JP5986907B2 - 4気筒エンジンおよび4気筒エンジンの運転方法 - Google Patents

4気筒エンジンおよび4気筒エンジンの運転方法 Download PDF

Info

Publication number
JP5986907B2
JP5986907B2 JP2012265010A JP2012265010A JP5986907B2 JP 5986907 B2 JP5986907 B2 JP 5986907B2 JP 2012265010 A JP2012265010 A JP 2012265010A JP 2012265010 A JP2012265010 A JP 2012265010A JP 5986907 B2 JP5986907 B2 JP 5986907B2
Authority
JP
Japan
Prior art keywords
cylinder
degrees
cylinders
intake
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012265010A
Other languages
English (en)
Other versions
JP2014109248A5 (ja
JP2014109248A (ja
Inventor
映 塚原
映 塚原
大二郎 田中
大二郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2012265010A priority Critical patent/JP5986907B2/ja
Publication of JP2014109248A publication Critical patent/JP2014109248A/ja
Publication of JP2014109248A5 publication Critical patent/JP2014109248A5/ja
Application granted granted Critical
Publication of JP5986907B2 publication Critical patent/JP5986907B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、4つの気筒の爆発間隔がクランク角で270度−180度−90度−180度となる4気筒エンジンおよびこの4気筒エンジンの運転方法に関するものである。
従来、車両に搭載される4気筒エンジンのクランク軸としては、4個のクランクピンが1つの仮想平面上に位置する1プレーン型クランク軸(180度クランク軸)と、特許文献1に記載されているような2プレーン型クランク軸とがある。2プレーン型クランク軸のクランクピンは、クランク軸の軸線方向から見て直交する2つの仮想平面上に2個ずつ配置されている。
この種の2プレーン型クランク軸を使用する4気筒エンジンや、1プレーン型クランク軸を有するV型4気筒エンジンが搭載された車両は、アクセル操作と車体の挙動とが一致するような感覚を乗員に与えるものとして知られている。この理由は、このクランクレイアウトによりエンジンの慣性トルクがほとんど除去されるからであると考えられている。この種の4気筒エンジンの爆発間隔は、クランク角で270度−180度−90度−180度であることが多い。
このような4気筒エンジンの燃焼圧と発生トルクは、図28に示すように変化する。図28において、横軸はクランク角を示し、縦軸は燃焼圧と発生トルクを示す。また、図28は、点火順序が1番気筒→3番気筒→2番気筒→4番気筒となる場合の一例を示している。この場合、図28において符号Aで示すクランク角のときに1番気筒で爆発が生じると、3番気筒の爆発は、前記クランク角Aからクランク角で270度進んだクランク角Bであるときに生じる。そして、クランク軸がさらに180度回転してクランク角Cであるときに2番気筒で爆発が生じ、その後、クランク軸が90度回転してクランク角Dであるときに4番気筒で爆発が生じる。その後、クランク軸がさらに180度回転してクランク角Eに達したときに、1番気筒で再び爆発が生じる。一方、この4気筒エンジンの出力軸に生じるトルクは、爆発間隔と同じ間隔で上昇する。すなわち、不等間隔爆発と同様に不等間隔でトルクが生じる。
特許第4533846号公報
爆発間隔がクランク角で270度−180度−90度−180度となる4気筒エンジンでは、回転速度が低いときに問題が生じる。この問題とは、この種のエンジンを搭載した車両の乗員が違和感を覚えることである。このように違和感を覚える主な原因は、4つの気筒の爆発間隔が不等間隔爆発であり、単位時間当たりの駆動エネルギーが不均一になるからである。ここでいう駆動エネルギーとは、エンジンの出力軸(車両の駆動輪)を回転させるためのエネルギーである。出力軸に加えられるトルクの大きさは、前記駆動エネルギーの大きさに比例するように変化する。
前記トルクは、爆発間隔がクランク角で90度となる2つの気筒で爆発が生じることによって、短時間の間に2回上昇する。このように短時間の間にトルクが2回上昇するときは、例えば、図28に示すエンジンにおいては、クランク角Cで2番気筒で爆発が生じたときと、クランク角Dで4番気筒で爆発が生じたときである。すなわち、このように短時間の間に連続してトルクが発生することが原因で、1サイクルの中の一部において駆動エネルギーが高くなり、上述したように単位時間当たりの駆動エネルギーが不均一になる。
この4気筒エンジンを搭載した車両の乗員は、エンジンの回転速度が低い場合、このように短時間で連続して生じるトルクの上昇を恰も1回のトルク上昇として体感することがある。この1回のトルク上昇として覚えるトルクの大きさは、他の2回の爆発時にそれぞれ上昇するトルクの大きさより大きく感じ易い。この理由は、短時間でトルクが2回上昇していることに起因してトルクが上昇している時間が長く感じられるからである。すなわち、図28中に二点鎖線で示すように、乗員は、実際には2回生じるトルクが1回のみ生じたように感じられ、しかも、他の気筒(1番気筒や3番気筒)で爆発が生じたときより大きなトルクが生じたように錯覚する。
このため、乗員は、エンジンの回転速度が低いときに不規則なトルクの変化を体感し、違和感を覚えることになる。
本発明はこのような問題を解消するためになされたもので、乗員がトルク変動を感じ易い運転状態において、単位時間当たりの駆動エネルギーの変化が小さい不等間隔爆発の4気筒エンジンおよびこの4気筒エンジンの運転方法を提供することを目的とする。
この目的を達成するために、本発明に係る4気筒エンジンは、4つのシリンダ孔を有するシリンダボディと、前記シリンダボデに取付けられ、前記シリンダ孔毎の吸気ポートおよび排気ポートを有するシリンダヘッドと、前記シリンダヘッドに取付けられた前記シリンダ孔毎の点火プラグと、前記点火プラグを含む点火装置と、前記吸気ポートに接続された吸気装置と、前記排気ポートに接続された排気装置と、前記シリンダ孔内に摺動自在に嵌合した4つのピストンと、これらのピストンにコンロッドを介して連結されたクランク軸とを備え、前記4つのシリンダ孔によって構成される4気筒の爆発間隔は、クランク角で270度−180度−90度−180度であり、エンジンの回転速度が所定の値より低い場合に、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の図示平均有効圧力、爆発間隔が90度ではない他の気筒の図示平均有効圧力より低くする違和感解消部を更に備えていることを特徴とするものである。
本発明は、前記発明において、前記図示平均有効圧力を低下させる量は、エンジンの回転速度が低くなるにしたがい、かつ負荷が大きくなるにしたがって多くなることを特徴とする。
本発明は、前記発明において、前記違和感解消部は、点火時期が遅れることにより前記図示平均有効圧力が低下する現象を利用したもので、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の点火時期を、爆発間隔が90度ではない他の気筒の点火時期より遅らせるものであることを特徴とする。
本発明は、前記発明において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、これら両気筒の吸気ポートに接続された1つのサージタンクと、このサージタンクに設けられた1つのスロットル弁とを備え、前記違和感解消部は、吸入空気量が低減することにより前記図示平均有効圧力が低下する現象を利用したもので、前記スロットル弁の開度を制御することにより、前記爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものであることを特徴とする。
本発明は、前記発明において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、気筒毎のスロットル弁を備え、前記違和感解消部は、吸入空気量が低減することにより前記図示平均有効圧力が低下する現象を利用したもので、前記スロットル弁の開度を制御することにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものであることを特徴とする。
本発明は、前記発明において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、前記吸気ポートを開閉する吸気弁の開閉時期およびリフト量を変更可能な可変動弁機構を備え、前記違和感解消部は、吸入空気量が低減することにより前記図示平均有効圧力が低下する現象を利用したもので、前記可変動弁機構の動作を制御することにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものであることを特徴とする。
本発明に係る4気筒エンジンの運転方法は、4つのシリンダ孔を有するシリンダボディと、前記シリンダボディに取付けられ、前記シリンダ孔毎の吸気ポートおよび排気ポートを有するシリンダヘッドと、前記シリンダヘッドに取付けられた前記シリンダ孔毎の点火プラグと、前記点火プラグを含む点火装置と、前記吸気ポートに接続された吸気装置と、前記排気ポートに接続された排気装置と、前記シリンダ孔内に摺動自在に嵌合した4つのピストンと、これらのピストンにコンロッドを介して連結されたクランク軸とを備えた4気筒エンジンの爆発間隔を、クランク角で270度−180度−90度−180度とし、エンジンの回転速度が所定の値より低い場合に、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の図示平均有効圧力を、爆発間隔が90度ではない他の気筒の図示平均有効圧力より低くすることにより実施する。
本発明は、前記4気筒エンジンの運転方法において、前記図示平均有効圧力を低下させる量は、エンジンの回転速度が低くなるにしたがい、かつ負荷が大きくなるにしたがって多くなることを特徴とする。
本発明は、前記4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の点火時期を、爆発間隔が90度ではない他の気筒の点火時期より遅らせることにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の前記図示平均有効圧力を低下させることを特徴とする。
本発明は、前記4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、これら両気筒の吸気ポートに接続された1つのサージタンクと、このサージタンクに設けられた1つのスロットル弁とを備え、前記スロットル弁の開度を制御し、爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくすることにより、前記爆発間隔が90度となる2つの気筒の前記図示平均有効圧力を低下させることを特徴とする。
本発明は、前記4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、気筒毎のスロットル弁を備え、前記スロットル弁の開度を制御し、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくすることにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の前記図示平均有効圧力を低下させることを特徴とする。
本発明は、前記4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、前記吸気ポートを開閉する吸気弁の開閉時期およびリフト量を変更可能な可変動弁機構を備え、前記可変動弁機構の動作を制御し、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくすることにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の前記図示平均有効圧力を低下させることを特徴とする。
本発明に係る4気筒エンジンおよび4気筒エンジンの運転方法によれば、エンジンの出力トルクは、爆発間隔がクランク角で90度となる2つの気筒において爆発が生じることにより短時間に2回上昇する。乗員がエンジンのトルク変動を感じ易い運転状態、すなわちエンジンの回転速度が所定の値より低くなるときは、爆発間隔がクランク角で90度となる2つの気筒の少なくとも一方の気筒の図示平均有効圧力が、爆発間隔が90度ではない他の気筒の図示平均有効圧力より低下する
これにより、爆発間隔がクランク角で90度となる2つの気筒の少なくとも一方の気筒で発生するトルクの大きさは、他の2つの気筒で発生するトルクの大きさより小さくなる。この結果、短時間の間で連続してトルクが発生することが原因で1サイクルの中の一部において他より駆動エネルギーが高くなる現象が抑制される。したがって、本発明によれば、エンジンの駆動エネルギーが均一になる4気筒エンジンおよび4気筒エンジンの運転方法を提供することができる。
前述のように爆発間隔が270度−180度−90度−180度である4気筒エンジンを搭載した車両の乗員は、クランク角で90度となる短時間に連続してトルクが上昇したときに、恰も1度にトルクが上昇したように錯覚し易い。しかも、乗員は、このようなときはトルクが上昇している時間を相対的に長く感じるために、トルクの大きさを大きく感じ易い。
しかし、本発明に係る4気筒エンジンおよび4気筒エンジンの運転方法によれば、爆発間隔がクランク角で90度となる2つの気筒で爆発が生じたときに、他の2つの気筒で爆発が生じたときと同等の大きさでトルクが1度に上昇するような感覚を乗員に与えることが可能なる。
このように、この4気筒エンジンおよび4気筒エンジンの運転方法によれば、爆発間隔がそれほど離れていない3気筒エンジンと同等の振動、トルク変動などを乗員に体感させることができる。爆発が等間隔で生じる3気筒エンジンは、このエンジンを搭載した車両の乗員に何ら違和感を与えるものではない。
したがって、本発明に係る4気筒エンジンおよび4気筒エンジンの運転方法を車両用エンジンに適用することによって、乗員がエンジンのトルク変動を感じ易い運転状態にあるときであっても、乗員に違和感を与え難くなる。
第1の実施の形態による4気筒エンジンの構成を示す断面図である。 第1の実施の形態による4気筒エンジンの吸気装置の構成を示す平面図である。 第1の実施の形態によるクランク軸および動力伝達系の構成を示す斜視図である。 第1の実施の形態による4気筒エンジンの制御系の構成を示すブロック図である。 第1の実施の形態による各気筒のピストンとクランクピンの位置の変化を示す図である。 第1の実施の形態による1番、3番気筒用の点火時期マップを示す図である。 第1の実施の形態による2番、4番気筒用の点火時期マップを示す図である。 第1の実施の形態によるクランク角に対する燃焼圧および発生トルクの変化を示すグラフである。 第1の実施の形態による制御装置の動作(4気筒エンジンの運転方法)を説明するためのフローチャートである。 第2の実施の形態による4気筒エンジンの吸気装置の構成を示す平面図である。 第2の実施の形態による4気筒エンジンの制御系の構成を示すブロック図である。 第2の実施の形態による2番、4番気筒のスロットル弁開度を示すマップである。 第2の実施の形態による制御装置の動作(4気筒エンジンの運転方法)を説明するためのフローチャートである。 第2の実施の形態による吸気装置の変形例1を示す平面図である。 第2の実施の形態による吸気装置の変形例2を示す平面図である。 第3の実施の形態による4気筒エンジンの吸気装置の構成を示す平面図である。 第3の実施の形態による4気筒エンジンの制御系の構成を示すブロック図である。 第3の実施の形態による2番、4番気筒のスロットル弁開度を示すマップである。 第3の実施の形態による制御装置の動作(4気筒エンジンの運転方法)を説明するためのフローチャートである。 第3の実施の形態による吸気装置の変形例1を示す平面図である。 第3の実施の形態による吸気装置の変形例2を示す平面図である。 第4の実施の形態による4気筒エンジンの吸気装置の構成を示す平面図である。 第4の実施の形態による4気筒エンジンの制御系の構成を示すブロック図である。 第4の実施の形態による2番、4番気筒の吸気弁開度を示すマップである。 第4の実施の形態による制御装置の動作(4気筒エンジンの運転方法)を説明するためのフローチャートである。 第4の実施の形態による吸気装置の変形例1を示す平面図である。 第4の実施の形態による吸気装置の変形例2を示す平面図である。 従来の4気筒エンジンにおけるクランク角に対する燃焼圧および発生トルクの変化を示すグラフである。
(第1の実施の形態)
以下、本発明に係る4気筒エンジンおよび4気筒エンジンの運転方法の一実施の形態を図1〜図9によって詳細に説明する。
図1に示す4気筒エンジン1は、車両(図示せず)に搭載する4サイクル直列4気筒エンジン、あるいは4サイクル並列4気筒エンジンである。図1には、この4気筒エンジン1の主要構成部品のみが描いてある。この4気筒エンジン1は、図1に示すように、4つのシリンダ孔2を有するシリンダボディ3と、このシリンダボディ3に取付けられたシリンダヘッド4と、このシリンダヘッド4に取付けられたヘッドカバー5などを備えている。
前記4つのシリンダ孔2は、図2に示すように、径方向に一列に並ぶ状態でシリンダボディ3に形成されている。この4気筒エンジンは、これらの4つのシリンダ孔2を用いて1番気筒〜4番気筒が構成されている。図2においては、1番気筒は符号#1で示され、2番気筒は符号#2で示されている。また、3番気筒は符号#3で示され、4番気筒は符号#4で示されている。1番気筒〜4番気筒は、図2においては上から順番に並べられている。
前記4つのシリンダ孔2には、図1に示すように、ピストン6がそれぞれ摺動自在に嵌合している。これらのピストン6は、コンロッド7を介してそれぞれ後述するクランク軸8に連結されている。
前記シリンダヘッド4における前記各シリンダ孔2と対向する位置には、燃焼室Sの天井壁になる凹部4aがそれぞれ形成されている。これらの凹部4aは、シリンダ孔2側から見て円形に形成されている。
これらの凹部4aには、吸気ポート9の下流側端部が2股に分岐してそれぞれ開口しているとともに、排気ポート10の上流側端部が2股に分岐してそれぞれ開口している。
シリンダヘッド4は、前記吸気ポート9を開閉するための2つの吸気弁11と、前記排気ポート10を開閉するための2つの排気弁12と、これらの吸気弁11および排気弁12を駆動するための動弁装置13と、点火プラグ14と、燃料噴射インジェクタ15(図4参照)とを備えている。燃料噴射インジェクタ15は、吸気ポート9内かその上流の吸気管17内あるいは前記凹部4a内に燃料を噴射するものを用いることができる。
前記吸気ポート9の上流側端部は、図2に示すように、シリンダヘッド4の一側部に開口し、吸気装置16に接続されている。吸気装置16は、全ての吸気ポート9にそれぞれ吸気管17によって接続された1つのサージタンク18を備えている。このサージタンク18は、シリンダ孔2が並ぶ方向の一端部にスロットル弁19が設けられており、このスロットル弁19を介して図示していないエアクリーナに接続されている。スロットル弁19は、乗員によって遠隔操作されるものである。
このスロットル弁19にエアクリーナを接続する吸気ダクト20には、この吸気ダクト20内を流れる空気の流量を測定するための空気量測定装置21が設けられている。この空気量測定装置21は、たとえばエアフローメータによって構成することができる。空気量測定装置21は、後述する制御装置22に接続されており、この制御装置22に吸入空気量を特定可能な検出データを送る。
前記排気ポート10の下流側端部は、図1に示すように、シリンダヘッド4の他側部に開口している。全ての排気ポート10の下流側端部には、排気装置23の各排気管24が接続されている。
前記動弁装置13は、吸気カム軸25と排気カム軸26とを備えたDOHC型のものである。吸気カム軸25と排気カム軸26は、図示していない巻き掛け伝動部材を介してクランク軸8に接続されている。なお、動弁装置13の動弁形式は、DOHC型に限定されることはなく、SOHC型のような他の動弁形式でも構わない。
