JP5964850B2 - 劣化解析方法 - Google Patents
劣化解析方法 Download PDFInfo
- Publication number
- JP5964850B2 JP5964850B2 JP2013541852A JP2013541852A JP5964850B2 JP 5964850 B2 JP5964850 B2 JP 5964850B2 JP 2013541852 A JP2013541852 A JP 2013541852A JP 2013541852 A JP2013541852 A JP 2013541852A JP 5964850 B2 JP5964850 B2 JP 5964850B2
- Authority
- JP
- Japan
- Prior art keywords
- degradation
- polymer
- deterioration
- rays
- diene polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006731 degradation reaction Methods 0.000 title claims description 279
- 230000015556 catabolic process Effects 0.000 title claims description 278
- 238000004458 analytical method Methods 0.000 title claims description 100
- 230000006866 deterioration Effects 0.000 claims description 244
- 229920000642 polymer Polymers 0.000 claims description 234
- 150000001993 dienes Chemical class 0.000 claims description 169
- 238000000034 method Methods 0.000 claims description 161
- 238000010521 absorption reaction Methods 0.000 claims description 122
- 229910052717 sulfur Inorganic materials 0.000 claims description 103
- 239000011593 sulfur Substances 0.000 claims description 103
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 97
- 239000002861 polymer material Substances 0.000 claims description 94
- 238000000862 absorption spectrum Methods 0.000 claims description 93
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 92
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 87
- 229910052760 oxygen Inorganic materials 0.000 claims description 87
- 239000001301 oxygen Substances 0.000 claims description 87
- 238000005259 measurement Methods 0.000 claims description 79
- 238000004132 cross linking Methods 0.000 claims description 72
- 238000010606 normalization Methods 0.000 claims description 50
- 229910052799 carbon Inorganic materials 0.000 claims description 43
- 238000012667 polymer degradation Methods 0.000 claims description 41
- 150000001721 carbon Chemical group 0.000 claims description 39
- 230000001678 irradiating effect Effects 0.000 claims description 33
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims description 30
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 30
- 229920006037 cross link polymer Polymers 0.000 claims description 18
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 18
- 238000000026 X-ray photoelectron spectrum Methods 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 230000007704 transition Effects 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 125000002897 diene group Chemical group 0.000 claims description 3
- 230000000593 degrading effect Effects 0.000 claims 3
- 238000004611 spectroscopical analysis Methods 0.000 claims 1
- 229920001971 elastomer Polymers 0.000 description 56
- 239000005060 rubber Substances 0.000 description 53
- 229920003049 isoprene rubber Polymers 0.000 description 48
- 239000000047 product Substances 0.000 description 37
- 238000001228 spectrum Methods 0.000 description 35
- 239000005062 Polybutadiene Substances 0.000 description 32
