141 such as a copper foil is disposed above the insulating resin layer 130. Then, the metal substrate 110, the insulating resin layer 130, and the metal foil 141 are pressure-bonded using a press device.

次に、図3(C)に示すように、周知のフォトリソグラフィ法およびエッチング法により、金属箔141を選択的に除去し、所定パターンの配線層140を形成する。   Next, as shown in FIG. 3C, the metal foil 141 is selectively removed by a known photolithography method and etching method to form a wiring layer 140 having a predetermined pattern.

続いて、図4(A)に示すように、打ち抜き加工または切断加工により、素子搭載用基板100に個片化する。以上の工程により、本実施の形態に係る素子搭載用基板100が形成される。   Subsequently, as shown in FIG. 4A, the element mounting substrate 100 is separated into pieces by punching or cutting. Through the above steps, the element mounting substrate 100 according to the present embodiment is formed.

次に、図4(B)に示すように、配線層140上にはんだ150を介して半導体素子200,210を搭載する。また、ワイヤボンディング法を用いて、半導体素子200,210の上面側の素子電極をアルミニウム線152を介して配線層140の所定領域に電気的に接続する。以上の工程により、本実施の形態に係る半導体モジュール1が形成される。   Next, as shown in FIG. 4B, the semiconductor elements 200 and 210 are mounted on the wiring layer 140 via the solder 150. In addition, the element electrodes on the upper surface side of the semiconductor elements 200 and 210 are electrically connected to a predetermined region of the wiring layer 140 through the aluminum wire 152 by using a wire bonding method. Through the above steps, the semiconductor module 1 according to the present embodiment is formed.

以上説明したように、局所的に酸化膜120の膜厚を厚くすることで、熱伝導および絶縁耐圧が周囲に比べて高い領域を形成することができる。この領域の上方に発熱源となる半導体素子200を搭載することにより、半導体素子200の下部の放熱性と絶縁耐圧の両方を確保することができる。一方、発熱量が相対的に少ない半導体素子210の下部では、絶縁樹脂層130の厚さが半導体素子200の下部の絶縁樹脂層130に比べて厚くなっている。このため、半導体素子200で生じた熱が金属基板110を伝導し、さらに、半導体素子210に伝導することが抑制されている。したがって、半導体素子200が発熱しても、金属基板110を介して半導体素子210が温度上昇しにくくなっている。この結果、半導体素子210の動作信頼性を向上させることができる。   As described above, by locally increasing the thickness of the oxide film 120, it is possible to form a region having higher heat conduction and dielectric strength than the surroundings. By mounting the semiconductor element 200 serving as a heat source above this region, it is possible to ensure both heat dissipation and dielectric strength in the lower part of the semiconductor element 200. On the other hand, in the lower part of the semiconductor element 210 that generates a relatively small amount of heat, the insulating resin layer 130 is thicker than the insulating resin layer 130 in the lower part of the semiconductor element 200. For this reason, heat generated in the semiconductor element 200 is prevented from being conducted through the metal substrate 110 and further to the semiconductor element 210. Therefore, even if the semiconductor element 200 generates heat, the temperature of the semiconductor element 210 is hardly increased through the metal substrate 110. As a result, the operational reliability of the semiconductor element 210 can be improved.

また、本実施の形態に係る半導体モジュール1は、上述した素子搭載用基板100に半導体素子200(パワー系半導体素子)および半導体素子210(制御系半導体素子)を搭載することにより、制御系半導体素子の温度上昇を引き起こすことなく、パワー系半導体素子の絶縁耐圧と放熱性の両方を確保している。このため、半導体モジュール1の動作信頼性の向上を図ることができる。   In addition, the semiconductor module 1 according to the present embodiment has a control system semiconductor element by mounting the semiconductor element 200 (power system semiconductor element) and the semiconductor element 210 (control system semiconductor element) on the element mounting substrate 100 described above. Thus, both the withstand voltage and heat dissipation of the power semiconductor element are ensured without causing a temperature rise. For this reason, the operational reliability of the semiconductor module 1 can be improved.

(実施の形態2)
図5は、実施の形態2に係る素子搭載用基板を含む半導体モジュールの概略構成を示す断面模式図である。先に示した実施の形態との相違点について、以下に述べる。この実施の形態では、酸化膜120の膜厚が他の部分より厚い部分の表面が、他の部分の表面と同じか、もしくは他の部分の表面よりも金属基板110側に位置することを特徴とする。
(Embodiment 2)
FIG. 5 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module including an element mounting substrate according to the second embodiment. Differences from the above-described embodiment will be described below. In this embodiment, the surface of the part where the thickness of the oxide film 120 is thicker than the other part is the same as the surface of the other part, or is located closer to the metal substrate 110 than the surface of the other part. And

(素子搭載用基板および半導体モジュールの製造方法)
実施の形態2に係る素子搭載用基板を含む半導体モジュールの製造方法について、実施の形態1に係る素子搭載用基板を含む半導体モジュールの製造方法との相違点に関して、図6(A)〜図6(C)を参照して説明する。
(Element mounting substrate and semiconductor module manufacturing method)
Regarding the manufacturing method of the semiconductor module including the element mounting substrate according to the second embodiment, with respect to the difference from the manufacturing method of the semiconductor module including the element mounting substrate according to the first embodiment, FIG. A description will be given with reference to (C).

まず、図6(A)に示すように、アルミウムを主材料とする金属板109を用意する。金属板109は、個々の金属基板110に打ち抜き加工される前の大板サイズであり、例えば100mm〜1000mm四方の大きさである。   First, as shown in FIG. 6A, a metal plate 109 mainly made of aluminum is prepared. The metal plate 109 has a large plate size before being punched into individual metal substrates 110, and has a size of, for example, 100 mm to 1000 mm square.

続いて、図6(B)に示すように、上述した半導体素子200の搭載予定領域に複数の突起部111を形成する。突起部111の高さは例えば、0.1〜0.2mmである。この時、突起部111の先端は突起部111の形成されない金属板109の表面に対して、金属板109側に位置する。突起部111を形成する手法は特に限定されないが、例えば、プレスによる金型加工が挙げられる。   Subsequently, as shown in FIG. 6B, a plurality of protrusions 111 are formed in the above-described region where the semiconductor element 200 is to be mounted. The height of the protrusion 111 is, for example, 0.1 to 0.2 mm. At this time, the tip of the protrusion 111 is positioned on the metal plate 109 side with respect to the surface of the metal plate 109 on which the protrusion 111 is not formed. Although the method of forming the protrusion 111 is not particularly limited, for example, die processing by a press can be mentioned.

以降、図6(C)に示すように、実施の形態1と同様の方法で金属板109の表層に酸化膜120を形成する。   Thereafter, as shown in FIG. 6C, an oxide film 120 is formed on the surface layer of the metal plate 109 in the same manner as in the first embodiment.

図6(B)に示した、突起部111の先端が突起部111の形成されない金属板109の表面に対して金属板109側に位置するような金属板109を用いることにより、図6(C)に示すような酸化膜120の膜厚が他の部分より厚い部分、すなわち酸化膜120aの表面が、他の部分の表面と同じか、もしくは他の部分の表面よりも金属板109側に位置する金属板109を形成することができる。金属109は、打ち抜き加工などの個片化工程により図5に示す金属基板110となる。   By using the metal plate 109 shown in FIG. 6B in which the tip of the protrusion 111 is positioned on the metal plate 109 side with respect to the surface of the metal plate 109 on which the protrusion 111 is not formed, FIG. ) Where the thickness of the oxide film 120 is thicker than the other portions, that is, the surface of the oxide film 120a is the same as the surface of the other portions, or is located closer to the metal plate 109 than the surface of the other portions. The metal plate 109 to be formed can be formed. The metal 109 becomes a metal substrate 110 shown in FIG. 5 by an individualization process such as punching.

以上、説明したように、突起部111の先端が突起部111の形成されない金属基板110の表面に対して、金属基板110側に位置するように金属基板110に突起部111を設け、局所的に酸化膜120の膜厚を厚くすることで、酸化膜120の膜厚が他の部分より厚い部分である酸化膜120aの表面が、他の部分の表面と同じか、もしくは他の部分の表面よりも金属基板110側に位置する金属基板110を形成することができる。   As described above, the protrusion 111 is provided on the metal substrate 110 so that the tip of the protrusion 111 is located on the metal substrate 110 side with respect to the surface of the metal substrate 110 on which the protrusion 111 is not formed. By increasing the film thickness of the oxide film 120, the surface of the oxide film 120a, which is a part where the film thickness of the oxide film 120 is thicker than the other part, is the same as the surface of the other part or more than the surface of the other part. Also, the metal substrate 110 positioned on the metal substrate 110 side can be formed.

酸化膜120aの表面が、他の部分表面と同じか、もしくは他の部分の表面よりも金属基板110側に位置することにより、酸化膜120aでは酸化膜120の膜が厚い分、他の部分に対して絶縁耐圧を高くすることが可能となる。また、配線層140側の絶縁樹脂層130の表面を平面にした場合に、酸化膜120aでは、酸化膜120上の絶縁樹脂層130の膜厚を厚くすることが可能になり絶縁耐圧を高くすることが可能となる。以上のことにより、金属基板110の絶縁耐圧を向上し、絶縁破壊を抑制することが可能となることから、信頼性を向上することができる。   Since the surface of the oxide film 120a is the same as the surface of the other part, or is positioned closer to the metal substrate 110 than the surface of the other part, the oxide film 120 is thicker in the oxide film 120a, so On the other hand, the withstand voltage can be increased. Further, when the surface of the insulating resin layer 130 on the wiring layer 140 side is made flat, the oxide film 120a can increase the thickness of the insulating resin layer 130 on the oxide film 120 and increase the withstand voltage. It becomes possible. As described above, since the dielectric breakdown voltage of the metal substrate 110 can be improved and dielectric breakdown can be suppressed, reliability can be improved.

(実施の形態3)
図7は、実施の形態3に係る素子搭載用基板を含む半導体モジュールの概略構成を示す断面模式図である。図7において、半導体素子400は青色LED素子、半導体素子401は緑色LED素子、半導体素子402は赤色LED素子、半導体素子403は白色LED素子である。半導体素子410はLED素子を制御するために用いられる照度センサであり、半導体モジュール300はLEDモジュールである。それぞれのLED素子は、素子ごとに分離された酸化膜120の膜厚が周囲より厚い部分120a1〜120a4に搭載されている。このことにより、LED素子の発熱が個々に分離されるので隣り合ったLEDへ熱が伝わりにくく、隣り合ったLEDの発熱によるLED動作特性の影響を抑制することが可能となる。たとえば、周辺のLEDの発熱により周囲温度が上昇すると光度が低下する赤色 LEDの光度低下を本構造では抑制することが可能である。また、熱に弱い照度センサを熱的に分離しつつLED素子と同一基板に搭載することができるので、LEDモジュールの小型化が可能となる。
(Embodiment 3)
FIG. 7 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module including an element mounting substrate according to the third embodiment. In FIG. 7, the semiconductor element 400 is a blue LED element, the semiconductor element 401 is a green LED element, the semiconductor element 402 is a red LED element, and the semiconductor element 403 is a white LED element. The semiconductor element 410 is an illuminance sensor used for controlling the LED element, and the semiconductor module 300 is an LED module. Each LED element is mounted on a portion 120a1 to 120a4 in which the oxide film 120 separated for each element is thicker than its surroundings. As a result, the heat generation of the LED elements is individually separated, so that heat is not easily transmitted to the adjacent LEDs, and the influence of the LED operating characteristics due to the heat generation of the adjacent LEDs can be suppressed. For example, in this structure, it is possible to suppress a decrease in luminous intensity of a red LED in which the luminous intensity decreases when the ambient temperature rises due to heat generated by the peripheral LEDs. In addition, since the illuminance sensor that is vulnerable to heat can be mounted on the same substrate as the LED element while being thermally separated, the LED module can be miniaturized.

図7には、それぞれのLED素子が素子毎に分離された膜厚の厚い酸化膜120a1〜120a4の上方に搭載された形態を開示したが、複数のLEDが素子毎に分離されていない(同一の)膜厚の厚い酸化膜、たとえば酸化膜120a1の上方に搭載されてもよい。この形態によると、個々に分離された場合と比較して放熱性の良い膜厚の厚い酸化膜120a1が大面積に形成され、モジュール全体としての放熱性が向上する効果がある。同種のLEDを複数個搭載する場合には、より放熱効果が高い本形態が適している。   FIG. 7 discloses a mode in which each LED element is mounted above the thick oxide films 120a1 to 120a4 separated for each element, but a plurality of LEDs are not separated for each element (same The oxide film may be mounted above the oxide film 120a1. According to this embodiment, the thick oxide film 120a1 having a good heat dissipation property as compared with the case of being separated individually is formed in a large area, and there is an effect that the heat dissipation property of the entire module is improved. In the case where a plurality of LEDs of the same type are mounted, this embodiment having a higher heat dissipation effect is suitable.

また、図7には、LED素子を4つ搭載した例を示したが、LEDモジュールに搭載されるLED素子の種類の組み合わせ及び個数はこれに限らない。また、LEDモジュールには、バリスタなどの受動素子が搭載されていてもよい。膜厚の厚い酸化膜120a1〜120a4をLED毎に分離する形態および1つの膜厚の厚い酸化膜上に複数のLEDを搭載する形態を開示したが、例えば上記のような青色/緑色/赤色/白色の各LEDを搭載したLEDモジュールにおいて、赤色LEDに相当する酸化膜のみを分離し、青色/緑色/白色の各LEDは同一の厚膜酸化膜上に搭載してもよい。   Moreover, although the example which mounted four LED elements was shown in FIG. 7, the combination and number of the kind of LED element mounted in an LED module are not restricted to this. Moreover, passive elements, such as a varistor, may be mounted in the LED module. Although a mode in which the thick oxide films 120a1 to 120a4 are separated for each LED and a mode in which a plurality of LEDs are mounted on one thick oxide film have been disclosed, for example, blue / green / red / In an LED module in which each white LED is mounted, only the oxide film corresponding to the red LED may be separated, and each blue / green / white LED may be mounted on the same thick film oxide film.

本発明は、上述した実施の形態や変形例に限定されるものではなく、当業者の知識に基づいて各種の設計変更等のさらなる変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範囲に含まれ得るものである。   The present invention is not limited to the above-described embodiments and modifications, and various modifications such as various design changes can be added based on the knowledge of those skilled in the art, and such modifications are added. Such embodiments can also be included in the scope of the present invention.

なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。   The invention according to the present embodiment may be specified by the items described below.

[項目1]
金属基板と、
前記金属基板の表面が酸化されてなる酸化膜と、
前記金属基板の一方の主表面側の前記酸化膜上に設けられた絶縁樹脂層と、
前記絶縁樹脂層上に設けられた配線層と、を備え、
少なくとも一部の前記酸化膜の膜厚が他の部分の前記酸化膜の膜厚よりも厚いことを特徴とする素子搭載用基板。
[Item 1]
A metal substrate;
An oxide film formed by oxidizing the surface of the metal substrate;
An insulating resin layer provided on the oxide film on one main surface side of the metal substrate;
A wiring layer provided on the insulating resin layer,
An element mounting substrate, wherein the thickness of at least a part of the oxide film is thicker than that of the other part of the oxide film.

[項目2]
前記酸化膜の膜厚が他の部分より厚い部分が発熱源となる半導体素子が搭載される搭載予定領域である項目1に記載の素子搭載用基板。
[Item 2]
Item 2. The element mounting substrate according to Item 1, wherein a portion where the thickness of the oxide film is thicker than other portions is a region to be mounted on which a semiconductor element serving as a heat source is mounted.

[項目3]
前記酸化膜の膜厚が周囲より厚い部分の上に設けられた前記絶縁樹脂層の膜厚が他の部分の前記絶縁樹脂層の膜厚より薄い部分を有する項目1または2に記載の素子搭載用基板。
[Item 3]
3. The element mounting according to item 1 or 2, wherein the insulating resin layer provided on a portion where the thickness of the oxide film is thicker than the surroundings has a portion where the thickness of the insulating resin layer is thinner than that of the other portion. Substrate.

[項目4]
前記酸化膜の膜厚が他の部分より厚い部分の表面が、他の部分の表面と同じか、もしくは他の部分の表面よりも金属基板側に位置する項目1または2に記載の素子搭載用基板。
[Item 4]
3. The element mounting according to item 1 or 2, wherein a surface of a portion where the film thickness of the oxide film is thicker than that of the other portion is the same as the surface of the other portion, or is located closer to the metal substrate than the surface of the other portion. substrate.

[項目5]
前記酸化膜の膜厚が他より厚い部分において、前記金属基板の一方の主表面に凹凸が形成されている項目1乃至4のいずれか1項に記載の素子搭載用基板。
[Item 5]
5. The element mounting substrate according to any one of items 1 to 4, wherein an unevenness is formed on one main surface of the metal substrate in a portion where the film thickness of the oxide film is thicker than the others.

[項目6]
請求項1乃至5のいずれか1項にに記載の素子搭載用基板と、
前記素子搭載用基板の前記配線層が形成された側の主表面上に搭載され、前記配線層と電気的に接続された半導体素子と、
を備えたことを特徴とする半導体モジュール。
[Item 6]
The element mounting substrate according to any one of claims 1 to 5,
A semiconductor element mounted on the main surface of the element mounting substrate on which the wiring layer is formed and electrically connected to the wiring layer;
A semiconductor module comprising:

[項目7]
金属基板の所定領域に突起部を形成する工程と、
前記金属基板の表面に酸化処理を施して酸化膜を形成する工程と、
前記酸化膜上に絶縁樹脂層を積層する工程と、
前記絶縁樹脂層上に金属層を積層し、当該金属層を選択的に除去して配線層を形成する工程と、
を含むことを特徴とする素子搭載用基板の製造方法。
[Item 7]
Forming a protrusion in a predetermined region of the metal substrate;
Forming an oxide film by oxidizing the surface of the metal substrate;
Laminating an insulating resin layer on the oxide film;
Laminating a metal layer on the insulating resin layer and selectively removing the metal layer to form a wiring layer;
A method for manufacturing an element mounting board, comprising:

[項目8]
前記酸化処理は、陽極酸化処理である項目7に記載の素子搭載用基板の製造方法。
[Item 8]
8. The element mounting substrate manufacturing method according to item 7, wherein the oxidation treatment is an anodic oxidation treatment.

1 半導体モジュール、100 素子搭載用基板、109 金属板、110 金属基板、111 突起部、120 酸化膜、130 絶縁樹脂層、140 配線層、141 金属箔、200,210 半導体素子。 DESCRIPTION OF SYMBOLS 1 Semiconductor module, 100 element mounting substrate, 109 metal plate, 110 metal substrate, 111 protrusion part, 120 oxide film, 130 insulating resin layer, 140 wiring layer, 141 metal foil, 200,210 semiconductor element.

本発明は、素子搭載用基板、半導体モジュールおよび素子搭載用基板の製造方法に利用される。   The present invention is used in an element mounting substrate, a semiconductor module, and a method for manufacturing an element mounting substrate.

Claims (7)

金属基板と、
前記金属基板の表面が酸化されてなる酸化膜と、
前記金属基板の一方の主表面側の前記酸化膜上に設けられた絶縁樹脂層と、
前記絶縁樹脂層上に設けられた配線層と、を備え、
少なくとも一部の前記酸化膜の膜厚が他の部分の前記酸化膜の膜厚よりも厚く、
前記酸化膜の膜厚が他より厚い部分において、前記金属基板の一方の主表面に凹凸が形成されていることを特徴とする素子搭載用基板。
A metal substrate;
An oxide film formed by oxidizing the surface of the metal substrate;
An insulating resin layer provided on the oxide film on one main surface side of the metal substrate;
A wiring layer provided on the insulating resin layer,
Thickness of at least a portion of the oxide film rather thickness than the thickness of the oxide film of the other part,
An element mounting substrate, wherein an unevenness is formed on one main surface of the metal substrate in a portion where the thickness of the oxide film is thicker than the others .
発熱量の異なる複数個の半導体素子の搭載に用いられ、
前記酸化膜の膜厚が他の部分より厚い部分が前記複数個の半導体素子のうち、発熱量が相対的に大きい半導体素子が搭載される搭載予定領域である請求項1に記載の素子搭載用基板。
Used for mounting multiple semiconductor elements with different calorific values,
2. The element mounting area according to claim 1, wherein a portion where the film thickness of the oxide film is thicker than other portions is a mounting region in which a semiconductor element having a relatively large calorific value is mounted among the plurality of semiconductor elements. substrate.
前記酸化膜の膜厚が周囲より厚い部分の上に設けられた前記絶縁樹脂層の膜厚が他の部分の前記絶縁樹脂層の膜厚より薄い部分を有する請求項1または2に記載の素子搭載用基板。   3. The element according to claim 1, wherein a film thickness of the insulating resin layer provided on a portion where the film thickness of the oxide film is thicker than a surrounding area has a portion thinner than a film thickness of the insulating resin layer in another portion. Mounting board. 前記酸化膜の膜厚が他の部分より厚い部分の表面が、他の部分の表面と同じか、もしくは他の部分の表面よりも金属基板側に位置する請求項1または2に記載の素子搭載用基板。   3. The element mounting according to claim 1, wherein a surface of a portion where the film thickness of the oxide film is thicker than that of another portion is the same as a surface of the other portion, or is located closer to the metal substrate than a surface of the other portion. Substrate. 請求項1乃至のいずれか1項に記載の素子搭載用基板と、
前記素子搭載用基板の前記配線層が形成された側の主表面上に搭載され、前記配線層と電気的に接続された半導体素子と、
を備えたことを特徴とする半導体モジュール。
A device mounting board mounting serial to any one of claims 1 to 4,
A semiconductor element mounted on the main surface of the element mounting substrate on which the wiring layer is formed and electrically connected to the wiring layer;
A semiconductor module comprising:
金属基板の所定領域に突起部を形成する工程と、
前記金属基板の表面に酸化処理を施して、前記突起部が形成された領域の膜厚が他の領域の膜厚よりも厚い酸化膜を形成する工程と、
前記酸化膜上に絶縁樹脂層を積層する工程と、
前記絶縁樹脂層上に金属層を積層し、当該金属層を選択的に除去して配線層を形成する工程と、
を含むことを特徴とする素子搭載用基板の製造方法。
Forming a protrusion in a predetermined region of the metal substrate;
Performing an oxidation treatment on the surface of the metal substrate to form an oxide film in which the thickness of the region where the protrusion is formed is thicker than the thickness of the other region ;
Laminating an insulating resin layer on the oxide film;
Laminating a metal layer on the insulating resin layer and selectively removing the metal layer to form a wiring layer;
A method for manufacturing an element mounting board, comprising:
前記酸化処理は、陽極酸化処理である請求項に記載の素子搭載用基板の製造方法。 The method for manufacturing an element mounting substrate according to claim 6 , wherein the oxidation treatment is an anodic oxidation treatment.
JP2013535885A 2011-09-28 2012-09-21 Device mounting substrate, semiconductor module, and device mounting substrate manufacturing method Active JP5999376B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011213284 2011-09-28
JP2011213284 2011-09-28
PCT/JP2012/006032 WO2013046617A1 (en) 2011-09-28 2012-09-21 Substrate for mounting element thereon, semiconductor module, and method for manufacturing substrate for mounting element thereon

Publications (2)

Publication Number Publication Date
JPWO2013046617A1 JPWO2013046617A1 (en) 2015-03-26
JP5999376B2 true JP5999376B2 (en) 2016-09-28

Family

ID=47994702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013535885A Active JP5999376B2 (en) 2011-09-28 2012-09-21 Device mounting substrate, semiconductor module, and device mounting substrate manufacturing method

Country Status (3)

Country Link
US (1) US9271389B2 (en)
JP (1) JP5999376B2 (en)
WO (1) WO2013046617A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018344A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Substrate for mounting elements and method for producing same, and semiconductor module and method for producing same
JP2017147364A (en) * 2016-02-18 2017-08-24 株式会社東芝 Semiconductor module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129989A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Metal base substrate with compound insulating layer
JPH02249293A (en) * 1989-03-23 1990-10-05 Matsushita Electric Ind Co Ltd Metal base substrate
JP2630858B2 (en) 1991-02-26 1997-07-16 スカイアルミニウム株式会社 Manufacturing method of printed wiring board
JP2003303940A (en) 2002-04-12 2003-10-24 Hitachi Ltd Insulation circuit board and semiconductor device
TWI280657B (en) * 2004-05-28 2007-05-01 Sanyo Electric Co Circuit device
JP2006100753A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Semiconductor module and its manufacturing method
EP2050129A2 (en) * 2006-08-11 2009-04-22 E.I. Du Pont De Nemours And Company Device chip carriers, modules, and methods of forming thereof
JP2008159647A (en) 2006-12-21 2008-07-10 Sumitomo Metal Mining Co Ltd Manufacturing method of heat dissipation substrate for electric circuit
JP5002350B2 (en) * 2007-06-28 2012-08-15 三洋電機株式会社 Circuit equipment
JP2009123980A (en) * 2007-11-16 2009-06-04 Sumitomo Metal Mining Co Ltd Aluminum-based heat dissipation substrate for electric circuit and method for manufacturing the same
JP5498839B2 (en) * 2010-04-02 2014-05-21 京セラ株式会社 Insulated heat dissipation board

Also Published As

Publication number Publication date
US9271389B2 (en) 2016-02-23
US20140078687A1 (en) 2014-03-20
WO2013046617A1 (en) 2013-04-04
JPWO2013046617A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP6135888B2 (en) Device mounting substrate, manufacturing method thereof, and semiconductor module
EP3107120B1 (en) Power semiconductor module
EP3104412B1 (en) Power semiconductor module
US9159715B2 (en) Miniaturized semiconductor device
JP2008085169A (en) Power semiconductor module
JP4885046B2 (en) Power semiconductor module
JP2015005681A (en) Semiconductor device and method of manufacturing the same
JP6305176B2 (en) Semiconductor device and manufacturing method
JP2006253354A (en) Circuit device and its manufacturing method
WO2015182284A1 (en) Semiconductor device
CN113039636A (en) Power semiconductor device
JP2008187146A (en) Circuit device
JP6868455B2 (en) Electronic component package and its manufacturing method
JP5999376B2 (en) Device mounting substrate, semiconductor module, and device mounting substrate manufacturing method
JP2012074730A (en) Power semiconductor module
JP2014090103A (en) Molded package and method for manufacturing the same
CN111834307B (en) Semiconductor module
KR101222809B1 (en) Power Module Package and Method for Manufacturing the same
JP2010177710A (en) Semiconductor device
JP5195828B2 (en) Semiconductor device
JP5039388B2 (en) Circuit equipment
JP5682511B2 (en) Semiconductor module
KR20170095681A (en) Power module and method for the same
JP2008205083A (en) Semiconductor device and strap for extracting electrode
JP4992302B2 (en) Power semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160816

R151 Written notification of patent or utility model registration

Ref document number: 5999376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151