前記点火プラグ14は、シリンダ孔2毎に設けられており、シリンダヘッド4における前記凹部4aの中央部分に取付けられている。この点火プラグ14は、後述する制御装置22とともにこの4気筒エンジン1の点火装置27(図4参照)を構成するものである。
前記クランク軸8は、図3に示すように、いわゆる2プレーン型のもので、気筒毎のクランクピン31〜34を備えている。この実施の形態によるクランク軸8の1番気筒用クランクピン31と4番気筒用クランクピン34は、第1の仮想平面PL1上に位置している。1番気筒用クランクピン31は、1番気筒のピストン6にコンロッド7を介して連結される。4番気筒用クランクピン34は、4番気筒のピストン6にコンロッド7を介して連結される。このクランク軸8の2番気筒用クランクピン32と3番気筒用クランクピン33は、前記第1の仮想平面PL1とは直交する第2の仮想平面PL2上に位置している。2番気筒用クランクピン32は、2番気筒のピストン6にコンロッド7を介して連結される。3番気筒用クランクピン33は、3番気筒のピストン6にコンロッド7を介して連結される。
このクランク軸8の各クランクピン31〜34は、クランク軸8が図3において矢印で示す方向、すなわち1番気筒側から4番気筒側を見て時計方向に回転することによって、図5に示すように移動する。図5は、クランク軸8を90度ずつ回転させたときの各気筒のピストン6とクランクピン31〜34の位置を示す図である。図5に示すように、このクランク軸8を使用する場合の4気筒エンジン1の点火順序は、1番気筒3番気筒2番気筒4番気筒という順序になる。
1番気筒で生じる爆発と3番気筒で生じる爆発との間の爆発間隔は、クランク角で270度である。3番気筒で生じる爆発と2番気筒で生じる爆発と間の爆発間隔は、クランク角で180度である。2番気筒で生じる爆発と4番気筒で生じる爆発との間の爆発間隔は、クランク角で90度である。4番気筒で生じる爆発と1番気筒で生じる爆発との間の爆発間隔は180度である。
すなわち、この4気筒エンジン1の爆発間隔は、クランク角で270度−180度−90度−180度である。このような爆発間隔を有する4気筒エンジン1は、上述したように乗員に違和感を与えるおそれがあるものである。しかし、この実施の形態による4気筒エンジン1は、後述する違和感解消手段35(図1参照)の作用で乗員に違和感を与え難いものである。この違和感解消手段35が本発明でいう「違和感解消部」に相当する。違和感解消手段35は、エンジンの運転状態が予め定めた状態であるときに、爆発間隔が90度となる2番気筒と4番気筒のうち少なくとも一方の気筒の図示平均有効圧力を、爆発間隔が90度ではない1番気筒および3番気筒の図示平均有効圧力より低下させる構成が採られている。図示平均有効圧力は、燃焼ガスが直接ピストン6に与えた仕事を行程容積で割ったものである。この実施の形態による違和感解消手段35は、詳細は後述するが、点火時期が遅れることにより図示平均有効圧力が低下する現象を利用したものである。
前記クランク軸8には、図3に示すように、クラッチ41と、変速機42と、動力伝達機構43とを介して駆動輪44が接続されている。図3に示す動力伝達機構43は、駆動輪44の軸線がクランク軸8の軸線とは直交するように描いてある。しかし、本発明は、このような限定にとらわれることはない。すなわち、動力伝達機構43は、駆動輪44の軸線がクランク軸8の軸線と平行になるように構成することができる。
図3に示すクラッチ41の近傍には、クランク軸8の回転角度に基づいてエンジンの回転速度を検出するためのクランク角検出センサ45が配置されている。このクランク角検出センサ45は、クランク軸8の回転角度を特定可能な検出データを制御装置22に送る。
図3に示す変速機42は、変速位置を検出するための変速ポジションセンサ46を備えている。この変速ポジションセンサ46は、変速機42の変速段数を特定可能な検出データを制御装置22に送る。この変速段数は、変速機42の速比を特定できる数値であるから、エンジン回転速度と関連付けて演算によって車速を求めるために用いることもできる。
前記制御装置22は、図4に示すように、燃料制御部51と、点火時期制御部52と、記憶部53とを備えている。
前記燃料制御部51は、前記燃料噴射インジェクタ15の燃料噴射量と燃料噴射時期とを制御する。
前記点火時期制御部52は、1番気筒〜4番気筒の点火時期を予め定めた手順に基づいて設定し、この点火時期に達したときに点火装置27に点火信号を送出する。この実施の形態においては、この点火時期制御部52と点火装置27とによって上述した違和感解消手段35が構成されている。
この点火時期制御部52による点火時期の設定は、乗員がエンジンのトルク変動を感じ易い運転状態のときに、不等間隔爆発に起因して乗員が受ける違和感が低減されるように行う。この実施の形態において、前記違和感を低減させるためには、エンジンの回転速度が所定の値より低く、負荷が所定の領域にある場合に、2番気筒と4番気筒の図示平均有効圧力を他の2つの気筒(爆発間隔が90度ではない1番気筒と3番気筒)の図示平均有効圧力より低下させて行う。この実施の形態において図示平均有効圧力を低下させる手法は、点火時期を遅角させる手法を採っている。すなわち、この実施の形態による4気筒エンジン1は、詳細は後述するが、トルク変動を感じ易い運転状態のときに、2番気筒と4番気筒の点火時期が他の2つの気筒の点火時期より予め定めた量だけ遅角させられるものである。このように点火時期制御部52が2番気筒と4番気筒の点火時期を他の気筒の点火時期より遅角させる制御を、以下においては単に「遅角制御」という。
1番気筒〜4番気筒の点火時期は、例えば図6および図7に示すようなマップを用いて設定することができる。図6および図7は、点火時期をエンジンの回転速度と負荷とに割り付けたマップを示している。図6は、1番気筒と3番気筒の点火時期を示す点火時期マップである。図7は、2番気筒と4番気筒用の点火時期を示す点火時期マップである。これらのマップは、制御装置22の記憶部53に保存されている。
前記遅角制御が実施されるときの遅角量は、遅角に起因する図示平均有効圧力の低下量がエンジンの運転状態に応じて多くなるように設定されている。エンジンの運転状態は、エンジンの回転速度と負荷とを用いて特定可能である。すなわち、前記遅角量は、基本的には、エンジンの回転速度が低くなるに従い、かつ負荷が大きくなるに従って前記図示平均有効圧力の低下量が多くなるように設定されている。
図7に示す2番気筒および4番気筒の点火時期は、1番気筒および3番気筒で点火時期が上死点前(BTDC)A度であるときにA−α度、すなわちα度遅角される。また、1番気筒および3番気筒で点火時期がB度となる場合の2番気筒および4番気筒の点火時期は、B−β度、すなわち1番気筒および3番気筒の点火時期と較べてβ度遅角される。1番気筒および3番気筒で点火時期がC度となる場合の2番気筒および4番気筒の点火時期は、C−γ度、すなわち1番気筒および3番気筒の点火時期と較べてγ度遅角される。1番気筒および3番気筒で点火時期がD度となる場合、すなわちエンジンの回転速度および負荷が高い場合は、2番気筒および4番気筒の点火時期もD度となる。なお、前記α,β,γの絶対値の大きさは、必ずしもこの順序であるとは限らない。
図6と図7に示すマップは、変速機の変速段毎に設けられている。変速段数が例えば1速のときに用いるマップは、車両の発進時を含めて車速が低いときの運転状態に適合するように形成されている。すなわち、同じ車速であれば、1速用のマップは、2速用のマップより前記遅角量が少なくなるように形成されている。つまり、マップは、同じ車速であれば、変速段数が大きくなるほど前記遅角量が多くなるように形成されている。
点火時期通常より遅くなると、燃焼時の図示平均有効圧力が低下する。このため、エンジンの運転状態に対応する遅角量を上述したマップから読み出し、2番気筒と4番気筒の点火時期をこの遅角量だけ他の2つの気筒の点火時期より遅角させると、2番気筒と4番気筒の図示平均有効圧力が他の2つの気筒に較べて低下する。すなわち、図8に示すように、2番気筒と4番気筒の燃焼圧が1番気筒および3番気筒の燃焼圧力より低くなる。この燃焼圧の低下に伴って、2番気筒と4番気筒とにおいて爆発が生じることにより生じるトルクT2,T4が他の気筒のトルクT1,T3より小さくなる。乗員は、このように連続して生じるトルクT2,T4を恰も1回だけトルクが生じたように錯覚することがある。すなわち、乗員は、図8中に二点鎖線で示すように、1回だけ合成トルクTAが生じたように感じることがある。
2番気筒で爆発が生じて発生したトルクT2の大きさと、4番気筒で爆発が生じて発生したトルクT4の大きさは、上述したように、他の2つの気筒で爆発が生じて発生したトルクT1,T3の大きさより小さい。このため、乗員は、前記合成トルクTAの大きさが他の気筒で爆発が生じて発生したトルクT1,T3の大きさと大きく異なることがないように感じ易い。
次に、この実施の形態による4気筒エンジンの運転方法を説明する。上述したように構成された制御装置22は、図9のフローチャートに示すように動作する。すなわち、制御装置22は、図9のフローチャートのステップS1で4気筒エンジン1が始動した後、ステップS2において、エンジンの回転速度が所定の値より低いか否かと、負荷が所定の領域か否かとを判別する。ここでいう所定の値や所定の領域とは、乗員がエンジンのトルク変動を感じ易い運転状態となる値や領域、すなわち前記遅角制御が必要になる値や領域である。具体的には、制御装置22は、ステップS2において、先ず、現在の変速段数と対応する点火時期マップ(図6および図7)を記憶部53から読み出す。そして、制御装置22は、この点火時期マップに現在のエンジンの回転速度と、エンジンの負荷とをあてはめ、各マップから各気筒の点火時期を読み出す。
4気筒エンジン1の回転速度と負荷とが図6、図7に示すマップにおいて符号Dで示す領域にある場合、すなわち遅角制御が不要である場合は、ステップS2からステップS3に進み、遅角制御を行うことなく第1気筒〜第4気筒の上死点前(BTDC)の点火時期が一致するように点火時期が制御される。
一方、エンジンの回転速度と負荷とが図6に示すマップにおいて符号A〜Cで示す領域にある場合は、ステップS2からステップS4に進み、遅角制御が行われる。このとき、1番気筒と3番気筒の点火時期は、図6に示す点火時期マップから読み出された点火時期に設定される。2番気筒と4番気筒の点火時期は、図7に示す点火時期マップから読み出された点火時期、すなわち1番気筒と3番気筒の点火時期より遅角された点火時期に設定される。制御装置22は、エンジンが運転されている間は上記の制御を繰り返し実施して点火時期を制御する。
このように構成された4気筒エンジン1においては、エンジンの回転速度が所定の値より低く、負荷が所定の領域となって乗員がエンジンのトルク変動を感じ易い運転状態であるときに、爆発間隔がクランク角で90度となる2つの気筒(2番気筒および4番気筒)の点火時期が所定の遅角量だけ他の気筒の点火時期より遅れる。このため、爆発間隔がクランク角で90度となる2つの気筒の図示平均有効圧力が他の2つの気筒の図示平均有効圧力より低下する。これにより2番気筒と4番気筒で爆発が生じて上昇するトルクT2,T4の大きさは、1番気筒や3番気筒で爆発が生じることにより上昇するトルクT1,T3の大きさより小さくなる。
しかも、トルクT1,T3より小さいトルクT2,T4が短時間に連続して発生するときには、乗員は、他の気筒(1番気筒および3番気筒)で爆発が生じたときと同等の大きさでトルクが1度に上昇したように錯覚し易い。
すなわち、この実施の形態による4気筒エンジン1および4気筒エンジンの運転方法によれば、爆発間隔がクランク角で90度となる2つの気筒(2番気筒と4番気筒)で爆発が生じたときに、他の2つの気筒(1番気筒と3番気筒)で爆発が生じたときと同等の大きさでトルクが1度に上昇するような感覚を乗員に与えることが可能になる。このため、この4気筒エンジン1は、爆発間隔がそれほど離れていない3気筒エンジンと同等の振動、トルク変動などを乗員に体感させるものとなる。爆発が等間隔で生じる3気筒エンジンは、乗員に何ら違和感を与えるものではない。
したがって、この実施の形態によれば、乗員がエンジンのトルク変動を感じ易い運転状態にあるときであっても、乗員に違和感を与え難い4気筒エンジン、言い換えれば駆動エネルギーが均一になる4気筒エンジンおよびこの4気筒エンジンの運転方法を提供することができる。本発明を自動車の4気筒エンジンに適用し、発明者がこの自動車を走行させたところ、不等間隔爆発であることを意識させるような違和感はなかった。
ところで、エンジンの燃費は、点火時期を遅角させるほど悪化することが知られている。
この実施の形態において、点火時期の遅角量は、図示平均有効圧力がエンジンの運転状態に応じて低下するように設定されている。このため、前記遅角量は、必要最小限となるように小さく設定することが可能である。したがって、この実施の形態によれば、乗員に与える違和感の解消と燃費とを両立可能な4気筒エンジンおよび4気筒エンジンの運転方法を提供することができる。
この実施の形態において、爆発間隔が90度となる2番気筒と4番気筒の図示平均有効圧力は、爆発間隔が90度ではない1番気筒と3番気筒に対して点火時期を遅角させることにより低下させられる。エンジンの点火時期は、制御装置22による電子制御によって容易に変更することができる。
したがって、この実施の形態による4気筒エンジン1は、既存の4気筒エンジンを使用してコストアップになることを抑えながら実現できる。
この実施の形態による2番気筒の点火時期と4番気筒の点火時期とは同一である。しかし、本発明は、このような限定にとらわれることはない。すなわち、2番気筒の点火時期と4番気筒の点火時期は、互いに異なる点火時期とすることができる。また、2番気筒と4番気筒のうち、一方の気筒の点火時期1番気筒や3番気筒の点火時期と一致、他方の気筒の点火時期遅角させられる構成を採ることもできる。
すなわち、2番気筒の点火時期と4番気筒の点火時期とを変更可能な4気筒エンジン1に本発明を適用する場合の違和感解消手段35は、爆発間隔が90度となる2つの気筒(2番気筒と4番気筒)のうち少なくとも一方の気筒の点火時期を、爆発間隔が90度ではない他の気筒(1番気筒と3番気筒)の点火時期より遅らせるものとなる。
このような点火時期制御を実現するためには、例えば2番気筒用の点火時期マップと、この2番気筒用の点火時期マップとは別に形成された4番気筒用の点火時期マップとを用いることが考えられる。
このような構成を採ることにより、2番気筒で爆発が生じて発生するトルクの大きさと、4番気筒で爆発が生じて発生するトルクの大きさとを個別に制御できるようになる。このため、この構成を採ることにより、エンジンの駆動エネルギーの均一化を容易に図ることが可能になる。
この第1の実施の形態において、爆発間隔が90度となる2つの気筒の図示平均有効圧力を他の2つの気筒の図示平均有効圧力より低下させる条件は、エンジンの回転速度が所定の値より小さく、負荷が所定の領域となっていることである。しかし、本発明は、このような限定にとらわれることなく、この条件の一つに車速を加えることができる。この場合、車速は、段落0034においても説明したように、クランク角検出センサ45で検出されたエンジンの回転速度と変速ポジションセンサ46で検出される変速段数とから演算によって求めることができる。また、この場合、車速は、図4に示すように、制御装置22に車速センサ54を接続し、この車速センサ54を用いて求めることができる。
(第2の実施の形態)
爆発間隔が90度となる2つの気筒の図示平均有効圧力を低下させるためには、図10〜図13に示すように、吸気装置を用いて実施することができる。図10〜図13において、前記図1〜図9によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図10に示す4気筒エンジン1は、図1〜図9に示す第1の形態を採るときの4気筒エンジンとは点火系の構成と吸気装置16とが異なり、その他の構成は同一のものである。この実施の形態による4気筒エンジンの点火系は、後述するように気筒毎の吸入空気量に差をつけることから、全ての気筒において点火時期が最適になるように構成されている。この実施の形態においては、上述した第1の実施の形態で示したような遅角制御は行わない。この実施の形態による吸気装置16は、第1の吸気装置61と第2の吸気装置62とによって構成されている。
前記第1の吸気装置61は、第1のサージタンク63を備えている。第1のサージタンク63は、1番気筒の吸気ポート9に第1の吸気管64を介して接続されているとともに、3番気筒の吸気ポート9に第3の吸気管65を介して接続されている。すなわち、第1のサージタンク63は、1番気筒と3番気筒のみに接続されている。この第1のサージタンク63の一端部には、電動式の第1のスロットル弁66が設けられている。この第1のスロットル弁66より吸気の上流側には空気量測定装置21が設けられている。
前記第2の吸気装置62は、前記第1のサージタンク63と隣り合う第2のサージタンク67を備えている。この第2のサージタンク67は、2番気筒の吸気ポート9に第2の吸気管68を介して接続されているとともに、4番気筒の吸気ポート9に第4の吸気管69を介して接続されている。すなわち、第2のサージタンク67は、2番気筒と4番気筒のみに接続されている。この第2のサージタンク67の一端部には、電動式の第2のスロットル弁70が設けられている。この第2のスロットル弁70より吸気の上流側には空気量測定装置21が設けられている。この第2スロットル弁70と前記第1のスロットル弁66の動作は、図11に示す制御装置22のスロットル弁制御部71によって制御される。
スロットル弁制御部71は、乗員によって操作されるアクセル操作子72(図11参照)の操作量に基づいて第1のスロットル弁66と第2のスロットル弁70の開度を制御する。第1のスロットル弁66の開度は、アクセル操作子72の操作量に比例するように増減する。第2のスロットル弁70の開度は、乗員がエンジンのトルク変動を感じ易い運転状態のときに第1のスロットル弁66の開度より小さく設定され、それ以外の運転状態のときに第1のスロットル弁66の開度と一致させられる。
この実施の形態によるスロットル弁制御部71は、図12に示すマップを用いて第2のスロットル弁70の開度を制御する。
図12に示すマップは、第2のスロットル弁70の開度を第1のスロットル弁66の開度(A度、B度、C度、D度)に対してα、β、γ度だけ小さくする開度(A−α度、B−β度、C−γ度)をエンジンの回転速度と負荷とに割り付けたものである。このマップは、変速機42の変速段数毎に設けられ、制御装置22の記憶部53に保存されている。
第2のスロットル弁70の開度が小さくなると、2番気筒と4番気筒とにおいて吸入空気量が少なくなり、これらの気筒の燃焼時の図示平均有効圧力が低下する。この実施の形態による違和感解消手段35は、吸入空気量が低減することにより図示平均有効圧力が低下する現象を利用したもので、前記スロットル弁制御部71と第2のスロットル弁70とによって構成されている。
次に、この実施の形態による4気筒エンジンの運転方法を説明する。この実施の形態による制御装置22は、図13のフローチャートに示すように動作する。すなわち、制御装置22は、図13に示すフローチャートのステップS1でエンジンが始動した後、ステップS2において、エンジンの回転速度が所定の値より低いか否かと、負荷が所定の領域か否かとを判別する。ここでいう所定の値や所定の領域とは、乗員がエンジンのトルク変動を感じ易い運転状態となる値や領域、すなわち吸入空気量を低下させる制御が必要になる値や領域である。具体的には、制御装置22は、ステップS2において、先ず、現在の変速段数と対応するマップ(図12)を記憶部53から読み出す。そして、制御装置22は、このマップに現在のエンジンの回転速度と、エンジンの負荷とをあてはめ、このマップから第2のスロットル弁70の開度を小さくする開度を読み出す。
エンジンの回転速度と負荷とが図12に示すマップにおいて符号Dで示す領域にある場合は、ステップS2からステップP1に進み、第1のスロットル弁66の開度と第2のスロットル弁70の開度が一致するように両スロットル弁66,70が駆動される。
一方、エンジンの回転速度と負荷とが図12に示すマップにおいて符号A〜Cで示す領域にある場合は、ステップS2からステップP2に進み、第2のスロットル弁70の開度が小さくさせられる。このとき、第2のスロットル弁70の開度は、図12に示すマップから読み出された第1のスロットル弁66の開度(A、B、C、D度)よりα、β、γ度だけ小さくした開度(A−α度、B−β度、C−γ度)に設定される。制御装置22は、エンジンが運転されている間は上記の制御を繰り返し実施して第1のスロットル弁66と第2のスロットル弁70の開度を制御する。
この実施の形態による4気筒エンジン1および4気筒エンジンの運転方法においては、エンジンの回転速度が所定の値より低く、負荷が所定の領域となって乗員がエンジンのトルク変動を感じ易い運転状態であるときに、爆発間隔がクランク角で90度となる2つの気筒(2番気筒および4番気筒)の吸入空気量が減少し、図示平均有効圧力が他の2つの気筒の図示平均有効圧力より低下させられる。このため、この実施の形態を採る場合であっても前記第1の実施の形態を採るときと同等の効果が得られる。
この実施の形態において、爆発間隔が90度となる2番気筒と4番気筒に接続された前記第2の吸気装置62は、これら両気筒の吸気ポート9に接続された1つのサージタンク(第2のサージタンク67)と、このサージタンクに設けられた1つのスロットル弁(第2のスロットル弁70)とを備えている。この実施の形態による違和感解消手段35は、第2のスロットル弁70の開度を制御することにより、爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものである。この実施の形態において、2番気筒と4番気筒の図示平均有効圧力は、爆発間隔が90度ではない他の1番気筒および3番気筒に対して吸入空気量が少なくなるように前記第2のスロットル弁70の開度を制御することにより低下させられる。
このため、爆発間隔が90度となる2番気筒および4番気筒の吸入空気量が1つのスロットル弁(第2のスロットル弁70)によって制御される。すなわち、2番気筒の図示平均有効圧力の大きさと、4番気筒の図示平均有効圧力の大きさとが略等しくなる。しかも、これらの気筒の図示平均有効圧力は、1番気筒および3番気筒の図示平均有効圧力より小さくなる。
したがって、爆発間隔が90度となる2番気筒と4番気筒の図示平均有効圧力を均等に制御可能になるから、これらの2つの気筒で爆発が生じることにより上昇するトルクの大きさにばらつきが生じることがなくなる。この結果、この実施の形態によれば、図示平均有効圧力の制御を容易に行うことが可能な4気筒エンジンおよび4気筒エンジンの運転方法を提供することができる。
(第2の実施の形態による変形例)
2番気筒と4番気筒に1つのサージタンク(第2のサージタンク67)から空気供給される構成を採る場合の第1の吸気装置61は、図14(変形例1)および図15(変形例2)に示すように構成することができる。図14および図15において、前記図1〜図13によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図14に示す第1の吸気装置61は、変形例1となるものであり、1番気筒用スロットル弁73と、3番気筒用スロットル弁74とを備えている。これらのスロットル弁73,74は、電動式のものや、アクセル操作子72に操作用ワイヤ(図示せず)を介して連結されるものを使用することができる。1番気筒用スロットル弁73は、1番気筒の吸気ポート9に吸気管75を介して接続されている。3番気筒用スロットル弁74は、3番気筒の吸気ポート9に吸気管76を介して接続されている。1番気筒用スロットル弁73と3番気筒用スロットル弁74は、同一開度となるように連動する。また、1番気筒用スロットル弁73の開度と、3番気筒用スロットル弁74の開度は、アクセル操作子72の操作量に比例するように増減する。
図15に示す第1の吸気装置61は、変形例2となるものであり、1番気筒に設けられた第1の可変動弁機構77と、3番気筒に設けられた第2の可変動弁機構78とを備えている。これらの第1の可変動弁機構77と第2の可変動弁機構78は、吸気弁11の開閉時期とリフト量とをそれぞれ連続的に変更することができるものである。すなわち、1番気筒の吸入空気量は、第1の可変動弁機構77が1番気筒の吸気弁11の開度を変えることによって制御される。3番気筒の吸入空気量は、第2の可変動弁機構78が3番気筒の吸気弁11の開度を変えることによって制御される。
第1の吸気装置61を図14および図15に示すように構成しても、第2の実施の形態を採るときと同等の効果が得られる。
この第2の実施の形態において、爆発間隔が90度となる2つの気筒の図示平均有効圧力を他の2つの気筒の図示平均有効圧力より低下させる条件は、エンジンの回転速度が所定の値より小さく、負荷が所定の領域となっていることである。しかし、本発明は、このような限定にとらわれることなく、前記条件の一つに車速を加えることができる。この場合、車速は、この明細書の段落0034においても説明したように、クランク角検出センサ45で検出されたエンジンの回転速度と変速ポジションセンサ46で検出される変速段数とから演算によって求めることができる。また、この場合、車速は、図11に示すように、制御装置22に車速センサ79を接続し、この車速センサ79を用いて求めることができる。
(第3の実施の形態)
爆発間隔が90度となる2つの気筒の図示平均有効圧力を低下させるためには、図16〜図19に示すように、吸気装置を用いて実施することができる。図16〜図19において、前記図1〜図15によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図16に示す4気筒エンジン1は、図1〜図9に示す第1の形態を採るときの4気筒エンジンとは点火系の構成と吸気装置16とが異なり、その他の構成は同一のものである。この実施の形態による4気筒エンジン1の点火系は、全ての気筒において点火時期が最適になるように構成されている。この実施の形態においては、上述した第1の実施の形態で示したような遅角制御は行わない。
図16に示す4気筒エンジン1の吸気装置16は、1番気筒用の第1の吸気装置81と、2番気筒用の第2の吸気装置82と、3番気筒用の第3の吸気装置83と、4番気筒用の第4の吸気装置84とによって構成されている。これらの第1〜第4の吸気装置81〜84は、各気筒の吸気ポート9に吸気管85を介して接続された電動式スロットル弁86〜89を備えている。これらのスロットル弁86〜89より吸気の上流側には、空気量測定装置21がスロットル弁毎に設けられている。
これらのスロットル弁86〜89の動作は、図17に示す制御装置22のスロットル弁制御部91によって制御される。
前記スロットル弁制御部91は、乗員によって操作されるアクセル操作子72の操作量に基づいて前記4個のスロットル弁86〜89の開度を制御する。1番気筒用スロットル弁86と3番気筒用スロットル弁88の開度は、アクセル操作子72の操作量に比例するように増減する。
2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度は、乗員がエンジンのトルク変動を感じ易い運転状態のときに1番気筒用スロットル弁86および3番気筒用スロットル弁88の開度より小さく設定され、それ以外の運転状態のときに1番気筒用スロットル弁86および3番気筒用スロットル弁88の開度と一致させられる。
この実施の形態によるスロットル弁制御部91は、図18に示すマップを用いて2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度を設定する。
図18に示すマップは、2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度を1番気筒用スロットル弁86および3番気筒用スロットル弁88の開度(A度、B度、C度、D度)に対してα、β、γ度だけ小さくする開度(A−α度、B−β度、C−γ度)をエンジンの回転速度と負荷とに割り付けたものである。このマップは、変速機42の変速段数毎に設けられ、制御装置22の記憶部53に保存されている。
2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度が低くなると、2番気筒と4番気筒とにおいて吸入空気量が少なくなり、これらの気筒の燃焼時の図示平均有効圧力が低下する。この実施の形態による違和感解消手段35は、吸入空気量が低減することにより図示平均有効圧力が低下する現象を利用したもので、前記スロットル弁制御部91と2番気筒用スロットル弁87および4番気筒用スロットル弁89とによって構成されている。
次に、この実施の形態による4気筒エンジンの運転方法を説明する。この実施の形態による制御装置22は、図19のフローチャートに示すように動作する。すなわち、制御装置22は、図19に示すフローチャートのステップS1でエンジンが始動した後、ステップS2において、エンジンの回転速度が所定の値より低いか否かと、負荷が所定の領域か否かとを判別する。ここでいう所定の値や所定の領域とは、乗員がエンジンのトルク変動を感じ易い運転状態となる値や領域、すなわち吸入空気量を低下させる制御が必要になる値や領域である。具体的には、制御装置22は、ステップS2において、先ず、現在の変速段数と対応するマップ(図18)を記憶部53から読み出す。そして、制御装置22は、このマップに現在のエンジンの回転速度と、エンジンの負荷とをあてはめ、このマップから2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度を小さくする開度を読み出す。
エンジンの回転速度と負荷とが図18に示すマップにおいて符号Dで示す領域にある場合は、ステップS2からステップQ1に進み、全てのスロットル弁86〜89の開度が一致するように全てのスロットル弁86〜89が駆動される。
一方、エンジンの回転速度と負荷とが図18に示すマップにおいて符号A〜Cで示す領域にある場合は、ステップS2からステップQ2に進み、2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度が小さくさせられる。このとき、2番気筒用スロットル弁87と4番気筒用スロットル弁89の開度は、図18に示すマップから読み出された1番気筒用スロットル弁86と3番気筒用スロットル弁88の開度(A度、B度、C度、D度)よりα、β、γ度だけ小さくした開度(A−α度、B−β度、C−γ度)に設定される。制御装置22は、エンジンが運転されている間は上記の制御を繰り返し実施して全てのスロットル弁86〜89の開度を制御する。
この実施の形態による4気筒エンジン1および4気筒エンジンの運転方法においては、エンジンの回転速度が所定の値より低く、負荷が所定の領域となって乗員がエンジンのトルク変動を感じ易い運転状態であるときに、爆発間隔がクランク角で90度となる2つの気筒(2番気筒および4番気筒)の吸入空気量が減少する。この結果、爆発間隔がクランク角で90度となる2つの気筒の図示平均有効圧力が他の2つの気筒の図示平均有効圧力より低下する。このため、この実施の形態を採る場合であっても前記第1の実施の形態を採るときと同等の効果が得られる。
この実施の形態において、前記爆発間隔が90度となる2番気筒と4番気筒に接続された第2の吸気装置82と第4の吸気装置84は、気筒毎のスロットル弁87,89を備えている。この実施の形態による違和感解消手段35は、スロットル弁87,89の開度を制御することにより、爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものである。この実施の形態による前記2番気筒と前記4番気筒の図示平均有効圧力は、爆発間隔が90度ではない他の1番気筒および3番気筒に対して吸入空気量が少なくなるように2番気筒用スロットル弁87および4番気筒用スロットル弁89の開度を制御することにより低下させられる。
この実施の形態によれば、乗員がエンジンのトルク変動を感じ易い運転状態であるときに、気筒毎のスロットル弁87,89によって2番気筒と4番気筒の吸入空気量が減少する。このため、この実施の形態による4気筒エンジン1および4気筒エンジンの運転方法によれば、2番気筒と4番気筒とにおいて応答性よく図示平均有効圧力が低減するから、乗員がより一層違和感を覚え難くなる
この実施の形態による2番気筒用スロットル弁87の開度と、4番気筒用スロットル弁89の開度は同一である。しかし、本発明は、このような限定にとらわれることはない。すなわち、2番気筒用スロットル弁87の開度と4番気筒用スロットル弁89の開度は、互いに異なる開度とすることができる。また、2番気筒用スロットル弁87と4番気筒用スロットル弁89のうち、一方のスロットル弁の開度1番気筒用スロットル弁86や3番気筒用スロットル弁88の開度と一致し、他方のスロットル弁の開度が1番気筒用スロットル弁86や3番気筒用スロットル弁88の開度より低下する構成を採ることができる。
すなわち、2番気筒用スロットル弁87と4番気筒用スロットル弁89とを有する4気筒エンジン1に本発明を適用する場合の違和感解消手段35は、これらのスロットル弁87,89の開度を制御することにより、爆発間隔が90度となる2つの気筒(2番気筒と4番気筒)のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒(1番気筒と3番気筒)の吸入空気量より少なくするものとなる。
このようにスロットル弁87,89の開度を個別に制御するためには、例えば2番気筒用スロットル弁87の開度を示すマップと、このマップとは別に形成された4番気筒用スロットル弁89の開度を示すマップとを用いることが考えられる。
このような構成を採ることにより、2番気筒で爆発が生じて発生するトルクの大きさと、4番気筒で爆発が生じて発生するトルクの大きさとを個別に制御できるようになる。このため、この構成を採ることにより、エンジンの駆動エネルギーの均一化を容易に図ることが可能になる。
(第3の実施の形態による変形例)
2番気筒と4番気筒にそれぞれ気筒毎のスロットル弁から空気を供給する構成を採る場合の1番気筒と3番気筒に接続された吸気装置は、図20(変形例1)および図21(変形例2)に示すように構成することができる。図20および図21において、前記図1〜図19によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図20は変形例1を示す図である。図20に示す1番気筒の吸気ポート9と3番気筒の吸気ポート9は、それぞれ吸気管92を介して1つのサージタンク93に接続されている。このサージタンク93の一端部には、電動式またはワイヤ操作式のスロットル弁94が設けられている。このスロットル弁94の開度は、図10に示す実施の形態と同様に、アクセル操作子72の操作量と比例するように制御される。
図21は変形例2を示す図である。図21に示す1番気筒用の第1の吸気装置81は、1番気筒に設けられた第1の可変動弁機構95を備えている。また、3番気筒用の第3の吸気装置83は、3番気筒に設けられた第2の可変動弁機構96を備えている。これらの第1の可変動弁機構95と第2の可変動弁機構96は、吸気弁11の開閉時期とリフト量とをそれぞれ連続的に変更することができるものである。すなわち、1番気筒の吸入空気量は、第1の可変動弁機構95が1番気筒の吸気弁11の開度を変えることによって制御される。3番気筒の吸入空気量は、第2の可変動弁機構96が3番気筒の吸気弁11の開度を変えることによって制御される。
1番気筒と3番気筒に接続された第1、第3の吸気装置81,83を図20および図21に示すように構成しても、第2の実施の形態を採るときと同等の効果が得られる。
この第3の実施の形態において、爆発間隔が90度となる2つの気筒の図示平均有効圧力を他の2つの気筒の図示平均有効圧力より低下させる条件は、エンジンの回転速度が所定の値より小さく、負荷が所定の領域となっていることである。しかし、本発明は、このような限定にとらわれることなく、前記条件の一つに車速を加えることができる。この場合、車速は、段落0034においても説明したように、クランク角検出センサ45で検出されたエンジンの回転速度と変速ポジションセンサ46で検出される変速段数とから演算によって求めることができる。また、この場合、車速は、図17に示すように、制御装置22に車速センサ97を接続し、この車速センサ97を用いて求めることができる。
(第4の実施の形態)
爆発間隔が90度となる2つの気筒の図示平均有効圧力を低下させるためには、図22〜図25に示すように、吸気装置を用いて実施することができる。図22〜図25において、前記図1〜図21によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図に示す4気筒エンジン1は、第1の形態を採るときの4気筒エンジンとは点火系の構成と吸気装置16とが異なり、その他の構成は同一のものである。この実施の形態による4気筒エンジンの点火系は、全ての気筒において点火時期が最適になるように構成されている。この実施の形態においては、上述した第1の実施の形態で示したような遅角制御は行わない。
図22に示す4気筒エンジン1の吸気装置16は、気筒毎の可変動弁機構101〜104と、各気筒の吸気ポートに吸気管105によって接続された1つのサージタンク106とを備えている。前記可変動弁機構101〜104は、吸気弁11の開閉時期とリフト量とをそれぞれ連続的に変更することができるものである。すなわち、各気筒の吸入空気量は、気筒毎の可変動弁機構が各気筒の吸気弁11の開度を変えることによって制御される。各気筒の吸気管105には空気量測定装置21がそれぞれ設けられている。
前記サージタンク106の一端部には、前記可変動弁機構101〜104と協働して各気筒の吸入空気量を制御するためのスロットル弁107が設けられている。このスロットル弁107は、電動式またはワイヤ操作式のものである。このスロットル弁107の開度は、図10に示す実施の形態と同様に、アクセル操作子72の操作量に比例するように制御される。なお、この実施の形態によるサージタンク106は、スロットル弁107を介すことなくエアクリーナ(図示せず)に接続することができる。
前記4個の可変動弁機構101〜104の動作は、図23に示す制御装置22の吸入空気量制御部108によって制御される。
前記吸入空気量制御部108は、乗員によって操作されるアクセル操作子72の操作量に基づいて前記4個の可変動弁機構101〜104の動作を制御する。1番気筒の可変動弁機構101により変えられる1番気筒用吸気弁11の開閉時期およびリフト量と、3番気筒の可変動弁機構103により変えられる3番気筒用吸気弁11の開閉時期およびリフト量は、アクセル操作子72の操作量に比例するように増減する。以下においては、吸気弁11の開閉時期およびリフト量を単に「開度」という。
2番気筒用吸気弁11と4番気筒用吸気弁11の開度は、乗員がエンジンのトルク変動を感じ易い運転状態のときに1番気筒用吸気弁11および3番気筒用吸気弁11の開度より小さく設定され、それ以外の運転状態のときに1番気筒用吸気弁11および3番気筒用吸気弁11の開度と一致させられる。
この実施の形態による吸入空気量制御部108は、図24に示すマップを用いて2番気筒用吸気弁11と4番気筒用吸気弁11の開度を設定する。
図24に示すマップは、2番気筒用吸気弁11と4番気筒用吸気弁11の開度を1番気筒用吸気弁11および3番気筒用吸気弁11の開度(A度、B度、C度、D度)に対してα、β、γ度だけ小さくする開度(A−α度、B−β度、C−γ度)をエンジンの回転速度と負荷とに割り付けたものである。このマップは、変速機42の変速段数毎に設けられ、制御装置22の記憶部53に保存されている。
2番気筒用吸気弁11と4番気筒用吸気弁11の開度が小さくなると、2番気筒と4番気筒とにおいて吸入空気量が少なくなり、これらの気筒の燃焼時の図示平均有効圧力が低下する。この実施の形態による違和感解消手段35は、吸入空気量が低減することにより図示平均有効圧力が低下する現象を利用したもので、前記吸入空気量制御部108と、2番気筒の可変動弁機構102と、4番気筒の可変動弁機構104とによって構成されている。
次に、この実施の形態による4気筒エンジンの運転方法を説明する。この実施の形態による制御装置22は、図25のフローチャートに示すように動作する。すなわち、制御装置22は、図25に示すフローチャートのステップS1でエンジンが始動した後、ステップS2において、エンジンの回転速度が所定の値より低いか否かと、負荷が所定の領域か否かとを判別する。ここでいう所定の値や所定の領域とは、乗員がエンジンのトルク変動を感じ易い運転状態となる値や領域、すなわち吸入空気量を低下させる制御が必要になる値や領域である。
具体的には、制御装置22は、ステップS2において、先ず、現在の変速段数と対応するマップ(図24)を記憶部53から読み出す。そして、制御装置22は、このマップに現在のエンジンの回転速度と、エンジンの負荷とをあてはめ、このマップから2番気筒用吸気弁11と4番気筒用吸気弁11の開度を小さくする開度を読み出す。
エンジンの回転速度と負荷とが図24に示すマップにおいて符号Dで示す領域にある場合は、ステップS2からステップR1に進み、全ての吸気弁11の開度が一致するように全ての可変動弁機構101〜104が駆動される。
一方、エンジンの回転速度と負荷とが図24に示すマップにおいて符号A〜Cで示す領域にある場合は、ステップS2からステップR2に進み、2番気筒用吸気弁11と4番気筒用吸気弁11の開度が小さくさせられる。このとき、2番気筒用吸気弁11と4番気筒用吸気弁11の開度は、図24に示すマップから読み出された1番気筒用吸気弁11と3番気筒用吸気弁11の開度(A度、B度、C度、D度)よりα、β、γ度だけ小さい開度(A−α度、B−β度、C−γ度)に設定される。制御装置22は、エンジンが運転されている間は上記の制御を繰り返し実施して全ての可変動弁機構101〜104の動作を制御する。
この実施の形態による4気筒エンジン1および4気筒エンジンの運転方法においては、エンジンの回転速度が所定の値より小さく、負荷が所定の領域となって乗員がエンジンのトルク変動を感じ易い運転状態であるときに、爆発間隔がクランク角で90度となる2つの気筒(2番気筒および4番気筒)の吸入空気量が減少し、図示平均有効圧力が他の2つの気筒の図示平均有効圧力より低下させられる。このため、この実施の形態を採る場合であっても前記第1の実施の形態を採るときと同等の効果が得られる。
この実施の形態において、前記爆発間隔が90度となる2番気筒と4番気筒に接続された吸気装置16は、吸気弁11の開度を制御可能な可変動弁機構102,104を備えている。この実施の形態による違和感解消手段35は、可変動弁機構102,104の動作を制御することにより、爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものである。この実施の形態による前記2番気筒と前記4番気筒の図示平均有効圧力は、爆発間隔が90度ではない他の1番気筒および3番気筒に対して吸入空気量が少なくなるように2番気筒用吸気弁11および4番気筒用吸気弁11の開度を制御することにより低下させられる。
この実施の形態によれば、乗員がエンジンのトルク変動を感じ易い運転状態であるときに、気筒毎の可変動弁機構102,104によって2番気筒と4番気筒の吸入空気量が減少する。このため、この実施の形態による4気筒エンジン1および4気筒エンジンの運転方法によれば、2番気筒と4番気筒とにおいて応答性よく図示平均有効圧力が低減するから、乗員がより一層違和感を覚え難い
この実施の形態による2番気筒用吸気弁11の開度と、4番気筒用吸気弁11の開度は同一である。しかし、本発明は、このような限定にとらわれることはない。すなわち、2番気筒用吸気弁11の開度と4番気筒用吸気弁11の開度を互いに異なる開度とすることができる。また、2番気筒用吸気弁11と4番気筒用吸気弁11のうち、一方の吸気弁11の開度1番気筒用吸気弁11や3番気筒用吸気弁11の開度と一致し、他方の吸気弁11の開度が1番気筒用吸気弁11や3番気筒用吸気弁11の開度より低下する構成を採ることもできる
すなわち、2番気筒用の可変動弁機構102と4番気筒用の可変動弁機構104とを有する4気筒エンジン1に本発明を適用する場合の違和感解消手段35は、これらの可変動弁機構102,104の動作を制御することにより、爆発間隔が90度となる2つの気筒(2番気筒と4番気筒)のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒(1番気筒と3番気筒)の吸入空気量より少なくするものとなる。
このように吸気弁11の開度を個別に制御するためには、例えば2番気筒用吸気弁11の開度を示すマップと、このマップとは別に形成された4番気筒用吸気弁11の開度を示すマップとを用いることが考えられる。
このような構成を採ることにより、2番気筒で爆発が生じて発生するトルクの大きさと、4番気筒で爆発が生じて発生するトルクの大きさとを個別に制御できるようになる。このため、この構成を採ることにより、エンジンの駆動エネルギーの均一化を容易に図ることが可能になる。
(第4の実施の形態による変形例)
2番気筒と4番気筒にそれぞれ可変動弁機構を備える場合の1番気筒と3番気筒に接続された吸気装置は、図26(変形例1)および図27(変形例2)に示すように構成することができる。図26および図27において、前記図1〜図25によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図26は変形例1を示す図であり、同図に示す1番気筒の吸気ポート9と3番気筒の吸気ポート9は、それぞれ吸気管111を介して1つのサージタンク112に接続されている。このサージタンク112の一端部には、電動式またはワイヤ操作式のスロットル弁113が設けられている。このスロットル弁113の開度は、図10に示す実施の形態と同様に、アクセル操作子72の操作量と比例するように制御される。
図27は変形例2を示す図であり、同図に示す1番気筒の吸気ポート9には、吸気管114を介して1番気筒用スロットル弁115が接続されている。3番気筒の吸気ポート9には、吸気管116を介して3番気筒用スロットル弁117が接続されている。これらのスロットル弁115,117は、電動式のものや、アクセル操作子72に操作用ワイヤ(図示せず)を介して連結されるものを使用することができる。1番気筒用スロットル弁115と3番気筒用スロットル弁117は、同一開度となるように連動する。また、1番気筒用スロットル弁115の開度と、3番気筒用スロットル弁117の開度は、アクセル操作子72の操作量に比例するように増減する。
1番気筒と3番気筒に接続される吸気装置を図26および図27に示すように構成しても、第4の実施の形態を採るときと同等の効果が得られる。
上述した各実施の形態においては、違和感解消手段35が2番気筒と4番気筒の図示平均有効圧力を低下させるにあたってマップを使用する例を示した。しかし、本発明は、このような限定にとらわれることはない。すなわち、2番気筒と4番気筒の図示平均有効圧力を低下させるアクチュエータ(点火装置27、スロットル弁、可変動弁機構など)の動作量は、演算のみによって求めることが可能である。
また、上述した各実施の形態においては、爆発間隔がクランク角で90度となる2つの気筒が2番気筒と4番気筒である4気筒エンジン1を示した。しかし、クランクピン31〜34の位置が図3に示すクランク軸8とは異なる場合は、爆発間隔が90度となる2つの気筒が2番気筒と4番気筒となるとは限らない。このため、本発明を実施するにあたっては、クランクピン31〜34の位置に依存することなく、爆発間隔がクランク角で90度となる2つの気筒について、乗員がエンジンのトルク変動を感じ易い運転状態のときに図示平均有効圧を低下させる。
さらに、上述した各実施の形態で示した4気筒エンジン1は、全ての気筒がクランク軸8の軸線方向に一列に並ぶものである。しかし、本発明は、このような限定にとらわれることはない。すなわち、本発明は、V型4気筒エンジンにも適用することが可能である。爆発間隔がクランク角で270度−180度−90度−180度となるV型4気筒エンジンは、一方のシリンダ列のシリンダ軸線と、他方のシリンダ列のシリンダ軸線とのなす角度がクランク軸の軸線方向から見て90度となるものである。また、この90度V型エンジンに用いるクランク軸は、1プレーン型のものである。
この第4の実施の形態において、爆発間隔が90度となる2つの気筒の図示平均有効圧力を他の2つの気筒の図示平均有効圧力より低下させる条件は、エンジンの回転速度が所定の値より小さく、負荷が所定の領域となっていることである。しかし、本発明は、このような限定にとらわれることなく、前記条件の一つに車速を加えることができる。この場合、車速は、段落0034においても説明したように、クランク角検出センサ45で検出されたエンジンの回転速度と変速ポジションセンサ46で検出される変速段数とから演算によって求めることができる。また、この場合、車速は、図23に示すように、制御装置22に車速センサ118を接続し、この車速センサ118を用いて求めることができる。
1…4気筒エンジン、2…シリンダ孔、3…シリンダボディ、4…シリンダヘッド、6…ピストン、7…コンロッド、8…クランク軸、9…吸気ポート、10…排気ポート、14…点火プラグ、16…吸気装置、18,63,67,93,106,112…サージタンク、19,66,70,73,74,86〜89,94,107,113,115,117…スロットル弁、22…制御装置、23…排気装置、27…点火装置、52…点火時期制御部、71,91…スロットル弁制御部、77,78,95,96,101〜104…可変動弁機構、108…吸入空気量制御部。

Claims (12)

  1. 4つのシリンダ孔を有するシリンダボディと、
    前記シリンダボデに取付けられ、前記シリンダ孔毎の吸気ポートおよび排気ポートを有するシリンダヘッドと、
    前記シリンダヘッドに取付けられた前記シリンダ孔毎の点火プラグと、
    前記点火プラグを含む点火装置と、
    前記吸気ポートに接続された吸気装置と、
    前記排気ポートに接続された排気装置と、
    前記シリンダ孔内に摺動自在に嵌合した4つのピストンと、
    これらのピストンにコンロッドを介して連結されたクランク軸とを備え、
    前記4つのシリンダ孔によって構成される4気筒の爆発間隔は、クランク角で270度−180度−90度−180度であり、
    エンジンの回転速度が所定の値より低い場合に、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の図示平均有効圧力、爆発間隔が90度ではない他の気筒の図示平均有効圧力より低くする違和感解消部を更に備えている4気筒エンジン。
  2. 請求項1記載の4気筒エンジンにおいて、前記図示平均有効圧力を低下させる量は、エンジンの回転速度が低くなるにしたがい、かつ負荷が大きくなるにしたがって多くなることを特徴とする4気筒エンジン。
  3. 請求項1または請求項2記載の4気筒エンジンにおいて、前記違和感解消部は、点火時期が遅れることにより前記図示平均有効圧力が低下する現象を利用したもので、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の点火時期を、爆発間隔が90度ではない他の気筒の点火時期より遅らせるものであることを特徴とする4気筒エンジン。
  4. 請求項1または請求項2記載の4気筒エンジンにおいて、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、これら両気筒の吸気ポートに接続された1つのサージタンクと、このサージタンクに設けられた1つのスロットル弁とを備え、
    前記違和感解消部は、吸入空気量が低減することにより前記図示平均有効圧力が低下する現象を利用したもので、前記スロットル弁の開度を制御することにより、前記爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものであることを特徴とする4気筒エンジン。
  5. 請求項1または請求項2記載の4気筒エンジンにおいて、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、気筒毎のスロットル弁を備え、
    前記違和感解消部は、吸入空気量が低減することにより前記図示平均有効圧力が低下する現象を利用したもので、前記スロットル弁の開度を制御することにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものであることを特徴とする4気筒エンジン。
  6. 請求項1または請求項2記載の4気筒エンジンにおいて、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、前記吸気ポートを開閉する吸気弁の開閉時期およびリフト量を変更可能な可変動弁機構を備え、
    前記違和感解消部は、吸入空気量が低減することにより前記図示平均有効圧力が低下する現象を利用したもので、前記可変動弁機構の動作を制御することにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくするものであることを特徴とする4気筒エンジン。
  7. 4つのシリンダ孔を有するシリンダボディと、
    前記シリンダボディに取付けられ、前記シリンダ孔毎の吸気ポートおよび排気ポートを有するシリンダヘッドと、
    前記シリンダヘッドに取付けられた前記シリンダ孔毎の点火プラグと、
    前記点火プラグを含む点火装置と、
    前記吸気ポートに接続された吸気装置と、
    前記排気ポートに接続された排気装置と、
    前記シリンダ孔内に摺動自在に嵌合した4つのピストンと、
    これらのピストンにコンロッドを介して連結されたクランク軸とを備えた4気筒エンジンの爆発間隔を、クランク角で270度−180度−90度−180度とし、
    エンジンの回転速度が所定の値より低い場合に、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の図示平均有効圧力を、爆発間隔が90度ではない他の気筒の図示平均有効圧力より低くすることを特徴とする4気筒エンジンの運転方法。
  8. 請求項7記載の4気筒エンジンの運転方法において、前記図示平均有効圧力を低下させる量は、エンジンの回転速度が低くなるにしたがい、かつ負荷が大きくなるにしたがって多くなることを特徴とする4気筒エンジンの運転方法。
  9. 請求項7または請求項8記載の4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の点火時期を、爆発間隔が90度ではない他の気筒の点火時期より遅らせることにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の前記図示平均有効圧力を低下させることを特徴とする4気筒エンジンの運転方法。
  10. 請求項7または請求項8記載の4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、これら両気筒の吸気ポートに接続された1つのサージタンクと、このサージタンクに設けられた1つのスロットル弁とを備え、
    前記スロットル弁の開度を制御し、爆発間隔が90度となる2つの気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくすることにより、前記爆発間隔が90度となる2つの気筒の前記図示平均有効圧力を低下させることを特徴とする4気筒エンジンの運転方法。
  11. 請求項7または請求項8記載の4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、気筒毎のスロットル弁を備え、
    前記スロットル弁の開度を制御し、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくすることにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の前記図示平均有効圧力を低下させることを特徴とする4気筒エンジンの運転方法。
  12. 請求項7または請求項8記載の4気筒エンジンの運転方法において、前記爆発間隔が90度となる2つの気筒に接続された前記吸気装置は、前記吸気ポートを開閉する吸気弁の開閉時期およびリフト量を変更可能な可変動弁機構を備え、
    前記可変動弁機構の動作を制御し、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の吸入空気量を、爆発間隔が90度ではない他の気筒の吸入空気量より少なくすることにより、前記爆発間隔が90度となる2つの気筒のうち少なくとも一方の気筒の前記図示平均有効圧力を低下させることを特徴とする4気筒エンジンの運転方法。
JP2012265010A 2012-12-04 2012-12-04 4気筒エンジンおよび4気筒エンジンの運転方法 Expired - Fee Related JP5986907B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012265010A JP5986907B2 (ja) 2012-12-04 2012-12-04 4気筒エンジンおよび4気筒エンジンの運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012265010A JP5986907B2 (ja) 2012-12-04 2012-12-04 4気筒エンジンおよび4気筒エンジンの運転方法

Publications (3)

Publication Number Publication Date
JP2014109248A JP2014109248A (ja) 2014-06-12
JP2014109248A5 JP2014109248A5 (ja) 2015-11-19
JP5986907B2 true JP5986907B2 (ja) 2016-09-06

Family

ID=51030035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012265010A Expired - Fee Related JP5986907B2 (ja) 2012-12-04 2012-12-04 4気筒エンジンおよび4気筒エンジンの運転方法

Country Status (1)

Country Link
JP (1) JP5986907B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6353333B2 (ja) * 2014-10-01 2018-07-04 川崎重工業株式会社 失火判定装置
KR101575339B1 (ko) * 2014-10-21 2015-12-07 현대자동차 주식회사 비대칭 cda 엔진
JP2018053721A (ja) * 2016-09-26 2018-04-05 ヤマハ発動機株式会社 6気筒エンジン
JP2018105201A (ja) 2016-12-26 2018-07-05 ヤマハ発動機株式会社 車両、エンジンの制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5769137A (en) * 1980-10-17 1982-04-27 Kawasaki Heavy Ind Ltd Balancer for four-cylinder engine
JPS5824424U (ja) * 1981-08-11 1983-02-16 ヤンマーディーゼル株式会社 過給機付不等間隔着火内燃機関の吸排気装置
JPH0972232A (ja) * 1995-09-06 1997-03-18 Isuzu Motors Ltd V型エンジン
JP3740897B2 (ja) * 1999-07-29 2006-02-01 トヨタ自動車株式会社 内燃機関の制御装置
JP4074080B2 (ja) * 2001-11-07 2008-04-09 株式会社日立製作所 可変動弁機構の制御装置
JP4364735B2 (ja) * 2004-07-07 2009-11-18 本田技研工業株式会社 吸入空気量推定装置
JP2006249998A (ja) * 2005-03-09 2006-09-21 Toyota Motor Corp 内燃機関
JP4839909B2 (ja) * 2006-03-20 2011-12-21 日産自動車株式会社 エンジンの制御装置
JP2008014194A (ja) * 2006-07-04 2008-01-24 Isuzu Motors Ltd エンジン制御装置
JP5364571B2 (ja) * 2009-12-29 2013-12-11 川崎重工業株式会社 乗り物及びエンジン制御方法

Also Published As

Publication number Publication date
JP2014109248A (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
WO2015104831A1 (ja) 4気筒エンジンおよび4気筒エンジンの運転方法
US8185295B2 (en) Multi-cylinder engine
US7426915B2 (en) System and method for reducing vehicle acceleration during engine transitions
JP5986907B2 (ja) 4気筒エンジンおよび4気筒エンジンの運転方法
JP6123759B2 (ja) エンジンの制御装置
JP2014109248A5 (ja)
JP2014020265A (ja) 内燃機関の制御装置
KR102198096B1 (ko) 내연 기관
JP5994465B2 (ja) エンジンの制御装置
JP4765887B2 (ja) 内燃機関の制御装置
JP5282636B2 (ja) 内燃機関の制御装置
JP4706957B2 (ja) エンジンの制御装置
JP2015203388A (ja) 内燃機関の制御装置
JP6380657B2 (ja) 内燃機関の制御装置および制御方法
WO2016075784A1 (ja) 内燃機関の燃料噴射制御装置および燃料噴射制御方法
JP4315221B2 (ja) 内燃機関の制御装置
JP2012112263A (ja) 内燃機関の制御装置
JP4218603B2 (ja) 内燃機関の吸入空気量推定装置
JP5742790B2 (ja) 内燃機関の制御装置
WO2018055869A1 (ja) 6気筒エンジン
WO2011074130A1 (ja) 圧縮比可変v型内燃機関
JP5803787B2 (ja) 内燃機関の制御装置
JP5050968B2 (ja) 内燃機関
JP2009002284A (ja) 内燃機関の制御装置
JP5589612B2 (ja) 火花点火式エンジンの制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5986907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees