WO2018055869A1 - 6気筒エンジン - Google Patents

6気筒エンジン Download PDF

Info

Publication number
WO2018055869A1
WO2018055869A1 PCT/JP2017/024163 JP2017024163W WO2018055869A1 WO 2018055869 A1 WO2018055869 A1 WO 2018055869A1 JP 2017024163 W JP2017024163 W JP 2017024163W WO 2018055869 A1 WO2018055869 A1 WO 2018055869A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
crankpin
crank pin
degrees
crankshaft
Prior art date
Application number
PCT/JP2017/024163
Other languages
English (en)
French (fr)
Inventor
聡之 速水
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Publication of WO2018055869A1 publication Critical patent/WO2018055869A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/04Crankshafts, eccentric-shafts; Cranks, eccentrics
    • F16C3/06Crankshafts

Definitions

  • the present invention relates to a 6-cylinder engine having unequal intervals between explosions.
  • Patent Document 1 A conventional 6-cylinder engine in which explosion intervals are unequal is described in Patent Document 1, for example.
  • the 6-cylinder engine disclosed in Patent Document 1 is a V-type engine having a first cylinder row and a second cylinder row.
  • the first cylinder row is provided with first to third cylinders
  • the second cylinder row is provided with fourth to sixth cylinders.
  • the explosion interval of this engine is 90 ° -90 ° -180 ° -90 ° -90 ° -180 ° as the rotation angle of the crankshaft. Explosions occur alternately in the two cylinder rows provided in the engine. That is, an explosion occurs in the first cylinder in the first cylinder row, and an explosion occurs in the fourth cylinder in the second cylinder row after the crankshaft rotates 90 degrees. After this explosion, an explosion occurred in the second cylinder of the first cylinder row when the crankshaft rotated 90 degrees, and then an explosion occurred in the fifth cylinder of the second cylinder row when the crankshaft rotated 180 degrees. Arise.
  • the crankshaft rotates 90 degrees to cause an explosion in the third cylinder of the first cylinder row, and further, the crankshaft rotates 90 degrees to cause an explosion in the sixth cylinder of the second cylinder row. Then, the crankshaft rotates 180 degrees and an explosion occurs in the first cylinder of the first cylinder row.
  • This engine is operated by repeating the series of explosion patterns described above.
  • the drive torque generated from the engine is a combination of combustion torque and inertia torque.
  • the combustion torque is a torque generated when fuel burns in the cylinder.
  • the inertia torque is a torque generated by the inertia of the crankshaft. This inertia torque is known to greatly affect the response of the engine.
  • the influence of inertia torque is significant when the combustion torque is relatively small, such as at low rotation and low load.
  • the time of low rotation and low load is when the engine speed is lower than a predetermined low speed and the engine load is smaller than a predetermined threshold.
  • FIG. 21 is a graph showing the relationship between the crank angle and the instantaneous torque (inertia torque) of a V-type 6-cylinder engine that causes equidistant explosions.
  • the engine is greatly affected by the negative inertia torque, so that there is a problem that the response to the accelerator operation is lowered.
  • An object of the present invention is to provide a 6-cylinder engine that has high responsiveness even when the combustion torque is small so as not to be affected by the inertia torque.
  • a six-cylinder engine includes a cylinder block having cylinder holes for six cylinders, a crankshaft having crankpins for six cylinders, and a connecting rod for each of the crankpins.
  • a crankshaft having crankpins for six cylinders
  • a connecting rod for each of the crankpins.
  • Each of which is connected to each other through the cylinder hole and movably fitted in the cylinder hole, and an ignition device including an ignition plug provided for each cylinder, and among the crankpins for six cylinders
  • the crankpins of the two cylinders whose ignition order is before and after are provided at a position where the ignition interval between the two cylinders is one of 60 degrees and 180 degrees as the rotation angle of the crankshaft.
  • the crankpin of the cylinder that is ignited next to the two cylinders whose shaft rotation angle is 60 degrees has an ignition interval between this cylinder and the cylinder ignited immediately before.
  • the crankpin of the cylinder that is ignited next to the two cylinders that are provided at a position where the shaft rotation angle is 180 degrees and the ignition interval is 180 degrees is set immediately before this cylinder.
  • the explosion interval of the six cylinders is provided at a position where the ignition interval with respect to the ignited cylinder is 60 degrees as the rotation angle of the crankshaft.
  • the second explosion pattern in which the ignition interval is 180 degrees as the rotation angle of the crankshaft are alternately repeated.
  • the inertia torque for each cylinder cancels each other, and the inertia torque of the engine as a whole does not occur or even if it occurs, it becomes negligibly small. Therefore, according to the present invention, it is possible to provide a 6-cylinder engine having high responsiveness even when the combustion torque is small.
  • FIG. 1 is a rear view showing a configuration of a V-type 6-cylinder engine.
  • FIG. 2 is a side view showing the configuration of the cylinder row.
  • FIG. 2 is a partially broken view of the cylinder block.
  • FIG. 3 is a plan view showing the configuration of the cylinder block.
  • FIG. 4 is a perspective view showing the configuration of the crankshaft according to the first embodiment.
  • FIG. 5 is a front view showing the configuration of the crankshaft according to the first embodiment.
  • FIG. 6 is a table showing the stroke of each cylinder according to the first embodiment for each crank angle.
  • FIG. 7 is a schematic diagram for explaining an ignition order according to the first embodiment.
  • FIG. 8 is a table showing the operation of each cylinder according to the first embodiment for each crank angle.
  • FIG. 1 is a rear view showing a configuration of a V-type 6-cylinder engine.
  • FIG. 2 is a side view showing the configuration of the cylinder row.
  • FIG. 2 is a partially broken view of the
  • FIG. 9 is a graph showing the magnitude of the inertia torque of each cylinder and the inertia torque of the entire engine.
  • FIG. 10 is a graph showing the magnitude of the combustion torque of each cylinder and the driving torque of the entire engine.
  • FIG. 11 is a graph showing the magnitude of the combustion torque of each cylinder and the driving torque of the entire engine when the cylinder is deactivated.
  • FIG. 12A is a perspective view of a crankshaft according to the second embodiment.
  • FIG. 12B is a front view of the crankshaft according to the second embodiment.
  • FIG. 12C is a schematic diagram for explaining an ignition order according to the second embodiment.
  • FIG. 13A is a perspective view of a crankshaft according to a third embodiment.
  • FIG. 13B is a front view of the crankshaft according to the third embodiment.
  • FIG. 13C is a schematic diagram for explaining an ignition order according to the third embodiment.
  • FIG. 14A is a perspective view of a crankshaft according to the fourth embodiment.
  • FIG. 14B is a front view of the crankshaft according to the fourth embodiment.
  • FIG. 14C is a schematic diagram for explaining an ignition order according to the fourth embodiment.
  • FIG. 15A is a perspective view of a crankshaft according to a fifth embodiment.
  • FIG. 15B is a front view of the crankshaft according to the fifth embodiment.
  • FIG. 15C is a schematic diagram for explaining an ignition order according to the fifth embodiment.
  • FIG. 16A is a perspective view of a crankshaft according to the sixth embodiment.
  • FIG. 16A is a perspective view of a crankshaft according to the sixth embodiment.
  • FIG. 16B is a front view of the crankshaft according to the sixth embodiment.
  • FIG. 16C is a schematic diagram for explaining an ignition order according to the sixth embodiment.
  • FIG. 17A is a perspective view of a crankshaft according to a seventh embodiment.
  • FIG. 17B is a front view of the crankshaft according to the seventh embodiment.
  • FIG. 17C is a schematic diagram for explaining an ignition order according to the seventh embodiment.
  • FIG. 18A is a perspective view of a crankshaft according to an eighth embodiment.
  • FIG. 18B is a front view of the crankshaft according to the eighth embodiment.
  • FIG. 18C is a schematic diagram for explaining an ignition order according to the eighth embodiment.
  • FIG. 19A is a perspective view of a crankshaft according to the ninth embodiment.
  • FIG. 19B is a front view of the crankshaft according to the ninth embodiment.
  • FIG. 19C is a schematic diagram for explaining an ignition order according to the ninth embodiment.
  • FIG. 20A is a perspective view of a crankshaft according to the tenth embodiment.
  • FIG. 20B is a front view of the crankshaft according to the tenth embodiment.
  • FIG. 20C is a schematic diagram for explaining an ignition order according to the tenth embodiment.
  • FIG. 21 is a graph showing the relationship between the crank angle and the instantaneous torque (inertia torque) of a conventional V-type 6-cylinder engine that causes equidistant explosions.
  • the six-cylinder engine according to this embodiment is a six-cylinder engine according to claims 1, 2, and 12.
  • an example in which the present invention is applied to, for example, a V-type 6-cylinder engine that can be mounted on a vehicle will be described.
  • a six-cylinder engine 1 shown in FIG. 1 includes a cylinder block 4 having a first cylinder row 2 and a second cylinder row 3, and cylinders attached to these first and second cylinder rows 2 and 3, respectively.
  • a head 5 and a crankshaft 7 rotatably supported by a cylinder block 4 via a bearing 6 (see FIG. 4) are provided.
  • one side of the crankshaft 7 on the back side of the paper surface of FIG. 1 is the front side of the engine, and the other side of the crankshaft 7 is the front side of the paper surface of FIG. Will be described.
  • the first cylinder row 2 and the second cylinder row 3 of the cylinder block 4 are inclined so that the bank angle ⁇ is 60 degrees.
  • cylinder holes 8 for three cylinders are formed in a state of being aligned in the front-rear direction of the six-cylinder engine 1.
  • the cylinder hole 8 of the first cylinder row 2 has a piston 9 of the first cylinder (shown as # 1 in the figure) of the six-cylinder engine 1 and a piston of the third cylinder (shown as # 3 in the figure).
  • 9 and the piston 9 of the fifth cylinder (shown as # 5 in the figure) are movably fitted.
  • the cylinder hole 8 of the second cylinder row 3 has a piston 9 of the second cylinder (shown as # 2 in the figure) of the six-cylinder engine 1 and a piston of the fourth cylinder (shown as # 4 in the figure). 9 and a piston 9 of a sixth cylinder (shown as # 6 in the figure) are movably fitted. These six pistons 9 are respectively connected to crankpins 11 to 16 (see FIGS. 4 and 5) for each cylinder of the crankshaft 7 to be described later via connecting rods 10.
  • the cylinder head 5 forms a combustion chamber 17 in cooperation with the cylinder hole 8 and the piston 9 as shown in FIG.
  • the cylinder head 5 has an intake port 18 and an exhaust port 19 for each cylinder that opens into the combustion chamber 17.
  • the cylinder head 5 includes an intake valve (not shown) that opens and closes an intake port 18, an exhaust valve (not shown) that opens and closes an exhaust port 19, and a valve operating device that drives the intake and exhaust valves. (Not shown) and a spark plug 20 for each cylinder are provided.
  • the valve gear is connected to the crankshaft 7 via a transmission mechanism (not shown).
  • the ignition plug 20 is connected to the ignition coil 21 as shown in FIG.
  • the ignition coil 21 is connected to the control device 22 of the 6-cylinder engine 1, and the operation is controlled by the control device 22 to supply power to the ignition plug 20 of each cylinder.
  • the ignition plug 20, the ignition coil 21, and the control device 22 constitute an “ignition device” in the present invention.
  • the ignition timing of the six-cylinder engine 1 according to this embodiment is in the order of the first cylinder ⁇ the second cylinder ⁇ the third cylinder ⁇ the fourth cylinder ⁇ the fifth cylinder ⁇ the sixth cylinder, which will be described in detail later.
  • fuel is injected into the intake port 18 or an intake passage (not shown) upstream from the intake port 18 by an intake pipe injector. Supplied.
  • an in-cylinder injector that directly injects fuel into the combustion chamber 17 may be used instead of the intake pipe injector or in combination with the intake pipe injector.
  • the operations of the intake pipe injector and the in-cylinder injector are controlled by a control device 22 (see FIG. 1) that controls the operation of the six-cylinder engine 1.
  • the control device 22 includes a cylinder deactivation unit 23.
  • the cylinder deactivation unit 23 cuts off the energization to the ignition plugs 20 of all the cylinders in one cylinder row when a predetermined condition is satisfied, and stops the fuel supply. That is, ignition and fuel supply are not performed, and the three cylinders in one of the cylinder rows are deactivated.
  • the “predetermined condition” when the cylinder is deactivated in this way is satisfied when the load and the engine speed of the 6-cylinder engine 1 are lower than a predetermined threshold.
  • the “predetermined condition” for determining whether or not to perform cylinder deactivation is not limited to a condition based on the operating state of the 6-cylinder engine 1. For example, it is possible to switch between the all-cylinder operation mode and the cylinder deactivation mode by using an artificially operable changeover switch 24 (see FIG. 1) connected to the control device 22.
  • the crankshaft 7 includes a first crankpin 11 for the first cylinder, a second crankpin 12 for the second cylinder, a third crankpin 13 for the third cylinder, A fourth crankpin 14 for the cylinder, a fifth crankpin 15 for the fifth cylinder, and a sixth crankpin 16 for the sixth cylinder are provided.
  • These first to sixth crank pins 11 to 16 are arranged as shown in FIG. 5 when viewed from the front side of the crankshaft 7.
  • first crank pin 11 positioned first from the front side of the crankshaft 7 and the second crank pin 12 positioned second are the same. Arranged in phase. Although not shown in detail, the first crankpin 11 and the second crankpin 12 are formed by a single pin. For this reason, a plate-like crank arm is not provided between the first crankpin 11 and the second crankpin 12. In the following, a configuration in which such two crank pins are realized by one pin is simply referred to as “the configuration of the same pin”.
  • crankpins 11 to 16 the third crankpin 13 located third from the front side of the crankshaft 7 and the fourth crankpin 14 located fourth are arranged in phase with each other. And, the first crankpin 11 and the second crankpin 12 are arranged at a position preceding the rotation direction by 120 degrees as the rotation angle of the crankshaft 7.
  • the rotation direction of the crankshaft 7 is the direction indicated by the arrow R in FIGS. 4 and 5.
  • the third crankpin 13 and the fourth crankpin 14 are also configured as described above.
  • the fifth crankpin 15 located fifth from the front side of the crankshaft 7 and the sixth crankpin 16 located sixth are arranged in phase with each other, and the third and fourth crankpins 13, 13, 14, the rotation angle of the crankshaft 7 is set at a position preceding the rotation direction by 120 degrees.
  • the fifth crankpin 15 and the sixth crankpin 16 also have the same configuration as described above.
  • the explosion form of the six cylinders becomes an explosion at an irregular interval with an explosion pattern different from that of the conventional six-cylinder engine.
  • the ignition timing and explosion pattern of the 6-cylinder engine 1 according to this embodiment will be described with reference to FIGS.
  • FIG. 7 the position of the crankpin of each cylinder is indicated by a circled number. The numbers with circles indicate the cylinder numbers. Also, the crankpin of the cylinder where the explosion occurs is drawn larger than the others.
  • the ignition sequence of the 6-cylinder engine 1 is in the order of the first cylinder ⁇ the second cylinder ⁇ the third cylinder ⁇ the fourth cylinder ⁇ the fifth cylinder ⁇ the sixth cylinder. .
  • crankpins 11 to 16 for six cylinders the crankpins of two cylinders whose firing order is before and after are set to 60 degrees and 180 degrees when the ignition interval of these two cylinders is the rotation angle of the crankshaft 7. Is provided at one of the positions.
  • the crankpin of the cylinder to be ignited next to the two cylinders whose ignition interval is 60 degrees with respect to the rotation angle of the crankshaft 7 is the rotation angle of the crankshaft 7 between this cylinder and the cylinder ignited immediately before. Is provided at a position of 180 degrees.
  • crankpin of the cylinder that is ignited next to the two cylinders whose ignition interval is 180 degrees with respect to the rotation angle of the crankshaft 7 is such that the ignition interval between this cylinder and the cylinder ignited immediately before is the rotation angle of the crankshaft 7 Is provided at a position of 60 degrees.
  • the explosion pattern of such a 6-cylinder engine 1 is an unequally spaced explosion that combines the following two explosion patterns.
  • the two explosion patterns are a first explosion pattern in which the ignition interval is 60 degrees in terms of the crankshaft rotation angle and a second explosion pattern in which the ignition interval is 180 degrees in terms of the crankshaft rotation angle.
  • the explosion pattern of the 6-cylinder engine 1 is a pattern in which a first explosion pattern and a second explosion pattern are alternately repeated.
  • the no-load operation here refers to, for example, an operating state when the accelerator operation amount is set to 0 when the engine is operated at a constant rotation speed with the accelerator operation amount being a predetermined amount.
  • positive instantaneous torque (inertia torque) and negative instantaneous torque are alternately generated in each cylinder. In this case, inertia torque is applied to the crankshaft 7 from all the cylinders simultaneously.
  • the 6-cylinder engine 1 Since the 6-cylinder engine 1 is hardly affected by inertia torque as described above, an increase in combustion torque is directly reflected on the crankshaft 7 during acceleration. As shown in FIG. 10, the combustion torque applied from each cylinder to the crankshaft 7 at the time of acceleration becomes maximum at the time of explosion, and thereafter gradually decreases while increasing or decreasing.
  • the combined torque obtained by combining the combustion torques of all the cylinders is as shown by a thick line in FIG. 10 and rises twice continuously every 240 degrees as the rotation angle of the crankshaft 7.
  • the absolute value of this combined torque (the maximum value on the vertical axis in FIG. 10) becomes maximum when an explosion occurs at an ignition interval of 60 degrees. This means that the strength in acceleration feeling is improved as compared with a 6-cylinder engine with an equidistant explosion.
  • the six-cylinder engine 1 includes a cylinder deactivation unit 23 that cuts off energization and fuel supply to the spark plugs 20 of all the cylinders in the second cylinder row 3 at low rotation and low load. .
  • the ignition interval is an explosion at an equal interval of 240 degrees. Therefore, the V-type 6 cylinder can obtain a smooth acceleration feeling while improving the fuel consumption by stopping the cylinder. An engine can be provided.
  • crankshaft 7 of this 6-cylinder engine 1 has crankpins of “the same pin configuration” at three locations. Therefore, it is possible to improve the strength of the crankshaft 7 and to improve the strength of the crankshaft 7 as compared with other 6-cylinder engines that employ an offset crank in which adjacent crankpins are connected via a plate-like crank arm. The front and rear length of the can be shortened.
  • FIGS. 12 to 14 show second to fourth embodiments in which the present invention is applied to a V-type six-cylinder engine having a bank angle ⁇ of 60 degrees.
  • 15 and 16 show fifth and sixth embodiments in which the present invention is applied to a V-type six-cylinder engine having a bank angle ⁇ of 120 degrees.
  • FIGS. 17 and 18 show seventh and eighth embodiments in which the present invention is applied to a V-type six-cylinder engine having a bank angle ⁇ of 180 degrees.
  • 19 and 20 show ninth and tenth embodiments in which the present invention is applied to an in-line six-cylinder engine.
  • the present invention is applied to an in-line six-cylinder engine.
  • one of the cylinder rows at the time of low rotation and low load. can be configured to pause.
  • the second embodiment shown in FIGS. 12A to 12C is an embodiment of a 6-cylinder engine as set forth in claim 3.
  • the cylinder block 4 of the six-cylinder engine according to this embodiment includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 60 degrees, and a bank angle of 60 degrees. It is formed in the V type.
  • the crankshaft 7 used in the 60-degree V-type 6-cylinder engine includes first and second crankpins 11 and 12, third and fourth crankpins 13 and 14, and fifth and fifth crankshafts.
  • the six crank pins 15 and 16 are formed so as to have “the configuration of the same pin”. That is, the first crankpin 11 and the second crankpin 12 are arranged in the same phase, and the third crankpin 13 and the fourth crankpin 14 are arranged in the same phase. Further, the fifth crankpin 15 and the sixth crankpin 16 are arranged in the same phase.
  • the fifth and fifth crankpins 11 and 12 have a rotation angle of the crankshaft 7 that precedes the rotation direction by 120 degrees.
  • Sixth crank pins 15 and 16 are arranged.
  • third and fourth crank pins 13 and 14 are arranged at positions preceding the fifth and sixth crank pins 15 and 16 in the rotational direction by 120 degrees with respect to the rotation angle of the crankshaft 7.
  • the ignition order of the 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the second cylinder ⁇ the fifth cylinder ⁇ the sixth cylinder ⁇ the third cylinder ⁇ the fourth cylinder.
  • the ignition interval between the first cylinder and the second cylinder, the ignition interval between the fifth cylinder and the sixth cylinder, and the ignition interval between the third cylinder and the fourth cylinder are the crankshaft.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the second cylinder and the fifth cylinder, the ignition interval between the sixth cylinder and the third cylinder, and the ignition interval between the fourth cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 12A to 12C is used in a 60-degree V-type 6-cylinder engine, the same effect as that obtained when the first embodiment is adopted can be obtained.
  • FIGS. 13A to 13C A third embodiment shown in FIGS. 13A to 13C is an embodiment of a six-cylinder engine as set forth in claim 4.
  • the cylinder block 4 of this 6-cylinder engine includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 60 degrees, and is a V-type with a bank angle of 60 degrees. Is formed.
  • crankshaft 7 used in the 60-degree V-type 6-cylinder engine the first crankpin 11 and the sixth crankpin 16 are arranged in the same phase, and the third crankpin 13 and the fourth crankpin 14 are mutually connected. They are arranged in the same phase.
  • the second crankpin 12 and the fifth crankpin 15 are arranged in phase with each other.
  • the third crankpin 13 and the fourth crankpin 14 are formed so as to have “the configuration of the same pin”.
  • the third and fourth crankpins 13 and 14 precede the first and sixth crankpins 16 in the rotational direction by 120 degrees as the rotational angle of the crankshaft 7. Placed in position. Further, the second and fifth crankpins 12 and 15 are arranged at positions preceding the third and fourth crankpins 13 and 14 in the rotational direction by 120 degrees as the rotation angle of the crankshaft 7. As shown in FIG. 13C, the ignition order of the 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the sixth cylinder ⁇ the third cylinder ⁇ the fourth cylinder ⁇ the fifth cylinder ⁇ the second cylinder.
  • the ignition interval between the first cylinder and the sixth cylinder, the ignition interval between the third cylinder and the fourth cylinder, and the ignition interval between the fifth cylinder and the second cylinder are the rotations of the crankshaft 7.
  • the angle is 60 degrees.
  • the ignition interval between the sixth cylinder and the third cylinder, the ignition interval between the fourth cylinder and the fifth cylinder, and the ignition interval between the second cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 13A to 13C is used in a 60-degree V-type 6-cylinder engine, the same effects as in the case of adopting the first embodiment can be obtained.
  • FIGS. 14A to 14C A fourth embodiment shown in FIGS. 14A to 14C is an embodiment of a six-cylinder engine as set forth in claim 5.
  • the cylinder block 4 of this 6-cylinder engine includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 60 degrees, and is a V-type with a bank angle of 60 degrees. Is formed.
  • the first crankpin 11 and the sixth crankpin 16 are arranged in the same phase
  • the second crankpin 12 and the second crankpin 12 5 crankpins 15 are arranged in phase with each other.
  • the third crankpin 13 and the fourth crankpin 14 are arranged in the same phase.
  • the third crankpin 13 and the fourth crankpin 14 are formed so as to have a “configuration of the same pin”.
  • the second and fifth crankpins 12 and 15 have a rotational angle of the crankshaft 7 from the first and sixth crankpins 11 and 16 by 120 degrees in the rotational direction. Arranged at the preceding position.
  • the third and fourth crankpins 13 and 14 are arranged at positions preceding the second and fifth crankpins 12 and 15 in the rotational direction by 120 degrees as the rotation angle of the crankshaft 7.
  • the ignition order of the 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the sixth cylinder ⁇ the fifth cylinder ⁇ the second cylinder ⁇ the third cylinder ⁇ the fourth cylinder.
  • the ignition interval between the first cylinder and the sixth cylinder, the ignition interval between the fifth cylinder and the second cylinder, and the ignition interval between the third cylinder and the fourth cylinder are the crankshaft.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the sixth cylinder and the fifth cylinder, the ignition interval between the second cylinder and the third cylinder, and the ignition interval between the fourth cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 14A to 14C is used in a 60-degree V-type 6-cylinder engine, the same effects as in the case of adopting the first embodiment can be obtained.
  • FIGS. 15A to 15C A fifth embodiment shown in FIGS. 15A to 15C is an embodiment of a six-cylinder engine as set forth in claim 6.
  • the cylinder block 4 of this 6-cylinder engine includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 120 degrees, and is a V-type with a bank angle of 120 degrees. Is formed.
  • crankshaft 7 used in the 120-degree V-type 6-cylinder engine there is no crankpin that has the “configuration of the same pin”.
  • the sixth crankpin 16 is arranged at a position preceding the first crankpin 11 in the rotational direction by 60 degrees with respect to the rotational angle of the crankshaft 7.
  • the fifth crankpin 15 is arranged at a position preceding the sixth crankpin 16 in the rotational direction by 60 degrees as the rotational angle of the crankshaft 7.
  • the fourth crankpin 14 is arranged at a position preceding the fifth crankpin 15 in the rotation direction by 60 degrees as the rotation angle of the crankshaft 7, and the rotation of the crankshaft 7 with respect to the fourth crankpin 14 is performed.
  • the third crank pin 13 is disposed at a position that is 60 degrees ahead of the rotation direction. Further, the second crankpin 12 is arranged at a position preceding the third crankpin 13 in the rotation direction by 60 degrees as the rotation angle of the crankshaft 7.
  • the ignition order of the 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the sixth cylinder ⁇ the fifth cylinder ⁇ the fourth cylinder ⁇ the third cylinder ⁇ the second cylinder.
  • the rotation interval of the crankshaft 7 depends on the ignition interval between the first cylinder and the sixth cylinder, the ignition interval between the fifth cylinder and the fourth cylinder, and the ignition interval between the third cylinder and the second cylinder.
  • the angle is 60 degrees.
  • the ignition interval between the sixth cylinder and the fifth cylinder, the ignition interval between the fourth cylinder and the third cylinder, and the ignition interval between the second cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 15A to 15C is used in a 120-degree V-type 6-cylinder engine, the same effects as in the case of adopting the first embodiment can be obtained.
  • FIGS. 16A to 16C A sixth embodiment shown in FIGS. 16A to 16C is an embodiment of a six-cylinder engine as set forth in claim 7.
  • the cylinder block 4 of this 6-cylinder engine includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 120 degrees, and is a V-type with a bank angle of 120 degrees. Is formed.
  • the crankshaft 7 used in the 120-degree V-type 6-cylinder engine, as shown in FIG. 16A there is no crankpin that has the “configuration of the same pin”.
  • the second crankpin 12 is arranged at a position preceding the first crankpin 11 in the rotational direction by 60 degrees with respect to the rotational angle of the crankshaft 7.
  • the third crank pin 13 is arranged at a position preceding the second crank pin 12 in the rotation direction by 60 degrees as the rotation angle of the crank shaft 7.
  • the fourth crank pin 14 is disposed at a position preceding the third crank pin 13 in the rotation direction by 60 degrees as the rotation angle of the crank shaft 7, and the rotation of the crank shaft 7 with respect to the fourth crank pin 14.
  • the fifth crankpin 15 is arranged at a position that precedes the rotation direction by 60 degrees in the corner.
  • a sixth crankpin 16 is arranged at a position preceding the fifth crankpin 15 in the rotational direction by 60 degrees as the rotational angle of the crankshaft 7.
  • the ignition order of the 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the second cylinder ⁇ the third cylinder ⁇ the fourth cylinder ⁇ the fifth cylinder ⁇ the sixth cylinder.
  • the ignition interval between the first cylinder and the second cylinder, the ignition interval between the third cylinder and the fourth cylinder, and the ignition interval between the fifth cylinder and the sixth cylinder are determined by the crankshaft.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the second cylinder and the third cylinder, the ignition interval between the fourth cylinder and the fifth cylinder, and the ignition interval between the sixth cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 16A to 16C is used in a 120-degree V-type 6-cylinder engine, the same effect as that obtained when the first embodiment is adopted can be obtained.
  • the seventh embodiment shown in FIGS. 17A to 17C is an embodiment of the six-cylinder engine described in claim 8.
  • the cylinder block 4 of this 6-cylinder engine includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 180 degrees, and is a V-type with a bank angle of 180 degrees. Is formed.
  • the crankshaft 7 used in the 180-degree V-type 6-cylinder engine has the same configuration as the crankshaft 7 described in the first embodiment (see FIG. 4). That is, the first crank pin 11 and the second crank pin 12 are arranged in the same phase, and the “configuration of the same pin” is adopted.
  • the third crankpin 13 and the fourth crankpin 14 are arranged in the same phase, and the “configuration of the same pin” is adopted.
  • the fifth crankpin 15 and the sixth crankpin 16 are arranged in the same phase, and the “configuration of the same pin” is adopted.
  • the operation of the piston of the V-type 6-cylinder engine having the bank angle ⁇ of 180 degrees is different from the operation of the piston of the so-called horizontally opposed engine.
  • the two pistons 9 connected to the crank pin having the “configuration of the same pin” move in the same direction.
  • the third and fourth crankpins 13 and 14 are rotated in the direction of rotation by 120 degrees with respect to the rotation angle of the crankshaft 7 from the first and second crankpins 11 and 12. Arranged at the preceding position.
  • the fifth and sixth crankpins 15 and 16 are disposed at positions preceding the third and fourth crankpins 13 and 14 by 120 degrees in the rotational direction as the rotation angle of the crankshaft 7.
  • the ignition order of the 6-cylinder engine having the crankshaft 7 is in the order of the first cylinder ⁇ the fourth cylinder ⁇ the third cylinder ⁇ the sixth cylinder ⁇ the fifth cylinder ⁇ the second cylinder.
  • the ignition interval between the first cylinder and the fourth cylinder, the ignition interval between the third cylinder and the sixth cylinder, and the ignition interval between the fifth cylinder and the second cylinder are the crankshaft.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the fourth cylinder and the third cylinder, the ignition interval between the sixth cylinder and the fifth cylinder, and the ignition interval between the second cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 17A to 17C is used in a 180-degree V-type 6-cylinder engine, the same effects as in the case of adopting the first embodiment can be obtained.
  • FIGS. 18A to 18C An eighth embodiment shown in FIGS. 18A to 18C is an embodiment of a six-cylinder engine as set forth in claim 9.
  • the cylinder block 4 of this 6-cylinder engine includes a first cylinder row 2 and a second cylinder row 3 with a bank angle ⁇ of 180 degrees, and is a V-type with a bank angle of 180 degrees. Is formed.
  • the crankshaft 7 used in the 180-degree V-type 6-cylinder engine has the same configuration as the crankshaft 7 described in the second embodiment (see FIGS. 12A to 12C).
  • first crank pin 11 and the second crank pin 12 are arranged in the same phase with each other, and the “configuration of the same pin” is adopted.
  • the third crank pin 13 and the fourth crank pin 14 are arranged in the same phase, and the “same pin” configuration is adopted.
  • the fifth crankpin 15 and the sixth crankpin 16 are arranged in the same phase, and the “configuration of the same pin” is adopted.
  • the operation of the piston of the V-type 6-cylinder engine having the bank angle ⁇ of 180 degrees is different from the operation of the piston of the so-called horizontally opposed engine.
  • the two pistons 9 connected to the crank pin having the “configuration of the same pin” move in the same direction.
  • the fifth and sixth crankpins 15 and 16 are rotated in the direction of rotation by 120 degrees from the first and second crankpins 11 and 12 as the rotation angle of the crankshaft 7.
  • the third and fourth crankpins 13 and 14 are arranged at positions preceding the fifth and sixth crankpins 15 and 16 in the rotational direction by 120 degrees as the rotation angle of the crankshaft 7.
  • the ignition order of the 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the sixth cylinder ⁇ the fifth cylinder ⁇ the fourth cylinder ⁇ the third cylinder ⁇ the second cylinder.
  • the ignition interval between the first cylinder and the sixth cylinder, the ignition interval between the fifth cylinder and the fourth cylinder, and the ignition interval between the third cylinder and the second cylinder are the crankshaft.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the sixth cylinder and the fifth cylinder, the ignition interval between the fourth cylinder and the third cylinder, and the ignition interval between the second cylinder and the first cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 18A to 18C is used in a 180-degree V-type 6-cylinder engine, the same effects as in the case of adopting the first embodiment can be obtained.
  • FIGS. 19A to 19C A ninth embodiment shown in FIGS. 19A to 19C is an embodiment of the six-cylinder engine described in claim 10.
  • the cylinder block 4 of this 6-cylinder engine includes one cylinder row 31 and is formed in series.
  • the cylinder block 4 has cylinder holes for six cylinders arranged in a line in a direction parallel to the axis of the crankshaft 7.
  • the crankshaft 7 used in this in-line 6-cylinder engine has the same configuration as the crankshaft 7 described in the fifth embodiment (see FIGS. 15A to 15C). In the crankshaft 7 used for this in-line 6-cylinder engine, there is no crankpin having the “same configuration”.
  • the second crankpin 12 is disposed at a position delayed in the rotation direction by 60 degrees with respect to the rotation angle of the crankshaft 7 with respect to the first crankpin 11.
  • a third crank pin 13 is disposed at a position that is delayed in the rotation direction by 60 degrees with respect to the crank pin 12 as the rotation angle of the crank shaft 7.
  • the fourth crank pin 14 is disposed at a position delayed in the rotation direction by 60 degrees relative to the third crank pin 13 with respect to the rotation angle of the crank shaft 7, and the rotation angle of the crank shaft 7 with respect to the fourth crank pin 14.
  • the fifth crank pin 15 is arranged at a position delayed in the rotation direction by 60 degrees.
  • the sixth crank pin 16 is arranged at a position delayed in the rotation direction by 60 degrees with respect to the fifth crank pin 15 as the rotation angle of the crank shaft 7.
  • the ignition sequence of the in-line 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the fourth cylinder ⁇ the fifth cylinder ⁇ the second cylinder ⁇ the third cylinder ⁇ the sixth cylinder.
  • the ignition intervals of the fourth cylinder and the fifth cylinder, the ignition intervals of the second cylinder and the third cylinder, and the ignition intervals of the sixth cylinder and the first cylinder are determined by the crankshaft.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the first cylinder and the fourth cylinder, the ignition interval between the fifth cylinder and the second cylinder, and the ignition interval between the third cylinder and the sixth cylinder are 180 degrees as the rotation angle of the crankshaft 7. For this reason, even when the crankshaft 7 shown in FIGS. 19A to 19C is used in an in-line 6-cylinder engine, the same effects as in the case of adopting the first embodiment can be obtained.
  • FIGS. 20A to 20C A tenth embodiment shown in FIGS. 20A to 20C is an embodiment of a six-cylinder engine according to an eleventh aspect.
  • the cylinder block 4 of this 6-cylinder engine is an in-line type having one cylinder row 31 as shown in FIG. 20C.
  • the cylinder block 4 has cylinder holes for six cylinders arranged in a line in a direction parallel to the axis of the crankshaft 7.
  • the crankshaft 7 used in this in-line 6-cylinder engine has the same configuration as the crankshaft 7 described in the sixth embodiment (see FIGS. 16A to 16C). In the crankshaft 7 used for this in-line 6-cylinder engine, there is no crankpin having the “same configuration”.
  • the second crankpin 12 is disposed at a position preceding the first crankpin 11 in the rotational direction by 60 degrees as the rotational angle of the crankshaft 7,
  • the third crank pin 13 is disposed at a position preceding the two crank pins 12 in the rotation direction by 60 degrees with respect to the rotation angle of the crank shaft 7.
  • the fourth crank pin 14 is disposed at a position preceding the third crank pin 13 in the rotation direction by 60 degrees as the rotation angle of the crank shaft 7, and the rotation of the crank shaft 7 with respect to the fourth crank pin 14.
  • the fifth crankpin 15 is arranged at a position that precedes the rotation direction by 60 degrees in the corner.
  • a sixth crankpin 16 is arranged at a position preceding the fifth crankpin 15 in the rotational direction by 60 degrees as the rotational angle of the crankshaft 7.
  • the ignition order of the in-line 6-cylinder engine having the crankshaft 7 is the order of the first cylinder ⁇ the fourth cylinder ⁇ the third cylinder ⁇ the sixth cylinder ⁇ the fifth cylinder ⁇ the second cylinder.
  • the ignition interval between the fourth and third cylinders, the ignition interval between the sixth and fifth cylinders, and the ignition interval between the second and first cylinders are determined as crankshafts.
  • a rotation angle of 7 is 60 degrees.
  • the ignition interval between the first cylinder and the fourth cylinder, the ignition interval between the third cylinder and the sixth cylinder, and the ignition interval between the fifth cylinder and the second cylinder are 180 degrees as the rotation angle of the crankshaft 7. Therefore, even when the crankshaft 7 shown in FIGS. 20A to 20C is used in an in-line 6-cylinder engine, the same effect as that obtained when the first embodiment is adopted can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Ocean & Marine Engineering (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

6気筒分のシリンダ孔を有するシリンダブロック(4)と、6気筒分のクランクピンを有するクランク軸(7)と、6個のピストンと、各気筒の点火プラグを含む点火装置とを備える。点火順序が前後する2つの気筒のクランクピンは、これら両気筒の点火間隔がクランク軸(7)の回転角にして60度または180度の位置に設けられる。点火間隔が60度となる2つの気筒の次に点火される気筒のクランクピンは、この気筒と直前に点火された気筒との点火間隔が180度となる位置に設けられる。点火間隔がクランク軸(7)の回転角にして180度となる2つの気筒の次に点火される気筒のクランクピンは、この気筒と直前に点火された気筒との点火間隔が60度となる位置に設けられる。6つの気筒の爆発パターンは、点火間隔が60度となる第1の爆発パターンと、点火間隔が180度となる第2の爆発パターンとが交互に繰り返される。 慣性トルクの影響を受けないようにして燃焼トルクが小さくても応答性が高くなる6気筒エンジンを提供できる。

Description

6気筒エンジン
 本発明は、爆発間隔が不等間隔になる6気筒エンジンに関する。
 爆発間隔が不等間隔になる従来の6気筒エンジンは、例えば特許文献1に記載されている。特許文献1に開示された6気筒エンジンは、第1の気筒列と第2の気筒列とを有するV型エンジンである。第1の気筒列には第1~第3気筒が設けられ、第2の気筒列には第4~第6気筒が設けられている。
 このエンジンの爆発間隔は、クランク軸の回転角にして90度-90度-180度-90度-90度-180度である。爆発は、このエンジンに設けられている2つの気筒列において交互に生じる。すなわち、第1の気筒列の第1気筒で爆発が生じてクランク軸が90度回転した後に第2の気筒列の第4気筒で爆発が生じる。この爆発の後にクランク軸が90度回転したときに第1の気筒列の第2気筒で爆発が生じ、その後、クランク軸が180度回転したときに第2の気筒列の第5気筒で爆発が生じる。
 その後、クランク軸が90度回転して第1の気筒列の第3気筒で爆発が生じ、さらにクランク軸が90度回転して第2の気筒列の第6気筒で爆発が生じる。そして、クランク軸が180度回転して第1の気筒列の第1気筒で爆発が生じる。このエンジンは、上述した一連の爆発パターンを繰り返して運転される。
 ところで、エンジンから発生する駆動トルクは、燃焼トルクと慣性トルクとを合成したものである。燃焼トルクは、シリンダで燃料が燃焼することにより発生するトルクである。慣性トルクは、クランク軸の慣性により生じるトルクである。この慣性トルクは、エンジンの応答性に大きく影響を及ぼすことが知られている。
特許第4583297号公報
 特許文献1に記載されたV型6気筒エンジンや、一般的な等間隔爆発となる6気筒エンジンでは、低回転低負荷時などで燃焼トルクが相対的に小さいときに慣性トルクの影響が顕著に現れる。ここでいう低回転低負荷時とは、エンジンの回転速度が予め定めた低速の回転速度より低く、かつエンジンの負荷が予め定めた閾値より小さいときである。
 エンジンが無負荷の状態にあるときの慣性トルクは、図21に示すように、正負に大きく変動する。図21は、等間隔爆発となるV型6気筒エンジンのクランク角と瞬時トルク(慣性トルク)との関係を示すグラフである。この種のエンジンにおいては、燃焼トルクが相対的に小さいときに負の慣性トルクの影響を大きく受けるために、アクセル操作に対する応答性が低くなるという問題があった。
 本発明の目的は、慣性トルクの影響を受けないようにして燃焼トルクが小さくても応答性が高くなる6気筒エンジンを提供することである。
 この目的を達成するために、本発明に係る6気筒エンジンは、6気筒分のシリンダ孔を有するシリンダブロックと、6気筒分のクランクピンを有するクランク軸と、前記各クランクピンのそれぞれにコンロッドを介してそれぞれ連接され、前記シリンダ孔内にそれぞれ移動自在に嵌合された6個のピストンと、気筒毎に設けられた点火プラグを含む点火装置とを備え、6気筒分の前記クランクピンのうち、点火順序が前後する2つの気筒の前記クランクピンは、これら2つの気筒の点火間隔がクランク軸の回転角にして60度と180度とのうち一方となる位置に設けられ、点火間隔がクランク軸の回転角にして60度となる2つの気筒の次に点火される気筒の前記クランクピンは、この気筒と直前に点火された気筒との点火間隔がクランク軸の回転角にして180度となる位置に設けられ、点火間隔がクランク軸の回転角にして180度となる2つの気筒の次に点火される気筒の前記クランクピンは、この気筒と直前に点火された気筒との点火間隔がクランク軸の回転角にして60度となる位置に設けられ、前記6つの気筒の爆発パターンは、点火間隔がクランク軸の回転角にして60度となる第1の爆発パターンと、点火間隔がクランク軸の回転角にして180度となる第2の爆発パターンとが交互に繰り返される。
 本発明に係る6気筒エンジンにおいては、気筒毎の慣性トルクが互いに相殺し合い、エンジン全体としての慣性トルクが発生しないか、発生したとしても無視できるほど小さくなる。したがって、本発明によれば、燃焼トルクが小さくても応答性が高くなる6気筒エンジンを提供することができる。
図1は、V型6気筒エンジンの構成を示す背面図である。 図2は、気筒列の構成を示す側面図である。図2は、シリンダブロックの一部を破断して描いてある。 図3は、シリンダブロックの構成を示す平面図である。 図4は、第1の実施の形態によるクランク軸の構成を示す斜視図である。 図5は、第1の実施の形態によるクランク軸の構成を示す正面図である。 図6は、第1の実施の形態による各気筒の行程をクランク角毎に示す表である。 図7は、第1の実施の形態による点火順序を説明するための模式図である。 図8は、第1の実施の形態による各気筒の動作をクランク角毎に示す表である。 図9は、各気筒の慣性トルクとエンジン全体の慣性トルクの大きさを示すグラフである。 図10は、各気筒の燃焼トルクとエンジン全体の駆動トルクの大きさを示すグラフである。 図11は、気筒休止時の各気筒の燃焼トルクとエンジン全体の駆動トルクの大きさを示すグラフである。 図12Aは、第2の実施の形態によるクランク軸の斜視図である。 図12Bは、第2の実施の形態によるクランク軸の正面図である。 図12Cは、第2の実施の形態による点火順序を説明するための模式図である。 図13Aは、第3の実施の形態によるクランク軸の斜視図である。 図13Bは、第3の実施の形態によるクランク軸の正面図である。 図13Cは、第3の実施の形態による点火順序を説明するための模式図である。 図14Aは、第4の実施の形態によるクランク軸の斜視図である。 図14Bは、第4の実施の形態によるクランク軸の正面図である。 図14Cは、第4の実施の形態による点火順序を説明するための模式図である。 図15Aは、第5の実施の形態によるクランク軸の斜視図である。 図15Bは、第5の実施の形態によるクランク軸の正面図である。 図15Cは、第5の実施の形態による点火順序を説明するための模式図である。 図16Aは、第6の実施の形態によるクランク軸の斜視図である。 図16Bは、第6の実施の形態によるクランク軸の正面図である。 図16Cは、第6の実施の形態による点火順序を説明するための模式図である。 図17Aは、第7の実施の形態によるクランク軸の斜視図である。 図17Bは、第7の実施の形態によるクランク軸の正面図である。 図17Cは、第7の実施の形態による点火順序を説明するための模式図である。 図18Aは、第8の実施の形態によるクランク軸の斜視図である。 図18Bは、第8の実施の形態によるクランク軸の正面図である。 図18Cは、第8の実施の形態による点火順序を説明するための模式図である。 図19Aは、第9の実施の形態によるクランク軸の斜視図である。 図19Bは、第9の実施の形態によるクランク軸の正面図である。 図19Cは、第9の実施の形態による点火順序を説明するための模式図である。 図20Aは、第10の実施の形態によるクランク軸の斜視図である。 図20Bは、第10の実施の形態によるクランク軸の正面図である。 図20Cは、第10の実施の形態による点火順序を説明するための模式図である。 図21は、従来の等間隔爆発となるV型6気筒エンジンのクランク角と瞬時トルク(慣性トルク)との関係を示すグラフである。
(第1の実施の形態)
 以下、本発明に係る6気筒エンジンの一実施の形態を図1~図11を参照して詳細に説明する。この実施の形態による6気筒エンジンは、請求項1、請求項2および請求項12に記載した6気筒エンジンである。この実施の形態においては、本発明を例えば車両に搭載可能なV型6気筒エンジンに適用する場合の一例を説明する。
 図1に示す6気筒エンジン1は、第1の気筒列2と第2の気筒列3とを有するシリンダブロック4と、これらの第1および第2の気筒列2,3にそれぞれ取付けられたシリンダヘッド5と、シリンダブロック4に軸受6(図4参照)を介して回転自在に支持されたクランク軸7などを備えている。以下においては、便宜上、図1の紙面の奥側であってクランク軸7の一端側をエンジンの前側とし、図1の紙面の手前側であってクランク軸7の他端側をエンジンの後側として説明する。
 シリンダブロック4の第1の気筒列2と第2の気筒列3は、バンク角θが60度となるように傾斜している。これらの第1および第2の気筒列2,3には、図2および図3に示すように、それぞれ3気筒分のシリンダ孔8が6気筒エンジン1の前後方向に並ぶ状態で形成されている。第1の気筒列2のシリンダ孔8には、この6気筒エンジン1の第1気筒(図においては#1として示す)のピストン9と、第3気筒(図においては#3として示す)のピストン9と、第5気筒(図においては#5として示す)のピストン9とがそれぞれ移動自在に嵌合している。
 第2の気筒列3のシリンダ孔8には、この6気筒エンジン1の第2気筒(図においては#2として示す)のピストン9と、第4気筒(図においては#4として示す)のピストン9と、第6気筒(図においては#6として示す)のピストン9とがそれぞれ移動自在に嵌合している。これらの6個のピストン9は、それぞれコンロッド10を介して後述するクランク軸7の気筒毎のクランクピン11~16(図4および図5参照)にそれぞれ連接されている。
 シリンダヘッド5は、図1に示すように、シリンダ孔8およびピストン9と協働して燃焼室17を形成している。また、このシリンダヘッド5は、燃焼室17に開口する気筒毎の吸気ポート18および排気ポート19を有している。このシリンダヘッド5には、吸気ポート18を開閉する吸気弁(図示せず)と、排気ポート19を開閉する排気弁(図示せず)と、これらの吸気弁および排気弁を駆動する動弁装置(図示せず)と、気筒毎の点火プラグ20などが設けられている。動弁装置は、図示していない伝動機構を介してクランク軸7に接続されている。
 点火プラグ20は、図1に示すように、点火コイル21に接続されている。点火コイル21は、この6気筒エンジン1の制御装置22に接続されており、この制御装置22によって動作が制御されて各気筒の点火プラグ20に給電する。この実施の形態においては、点火プラグ20と、点火コイル21と、制御装置22とによって本発明でいう「点火装置」が構成されている。この実施の形態による6気筒エンジン1の点火時期は、詳細は後述するが、第1気筒→第2気筒→第3気筒→第4気筒→第5気筒→第6気筒という順序である。
 この実施の形態による6気筒エンジン1において、燃料は、図示してはいないが、吸気管噴射インジェクタによって吸気ポート18内や、吸気ポート18より上流側の吸気通路(図示せず)内に噴射されて供給される。なお、燃料を供給するにあたっては、吸気管噴射インジェクタの代わりに、あるいは吸気管噴射インジェクタと併用して、燃焼室17内に燃料を直接噴射する筒内噴射インジェクタを使用することもできる。吸気管噴射インジェクタや筒内噴射インジェクタの動作は、この6気筒エンジン1の動作を制御する制御装置22(図1参照)によって制御される。
 制御装置22は、気筒休止部23を備えている。この気筒休止部23は、予め定めた条件が満たされたときに一方の気筒列の全ての気筒の点火プラグ20への通電を遮断するとともに、燃料の供給を停止する。すなわち、点火および燃料供給が行われなくなり、一方の気筒列の3つの気筒が休止状態になる。このように気筒休止が行われるときの「予め定めた条件」は、6気筒エンジン1の負荷とエンジン回転速度とが予め定めた閾値より低い場合に満たされる。なお、気筒休止を行うか否かを判別するための「予め定めた条件」は、6気筒エンジン1の運転状態に基づく条件に限定されることはない。例えば、制御装置22に接続された人為的に操作可能な切替スイッチ24(図1参照)を使用して全気筒運転の形態と気筒休止の形態とを切り替えることもできる。
 クランク軸7は、図4に示すように、第1気筒用の第1クランクピン11と、第2気筒用の第2クランクピン12と、第3気筒用の第3クランクピン13と、第4気筒用の第4クランクピン14と、第5気筒用の第5クランクピン15と、第6気筒用の第6クランクピン16とを備えている。これらの第1~第6クランクピン11~16は、クランク軸7の前側から見ると図5に示すように配置されている。
 これらの第1~第6クランクピン11~16のうち、クランク軸7の前側から数えて1番目に位置する第1クランクピン11と、2番目に位置する第2クランクピン12とは、互いに同位相に配置されている。第1クランクピン11と第2クランクピン12は、詳細には図示してはいないが、1本のピンによって形成されている。このため、第1クランクピン11と第2クランクピン12との間に板状のクランクアームは設けられていない。以下においては、このような二つのクランクピンを1本のピンによって実現する構成を単に「同ピンの構成」という。
 6個のクランクピン11~16のうち、クランク軸7の前側から数えて3番目に位置する第3クランクピン13と、4番目に位置する第4クランクピン14とは、互いに同位相に配置され、かつ第1クランクピン11および第2クランクピン12よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。クランク軸7の回転方向は、図4および図5において矢印Rで示す方向である。第3クランクピン13と第4クランクピン14も上述した同ピンの構成が採られている。
 クランク軸7の前側から数えて5番目に位置する第5クランクピン15と、6番目に位置する第6クランクピン16とは、互いに同位相に配置され、かつ第3および第4クランクピン13,14よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。これらの第5クランクピン15と第6クランクピン16も上述した同ピンの構成が採られている。
 このように第1~第6クランクピン11~16が配置されていることにより、6つの気筒の爆発形態が従来の6気筒エンジンとは異なる爆発パターンで不等間隔爆発になる。ここで、この実施の形態による6気筒エンジン1の点火時期と爆発パターンとを図6~図8を用いて説明する。図7においては、各気筒のクランクピンの位置が丸付き数字によって示されている。丸付き数字の数字は、気筒の番号を示す。また、爆発が生じる気筒のクランクピンは、他より大きく描かれている。
<点火時期と爆発パターンの説明>
 この実施の形態による6気筒エンジン1において、全ての気筒が運転されるときは、図6に示すように、第1気筒で吸気行程が開始された後、クランク軸7が60度回転したときに第2気筒で吸気行程が開始される。そして、クランク軸7がさらに180度(開始から240度)回転したときに第3気筒の吸気行程が開始され、その後にクランク軸7が60度(開始から300度)回転したときに第4気筒で吸気行程が開始される。その後、クランク軸7が180度(開始から480度)回転したときに第5気筒で吸気行程が開始され、さらにクランク軸7が60度(開始から540度)回転したときに第6気筒で吸気行程が開始される。このため、この6気筒エンジン1の点火順序は、図7および図8に示すように、第1気筒→第2気筒→第3気筒→第4気筒→第5気筒→第6気筒という順序になる。
 この6気筒エンジン1においては、第1気筒で爆発が生じてからクランク軸7が60度回転したときに第2気筒で爆発が生じ、その後、クランク軸7が180度回転したときに第3気筒で爆発が生じる。そして、さらにクランク軸7が60度回転したときに第4気筒で爆発が生じ、その後クランク軸7が180度回転した後に第5気筒で爆発が生じる。その後、クランク軸7が60°回転したときに第6気筒で爆発が生じる。
 すなわち、6気筒分のクランクピン11~16のうち、点火順序が前後する2つの気筒の前記クランクピンは、これら2つの気筒の点火間隔がクランク軸7の回転角にして60度と180度とのうち一方となる位置に設けられている。点火間隔がクランク軸7の回転角にして60度となる2つの気筒の次に点火される気筒のクランクピンは、この気筒と直前に点火された気筒との点火間隔がクランク軸7の回転角にして180度となる位置に設けられている。点火間隔がクランク軸7の回転角にして180度となる2つの気筒の次に点火される気筒のクランクピンは、この気筒と直前に点火された気筒との点火間隔がクランク軸7の回転角にして60度となる位置に設けられている。
 このような6気筒エンジン1の爆発パターンは、下記の2つの爆発パターンを組み合わせた不等間隔爆発になる。2つの爆発パターンとは、点火間隔がクランク軸の回転角にして60度となる第1の爆発パターンと、点火間隔がクランク軸の回転角にして180度となる第2の爆発パターンである。この6気筒エンジン1の爆発パターンは、第1の爆発パターンと第2の爆発パターンとが交互に繰り返されるパターンである。
 このような爆発形態を採ると、後述するように無負荷運転時の慣性トルクが著しく低減される。ここでいう無負荷運転とは、例えばアクセル操作量を所定量としてエンジンが一定の回転速度で運転されているときにアクセル操作量を0にしたときの運転状態をいう。この実施の形態による6気筒エンジン1によれば、無負荷運転時は、図9に示すように、各気筒において、正の瞬時トルク(慣性トルク)と、負の瞬時トルクとが交互に生じる。この場合、クランク軸7には、同時に全ての気筒から慣性トルクが加えられることなる。このため、気筒毎の慣性トルクがクランク軸7上で互いに相殺し合うようになり、図9中に太線で示すように、エンジン全体としての慣性トルクが発生しないか、発生したとしても無視できるほどに小さくなる。
 この6気筒エンジン1は、上述したように慣性トルクの影響を殆ど受けることがないために、加速時に燃焼トルクの上昇が直接的にクランク軸7に反映されるようになる。加速時に各気筒からクランク軸7に加えられる燃焼トルクは、図10に示すように、爆発時に最大になり、その後は増減しながら次第に減衰する。全ての気筒の燃焼トルクを合成して得られる合成トルクは、図10中に太線で示すようになり、クランク軸7の回転角にして240度毎に連続して2回上昇する。この合成トルクの絶対値(図10において縦軸の最大値)は、点火間隔が60度で爆発が生じたときに最大になる。このことは、等間隔爆発の6気筒エンジンと較べると、加速フィーリングにおいて力強さが向上することを意味する。
<気筒休止時の動作>
 この6気筒エンジン1の負荷とエンジン回転速度とが予め定めた閾値より低い場合、言い換えれば6気筒エンジン1の運転域が低回転低負荷運転域にあるときは、制御装置22が第2の気筒列3の3つの気筒を休止させる。すなわち、第2気筒と、第4気筒と、第6気筒とにおいて燃料供給と点火とが行われなくなってこれらの気筒が休止され、第1の気筒列2の3つの気筒のみからクランク軸7に燃焼トルクが加えられる。この気筒休止時の合成トルクは、図11に示すように、点火間隔が240度の等間隔爆発になる。この気筒休止時にも慣性トルクが殆ど無くなるから、円滑に加速する感覚を運転者に与えることができる。
<第1の実施の形態による効果>
 この実施の形態による6気筒エンジン1においては、点火間隔が60度になる第1の爆発パターンと、点火間隔が180度になる第2の爆発パターンとが繰り返されるから、気筒毎の慣性トルクが互いに相殺し合い、エンジン全体としての慣性トルクが発生しないか、発生したとしても無視できるほどに小さくなる。
 したがって、この実施の形態によれば、燃焼トルクが小さくても応答性が高くなるV型6気筒エンジンを提供することができる。特に、点火間隔が60度で生じる2回の連続した爆発が一定の間隔で繰り返されるから、この6気筒エンジン1を車両に搭載することによって、力強く加速する感覚を乗員に与えることができる。
 また、この実施の形態による6気筒エンジン1は、低回転低負荷時に第2の気筒列3の全ての気筒の点火プラグ20への通電と燃料の供給を遮断する気筒休止部23を備えている。このため、この実施の形態によれば、低回転低負荷時に点火間隔が240度の等間隔爆発となるから、気筒休止により燃費の向上を図りながら、円滑な加速感が得られるV型6気筒エンジンを提供することができる。
 さらに、この6気筒エンジン1のクランク軸7は、3箇所に「同ピンの構成」のクランクピンを備えている。このため、互いに隣り合うクランクピンが板状のクランクアームを介して接続されるオフセットクランクを採用した他の6気筒エンジンと較べると、クランク軸7の強度向上を図ることができるとともに、クランク軸7の前後長を短くすることができる。
<他の実施の形態の説明>
 本発明に係る6気筒エンジンは、図12~図20に示すように構成することができる。これらの図において、図1~図11によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。図12~図14は、バンク角θが60度のV型6気筒エンジンに本発明を適用した第2~第4の実施の形態を示す。図15と図16は、バンク角θが120度のV型6気筒エンジンに本発明を適用した第5、第6の実施の形態を示す。図17と図18は、バンク角θが180度のV型6気筒エンジンに本発明を適用した第7、第8の実施の形態を示す。図19と図20は、直列6気筒エンジンに本発明を適用した第9、第10の実施の形態を示す。これらの実施の形態のうち、V型6気筒エンジンを対象とする第2~第8の実施の形態においては、上述した第1の実施の形態と同様に、低回転低負荷時に一方の気筒列が休止する構成を採ることができる。
(第2の実施の形態)
 図12A~図12Cに示す第2の実施の形態は、請求項3に記載した6気筒エンジンの一実施の形態である。この実施の形態による6気筒エンジンのシリンダブロック4は、図12Cに示すように、バンク角θが60度になる第1の気筒列2と第2の気筒列3とを備え、バンク角60度のV型に形成されている。
 この60度V型6気筒エンジンに用いるクランク軸7は、図12Aに示すように、第1および第2クランクピン11,12と、第3および第4クランクピン13,14と、第5および第6クランクピン15,16とがそれぞれ「同ピンの構成」となるように形成されている。すなわち、第1クランクピン11と第2クランクピン12とが互いに同位相に配置され、第3クランクピン13と第4クランクピン14とが互いに同位相に配置されている。また、第5クランクピン15と第6クランクピン16とが互いに同位相に配置されている。
 この第2の実施の形態においては、図12Bに示すように、第1および第2クランクピン11,12よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に、第5および第6クランクピン15,16が配置されている。また、第5および第6クランクピン15,16よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に、第3および第4クランクピン13,14が配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図12Cに示すように、第1気筒→第2気筒→第5気筒→第6気筒→第3気筒→第4気筒という順序になる。
 図12A~図12Cに示す構成を採る場合は、第1気筒と第2気筒の点火間隔と、第5気筒と第6気筒の点火間隔と、第3気筒と第4気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第2気筒と第5気筒の点火間隔と、第6気筒と第3気筒の点火間隔と、第4気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図12A~図12Cに示すクランク軸7を60度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第3の実施の形態)
 図13A~図13Cに示す第3の実施の形態は、請求項4に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図13Cに示すように、バンク角θが60度になる第1の気筒列2と第2の気筒列3とを備え、バンク角60度のV型に形成されている。
 この60度V型6気筒エンジンに用いるクランク軸7においては、第1クランクピン11と第6クランクピン16とが互いに同位相に配置され、第3クランクピン13と第4クランクピン14とが互いに同位相に配置されている。第2クランクピン12と第5クランクピン15とが互いに同位相に配置されている。第3クランクピン13と第4クランクピン14は、「同ピンの構成」となるように形成されている。
 この実施の形態においては、図13Bに示すように、第3および第4クランクピン13,14が第1および第6クランクピン16よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。また、第2および第5クランクピン12,15が第3および第4クランクピン13,14よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図13Cに示すように、第1気筒→第6気筒→第3気筒→第4気筒→第5気筒→第2気筒という順序になる。
 図13に示す構成を採る場合は、第1気筒と第6気筒の点火間隔と、第3気筒と第4気筒の点火間隔と、第5気筒と第2気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第6気筒と第3気筒の点火間隔と、第4気筒と第5気筒の点火間隔と、第2気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図13A~図13Cに示すクランク軸7を60度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第4の実施の形態)
 図14A~図14Cに示す第4の実施の形態は、請求項5に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図14Cに示すように、バンク角θが60度になる第1の気筒列2と第2の気筒列3とを備え、バンク角60度のV型に形成されている。
 この60度V型6気筒エンジンに用いるクランク軸7においては、図14Aに示すように、第1クランクピン11と第6クランクピン16とが互いに同位相に配置され、第2クランクピン12と第5クランクピン15とが互いに同位相に配置されている。また、第3クランクピン13と第4クランクピン14とが互いに同位相に配置されている。この第3クランクピン13と第4クランクピン14は、「同ピンの構成」となるように形成されている。
 この実施の形態においては、図14Bに示すように、第2および第5クランクピン12,15が第1および第6クランクピン11,16よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。また、第3および第4クランクピン13,14が第2および第5クランクピン12,15よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図14Cに示すように、第1気筒→第6気筒→第5気筒→第2気筒→第3気筒→第4気筒という順序になる。
 図14A~図14Cに示す構成を採る場合は、第1気筒と第6気筒の点火間隔と、第5気筒と第2気筒の点火間隔と、第3気筒と第4気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第6気筒と第5気筒の点火間隔と、第2気筒と第3気筒の点火間隔と、第4気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図14A~図14Cに示すクランク軸7を60度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第5の実施の形態)
 図15A~図15Cに示す第5の実施の形態は、請求項6に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図15Cに示すように、バンク角θが120度になる第1の気筒列2と第2の気筒列3とを備え、バンク角120度のV型に形成されている。
 この120度V型6気筒エンジンに用いるクランク軸7においては、図15Aに示すように、「同ピンの構成」となるクランクピンはない。
 また、このクランク軸7においては、図15Bに示すように、第1クランクピン11に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第6クランクピン16が配置され、第6クランクピン16に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第5クランクピン15が配置されている。また、第5クランクピン15に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第4クランクピン14が配置され、第4クランクピン14に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第3クランクピン13が配置されている。さらに、第3クランクピン13に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第2クランクピン12が配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図15Cに示すように、第1気筒→第6気筒→第5気筒→第4気筒→第3気筒→第2気筒という順序になる。
 図15に示す構成を採る場合は、第1気筒と第6気筒の点火間隔と、第5気筒と第4気筒の点火間隔と、第3気筒と第2気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第6気筒と第5気筒の点火間隔と、第4気筒と第3気筒の点火間隔と、第2気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図15A~図15Cに示すクランク軸7を120度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第6の実施の形態)
 図16A~図16Cに示す第6の実施の形態は、請求項7に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図16Cに示すように、バンク角θが120度になる第1の気筒列2と第2の気筒列3とを備え、バンク角120度のV型に形成されている。
 この120度V型6気筒エンジンに用いるクランク軸7においては、図16Aに示すように、「同ピンの構成」となるクランクピンはない。
 また、このクランク軸7においては、図16Bに示すように、第1クランクピン11に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第2クランクピン12が配置され、第2クランクピン12に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第3クランクピン13が配置されている。また、第3クランクピン13に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第4クランクピン14が配置され、第4クランクピン14に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第5クランクピン15が配置されている。さらに、第5クランクピン15に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第6クランクピン16が配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図16Cに示すように、第1気筒→第2気筒→第3気筒→第4気筒→第5気筒→第6気筒という順序になる。
 図16A~図16Cに示す構成を採る場合は、第1気筒と第2気筒の点火間隔と、第3気筒と第4気筒の点火間隔と、第5気筒と第6気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第2気筒と第3気筒の点火間隔と、第4気筒と第5気筒の点火間隔と、第6気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図16A~図16Cに示すクランク軸7を120度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第7の実施の形態)
 図17A~図17Cに示す第7の実施の形態は、請求項8に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図17Cに示すように、バンク角θが180度になる第1の気筒列2と第2の気筒列3とを備え、バンク角180度のV型に形成されている。
 この180度V型6気筒エンジンに用いるクランク軸7は、上述した第1の実施の形態(図4参照)で説明したクランク軸7と同一の構成のものである。すなわち、第1クランクピン11と第2クランクピン12とが互いに同位相に配置されて「同ピンの構成」が採られている。第3クランクピン13と第4クランクピン14とが互いに同位相に配置されて「同ピンの構成」が採られている。第5クランクピン15と第6クランクピン16とが互いに同位相に配置されて「同ピンの構成」が採られている。
 このバンク角θが180度のV型6気筒エンジンのピストンの動作は、所謂水平対向エンジンのピストンの動作とは異なっている。この180度V型6気筒エンジンにおいては、「同ピンの構成」となるクランクピンに接続された2つのピストン9は、同方向に移動する。
 このクランク軸7においては、図17Bに示すように、第3および第4クランクピン13,14が第1および第2クランクピン11,12よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。第5および第6クランクピン15,16は、第3および第4クランクピン13,14よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図17Cに示すように、第1気筒→第4気筒→第3気筒→第6気筒→第5気筒→第2気筒という順序になる。
 図17A~図17Cに示す構成を採る場合は、第1気筒と第4気筒の点火間隔と、第3気筒と第6気筒の点火間隔と、第5気筒と第2気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第4気筒と第3気筒の点火間隔と、第6気筒と第5気筒の点火間隔と、第2気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図17A~図17Cに示すクランク軸7を180度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第8の実施の形態)
 図18A~図18Cに示す第8の実施の形態は、請求項9に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図18Cに示すように、バンク角θが180度になる第1の気筒列2と第2の気筒列3とを備え、バンク角180度のV型に形成されている。
 この180度V型6気筒エンジンに用いるクランク軸7は、上述した第2の実施の形態(図12A~図12C参照)で説明したクランク軸7と同一の構成のものである。
 すなわち、第1クランクピン11と第2クランクピン12とが互いに同位相に配置されて「同ピンの構成」が採られている。第3クランクピン13と第4クランクピン14とが互いに同位相に配置されて「同ピン」の構成が採られている。第5クランクピン15と第6クランクピン16とが互いに同位相に配置されて「同ピンの構成」が採られている。
 このバンク角θが180度のV型6気筒エンジンのピストンの動作は、所謂水平対向エンジンのピストンの動作とは異なっている。この180度V型6気筒エンジンにおいては、「同ピンの構成」となるクランクピンに接続された2つのピストン9は、同方向に移動する。
 このクランク軸7においては、図18Bに示すように、第5および第6クランクピン15,16が第1および第2クランクピン11,12よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。第3および第4クランクピン13,14は、第5および第6クランクピン15,16よりクランク軸7の回転角にして120度だけ回転方向に先行する位置に配置されている。
 このクランク軸7を有する6気筒エンジンの点火順序は、図18Cに示すように、第1気筒→第6気筒→第5気筒→第4気筒→第3気筒→第2気筒という順序になる。
 図18A~図18Cに示す構成を採る場合は、第1気筒と第6気筒の点火間隔と、第5気筒と第4気筒の点火間隔と、第3気筒と第2気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第6気筒と第5気筒の点火間隔と、第4気筒と第3気筒の点火間隔と、第2気筒と第1気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図18A~図18Cに示すクランク軸7を180度V型6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第9の実施の形態)
 図19A~図19Cに示す第9の実施の形態は、請求項10に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図19Cに示すように、一つの気筒列31を備え、直列型に形成されている。このシリンダブロック4には、図示してはいないが、6気筒分のシリンダ孔がクランク軸7の軸線と平行な方向に一列に並ぶ状態に形成されている。この直列6気筒エンジンに用いるクランク軸7は、上述した第5の実施の形態(図15A~図15C参照)で説明したクランク軸7と同一の構成のものである。この直列6気筒エンジンに用いるクランク軸7においては、「同ピンの構成」となるクランクピンはない。
 このクランク軸7においては、図19Bに示すように、第1クランクピン11に対してクランク軸7の回転角にして60度だけ回転方向に遅れる位置に第2クランクピン12が配置され、第2クランクピン12に対してクランク軸7の回転角にして60度だけ回転方向に遅れる位置に第3クランクピン13が配置されている。また、第3クランクピン13に対してクランク軸7の回転角にして60度だけ回転方向に遅れる位置に第4クランクピン14が配置され、第4クランクピン14に対してクランク軸7の回転角にして60度だけ回転方向に遅れる位置に第5クランクピン15が配置されている。さらに、第5クランクピン15に対してクランク軸7の回転角にして60度だけ回転方向に遅れる位置に第6クランクピン16が配置されている。
 このクランク軸7を有する直列6気筒エンジンの点火順序は、図19Cに示すように、第1気筒→第4気筒→第5気筒→第2気筒→第3気筒→第6気筒という順序になる。
 図19A~図19Cに示す構成を採る場合は、第4気筒と第5気筒の点火間隔と、第2気筒と第3気筒の点火間隔と、第6気筒と第1気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第1気筒と第4気筒の点火間隔と、第5気筒と第2気筒の点火間隔と、第3気筒と第6気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図19A~図19Cに示すクランク軸7を直列6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
(第10の実施の形態)
 図20A~図20Cに示す第10の実施の形態は、請求項11に記載した6気筒エンジンの一実施の形態である。この6気筒エンジンのシリンダブロック4は、図20Cに示すように、一つの気筒列31を備えた直列型のものである。このシリンダブロック4には、図示してはいないが、6気筒分のシリンダ孔がクランク軸7の軸線と平行な方向に一列に並ぶ状態に形成されている。この直列6気筒エンジンに用いるクランク軸7は、上述した第6の実施の形態(図16A~図16C参照)で説明したクランク軸7と同一の構成のものである。この直列6気筒エンジンに用いるクランク軸7においては、「同ピンの構成」となるクランクピンはない。
 このクランク軸7においては、図20Bに示すように、第1クランクピン11に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第2クランクピン12が配置され、第2クランクピン12に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第3クランクピン13が配置されている。また、第3クランクピン13に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第4クランクピン14が配置され、第4クランクピン14に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第5クランクピン15が配置されている。さらに、第5クランクピン15に対してクランク軸7の回転角にして60度だけ回転方向に先行する位置に第6クランクピン16が配置されている。
 このクランク軸7を有する直列6気筒エンジンの点火順序は、図20Cに示すように、第1気筒→第4気筒→第3気筒→第6気筒→第5気筒→第2気筒という順序になる。
 図20A~図20Cに示す構成を採る場合は、第4気筒と第3気筒の点火間隔と、第6気筒と第5気筒の点火間隔と、第2気筒と第1気筒の点火間隔がクランク軸7の回転角にして60度になる。また、第1気筒と第4気筒の点火間隔と、第3気筒と第6気筒の点火間隔と、第5気筒と第2気筒の点火間隔がクランク軸7の回転角にして180度になる。
 このため、図20A~図20Cに示すクランク軸7を直列6気筒エンジンに使用する場合であっても、第1の実施の形態を採る場合と同等の効果が得られる。
 1…6気筒エンジン、2…第1の気筒列、3…第2の気筒列、4…シリンダブロック、7…クランク軸、8…シリンダ孔、9…ピストン、10…コンロッド、11…第1クランクピン、12…第2クランクピン、13…第3クランクピン、14…第4クランクピン、15…第5クランクピン、16…第6クランクピン、20…点火プラグ、21…点火コイル、22…制御装置。

Claims (12)

  1.  6気筒分のシリンダ孔を有するシリンダブロックと、
     6気筒分のクランクピンを有するクランク軸と、
     前記各クランクピンのそれぞれにコンロッドを介してそれぞれ連接され、前記シリンダ孔内にそれぞれ移動自在に嵌合された6個のピストンと、
     気筒毎に設けられた点火プラグを含む点火装置とを備え、
     6気筒分の前記クランクピンのうち、点火順序が前後する2つの気筒の前記クランクピンは、これら2つの気筒の点火間隔がクランク軸の回転角にして60度と180度とのうち一方となる位置に設けられ、
     点火間隔がクランク軸の回転角にして60度となる2つの気筒の次に点火される気筒の前記クランクピンは、この気筒と直前に点火された気筒との点火間隔がクランク軸の回転角にして180度となる位置に設けられ、
     点火間隔がクランク軸の回転角にして180度となる2つの気筒の次に点火される気筒の前記クランクピンは、この気筒と直前に点火された気筒との点火間隔がクランク軸の回転角にして60度となる位置に設けられ、
     前記6つの気筒の爆発パターンは、点火間隔がクランク軸の回転角にして60度となる第1の爆発パターンと、点火間隔がクランク軸の回転角にして180度となる第2の爆発パターンとが交互に繰り返される6気筒エンジン。
  2.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角60度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンと前記2番目に位置するクランクピンとは、互いに同位相に配置され、
     前記3番目に位置するクランクピンと前記4番目に位置するクランクピンとは、互いに同位相に、かつ前記1番目に位置するクランクピンおよび2番目のクランクピンよりクランク軸の回転角にして120度だけ回転方向に先行する位置に配置され、
     前記5番目に位置するクランクピンと前記6番目に位置するクランクピンとは、互いに同位相に、かつ前記3番目に位置するクランクピンおよび前記4番目のクランクピンより前記回転角にして120度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記2番目のクランクピンに対応する第2気筒と、前記3番目のクランクピンに対応する第3気筒と、前記4番目のクランクピンに対応する第4気筒と、前記5番目のクランクピンに対応する第5気筒と、前記6番目のクランクピンに対応する第6気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  3.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角60度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンと前記2番目に位置するクランクピンとは、互いに同位相に配置され、
     前記5番目に位置するクランクピンと前記6番目に位置するクランクピンとは、互いに同位相に、かつ前記1番目に位置するクランクピンおよび前記2番目のクランクピンよりクランク軸の回転角にして120度だけ回転方向に先行する位置に配置され、
     前記3番目に位置するクランクピンと前記4番目に位置するクランクピンとは、互いに同位相に、かつ前記5番目に位置するクランクピンおよび前記6番目のクランクピンより前記回転角にして120度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記2番目のクランクピンに対応する第2気筒と、前記5番目のクランクピンに対応する第5気筒と、前記6番目のクランクピンに対応する第6気筒と、前記3番目のクランクピンに対応する第3気筒と、前記4番目のクランクピンに対応する第4気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  4.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角60度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンと前記6番目に位置するクランクピンとは、互いに同位相に配置され、
     前記3番目に位置するクランクピンと前記4番目に位置するクランクピンとは、互いに同位相に、かつ前記1番目に位置するクランクピンおよび前記6番目のクランクピンよりクランク軸の回転角にして120度だけ回転方向に先行する位置に配置され、
     前記2番目に位置するクランクピンと前記5番目に位置するクランクピンとは、互いに同位相に、かつ前記3番目に位置するクランクピンおよび前記4番目のクランクピンより前記回転角にして120度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記6番目のクランクピンに対応する第6気筒と、前記3番目のクランクピンに対応する第3気筒と、前記4番目のクランクピンに対応する第4気筒と、前記5番目のクランクピンに対応する第5気筒と、前記2番目のクランクピンに対応する第2気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  5.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角60度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンと前記6番目に位置するクランクピンとは、互いに同位相に配置され、
     前記2番目に位置するクランクピンと前記5番目に位置するクランクピンとは、互いに同位相に、かつ前記1番目に位置するクランクピンおよび前記6番目のクランクピンよりクランク軸の回転角にして120度だけ回転方向に先行する位置に配置され、
     前記3番目に位置するクランクピンと前記4番目に位置するクランクピンとは、互いに同位相に、かつ前記2番目と5番目のクランクピンより前記回転角にして120度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記6番目のクランクピンに対応する第6気筒と、前記5番目のクランクピンに対応する第5気筒と、前記2番目のクランクピンに対応する第2気筒と、前記3番目のクランクピンに対応する第3気筒と、前記4番目のクランクピンに対応する第4気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  6.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角120度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記6番目に位置するクランクピンは、前記1番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記5番目に位置するクランクピンは、前記6番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記4番目に位置するクランクピンは、前記5番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記3番目に位置するクランクピンは、前記4番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記2番目に位置するクランクピンは、前記3番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記1番目に位置するクランクピンは、前記2番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記6番目のクランクピンに対応する第6気筒と、前記5番目のクランクピンに対応する第5気筒と、前記4番目のクランクピンに対応する第4気筒と、前記3番目のクランクピンに対応する第3気筒と、前記2番目のクランクピンに対応する第2気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  7.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角120度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンは、前記6番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記2番目に位置するクランクピンは、前記1番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記3番目に位置するクランクピンは、前記2番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記4番目に位置するクランクピンは、前記3番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記5番目に位置するクランクピンは、前記4番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記6番目に位置するクランクピンは、前記5番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記2番目のクランクピンに対応する第2気筒と、前記3番目のクランクピンに対応する第3気筒と、前記4番目のクランクピンに対応する第4気筒と、前記5番目のクランクピンに対応する第5気筒と、前記6番目のクランクピンに対応する第6気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  8.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角180度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンと前記2番目に位置するクランクピンとは、互いに同位相に配置され、
     前記3番目に位置するクランクピンと前記4番目に位置するクランクピンとは、互いに同位相に、かつ前記1番目に位置するクランクピンおよび前記2番目のクランクピンよりクランク軸の回転角にして120度だけ回転方向に先行する位置に配置され、
     前記5番目に位置するクランクピンと前記6番目に位置するクランクピンとは、互いに同位相に、かつ前記3番目に位置するクランクピンおよび前記4番目のクランクピンより前記回転角にして120度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記4番目のクランクピンに対応する第4気筒と、前記3番目のクランクピンに対応する第3気筒と、前記6番目のクランクピンに対応する第6気筒と、前記5番目のクランクピンに対応する第5気筒と、前記2番目のクランクピンに対応する第2気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  9.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、3気筒分のシリンダ孔を有する第1の気筒列と、他の3気筒分のシリンダ孔を有する第2の気筒列とを備え、
     前記第1の気筒列と前記第2の気筒列とがバンク角180度のV型に配置され、
     前記第1の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて1番目と、3番目と、5番目に位置するクランクピンにそれぞれ連接され、
     前記第2の気筒列のシリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側から数えて2番目と、4番目と、6番目に位置するクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンと前記2番目に位置するクランクピンとは、互いに同位相に配置され、
     前記5番目に位置するクランクピンと前記6番目に位置するクランクピンとは、互いに同位相に、かつ前記1番目に位置するクランクピンおよび前記2番目のクランクピンよりクランク軸の回転角にして120度だけ回転方向に先行する位置に配置され、
     前記3番目に位置するクランクピンと前記4番目に位置するクランクピンとは、互いに同位相に、かつ前記5番目に位置するクランクピンおよび前記6番目のクランクピンより前記回転角にして120度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記6番目のクランクピンに対応する第6気筒と、前記5番目のクランクピンに対応する第5気筒と、前記4番目のクランクピンに対応する第4気筒と、前記3番目のクランクピンに対応する第3気筒と、前記2番目のクランクピンに対応する第2気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  10.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、6気筒分のシリンダ孔がクランク軸の軸線と平行な方向に一列に並ぶ直列型に形成され、
     前記各シリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側を1番目として他端側に向けて並ぶ1~6番目のクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンは、前記6番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に遅れる位置に配置され、 
     前記2番目に位置するクランクピンは、前記1番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に遅れる位置に配置され、
     前記3番目に位置するクランクピンは、前記2番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に遅れる位置に配置され、
     前記4番目に位置するクランクピンは、前記3番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に遅れる位置に配置され、
     前記5番目に位置するクランクピンは、前記4番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に遅れる位置に配置され、
     前記6番目に位置するクランクピンは、前記5番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に遅れる位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記4番目のクランクピンに対応する第4気筒と、前記5番目のクランクピンに対応する第5気筒と、前記2番目のクランクピンに対応する第2気筒と、前記3番目のクランクピンに対応する第3気筒と、前記6番目のクランクピンに対応する第6気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  11.  請求項1記載の6気筒エンジンにおいて、
     前記シリンダブロックは、6気筒分のシリンダ孔がクランク軸の軸線と平行な方向に一列に並ぶ直列型に形成され、
     前記各シリンダ孔に嵌挿されたピストンは、前記クランク軸の一端側を1番目として他端側に向けて並ぶ1~6番目のクランクピンにそれぞれ連接され、
     前記1番目に位置するクランクピンは、前記6番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記2番目に位置するクランクピンは、前記1番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記3番目に位置するクランクピンは、前記2番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記4番目に位置するクランクピンは、前記3番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記5番目に位置するクランクピンは、前記4番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記6番目に位置するクランクピンは、前記5番目に位置するクランクピンに対してクランク軸の回転角にして60度だけ回転方向に先行する位置に配置され、
     前記点火装置は、前記1番目のクランクピンに対応する第1気筒と、前記4番目のクランクピンに対応する第4気筒と、前記3番目のクランクピンに対応する第3気筒と、前記6番目のクランクピンに対応する第6気筒と、前記5番目のクランクピンに対応する第5気筒と、前記2番目のクランクピンに対応する第2気筒とがこの順に点火するように構成されていることを特徴とする6気筒エンジン。
  12.  請求項2ないし請求項9のうちいずれか一つに記載の6気筒エンジンにおいて、
     前記点火装置は、人為的に操作可能な切替スイッチで動作が許可された場合と、エンジン負荷とエンジン回転速度とが予め定めた閾値より低い場合とのうちいずれか一方の場合において、前記第1の気筒列と前記第2の気筒列とのうちいずれか一方の気筒列の全ての気筒の点火プラグへの通電を遮断する気筒休止部を備えていることを特徴とする6気筒エンジン。
PCT/JP2017/024163 2016-09-26 2017-06-30 6気筒エンジン WO2018055869A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016186546A JP2018053721A (ja) 2016-09-26 2016-09-26 6気筒エンジン
JP2016-186546 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018055869A1 true WO2018055869A1 (ja) 2018-03-29

Family

ID=61689570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024163 WO2018055869A1 (ja) 2016-09-26 2017-06-30 6気筒エンジン

Country Status (2)

Country Link
JP (1) JP2018053721A (ja)
WO (1) WO2018055869A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114133A (ja) * 1994-10-18 1996-05-07 Sanshin Ind Co Ltd 2サイクルエンジンの運転制御装置
JP2014109248A (ja) * 2012-12-04 2014-06-12 Yamaha Motor Co Ltd 4気筒エンジン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114133A (ja) * 1994-10-18 1996-05-07 Sanshin Ind Co Ltd 2サイクルエンジンの運転制御装置
JP2014109248A (ja) * 2012-12-04 2014-06-12 Yamaha Motor Co Ltd 4気筒エンジン

Also Published As

Publication number Publication date
JP2018053721A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP3488585B2 (ja) 内燃機関の動弁装置
US20090248278A1 (en) Multi-cylinder engine
JP5007825B2 (ja) 多気筒エンジン
RU2692706C2 (ru) Способ контроля вибраций при переходе между режимами работы двигателя с отключаемыми цилиндрами (варианты)
US9556804B2 (en) Multi-cylinder internal combustion engine and method for operating a multi-cylinder internal combustion engine
JP3535233B2 (ja) 船外機用2サイクルエンジンの運転制御装置
US7367323B2 (en) Eight-cylinder engine
EP1873383A1 (en) Misfire detection device for internal combustion engine
US9297318B2 (en) Crankshaft for variable displacement internal combustion engine
JP2002161790A (ja) 直噴火花点火式内燃機関の燃焼制御装置
WO2015104831A1 (ja) 4気筒エンジンおよび4気筒エンジンの運転方法
JP4434269B2 (ja) 内燃機関の吸気制御装置
JPH08114134A (ja) 2サイクルエンジンの運転制御装置
JP5986907B2 (ja) 4気筒エンジンおよび4気筒エンジンの運転方法
WO2018055869A1 (ja) 6気筒エンジン
US7779802B2 (en) Simulated cam position for a V-type engine
JP2009209759A (ja) 内燃機関
JP2014109248A5 (ja)
KR102160518B1 (ko) 배기가스 봉입을 동반한 실린더 셧오프 시, 가스 스프링 작용을 보상하기 위한 방법
JP4325492B2 (ja) 可変動弁の制御装置及び方法
JP4221001B2 (ja) 内燃機関の制御装置
US20070095314A1 (en) Control apparatus and control method for internal combustion engine
JP4400421B2 (ja) デュアル噴射型内燃機関の制御方法
US20200277903A1 (en) Cylinder deactivation system and cylinder deactivation method
JP2005105869A (ja) 可変気筒内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852650

Country of ref document: EP

Kind code of ref document: A1