- 229920002857 polybutadiene Polymers 0.000 description 32
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 31
- 239000000203 mixture Substances 0.000 description 31
- 239000000463 material Substances 0.000 description 24
- 229920003048 styrene butadiene rubber Polymers 0.000 description 22
- 239000002174 Styrene-butadiene Substances 0.000 description 20
- 244000043261 Hevea brasiliensis Species 0.000 description 17
- 229920003052 natural elastomer Polymers 0.000 description 17
- 229920001194 natural rubber Polymers 0.000 description 17
- 239000000126 substance Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000001040 scanning transmission X-ray microscopy Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000002250 progressing effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229920005549 butyl rubber Polymers 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229920003244 diene elastomer Polymers 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229920005683 SIBR Polymers 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002795 fluorescence method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004998 X ray absorption near edge structure spectroscopy Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920005555 halobutyl Polymers 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000004636 vulcanized rubber Substances 0.000 description 1
- 238000007673 x-ray photoluminescence spectroscopy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/083—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
- G01N23/085—X-ray absorption fine structure [XAFS], e.g. extended XAFS [EXAFS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/06—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
- G01N23/18—Investigating the presence of flaws defects or foreign matter
- G01N23/185—Investigating the presence of flaws defects or foreign matter in tyres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2206—Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/227—Measuring photoelectric effect, e.g. photoelectron emission microscopy [PEEM]
- G01N23/2273—Measuring photoelectron spectrum, e.g. electron spectroscopy for chemical analysis [ESCA] or X-ray photoelectron spectroscopy [XPS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/44—Resins; Plastics; Rubber; Leather
- G01N33/445—Rubber
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/03—Investigating materials by wave or particle radiation by transmission
- G01N2223/04—Investigating materials by wave or particle radiation by transmission and measuring absorption
- G01N2223/041—X-ray absorption fine structure [EXAFS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/071—Investigating materials by wave or particle radiation secondary emission combination of measurements, at least 1 secondary emission
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/085—Investigating materials by wave or particle radiation secondary emission photo-electron spectrum [ESCA, XPS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/20—Sources of radiation
- G01N2223/203—Sources of radiation synchrotron
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/623—Specific applications or type of materials plastics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/627—Specific applications or type of materials tyres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/632—Specific applications or type of materials residual life, life expectancy
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Toxicology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
(式1−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式1−2)
[1−[(劣化後の各ジエン系ポリマーのπ*の各ピーク面積)×β]/[(劣化前の各ジエン系ポリマーのπ*の各ピーク面積)×α]]×100=劣化度(%)
(式2−1)
[劣化前の試料におけるジエン系ポリマーAiのX線吸収スペクトルの全面積]×αAi=1
[劣化後の試料におけるジエン系ポリマーAiのX線吸収スペクトルの全面積]×βAi=1
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式2−2)
[1−[(劣化後のジエン系ポリマーAiのπ*のピーク面積)×βAi]/[(劣化前のジエン系ポリマーAiのπ*のピーク面積)×αAi]]×100=ジエン系ポリマーAiの劣化度(%)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
上記劣化解析方法(劣化度の分析方法)では、上記ピーク面積に代えてピーク強度を用いてもよい。
(式2−3)
[ジエン系ポリマーAiの酸素劣化のピーク面積]/[(ジエン系ポリマーAiのオゾン劣化のピーク面積)+(ジエン系ポリマーAiの酸素劣化のピーク面積)]×100=ジエン系ポリマーAiの酸素劣化寄与率(%)
[ジエン系ポリマーAiのオゾン劣化のピーク面積]/[(ジエン系ポリマーAiのオゾン劣化のピーク面積)+(ジエン系ポリマーAiの酸素劣化のピーク面積)]×100=ジエン系ポリマーAiのオゾン劣化寄与率(%)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
上記劣化解析方法(酸素劣化寄与率及びオゾン劣化寄与率の分析方法)では、上記ピーク面積に代えてピーク強度を用いてもよい。
(式2−4)
[ジエン系ポリマーAiの炭素原子のK殻吸収端のX線吸収スペクトルの全面積]×γAi=1
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式2−5)
[ジエン系ポリマーAiの酸素原子のK殻吸収端のX線吸収スペクトルの全面積]×γAi=ジエン系ポリマーAiに酸素及びオゾンが結合した量(指数)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式3−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式3−2)
[1−[(劣化後のπ*のピーク面積)×β]/[(劣化前π*のピーク面積)×α]]×100=高分子劣化度(%)
(式3−3)
(S2pのイオウ酸化物に帰属されるピーク面積)/(S2pに関係する全ピーク面積)×100=イオウ架橋劣化度(%)
(式3−4)
(S1sのイオウ酸化物に帰属されるピーク面積)/(S1sに関係する全ピーク面積)×100=イオウ架橋劣化度(%)
ここで、使用される一定エネルギーのX線のエネルギー範囲は、2.5〜15keVであることが好ましい。
(式3−5)
[高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
試料をサンプルホルダーに取り付けた後、X線吸収測定を行うための真空チャンバーに設置する。その後、シンクロトロンから放射された連続X線を分光器で単色化し試料に照射する。この時、試料表面から真空中に二次電子・光電子が脱出するが、失った電子を補うためにグランドから電子が補充される。ここで、グラウンドから流れた電流をX線吸収強度Iとし、ビームラインの光学系に設置された金メッシュの電流を入射X線強度I0とし、下記(式)からX線吸収量μLを求めた(電子収量法)。尚、本手法はLanbert−Beerの式が適用できるが、電子収量法の場合には、近似的に下記(式)が成立すると考えられている。
試料を透過してきたX線強度を検出する方法である。透過光強度測定には、フォトダイオードアレイ検出器などが用いられる。
試料にX線を照射した際に発生する蛍光X線を検出する方法である。前記透過法の場合、試料中の含有量が少ない元素のX線吸収測定を行うと、シグナルが小さい上に含有量の多い元素のX線吸収によりバックグラウンドが高くなるためS/B比の悪いスペクトルとなる。それに対し蛍光法(特にエネルギー分散型検出器などを用いた場合)では、目的とする元素からの蛍光X線のみを測定することが可能であるため、含有量が多い元素の影響が少ない。そのため、含有量が少ない元素のX線吸収スペクトル測定を行う場合に有効的である。また、蛍光X線は透過力が強い(物質との相互作用が小さい)ため、試料内部で発生した蛍光X線を検出することが可能となる。そのため、本手法は透過法に次いでバルク情報を得る方法として最適である。
試料にX線を照射した際に流れる電流を検出する方法である。そのため試料が導電物質である必要がある。高分子材料は絶縁物であるため、今まで高分子材料のX線吸収測定は、蒸着やスピンコートなどによって試料をごく薄く基板に乗せた物を用いることがほとんどだったが、本発明では、高分子材料をミクロトームで100μm以下、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは500nm以下に加工(カット)することでS/B比及びS/N比の高い測定を実現できる。
(式1−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式1−2)
[1−[(劣化後の各ジエン系ポリマーのπ*の各ピーク面積)×β]/[(劣化前の各ジエン系ポリマーのπ*の各ピーク面積)×α]]×100=劣化度(%)
これにより、劣化後の各ジエン系ポリマーの劣化度(%)が得られ、劣化率を分析できる。ここで、上記劣化度を求める方法において、上記高輝度X線のエネルギーを260〜350eVの範囲にすることが好ましい。なお、上記劣化度を求める方法では、上記(式1−1)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。
なお、XPEEM法は、高輝度X線を試料に照射し、測定試料をX線周りでラスター走査することにより光電子放出強度を試料表面の位置の関数として測定してもよい。
なお、フレネルゾーンプレートの代わりに、X線反射ミラーを用いたKirkpatrick−Baez(K−B)集光系で高輝度X線を集光してもよい。
(式2−1)
[劣化前の試料におけるジエン系ポリマーAiのX線吸収スペクトルの全面積]×αAi=1
[劣化後の試料におけるジエン系ポリマーAiのX線吸収スペクトルの全面積]×βAi=1
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式2−2)
[1−[(劣化後のジエン系ポリマーAiのπ*のピーク面積)×βAi]/[(劣化前のジエン系ポリマーAiのπ*のピーク面積)×αAi]]×100=ジエン系ポリマーAiの劣化度(%)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
これにより、劣化後の各ジエン系ポリマーの劣化度(%)が得られ、劣化率を分析できる。ここで、上記劣化度を求める方法において、上記高輝度X線のエネルギーを260〜350eVの範囲にすることが好ましい。なお、上記劣化度を求める方法では、上記(式2−1)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。
(式2−3)
[ジエン系ポリマーAiの酸素劣化のピーク面積]/[(ジエン系ポリマーAiのオゾン劣化のピーク面積)+(ジエン系ポリマーAiの酸素劣化のピーク面積)]×100=ジエン系ポリマーAiの酸素劣化寄与率(%)
[ジエン系ポリマーAiのオゾン劣化のピーク面積]/[(ジエン系ポリマーAiのオゾン劣化のピーク面積)+(ジエン系ポリマーAiの酸素劣化のピーク面積)]×100=ジエン系ポリマーAiのオゾン劣化寄与率(%)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
これにより、劣化後の高分子材料における各ジエン系ポリマーの酸素劣化とオゾン劣化の寄与率(%)が得られ、それぞれの劣化要因の寄与率を分析できる。
なお、上記寄与率を算出する方法では、上記(式2−3)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。
(式2−4)
[ジエン系ポリマーAiの炭素原子のK殻吸収端のX線吸収スペクトルの全面積]×γAi =1
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式2−5)
[ジエン系ポリマーAiの酸素原子のK殻吸収端のX線吸収スペクトルの全面積]×γAi=ジエン系ポリマーAiに酸素及びオゾンが結合した量(指数)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
これにより、劣化により各ジエン系ポリマーに結合した酸素及びオゾンの量が測定され、劣化指標とすることができる。
上記試料について、XPEEM法によるIRの測定結果を図2−7に示す。これは、炭素原子のK殻吸収端のX線吸収スペクトルをもとにして上記(式2−4)を用いて規格化定数γを求め、上記(式2−5)を用いて前記と同様に規格化したものである。規格化した酸素原子のK殻吸収端のピーク面積は、酸素及びオゾンが結合した量と考えられる。図2−7のように7時間劣化させた方が1時間劣化させた試料よりも面積が大きいことから、この値を劣化の指数とすることができる。この劣化指数の数字が大きいほど、IRに結合した酸素及びオゾン量が多いことを示す。これにより、IRに酸素やオゾンが結合することによる劣化率を、酸素原子のK殻吸収端のピーク面積の増加率によって測定できる。
前述の電子収量法を用いて高分子材料のX線吸収スペクトル測定を行い解析することで、高分子劣化度(%)を分析できる。以下、これについて説明する。
(式3−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式3−2)
[1−[(劣化後のπ*のピーク面積)×β]/[(劣化前π*のピーク面積)×α]]×100=高分子劣化度(%)
これらの試料の炭素原子のK殻吸収端のNEXAFS測定結果を図3−1に示す。図3−1のように、劣化した試料では285eV付近のπ*のピークが新品と比較して小さくなるが、NEXAFS法は絶対値測定が困難である。その理由は、光源からの試料の距離などの微妙な変化がX線吸収スペクトルの大きさに影響を与えるためである。以上の理由により、炭素原子のK殻吸収端のNEXAFS測定結果については、試料間の単純な比較ができない。
(式3−3)
(S2pのイオウ酸化物に帰属されるピーク面積)/(S2pに関係する全ピーク面積)×100=イオウ架橋劣化度(%)
これにより、劣化後のイオウ架橋部分の劣化度(%)が得られ、劣化率を分析できる。
これらの試料の高分子材料のS2p(イオウの2p軌道)におけるX線光電子スペクトルの測定結果を図3−3に示す。図3−3のように、劣化した試料では、S−S結合に対応するピークが減少し、イオウ酸化物(SOx)に対応するピークが増加することがわかる。従って、劣化品のS2pにおけるX線光電子スペクトルを、S−S結合、SOxの各ピークに波形分離し、SOxに帰属されるピーク面積とS2pに関係する全ピーク面積を上記(式3−3)に適用することでイオウ架橋劣化度(%)が求められる。
(式3−4)
(S1sのイオウ酸化物に帰属されるピーク面積)/(S1sに関係する全ピーク面積)×100=イオウ架橋劣化度(%)
これにより、劣化後のイオウ架橋部分の劣化度(%)が得られ、劣化率を分析できる。
これらの試料の高分子材料のS1s(イオウの1s軌道)におけるX線光電子スペクトルの測定結果を図3−4に示す。図3−4のように、劣化した試料では、S−S結合に対応するピークが減少し、イオウ酸化物(SOx)に対応するピークが増加することがわかる。従って、劣化品のS1sにおけるX線光電子スペクトルを、S−S結合、SOxの各ピークに波形分離し、SOxに帰属されるピーク面積とイオウに関係する全ピーク面積を上記(式3−4)に適用することでイオウ架橋劣化度(%)が求められる。
(式3−5)
[高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
実施例及び比較例に供した劣化後の試料は、以下のゴム材料、劣化条件により作成した。なお、NEXAFS法で測定するために、試料をミクロトームで100μm以下の厚みになるように加工した。その後、劣化以外の酸素の影響が現れないように、試料作成後は真空デシケータに保存した。
(ゴム材料)
IR:ニッポールIR 2200 日本ゼオン(株)製
BR:ウベポールBR 130B 宇部興産(株)製
SBR:ニッポール1502 日本ゼオン(株)製
NR:TSR20 海南中化ゴム有限会社製
北米走行品:北米で走行済みのタイヤ(NR及びBRのブレンドゴム)
中近東走行品:中近東で走行済みのタイヤ(NR及びBRのブレンドゴム)
(劣化条件)
オゾン劣化:40℃ 50pphm(1時間)
酸素劣化:80℃ 空気中(7日間)
NEXAFS:佐賀県立九州シンクロトロン光研究センターのBL12ビームライン付属のNEXAFS測定装置
XPS:Kratos社製 AXIS Ultra
なお、NEXAFSの測定条件は、以下のとおりであった。
輝度:5×1012photons/s/mrad2/mm2/0.1%bw
光子数:2×109photons/s
高輝度X線のエネルギーを260〜400eVの範囲で走査し、炭素原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である260〜350eVの範囲をもとに(式1−1)から規格化定数α、βを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルの285eV付近のπ*遷移に帰属されるピークを、Gauss関数を用いて各ポリマー成分の帰属ピークに波形分離した。帰属される各ピーク面積をもとに、(式1−2)から各ポリマー成分の劣化度(%)を求めた。
以上の分析から得られた結果を表1に示した。
実施例及び比較例に供した劣化後の試料は、以下のゴム材料、劣化条件により作成した。なお、XPEEM及びTEMで測定するために、試料をミクロトームで100μm以下の厚みになるように加工した。その後、劣化以外の酸素の影響が現れないように、試料作成後は真空デシケータに保存した。
(ゴム材料)
IR:ニッポールIR 2200 日本ゼオン(株)製
NR:TSR20 海南中化ゴム有限会社製
SBR:SBR1502 LG Chemical社製
北米走行品:北米で走行済みのタイヤ(NR及びSBRのブレンドゴム)
(劣化条件)
オゾン劣化:40℃ 50pphm(1時間)
XPEEM:SPring−8 BL17SUビームラインに付属の分光型光電子・低エネルギー電子顕微鏡(SPELEEM:Elmitec社製)
TEM:日本電子株式会社製のJEM2100F
なお、XPEEMの測定条件は、以下のとおりであった。
光子数:1×1011photons/s
各試料について、ブレンドしたポリマーごとの外観観察が可能であれば○で表した。
高輝度X線のエネルギーを260〜400eVの範囲で走査し、炭素原子のK殻吸収端における各ポリマー成分のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である260〜350eVの範囲をもとに(式2−1)から各ポリマー成分の規格化定数α、βを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、285eV付近のπ*遷移に帰属されるピーク面積をもとに(式2−2)から各ポリマー成分の劣化度(%)を求めた。
高輝度X線のエネルギーを500〜600eVの範囲で走査し、酸素原子のK殻吸収端における各ポリマー成分のX線吸収スペクトルを得た。このスペクトルを波形分離し、ピークトップが532eV以上532.7eV未満にある低エネルギー側ピークを酸素劣化、532.7eV以上534eV以下にある高エネルギー側ピークをオゾン劣化として、(式2−3)から各ポリマー成分の酸素劣化及びオゾン劣化の寄与率を算出した。
上記劣化率分析で得られた劣化後の炭素原子のK殻吸収端のX線吸収スペクトルをもとに(式2−4)から各ポリマー成分の規格化定数γを求めた。この定数を用いて(式2−5)から酸素原子のK殻吸収端の全面積を補正(規格化)し、酸素及びオゾンが各ポリマー成分に結合した量(劣化指標)を求めた。
以上の分析から得られた結果を表2に示した。
従って、第2の本発明は、タイヤなど、2種類以上のジエン系ポリマーを含む高分子材料の耐劣化対策などへの適用が期待できる。
実施例及び比較例に供した劣化後の試料は、以下のゴム材料、劣化条件により作成した。なお、NEXAFS法の測定の際には、試料をミクロトームで100μm以下の厚みになるように加工し、その後、劣化以外の酸素の影響が現れないように、試料作成後は真空デシケータに保存した。
(ゴム材料)
NR及びBRのブレンドゴム(イオウ架橋):TSR20 海南中化ゴム有限会社製、ウベポールBR 130B 宇部興産(株)製
中近東走行品:中近東で走行済みのタイヤ(NR及びBRのブレンドゴム(イオウ架橋)、サイドウォールを使用)
(劣化条件)
オゾン劣化:40℃ 50pphm
酸素劣化:80℃ 空気中
NEXAFS:佐賀県立九州シンクロトロン光研究センターのBL12ビームライン付属のNEXAFS測定装置
XPS:Kratos社製 AXIS Ultra
HAX−PES:SPring−8 BL46XUビームライン付属のHAX−PES装置
なお、NEXAFSの測定条件は、以下のとおりであった。
輝度:5×1012photons/s/mrad2/mm2/0.1%bw
光子数:2×109photons/s
X線のエネルギーを260〜400eVの範囲で走査し、炭素原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である260〜350eVの範囲をもとに(式3−1)から規格化定数α、βを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、285eV付近のπ*遷移に帰属されるピーク面積をもとに(式3−2)から高分子劣化度(%)を求めた。
なお、XPSの測定条件は、以下のとおりであった。
測定光源:Al(モノクロメータ)
照射X線のエネルギー:1486eV
測定出力:20kV×10mA
測定元素及び軌道:S2p
束縛エネルギー:163.6eV(S2p1/2)、162.5eV(S2p3/2)
上記の一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS2pに対応する光電子強度を測定したX線光電子スペクトルを得た。このスペクトルの160〜175eVの範囲について、164eV付近のS−S結合、168eV付近のSOxに対応するピークにそれぞれ波形分離し、得られたイオウ酸化物に帰属されるピーク面積と160〜175eVの範囲のイオウの全ピーク面積を用いて(式3−3)からイオウ架橋劣化度(%)を求めた。
なお、HAX−PESの測定条件は、以下のとおりであった。
測定光源:高輝度X線
照射X線のエネルギー:8keV
測定出力:1013photon/s
測定元素及び軌道:S1s
束縛エネルギー:2472eV
上記の一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS1sに対応する光電子強度を測定したX線光電子スペクトルを得た。このスペクトルの2465〜2480eVの範囲について、2470eV付近のS−S結合、2472eV付近のSOxに対応するピークにそれぞれ波形分離し、得られたイオウ酸化物に帰属されるピーク面積と2465〜2480eVの範囲のイオウの全ピーク面積を用いて(式3−4)からイオウ架橋劣化度(%)を求めた。
上記の高分子劣化度分析、イオウ架橋劣化度分析(方法1〜2)で求められた高分子劣化度、イオウ架橋劣化度の値を(式3−5)に適用して、高分子劣化とイオウ架橋劣化の寄与率を算出した。
Claims (14)
- 2種類以上のジエン系ポリマーを含む高分子材料に高輝度X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより、各ジエン系ポリマーの劣化状態を解析する劣化解析方法であって、
高輝度X線のエネルギーを260〜400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1−1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルにおいて、285eV付近のπ*遷移に帰属されるピークを波形分離し、各ピーク面積を用いて下記(式1−2)により各ジエン系ポリマーの劣化度を求める劣化解析方法。
(式1−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式1−2)
[1−[(劣化後の各ジエン系ポリマーのπ*の各ピーク面積)×β]/[(劣化前の各ジエン系ポリマーのπ*の各ピーク面積)×α]]×100=劣化度(%) - 高輝度X線は、輝度が1010(photons/s/mrad2/mm2/0.1%bw)以上である請求項1記載の劣化解析方法。
- ピーク面積に代えてピーク強度を用いる請求項1又は2記載の劣化解析方法。
- 2種類以上のジエン系ポリマーを含む高分子材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子材料の微小領域におけるX線吸収量を測定することにより、各ジエン系ポリマーの劣化状態を解析する劣化解析方法であって、
高輝度X線のエネルギーを260〜400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られる各ジエン系ポリマーのX線吸収スペクトルに基づいて下記(式2−1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ*遷移に帰属されるピーク面積を用いて下記(式2−2)により各ジエン系ポリマーの劣化度を求める劣化解析方法。
(式2−1)
[劣化前の試料におけるジエン系ポリマーAiのX線吸収スペクトルの全面積]×αAi=1
[劣化後の試料におけるジエン系ポリマーAiのX線吸収スペクトルの全面積]×βAi=1
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式2−2)
[1−[(劣化後のジエン系ポリマーAiのπ*のピーク面積)×βAi]/[(劣化前のジエン系ポリマーAiのπ*のピーク面積)×αAi]]×100=ジエン系ポリマーAiの劣化度(%)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。) - ピーク面積に代えてピーク強度を用いる請求項8記載の劣化解析方法。
- 2種類以上のジエン系ポリマーを含む高分子材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子材料の微小領域におけるX線吸収量を測定することにより、各ジエン系ポリマーの劣化状態を解析する劣化解析方法であって、
高輝度X線のエネルギーを500〜600eVの範囲で走査することによって得られる各ジエン系ポリマーの酸素原子のK殻吸収端におけるX線吸収スペクトルを波形分離し、ピークトップのエネルギーが532eV以上532.7eV未満にある低エネルギー側ピークを酸素劣化、532.7eV以上534eV以下の範囲にある高エネルギー側ピークをオゾン劣化とし、下記(式2−3)によって各ジエン系ポリマーの酸素劣化とオゾン劣化の寄与率を算出する劣化解析方法。
(式2−3)
[ジエン系ポリマーAiの酸素劣化のピーク面積]/[(ジエン系ポリマーAiのオゾン劣化のピーク面積)+(ジエン系ポリマーAiの酸素劣化のピーク面積)]×100=ジエン系ポリマーAiの酸素劣化寄与率(%)
[ジエン系ポリマーAiのオゾン劣化のピーク面積]/[(ジエン系ポリマーAiのオゾン劣化のピーク面積)+(ジエン系ポリマーAiの酸素劣化のピーク面積)]×100=ジエン系ポリマーAiのオゾン劣化寄与率(%)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。) - ピーク面積に代えてピーク強度を用いる請求項10記載の劣化解析方法。
- 2種類以上のジエン系ポリマーを含む高分子材料に高輝度X線を照射し、X線のエネルギーを変えながら該高分子材料の微小領域におけるX線吸収量を測定することにより、各ジエン系ポリマーの劣化状態を解析する劣化解析方法であって、
劣化後の各ジエン系ポリマーの炭素原子のK殻吸収端におけるX線吸収スペクトルに基づいて下記(式2−4)により規格化定数γを求め、該規格化定数γを用いて下記(式2−5)により各ジエン系ポリマーの酸素原子のK殻吸収端におけるX線吸収スペクトルの全面積を補正することにより、酸素及びオゾンが各ジエン系ポリマーに結合した量を求める劣化解析方法。
(式2−4)
[ジエン系ポリマーAiの炭素原子のK殻吸収端のX線吸収スペクトルの全面積]×γAi=1
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。)
(式2−5)
[ジエン系ポリマーAiの酸素原子のK殻吸収端のX線吸収スペクトルの全面積]×γAi=ジエン系ポリマーAiに酸素及びオゾンが結合した量(指数)
(Aiは高分子材料に含まれる各ジエン系ポリマーを表す。) - イオウ架橋させた高分子材料に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態、及び一定エネルギーのX線を照射し、励起・放出された光電子を測定することにより求めたイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法であって、X線のエネルギーを260〜400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式3−1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ*遷移に帰属されるピーク面積を用いて下記(式3−2)により高分子劣化度(%)を求める劣化解析方法。
(式3−1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式3−2)
[1−[(劣化後のπ*のピーク面積)×β]/[(劣化前π*のピーク面積)×α]]×100=高分子劣化度(%) - イオウ架橋させた高分子材料に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態、及び一定エネルギーのX線を照射し、励起・放出された光電子を測定することにより求めたイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法であって、一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS2pに対応する光電子強度を測定したX線光電子スペクトルを波形分離し、得られたイオウ酸化物に帰属されるピーク面積を用いて下記(式3−3)によりイオウ架橋劣化度(%)を求める劣化解析方法。
(式3−3)
(S2pのイオウ酸化物に帰属されるピーク面積)/(S2pに関係する全ピーク面積)×100=イオウ架橋劣化度(%) - イオウ架橋させた高分子材料に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態、及び一定エネルギーのX線を照射し、励起・放出された光電子を測定することにより求めたイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法であって、一定エネルギーのX線を照射することによって励起・放出された光電子を分光し、イオウS1sに対応する光電子強度を測定したX線光電子スペクトルを波形分離し、得られたイオウ酸化物に帰属されるピーク面積を用いて下記(式3−4)によりイオウ架橋劣化度(%)を求める劣化解析方法。
(式3−4)
(S1sのイオウ酸化物に帰属されるピーク面積)/(S1sに関係する全ピーク面積)×100=イオウ架橋劣化度(%) - 使用される一定エネルギーのX線のエネルギー範囲が2.5〜15keVである請求項17記載の劣化解析方法。
- ピーク面積に代えてピーク強度を用いる請求項15〜18のいずれかに記載の劣化解析方法。
- 下記(式3−5)によって高分子劣化とイオウ架橋劣化の寄与率を算出する請求項15〜19のいずれかに記載の劣化解析方法。
(式3−5)
[高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011242600 | 2011-11-04 | ||
JP2011242600 | 2011-11-04 | ||
JP2011260894 | 2011-11-29 | ||
JP2011260894 | 2011-11-29 | ||
JP2011268277 | 2011-12-07 | ||
JP2011268277 | 2011-12-07 | ||
PCT/JP2012/078421 WO2013065809A1 (ja) | 2011-11-04 | 2012-11-02 | 劣化解析方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2013065809A1 JPWO2013065809A1 (ja) | 2015-04-02 |
JP5964850B2 true JP5964850B2 (ja) | 2016-08-03 |
Family
ID=48192146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013541852A Active JP5964850B2 (ja) | 2011-11-04 | 2012-11-02 | 劣化解析方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9851342B2 (ja) |
EP (2) | EP2775294B1 (ja) |
JP (1) | JP5964850B2 (ja) |
KR (1) | KR20140085425A (ja) |
CN (2) | CN105806863B (ja) |
AU (1) | AU2012333461B2 (ja) |
BR (1) | BR112014010706A2 (ja) |
WO (1) | WO2013065809A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103712999B (zh) * | 2012-10-05 | 2018-08-17 | 住友橡胶工业株式会社 | 劣化分析法以及化学态测量法 |
JP5486073B1 (ja) * | 2012-12-06 | 2014-05-07 | 住友ゴム工業株式会社 | 劣化解析方法 |
JP5814277B2 (ja) * | 2013-01-31 | 2015-11-17 | 住友ゴム工業株式会社 | 破壊エネルギー予測方法及びゴム組成物 |
JP6219607B2 (ja) * | 2013-06-06 | 2017-10-25 | 住友ゴム工業株式会社 | 化学状態測定方法 |
JP6294623B2 (ja) * | 2013-10-01 | 2018-03-14 | 住友ゴム工業株式会社 | 高分子材料の寿命予測方法 |
JP2015132518A (ja) * | 2014-01-10 | 2015-07-23 | 住友ゴム工業株式会社 | 硫黄の化学状態を調べる方法 |
JP6348295B2 (ja) * | 2014-02-18 | 2018-06-27 | 住友ゴム工業株式会社 | 硫黄の化学状態を調べる方法 |
JP6371174B2 (ja) * | 2014-09-10 | 2018-08-08 | 住友ゴム工業株式会社 | 硫黄の化学状態を調べる方法 |
US9874530B2 (en) * | 2014-09-11 | 2018-01-23 | Sumitomo Rubber Industries, Ltd. | Method of measuring crosslink densities in sulfur-containing polymer composite material |
JP6367758B2 (ja) * | 2015-05-27 | 2018-08-01 | 住友ゴム工業株式会社 | 架橋ゴムの架橋疎密を評価する方法 |
JP6649737B2 (ja) * | 2015-10-09 | 2020-02-19 | 株式会社住化分析センター | 有機物試料の分析方法 |
JP6743477B2 (ja) * | 2016-05-02 | 2020-08-19 | 住友ゴム工業株式会社 | 加硫系材料分析方法 |
JP6870309B2 (ja) * | 2016-12-15 | 2021-05-12 | 住友ゴム工業株式会社 | 耐摩耗性能予測方法 |
JP6852538B2 (ja) * | 2017-04-18 | 2021-03-31 | 住友ゴム工業株式会社 | 力学物性測定方法 |
JP7296031B2 (ja) * | 2019-04-10 | 2023-06-22 | 凸版印刷株式会社 | パウチ |
JP7283198B2 (ja) * | 2019-04-16 | 2023-05-30 | コニカミノルタ株式会社 | 樹脂の劣化度評価試験方法、それを用いた樹脂のリサイクルシステム及び樹脂劣化度評価装置 |
RU2708899C1 (ru) * | 2019-05-10 | 2019-12-12 | федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" | Способ определения ёмкости хранения кислорода в оксидных материалах |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000137008A (ja) * | 1998-08-26 | 2000-05-16 | Nkk Corp | 鉄鋼製品および関連する原材料に含まれる元素の化学結合状態分析方法 |
JP2004099738A (ja) * | 2002-09-09 | 2004-04-02 | Sumitomo Rubber Ind Ltd | 木材腐朽菌による加硫ゴム組成物の分解処理方法 |
JP4723487B2 (ja) | 2003-06-02 | 2011-07-13 | エックス−レイ オプティカル システムズ インコーポレーテッド | X線吸収端近傍構造解析を実行するためのxanes解析システム及びその方法 |
JP5174060B2 (ja) | 2010-02-19 | 2013-04-03 | 株式会社クボタ | 歩行型草刈機 |
JP5256332B2 (ja) | 2010-12-16 | 2013-08-07 | 住友ゴム工業株式会社 | 劣化解析方法 |
-
2012
- 2012-11-02 AU AU2012333461A patent/AU2012333461B2/en not_active Ceased
- 2012-11-02 KR KR1020147006601A patent/KR20140085425A/ko not_active Application Discontinuation
- 2012-11-02 BR BR112014010706A patent/BR112014010706A2/pt not_active IP Right Cessation
- 2012-11-02 US US14/345,419 patent/US9851342B2/en not_active Expired - Fee Related
- 2012-11-02 WO PCT/JP2012/078421 patent/WO2013065809A1/ja active Application Filing
- 2012-11-02 EP EP12846530.9A patent/EP2775294B1/en active Active
- 2012-11-02 JP JP2013541852A patent/JP5964850B2/ja active Active
- 2012-11-02 CN CN201610135682.6A patent/CN105806863B/zh active Active
- 2012-11-02 CN CN201280053328.9A patent/CN103907015B/zh active Active
- 2012-11-02 EP EP16156260.8A patent/EP3054289B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105806863B (zh) | 2019-03-15 |
US20140349407A1 (en) | 2014-11-27 |
EP2775294B1 (en) | 2019-02-20 |
EP3054289A1 (en) | 2016-08-10 |
CN105806863A (zh) | 2016-07-27 |
US9851342B2 (en) | 2017-12-26 |
BR112014010706A2 (pt) | 2017-04-25 |
CN103907015B (zh) | 2018-01-30 |
AU2012333461B2 (en) | 2015-11-19 |
AU2012333461A1 (en) | 2014-03-27 |
EP2775294A4 (en) | 2015-09-02 |
KR20140085425A (ko) | 2014-07-07 |
EP3054289B1 (en) | 2019-01-09 |
WO2013065809A1 (ja) | 2013-05-10 |
CN103907015A (zh) | 2014-07-02 |
JPWO2013065809A1 (ja) | 2015-04-02 |
EP2775294A1 (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5964850B2 (ja) | 劣化解析方法 | |
JP5256332B2 (ja) | 劣化解析方法 | |
JP5486073B1 (ja) | 劣化解析方法 | |
JP6348295B2 (ja) | 硫黄の化学状態を調べる方法 | |
JP6219607B2 (ja) | 化学状態測定方法 | |
JP2018096905A (ja) | 耐摩耗性能予測方法 | |
JP6294623B2 (ja) | 高分子材料の寿命予測方法 | |
JP6374355B2 (ja) | 硫黄含有高分子複合材料における架橋密度の測定方法 | |
JP2015132518A (ja) | 硫黄の化学状態を調べる方法 | |
JP6371174B2 (ja) | 硫黄の化学状態を調べる方法 | |
JP6050174B2 (ja) | 劣化解析方法 | |
JP2014074697A (ja) | 劣化解析方法 | |
JP2020176900A (ja) | 高分子材料の硫黄架橋密度評価方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160614 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5964850 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |