JP5952533B2 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
JP5952533B2
JP5952533B2 JP2011143032A JP2011143032A JP5952533B2 JP 5952533 B2 JP5952533 B2 JP 5952533B2 JP 2011143032 A JP2011143032 A JP 2011143032A JP 2011143032 A JP2011143032 A JP 2011143032A JP 5952533 B2 JP5952533 B2 JP 5952533B2
Authority
JP
Japan
Prior art keywords
fluid
exhaust gas
ozone
injection nozzle
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011143032A
Other languages
English (en)
Other versions
JP2013011193A (ja
Inventor
吉弘 川田
吉弘 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2011143032A priority Critical patent/JP5952533B2/ja
Priority to CN201280011011.9A priority patent/CN103547774B/zh
Priority to US14/003,540 priority patent/US9021792B2/en
Priority to EP12756980.4A priority patent/EP2687694A4/en
Priority to PCT/JP2012/055606 priority patent/WO2012124531A1/ja
Publication of JP2013011193A publication Critical patent/JP2013011193A/ja
Application granted granted Critical
Publication of JP5952533B2 publication Critical patent/JP5952533B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジンの排ガスに含まれる窒素酸化物(NOx)を低減して排ガスを浄化する装置に関するものである。
従来、この種の排ガス浄化装置として、内燃機関の排気通路にNOx保持材が配置され、排気通路にオゾンを導入するオゾン導入手段がNOx保持材より上流の排気通路に配置され、NOx保持材より下流の排気通路に3元触媒が配置され、この3元触媒に比して低い温度で活性が発現するように調製された選択還元型触媒が3元触媒より上流に配置され、更に選択還元型触媒の上流の排ガスに酸素を導入する酸素導入手段が選択還元型触媒の上流に配置された内燃機関の排気ガス浄化装置が開示されている(例えば、特許文献1参照。)。
このように構成された内燃機関の排気ガス浄化装置では、選択還元型触媒が3元触媒に比して低い温度で活性化するように調製されているため、リーン雰囲気下においてNOxとHC(炭化水素)とを反応させ浄化する機能を有する。この結果、3元触媒が活性する前に、NOx保持材に吸蔵或いは吸着できなかったNOxを効果的に浄化することができ、NOxの浄化性能を向上できる。また、選択還元型触媒が3元触媒の上流に配置されているため、内燃機関の冷間始動時に、選択還元型触媒の活性を逸早く発現させることができ、3元触媒の活性がある程度発現した後は、選択還元型触媒で浄化されなかったNOxを3元触媒で浄化処理できる。この結果、NOx浄化性能を向上できるようになっている。
特開2008−163881号公報(請求項1、段落[0014]、段落[0015]、図8)
しかし、上記従来の特許文献1に示された内燃機関の排気ガス浄化装置では、選択還元型触媒でHC(炭化水素)によりNOxを浄化しているため、排ガス温度が低いときのNOxの低減効率が未だ低かった。
本発明の目的は、排ガス温度が低いときであってもNOxを効率良く低減でき、殆ど全ての排ガス温度領域でNOxを効率良く低減できる、排ガス浄化装置を提供することにある。
本発明の第1の観点は、図1〜図3に示すように、エンジン11の排気管16に設けられ排ガス中のNOxをN2に還元可能な選択還元型触媒19と、選択還元型触媒19より排ガス上流側の排気管16に臨む流体噴射ノズル23を有しこの流体噴射ノズル23から選択還元型触媒19で還元剤として機能する尿素系流体21を排気管16に供給する流体供給手段22と、空気中の酸素を用いてオゾンを発生するオゾン発生装置40と、選択還元型触媒19より排ガス上流側であって流体噴射ノズル23より排ガス上流側又は排ガス下流側の排気管16に臨みオゾン発生装置40で発生したオゾンを排気管16に噴射するオゾン噴射ノズル33を有しこのオゾン噴射ノズル33から排ガス中のNOをNO2に酸化可能なオゾンを排気管16に供給するオゾン供給手段32と、流体噴射ノズル23及びオゾン噴射ノズル33より排ガス上流側の排気管16に設けられ排ガス中のNOを所定の排ガス温度以上でNO2に酸化可能な酸化触媒62とを備えた排ガス浄化装置であって、流体供給手段22が、選択還元型触媒19より排ガス上流側の排気管16に臨む流体噴射ノズル23と、尿素系流体21が貯留された流体タンク26と、この流体タンク26内の尿素系流体21を流体噴射ノズル23に圧送するポンプ27と、流体噴射ノズル23から噴射される尿素系流体21の供給量を調整する流体供給量調整弁28とを有し、流体供給量調整弁28が、流体噴射ノズル23への尿素系流体21の供給圧力を調整する流体圧力調整弁29と、流体噴射ノズル23の基端を開閉する流体用開閉弁30とからなり、オゾン発生装置40が、空気を圧縮するコンプレッサ41と、このコンプレッサ41により圧縮された圧縮空気を乾燥させるドライヤ42と、このドライヤ42により乾燥された圧縮空気中の酸素の一部をオゾンに変換するオゾン発生器43と、ドライヤ42とオゾン発生器43との間に設けられドライヤ42により乾燥された圧縮空気を酸素濃度の高い酸素富化ガスと窒素濃度の高い窒素富化ガスとに分離する空気分離器44とを有し、選択還元型触媒19より排ガス上流側に設けられこの選択還元型触媒19に流入する直前の排ガスの温度を検出する温度センサ64と、エンジン11の回転速度を検出する回転センサ66と、エンジン11の負荷を検出する負荷センサ67と、温度センサ64、回転センサ66及び負荷センサ67の各検出出力に基づいてポンプ27、流体圧力調整弁29、流体用開閉弁30、コンプレッサ41及びオゾン発生器43をそれぞれ制御するコントローラ68とを更に備え、エンジン11の始動直後又はエンジン11の軽負荷運転時の選択還元型触媒19に流入する直前の排ガス温度が160〜200℃の範囲内の所定の温度未満と低いとき、コントローラ68は、コンプレッサ41を駆動し、オゾン発生器43を作動させることにより、オゾンガスをオゾン噴射ノズル33から排気管16に噴射するとともに、ポンプ27を駆動し、流体圧力調整弁29を開き、流体用開閉弁30を開閉させることにより、尿素系流体21を流体噴射ノズル23から排気管16に間欠的に噴射し、選択還元型触媒19に流入する直前の排ガス温度が160〜200℃の範囲内の所定の温度以上に高くなると、コントローラ68は、コンプレッサ41及びオゾン発生器43を停止させることにより、オゾンガスのオゾン噴射ノズル33からの噴射を停止するとともに、ポンプ27を駆動し、流体圧力調整弁29を開き、流体用開閉弁30を開閉させることにより、尿素系流体21を流体噴射ノズル23から排気管16に間欠的に噴射するように構成されたことを特徴とする。
本発明の第2の観点は、第1の観点に基づく発明であって、更に図2及び図3に示すように、空気分離器44で分離された酸素富化ガス中の酸素の一部をオゾン発生器43に導入してオゾン発生器43によりオゾンに変換し、空気分離器44で分離された窒素富化ガスによりドライヤ42内の水分を除去してドライヤ42を再生するように構成されたことを特徴とする。
本発明の第3の観点は、第1の観点に基づく発明であって、更に図2、図3及び図6に示すように、空気分離器44が酸素富化膜44aにより構成され、酸素富化ガスはドライヤ42により乾燥された圧縮空気が酸素富化膜44aを通過することにより生成され、窒素富化ガスはドライヤ42により乾燥された圧縮空気が酸素富化膜44aを通過せずに素通りすることにより生成されることを特徴とする。
本発明の第4の観点は、第2又は第3の観点に基づく発明であって、更に図2及び図3に示すように、空気分離器44で分離された窒素富化ガスがパージ管46を通ってドライヤ42に供給されるように構成され、パージ管46にこのパージ管46を通過する窒素富化ガスの流量を調整する流量調整弁49が設けられたことを特徴とする。
本発明の第5の観点は、第1ないし第4の観点に基づく発明であって、更に図2及び図3に示すように、コンプレッサ41とドライヤ42との間にコンプレッサ41で圧縮された圧縮空気を貯留するエアタンク48が設けられたことを特徴とする。
本発明の第6の観点は、第1の観点に基づく発明であって、更に図1に示すように、尿素系流体21がアンモニアガス又は尿素水のいずれかであることを特徴とする。
本発明の第7の観点は、第1の観点に基づく発明であって、更に図1に示すように、選択還元型触媒19がハニカム担体にゼオライト又はジルコニアをコーティングして構成されたことを特徴とする。
本発明の第8の観点は、第1の観点に基づく発明であって、更に図1に示すように、流体噴射ノズル23及びオゾン噴射ノズル33より排ガス上流側であって酸化触媒62より排ガス下流側の排気管16に排ガス中のパティキュレートを捕集するパティキュレートフィルタ63が設けられたことを特徴とする。
本発明の第1の観点の排ガス浄化装置では、オゾン供給手段のオゾン噴射ノズルからオゾンを排気管に供給すると、排ガス中のNOxのうちNOがオゾンと反応して速やかに反応性の高いNO2になり、この反応性の高いNO2が、流体供給手段の流体噴射ノズルから排気管に供給された尿素系流体とともに選択還元型触媒に流入すると、排ガス温度が低いときであっても、反応性の高いNO2が選択還元型触媒で尿素系流体と選択還元反応が進行してN2に還元される。この結果、排ガス温度が低いときであっても、NOxを効率良く低減できる。一方、排ガス温度が所定の温度以上になると、酸化触媒が排ガス中のNOを反応性の高いNO2に酸化するので、この反応性の高いNO2が、流体供給手段の流体噴射ノズルから排気管に供給された尿素系流体とともに選択還元型触媒に流入すると、排ガス温度が高くなっても、反応性の高いNO2が選択還元型触媒で尿素系流体と選択還元反応が進行してN2に還元される。この結果、排ガス温度が高くなっても、NOxを効率良く低減できる。従って、殆ど全ての排ガス温度領域でNOxを効率良く低減できる。
本発明の第2の観点の排ガス浄化装置では、空気分離器で分離された酸素富化ガス中の酸素の一部をオゾン発生器に導入してオゾン発生器によりオゾンに変換し、空気分離器で分離された窒素富化ガスによりドライヤ内の水分を除去してドライヤを再生するので、ドライヤを効率良く再生できる。即ち、コンプレッサにより圧縮された空気がドライヤを再生するために直接用いられずに済むので、コンプレッサにより圧縮された空気の消費量を抑制できる。この結果、コンプレッサの吐出容量を低減できるので、コンプレッサの小型化を図ることができる。また、酸素富化ガスを増加させると、ドライヤで除去される圧縮空気中の水分量も増えるけれども、空気分離器で分離される窒素富化ガスも増加するので、この増加した窒素富化ガスによりドライヤ内の増加した水分を除去できる。この結果、酸素富化ガスが増減しても、この増減に伴って窒素富化ガスも増減するため、ドライヤを効率良く再生できる。
本発明の第3の観点の排ガス浄化装置では、空気分離器を酸素富化膜により構成し、ドライヤにより乾燥された圧縮空気が酸素富化膜を通過することにより酸素富化ガスを生成され、ドライヤにより乾燥された圧縮空気が酸素富化膜を通過せずに素通りすることにより窒素富化ガスを生成するので、炭化水素が存在し、この炭化水素が酸素富化膜に付着しても或いは付着しなくても、酸素富化膜により酸素富化ガス及び窒素富化ガスが確実に分離される。この結果、炭化水素が酸素富化膜に付着するか否かに拘らず、酸素富化膜による酸素富化ガス及び窒素富化ガスの分離性能が低下することはない。
本発明の第4の観点の排ガス浄化装置では、空気分離器で分離された窒素富化ガスをドライヤに供給するパージ管に流量調整弁を設けている。この結果、コンプレッサを定格運転に維持した状態で、パージ管を通過する窒素富化ガスの流量を流量調整弁で調整するだけで、酸素富化ガスの流量をも調整できる。更に、コンプレッサで圧縮された圧縮空気の圧力を調整するレギュレータを用いずに済み、また圧縮空気を一時的に貯留するバッファタンクやサージタンクを用いずに済むので、オゾン発生装置を比較的少ない部品で構成できるとともに、圧縮空気の流路抵抗を低減できるので、コンプレッサを更に小型化できる。
本発明の第5の観点の排ガス浄化装置では、コンプレッサとドライヤとの間にコンプレッサで圧縮された圧縮空気を貯留するエアタンクを設けたので、酸素富化ガス及び窒素富化ガスの流量を急激に変化させても、空気分離器に十分な量の圧縮空気を供給できるとともに、圧縮空気の圧力変動を緩和できる。
本発明実施形態の排ガス浄化装置を示す構成図である。 その排ガス浄化装置に用いられるオゾン発生装置のエア回路構成図である。 そのオゾン発生装置を示す図4のA−A線断面図である。 そのオゾン発生装置を示す図3のB−B線断面図である。 ドライヤの水蒸気分離膜を構成する中空糸の要部拡大断面図である。 空気分離器の酸素富化膜を構成する中空糸の要部拡大断面図である。 尿素系流体が尿素水でありかつオゾンの添加量を変えた実施例1、実施例2及び比較例1の排ガス浄化装置を用いたときの排ガス温度の変化に伴うNOx低減率の変化を示す図である。 尿素系流体がアンモニアガスでありかつオゾンの添加量を変えた実施例3、実施例4及び比較例2の排ガス浄化装置を用いたときの排ガス温度の変化に伴うNOx低減率の変化を示す図である。
次に本発明を実施するための形態を図面に基づいて説明する。図1に示すように、エンジン11の吸気ポートには吸気マニホルド12を介して吸気管13が接続され、排気ポートには排気マニホルド14を介して排気管16が接続される。吸気管13には、ターボ過給機17のコンプレッサハウジング17aと、ターボ過給機17により圧縮された吸気を冷却するインタクーラ18とがそれぞれ設けられ、排気管16にはターボ過給機17のタービンハウジング17bが設けられる。コンプレッサハウジング17aにはコンプレッサ回転翼(図示せず)が回転可能に収容され、タービンハウジング17bにはタービン回転翼(図示せず)が回転可能に収容される。コンプレッサ回転翼とタービン回転翼とはシャフト(図示せず)により連結され、エンジン11から排出される排ガスのエネルギによりタービン回転翼及びシャフトを介してコンプレッサ回転翼が回転し、このコンプレッサ回転翼の回転により吸気管内の吸入空気が圧縮されるように構成される。
排気管16の途中には選択還元型触媒19が設けられる。選択還元型触媒19は排気管16より大径のケース20に収容される。選択還元型触媒19はモノリス触媒であって、コージェライト製のハニカム担体に、ゼオライト又はジルコニアをコーティングして構成される。ゼオライトとしては、銅ゼオライト、鉄ゼオライト、亜鉛ゼオライト、コバルトゼオライト等が挙げられる。銅ゼオライトからなる選択還元型触媒19は、銅をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして構成される。また鉄ゼオライト、亜鉛ゼオライト又はコバルトゼオライトからなる選択還元型触媒19は、鉄、亜鉛又はコバルトをイオン交換したゼオライト粉末を含むスラリーをハニカム担体にそれぞれコーティングして構成される。更にジルコニアからなる選択還元型触媒19は、ジルコニアを担持させたγ−アルミナ粉末又はθ−アルミナ粉末を含むスラリーをハニカム担体にコーティングして構成される。
一方、選択還元型触媒19より排ガス上流側の排気管16には、この排気管16に尿素系流体21を供給する流体供給手段22が設けられる。流体供給手段22は、選択還元型触媒19より排ガス上流側の排気管16に臨む流体噴射ノズル23と、流体噴射ノズル23に先端が接続された流体供給管24と、この流体供給管24の基端に接続され尿素系流体21が貯留された流体タンク26と、この流体タンク26内の尿素系流体21を流体噴射ノズル23に圧送するポンプ27と、流体噴射ノズル23から噴射される尿素系流体21の供給量(噴射量)を調整する流体供給量調整弁28とを有する。上記尿素系流体21は、選択還元型触媒19で還元剤として機能するアンモニアガス又は尿素水のいずれかである。また上記ポンプ27は流体噴射ノズル23と流体タンク26との間の流体供給管24に設けられ、流体供給量調整弁28は流体噴射ノズル23とポンプ27との間の流体供給管24に設けられる。更に流体供給量調整弁28は、流体供給管24に設けられ流体噴射ノズル23への尿素系流体21の供給圧力を調整する流体圧力調整弁29と、流体噴射ノズル23の基端に設けられ流体噴射ノズル23の基端を開閉する流体用開閉弁30とからなる。
流体圧力調整弁29は第1〜第3ポート29a〜29cを有する三方弁であり、第1ポート29aはポンプ27の吐出口に接続され、第2ポート29bは流体用開閉弁30に接続され、第3ポート29cは戻り管31を介して流体タンク26に接続される。流体圧力調整弁29を駆動すると、ポンプ27により圧送された尿素系流体21が第1ポート29aから流体圧力調整弁29に流入し、この流体圧力調整弁29で所定の圧力に調整された後、第2ポート29bから流体用開閉弁30に圧送される。また流体圧力調整弁29の駆動を停止すると、ポンプ27により圧送された尿素系流体21が第1ポート29aから流体圧力調整弁29に流入した後、第3ポート29cから戻り管31を通って流体タンク26に戻される。
一方、選択還元型触媒19より排ガス上流側の排気管16には、この排気管16に排ガス中のNOをNO2に酸化可能なオゾンを供給するオゾン供給手段32が設けられる。オゾン供給手段32は、選択還元型触媒19より排ガス上流側であって更に流体噴射ノズル23より排ガス上流側の排気管16に臨むオゾン噴射ノズル33と、先端がオゾン噴射ノズル33に接続され基端がオゾン発生装置40に接続されたオゾン供給管34とを有する。
上記オゾン発生装置40は、図2〜図4に示すように、空気を圧縮するコンプレッサ41と、このコンプレッサ41により圧縮された圧縮空気を乾燥させるドライヤ42と、このドライヤ42により乾燥された圧縮空気中の酸素の一部をオゾンに変換するオゾン発生器43とを有する。コンプレッサ41は、この実施の形態では、直流電圧24Vのバッテリで駆動されるように構成される。なお、この実施の形態では、コンプレッサを直流電圧24Vのバッテリで駆動したが、コンプレッサを、エンジンのクランク軸で駆動したり、或いはハイブリッド車であれば直流電圧200〜300Vのバッテリで駆動してもよい。
ドライヤ42は、水蒸気(水分)を透過し易くかつ空気を透過し難い水蒸気分離膜42a(図5)を筒状のハウジング42dに収容して構成される。この水蒸気分離膜42aは、例えば膜厚100μm、外径500μm及び長さ450mmの芳香族ポリイミドの非対称性中空糸42b(中央に通孔42cが形成され、膜厚方向に非対称の粗密構造を有する中空糸42b)を束ねて形成され、ハウジング42dにその長手方向に延びて収容される(図2〜図4)。またハウジング42dの下面には、コンプレッサ41により圧縮された空気を導入する空気導入口42eが形成され、ハウジング42dの上面には、ドライヤ42により乾燥された圧縮空気を排出する空気排出口42fが形成される(図3)。空気導入口42eは水蒸気分離膜42aの各中空糸42bの下端に接続され、空気排出口42fは水蒸気分離膜42aの各中空糸42bの上端に接続され、これにより空気導入口42e及び空気排出口42fは各中空糸42bの通孔42cに連通接続される。更にハウジング42dの側壁上部には、後述する窒素富化ガスをパージガスとして導入するパージガス導入口42gが形成され、ハウジング42dの側壁下部には、パージガスである窒素富化ガスを水蒸気(水分)とともに排出するパージガス排出口42hが形成される。そしてパージガス導入口42gから導入された窒素富化ガスは水蒸気分離膜42aの中空糸42bの外周面を通過してパージガス排出口42hから排出されるように構成される。
ここで、水蒸気分離膜42aの各中空糸42bの通孔42c(通孔42cの内径は例えば300μmに形成される。)を、水蒸気(水分)の含まれる圧縮空気が流れると、中空糸42bの膜の内面側及び外面側に存在する水蒸気分圧の差を駆動力として、通孔42cを流れる圧縮空気中の水蒸気が、水蒸気分圧の高い中空糸42bの膜の内面側から水蒸気分圧の低い中空糸42bの膜の外面側へ透過するため、中空糸42bの通孔42cを流れる圧縮空気中の水蒸気が減少し、乾燥した圧縮空気が空気排出口42fから排出されるようになっている。
オゾン発生器43は、この実施の形態では、無声放電型のものが用いられる(図2及び図3)。具体的には、オゾン発生器43は、図示しないが所定の間隔をあけて互いに平行に配設されかつ一方若しくは双方が誘電体で覆われた一対の電極間に高周波高電圧を印加してプラズマ放電を発生させ、このプラズマ放電によりエアに含まれる酸素の一部をオゾンに変換するように構成される。
一方、ドライヤ42とオゾン発生器43との間には、空気分離器44が設けられる(図2及び図3)。この空気分離器44は、空気中の窒素ガスより酸素ガスを透過し易い性質を有する酸素富化膜44a(図6)を筒状のハウジング44dに収容して構成される。酸素富化膜44aは、ドライヤ42により乾燥された圧縮空気を酸素濃度の高い酸素富化ガスと窒素濃度の高い窒素富化ガスとに分離するように構成される。具体的には、酸素富化膜44aは、窒素ガスと比較して酸素ガスを選択的に透過する高分子からなり中央に通孔44cが形成された中空糸44bを束ねて形成され、ハウジング44dにその長手方向に延びて収容される。また酸素富化膜44aを構成する中空糸44bは、酸素ガスと窒素ガスの分離度が大きいガラス状高分子により形成されることが好ましく、酸素ガスと窒素ガスの分離度が特に大きく、機械的強度、耐熱性及び耐久性などに優れるポリイミドにより形成されることが更に好ましい。また酸素富化膜44aを構成する中空糸44bの膜は、膜厚方向に密度が均一な均質膜であってもよく、或いは内径、外径及び密度の異なる複数の中空糸を嵌挿することにより膜厚方向に密度が不均一に形成された複合膜を用いてもよいが、膜厚方向に非対称の粗密構造を有することにより透過速度が大きい非対称膜を用いることが好ましい。更に中空糸44bの膜厚は10μm〜500μmの範囲に設定され、中空糸44bの外径は50μm〜2000μmの範囲に設定されることが好ましい。
酸素富化膜44aを収容するハウジング44dの上面には、ドライヤ42により乾燥された圧縮空気を導入する乾燥空気導入口44eが形成され、ハウジング44dの下面には、空気分離器44により分離された窒素富化ガスを排出する窒素富化ガス排出口44fが形成される(図3)。乾燥空気導入口44eは酸素富化膜44aの各中空糸44bの上端に接続され、窒素富化ガス排出口44fは酸素富化膜44aの各中空糸44bの下端に接続され、これにより乾燥空気導入口44e及び窒素富化ガス排出口44fは各中空糸44bの通孔44cに連通接続される。また酸素富化膜44aを収容するハウジング44dの側壁下部には、酸素富化ガスを排出する酸素富化ガス排出口44gが形成される。酸素富化膜44aの中空糸44bの膜を通過することにより、酸素濃度が高くなった酸素富化ガスは酸素富化ガス排出口44gから排出されるように構成される。
ここで、酸素富化膜44aにより酸素濃度の高い酸素富化ガスと窒素濃度の高い窒素富化ガスとに分離される原理を説明する。酸素富化膜44aの各中空糸44bの通孔44cを、乾燥した圧縮空気が流れると、中空糸44bの膜が熱振動して気体が通過する隙間が形成されるため、圧縮空気中の酸素分子や窒素分子が上記隙間に取込まれる。このとき酸素富化膜44aの厚さは比較的薄く形成され、酸素分子が中空糸44bの膜を透過する速度は窒素分子が中空糸44bの膜を透過する速度より約2.5倍大きいため、酸素分子が分圧の高い中空糸44bの膜の内面側から分圧の低い中空糸44bの外面側に速やかに透過する。これにより中空糸44bの膜の外面側の酸素濃度が高くなり、中空糸44bの膜の内面側の酸素濃度が低くなる。この結果、酸素富化ガスは圧縮空気が酸素富化膜44aを通過することにより生成され、窒素富化ガスは圧縮空気が酸素富化膜44aを通過せずに素通りすることにより生成される。なお、上記熱振動により中空糸44bの膜に形成される隙間は5nm程度である。
一方、コンプレッサ41の吐出口は第1供給管51によりドライヤ42の空気導入口42eに接続され、ドライヤ42の空気排出口42fは第2供給管52により空気分離器44の乾燥空気導入口44eに接続される(図2〜図4)。また空気分離器44の酸素富化ガス排出口44gは第3供給管53によりオゾン発生器43の酸素富化ガス導入口43aに接続され、オゾン発生器43のオゾン排出口43bには第4供給管54の一端が接続される。また空気分離器44の窒素富化ガス排出口44fはパージ管46によりドライヤ42のパージガス導入口42gに接続され、ドライヤ42のパージガス排出管42hにはドレン管47の一端が接続される。更に第1供給管51にはコンプレッサ41で圧縮された圧縮空気を貯留するエアタンク48が設けられ、パージ管46にはこのパージ管46を通過する窒素富化ガスの流量を調整する流量調整弁49が設けられる。上記エアタンク48は、酸素富化ガス及び窒素富化ガスの流量を急激に変化させても、空気分離器44に十分な量の圧縮空気を供給するとともに、圧縮空気の圧力変動を緩和するために設けられる。なお、図2及び図3の符号56は第4供給管54に設けられた逆止弁である。この逆止弁56は、オゾン発生器43から後述のオゾン噴射ノズル33にオゾンガスが流れるのを許容し、オゾン噴射ノズル33からオゾン発生器43にオゾンガスが流れるのを阻止するように構成される。また、図4中の符号57はオゾン発生器13に電力を供給するための高電圧電源装置であり、図3及び図4の符号58はオゾン発生装置40の各部材を収容する筐体である。更に、図3中の符号59,59はオゾン発生器43を冷却するファンである。
図1に戻って、オゾン噴射ノズル33より排ガス上流側の排気管16にはケース61が設けられ、このケース61には排ガス上流側から順に酸化触媒62とパティキュレートフィルタ63が収容される。酸化触媒62はモノリス触媒であって、コージェライト製のハニカム担体に白金ゼオライト、白金アルミナ、又は白金−パラジウムアルミナ等の貴金属系触媒をコーティングして構成される。具体的には、白金ゼオライトからなる酸化触媒62は、白金をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして構成される。また白金アルミナからなる酸化触媒62は、白金を担持させたγ−アルミナ粉末又はθ−アルミナ粉末を含むスラリーをハニカム担体にコーティングして構成される。更に白金−パラジウムアルミナからなる酸化触媒62は、白金及びパラジウムを担持させたγ−アルミナ粉末又はθ−アルミナ粉末を含むスラリーをハニカム担体にコーティングして構成される。上記酸化触媒62により排ガス中のNOが所定の排ガス温度以上でNO2に酸化されるように構成される。ここで、所定の排ガス温度は、160〜200℃の範囲内の所定の温度、好ましくは170〜190℃の範囲内の所定の温度、更に好ましくは180℃である。このように所定の排ガス温度に幅を持たせたのは、酸化触媒62のハニカム担体にコーティングされる貴金属の種類によって活性温度(NOのNO2への酸化開始温度)が異なるからである。
パティキュレートフィルタ63は、図示しないが、コージェライトのようなセラミックスからなる多孔質の隔壁で仕切られた多角形断面を有する。このフィルタ63はこれらの隔壁により多数の互いに平行に形成された貫通孔の相隣接する入口部と出口部を封止部材により交互に封止することにより構成される。このフィルタ63では、フィルタ63の入口部から導入されたエンジン11の排ガスが多孔質の隔壁を通過する際に、この排ガスに含まれるパティキュレートが捕集されて、出口部から排出されるようになっている。
一方、選択還元型触媒19より排ガス上流側のケース20には、選択還元型触媒19に流入する直前の排ガスの温度を検出する温度センサ64が設けられる。またエンジン11の回転速度は回転センサ66により検出され、エンジン11の負荷は負荷センサ67により検出される。温度センサ64、回転センサ66及び負荷センサ67の各検出出力はコントローラ68の制御入力に接続され、コントローラ68の制御出力は高電圧電源装置57、流量調整弁49、オゾン発生器43、ポンプ27、流体圧力調整弁29、及び流体用開閉弁30にそれぞれ接続される。コントローラ68にはメモリ69が設けられる。このメモリ69には、エンジン回転速度、エンジン負荷、選択還元型触媒19入口の排ガス温度に応じた、コンプレッサ41の作動の有無、流量調整弁49の開度、高電圧電源装置57により駆動されるオゾン発生器43の作動の有無、ポンプ27の作動の有無、流体圧力調整弁29の開度、流体用開閉弁30の単位時間当たりの開閉回数が予め記憶される。またメモリ69には、エンジン回転速度及びエンジン負荷の変化に基づく、エンジン11から排出される排ガス中のNO及びNO2の流量の変化がそれぞれマップとして記憶される。なお、エンジン11から排出される排ガス中のNO対NO2の流量比はエンジン11の種類によって異なるため、上記マップはエンジン11の種類毎に変更される。
このように構成された排ガス浄化装置の動作を説明する。エンジン11の始動直後やエンジン11の軽負荷運転時には、排ガス温度が180℃未満と低い。ここで、180℃未満としたのは、180℃以上になると、排気管16にオゾンガスを供給しなくても、酸化触媒62が活性化して、排ガス中のNOが酸化触媒62によりNO2に酸化されるからである。このため、上記180℃という温度は一例であって、酸化触媒62のハニカム担体にコーティングされる貴金属の種類を変更した場合には、上記温度を変更する必要あるが、この温度は、160〜200℃の範囲内の所定の温度、好ましくは170〜190℃の範囲内の所定の温度に設定される。排ガス温度が180℃未満と低いことを温度センサ64が検出し、回転センサ66及び負荷センサ67がエンジン11の無負荷運転又は軽負荷運転を検出すると、コントローラ68は温度センサ64、回転センサ66及び負荷センサ67の各検出出力に基づいて、コンプレッサ41を駆動し、流量調整弁49を所定の開度で開き、高電圧電源装置57によりオゾン発生器43を作動させるとともに、ポンプ27を駆動し、流体圧力調整弁29を所定の開度で開き、流体用開閉弁30を開閉させる。コンプレッサ41が駆動されると、空気が圧縮されてエアタンク48に貯留される。この圧縮空気はドライヤ42で水蒸気(水分)が除去されて乾燥し、この乾燥した圧縮空気は空気分離器44で酸素濃度の高い酸素富化ガスと窒素濃度の高い窒素富化ガスに分離される。空気分離器44で分離された酸素富化ガスはオゾン発生器43に供給され、酸素富化ガス中の酸素の一部がオゾン発生器43でオゾンに変換され、このオゾンガスは第4供給管54及びオゾン供給管34を通ってオゾン噴射ノズル33に供給される。一方、空気分離器44で分離された窒素富化ガスはパージ管46を通ってドライヤ42に供給され、ドライヤ42で分離された水蒸気(水分)とともにドレン管47から排出される。このように、オゾンを発生するために必要な酸素富化ガスを用いずに、オゾンを発生するために不要な窒素富化ガスを用いて、ドライヤ42が再生されるので、ドライヤ42を効率良く再生できる。またコンプレッサ41により圧縮された空気を、ドライヤ42を再生するために直接用いずに済むので、コンプレッサ41により圧縮された空気の消費量を抑制できる。この結果、コンプレッサ41の吐出容量を低減できるので、コンプレッサ41の小型化を図ることができる。
また、酸素富化ガスを増加させると、ドライヤ42で除去される圧縮空気中の水蒸気量(水分量)も増えるけれども、この場合、流量調整弁49の開度を大きくするため、空気分離器44で分離される窒素富化ガスも増加するので、この増加した窒素富化ガスによりドライヤ42内の増加した水蒸気(水分)を除去できる。この結果、酸素富化ガスが増減しても、この増減に伴って窒素富化ガスも増減するため、ドライヤ42を効率良く再生できる。またコンプレッサ41で圧縮された圧縮空気の圧力を調整するレギュレータを用いずに済むので、オゾン発生装置40を比較的少ない部品で構成できるとともに、圧縮空気の流路抵抗を低減できるので、コンプレッサ41を更に小型化できる。またコンプレッサ41で圧縮された圧縮空気中に炭化水素が存在し、この炭化水素が酸素富化膜44aに付着しても或いは付着しなくても、酸素富化膜44aにより酸素富化ガス及び窒素富化ガスを確実に分離できる。この結果、炭化水素が酸素富化膜44aに付着するか否かに拘らず、酸素富化膜44aによる酸素富化ガス及び窒素富化ガスの分離性能が低下することはない。
一方、オゾン噴射ノズル33に供給されたオゾンガスはオゾン噴射ノズル33から排気管16に噴射(供給)される。ここで、排気管16にオゾンガスを供給するのは、排ガス中のNOの一部を反応性の高いNO2にオゾンガスにより変換して、選択還元型触媒19に導入される排ガス中のNO対NO2の流量比を、選択還元型触媒19における尿素系流体21によるNO及びNO2のN2への還元反応が最も速く進む割合の1対1に近付けるためである。そこで、コントローラ68は、メモリ69に記憶されたマップに基づいて、エンジン11から排出された排ガス中のNO対NO2の流量比を求め、選択還元型触媒19に導入されるNO対NO2の流量比を1対1に近付けるように、上記オゾンガスの排気管16への供給流量を設定する。上記オゾンガスが排気管16に供給されると、次の式(1)に示すように、オゾン(O3)により排ガス中のNOの一部がNO2に速やかに変換される。
3+NO → O2+NO2 ……(1)
一方、ポンプ27が駆動され、流体圧力調整弁29が所定の開度で開かれ、流体用開閉弁30が開閉されると、尿素系流体21が流体供給管24を通って排気管16に間欠的に噴射(供給)される。ここで、排気管16に尿素系流体21を供給するのは、排ガス中のNOx(NO及びNO2)をN2に還元する還元剤として機能させるためである。エンジン11から排出された排ガス中に既に含まれているNO及びNO2と、この排ガス中のNOの一部がオゾンにより酸化されたNO2と、尿素系流体21とが選択還元型触媒19に導入されると、排ガス温度が180℃未満と低いときであっても、反応性の高いNO2が選択還元型触媒19で尿素系流体21と選択還元反応が進行してN2に還元される。この結果、排ガス温度が低いときであってもNOxを効率良く低減できる。なお、酸化触媒62は、排ガス温度が180℃未満と低いときには活性化せず、NOをNO2に酸化する機能を発揮しない。
選択還元型触媒19における具体的な化学反応は、尿素系流体21が尿素水である場合、次の式(2)及び式(3)で示され、尿素系流体21がアンモニアガスである場合、次の式(4)で示される。
(NH2)2CO+H2O → 2NH3+CO2 ……(2)
NO+NO2+2NH3 → 2N2+3H2O ……(3)
NO+NO2+2NH3 → 2N2+3H2O ……(4)
上記式(2)は、排ガス温度が180℃未満と比較的低いため、比較的少ない量であるけれども、尿素水(尿素系流体21)のアンモニアガスへの加水分解が進む化学反応式を示す。また、上記式(3)は、排ガス中のNO及びNO2が選択還元型触媒19で上記尿素水から加水分解したアンモニアガスと反応して、NO及びNO2がN2に還元される化学反応式を示す。更に、上記式(4)は排ガス中のNO及びNO2が選択還元型触媒19でアンモニアガス(尿素系流体21)と反応して、NO及びNO2がN2に還元される化学反応式を示す。ここで、尿素系流体21として尿素水を用いるよりアンモニアガスを用いた方がNO及びNO2のN2への還元反応が速やかに進むので、尿素系流体21としてアンモニアガスを用いた方が好ましい。
また、排ガス温度が180℃以上になると、コントローラ68は、温度センサ64の検出出力に基づいて、コンプレッサ41及びオゾン発生器43を停止させるとともに、流量調整弁49を閉じる。これは、排ガス温度が比較的高温になると、酸化触媒62が活性化して、NOをNO2に酸化する機能を発揮するためである。即ち、排ガス温度が180℃以上になると、酸化触媒62が排ガス中のNOを反応性の高いNO2に酸化するので、この反応性の高いNO2が、流体供給手段22の流体噴射ノズル23から排気管16に供給された尿素系流体21とともに選択還元型触媒19に流入する。この結果、排ガス温度が高くなっても、反応性の高いNO2が選択還元型触媒19で尿素系流体21と選択還元反応が進行してN2に還元されるので、排ガス温度が高くなっても、NOxを効率良く低減できる。従って、殆ど全ての排ガス温度領域でNOxを効率良く低減できる。
なお、上記実施の形態では、本発明の排ガス浄化装置をディーゼルエンジンに適用したが、本発明の排ガス浄化装置をガソリンエンジンに適用してもよい。また、上記実施の形態では、本発明の排ガス浄化装置をターボ過給機付ディーゼルエンジンに適用したが、本発明の排ガス浄化装置を自然吸気型ディーゼルエンジン又は自然吸気型ガソリンエンジンに適用してもよい。また、上記実施の形態では、オゾン噴射ノズルを流体噴射ノズルより排ガス上流側の排気管に設けたが、オゾン噴射ノズルを流体噴射ノズルより排ガス下流側の排気管に設けてもよい。また、上記実施の形態では、オゾン発生器として無声放電型のものを用いたが、オゾン発生器として沿面放電型のもの、空気に紫外線を放射してオゾンを発生する方式のもの、水を電気分解してオゾンを発生する方式のもの等を用いてもよい。更に、上記実施の形態では、コンプレッサとドライヤとの間にエアタンクを設けたが、酸素富化ガス及び窒素富化ガスの流量が急激に変化しない場合には、エアタンクを設けなくてもよい。
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示すように、排気量が8000ccである直列6気筒のターボ過給機17付ディーゼルエンジン11の排気管16に選択還元型触媒19を設けた。また選択還元型触媒19より排ガス上流側の排気管16に、尿素水を供給する流体噴射ノズル23を設けた。ここで、選択還元型触媒19は、銅をイオン交換したゼオライト粉末を含むスラリーをハニカム担体にコーティングして作製した銅系の触媒であった。また流体噴射ノズル23より排ガス上流側の排気管16に、オゾンガスを供給するオゾン噴射ノズル33を設けた。またオゾン噴射ノズル33にオゾン供給管33の先端を接続し、オゾン供給管33の基端をオゾン発生装置40の第4供給管54に接続した。このオゾン発生装置40は、図2〜図4に示すように、コンプレッサ41、エアタンク48、ドライヤ42、空気分離器44、オゾン発生器43、流量調整弁49、逆止弁56、高電圧電源装置57を有する。コンプレッサ11は直流電圧24Vのバッテリで駆動した。ドライヤ12としては、宇部興産社製の『UBE メンブレンドライヤー』を用い、空気分離器14としては、宇部興産社製の『UBE N2セパレータ』を用いた。ここで、流体噴射ノズル23から霧状に噴射した尿素水をアンモニア換算(尿素水の上記式(2)の反応に基づくアンモニアガスへの加水分解量)で200ppm供給するのに相当する量だけ噴射(供給)し、オゾン噴射ノズル33から噴射したオゾンガスの噴射量(供給量)を30ppmとした。更に流体噴射ノズル23及びオゾン噴射ノズル33より排ガス上流側の排気管16に、排ガス上流側から順に酸化触媒62及びパティキュレートフィルタ63を設けた。ここで、酸化触媒62は、白金をイオン交換したアルミナ粉末を含むスラリーをハニカム担体にコーティングして作製した白金系の触媒を用いた。この排ガス浄化装置を実施例1とした。
<実施例2>
オゾン噴射ノズルから噴射したオゾンの噴射量(供給量)を55ppmとしたこと以外は、実施例1と同一に排ガス浄化装置を構成した。この排ガス浄化装置を実施例2とした。
<実施例3>
流体噴射ノズルからアンモニアガスを噴射するように構成し、この流体噴射ノズルから噴射したアンモニアガスの噴射量(供給量)を200ppmとしたこと以外は、実施例1と同一に排ガス浄化装置を構成した。この排ガス浄化装置を実施例3とした。
<実施例4>
オゾン噴射ノズルから噴射したオゾンの噴射量(供給量)を55ppmとしたこと以外は、実施例3と同一に排ガス浄化装置を構成した。この排ガス浄化装置を実施例4とした。
<比較例1>
オゾン噴射ノズルからオゾンを噴射しなかったこと以外は、実施例1と同一に排ガス浄化装置を構成した。この排ガス浄化装置を比較例1とした。
<比較例2>
オゾン噴射ノズルからオゾンを噴射しなかったこと以外は、実施例3と同一に排ガス浄化装置を構成した。この排ガス浄化装置を比較例2とした。
<比較試験1及び評価>
エンジンの回転速度及び負荷を変化させて、実施例1〜4と比較例1及び2のエンジンの排気管から排出される排ガスの温度を150℃から200℃まで徐々に上昇させたときのNOx低減率をそれぞれ測定した。その結果を図7及び図8に示す。
図7から明らかなように、比較例1の排ガス浄化装置では、排ガス温度150℃及び170℃におけるNOx低減率がそれぞれ約36%及び約59%であったのに対し、実施例1の排ガス浄化装置では、排ガス温度150℃及び170℃におけるNOx低減率がそれぞれ約51%及び約66%と高くなり、実施例2の排ガス浄化装置では、排ガス温度150℃及び170℃におけるNOx低減率がそれぞれ約66%及び約73%と更に高くなった。即ち、オゾンを供給しなかった比較例1の排ガス浄化装置より、オゾンを30ppm供給した実施例1の排ガス浄化装置の方が、150〜170℃の排ガス温度範囲において、NOx低減率が向上し、またオゾンを30ppm供給した実施例1の排ガス浄化装置より、オゾンを55ppm供給した実施例2の排ガス浄化装置の方が、150〜170℃の排ガス温度範囲において、NOx低減率が向上した。これは、選択還元触媒に導入されるNO及びNO2の流量比が、比較例1より実施例1の方がN2への還元反応が速やかに進む1対1に近く、実施例1より実施例2の方がN2への還元反応が速やかに進む1対1に更に近いためであると考えられる。なお、比較例1、実施例1及び実施例2の排ガス浄化装置では、排ガス温度180℃以上におけるNOx低減率が殆ど同じになった。これは、排ガス温度180℃以上になると、酸化触媒が活性化して排ガス中のNOをNO2に酸化する機能を発揮したためであると考えられる。
図8から明らかなように、比較例2の排ガス浄化装置では、排ガス温度150℃及び170℃におけるNOx低減率がそれぞれ約49%及び約78%であったのに対し、実施例3の排ガス浄化装置では、排ガス温度150℃及び170℃におけるNOx低減率がそれぞれ約73%及び約89%と高くなり、実施例4の排ガス浄化装置では、排ガス温度150℃及び170℃におけるNOx低減率がそれぞれ約98%及び約99%と更に高くなった。即ち、オゾンを供給しなかった比較例2の排ガス浄化装置より、オゾンを30ppm供給した実施例3の排ガス浄化装置の方が、150〜170℃の排ガス温度範囲において、NOx低減率が向上し、またオゾンを30ppm噴射した実施例3の排ガス浄化装置より、オゾンを55ppm供給した実施例4の排ガス浄化装置の方が、150〜170℃の排ガス温度範囲において、NOx低減率が向上したことが分かった。これは、選択還元触媒に導入されるNO及びNO2の流量比が、比較例2より実施例3の方がN2への還元反応が速やかに進む1対1に近く、実施例3より実施例4の方がN2への還元反応が速やかに進む1対1に更に近いためであると考えられる。なお、比較例2、実施例3及び実施例4の排ガス浄化装置では、排ガス温度180℃以上におけるNOx低減率が殆ど同じになった。これは、排ガス温度180℃以上になると、酸化触媒が活性化して排ガス中のNOをNO2に酸化する機能を発揮したためであると考えられる。
図7及び図8から明らかなように、尿素水を選択還元型触媒に供給した実施例1、実施例2及び比較例1の排ガス浄化装置より、アンモニアガスを選択還元型触媒に供給した実施例3、実施例4及び比較例2の排ガス浄化装置の方が、150〜200℃の排ガス温度範囲において、NOx低減率がそれぞれ向上したことが分かった。これは、尿素水を選択還元型触媒に供給するより、アンモニアガスを選択還元型触媒に供給した方が、NO及びNO2のN2への還元反応が速やかに進むためであると考えられる。
11 ディーゼルエンジン(エンジン)
16 排気管
19 選択還元型触媒
21 尿素系流体
22 流体供給手段
23 流体噴射ノズル
32 オゾン供給手段
33 オゾン噴射ノズル
40 オゾン発生装置
41 コンプレッサ
42 ドライヤ
43 オゾン発生器
44 空気分離器
44a 酸素富化膜
46 パージ管
48 エアタンク
49 流量調整弁
62 酸化触媒
63 パティキュレートフィルタ

Claims (8)

  1. エンジン(11)の排気管(16)に設けられ排ガス中のNOxをN2に還元可能な選択還元型触媒(19)と、
    前記選択還元型触媒(19)より排ガス上流側の排気管(16)に臨む流体噴射ノズル(23)を有しこの流体噴射ノズル(23)から前記選択還元型触媒(19)で還元剤として機能する尿素系流体(21)を前記排気管(16)に供給する流体供給手段(22)と、
    空気中の酸素を用いてオゾンを発生するオゾン発生装置(40)と、
    前記選択還元型触媒(19)より排ガス上流側であって前記流体噴射ノズル(23)より排ガス上流側又は排ガス下流側の排気管(16)に臨み前記オゾン発生装置(40)で発生したオゾンを前記排気管(16)に噴射するオゾン噴射ノズル(33)を有しこのオゾン噴射ノズル(33)から前記排ガス中のNOをNO2に酸化可能なオゾンを前記排気管(16)に供給するオゾン供給手段(32)と、
    前記流体噴射ノズル(23)及び前記オゾン噴射ノズル(33)より排ガス上流側の排気管(16)に設けられ前記排ガス中のNOを所定の排ガス温度以上でNO2に酸化可能な酸化触媒(62)と
    を備えた排ガス浄化装置であって、
    前記流体供給手段(22)が、前記選択還元型触媒(19)より排ガス上流側の排気管(16)に臨む流体噴射ノズル(23)と、前記尿素系流体(21)が貯留された流体タンク(26)と、この流体タンク(26)内の前記尿素系流体(21)を前記流体噴射ノズル(23)に圧送するポンプ(27)と、前記流体噴射ノズル(23)から噴射される前記尿素系流体(21)の供給量を調整する流体供給量調整弁(28)とを有し、
    前記流体供給量調整弁(28)が、前記流体噴射ノズル(23)への前記尿素系流体(21)の供給圧力を調整する流体圧力調整弁(29)と、前記流体噴射ノズル(23)の基端を開閉する流体用開閉弁(30)とからなり、
    前記オゾン発生装置(40)が、空気を圧縮するコンプレッサ(41)と、このコンプレッサ(41)により圧縮された圧縮空気を乾燥させるドライヤ(42)と、このドライヤ(42)により乾燥された圧縮空気中の酸素の一部をオゾンに変換するオゾン発生器(43)と、前記ドライヤ(42)と前記オゾン発生器(43)との間に設けられ前記ドライヤ(42)により乾燥された圧縮空気を酸素濃度の高い酸素富化ガスと窒素濃度の高い窒素富化ガスとに分離する空気分離器(44)とを有し、
    前記選択還元型触媒(19)より排ガス上流側に設けられこの選択還元型触媒(19)に流入する直前の排ガスの温度を検出する温度センサ(64)と、前記エンジン(11)の回転速度を検出する回転センサ(66)と、前記エンジン(11)の負荷を検出する負荷センサ(67)と、前記温度センサ(64)、前記回転センサ(66)及び前記負荷センサ(67)の各検出出力に基づいて前記ポンプ(27)、前記流体圧力調整弁(29)、前記流体用開閉弁(30)、前記コンプレッサ(41)及び前記オゾン発生器(43)をそれぞれ制御するコントローラ(68)とを更に備え、
    前記エンジン(11)の始動直後又は前記エンジン(11)の軽負荷運転時の前記選択還元型触媒(19)に流入する直前の排ガス温度が160〜200℃の範囲内の所定の温度未満と低いとき、前記コントローラ(68)は、前記コンプレッサ(41)を駆動し、前記オゾン発生器(43)を作動させることにより、前記オゾンガスを前記オゾン噴射ノズル(33)から前記排気管(16)に噴射するとともに、前記ポンプ(27)を駆動し、前記流体圧力調整弁(29)を開き、前記流体用開閉弁(30)を開閉させることにより、前記尿素系流体(21)を前記流体噴射ノズル(23)から前記排気管(16)に間欠的に噴射し、
    前記選択還元型触媒(19)に流入する直前の排ガス温度が160〜200℃の範囲内の所定の温度以上に高くなると、コントローラ(68)は、前記コンプレッサ(41)及び前記オゾン発生器(43)を停止させることにより、前記オゾンガスの前記オゾン噴射ノズル(33)からの噴射を停止するとともに、前記ポンプ(27)を駆動し、前記流体圧力調整弁(29)を開き、前記流体用開閉弁(30)を開閉させることにより、前記尿素系流体(21)を前記流体噴射ノズル(23)から前記排気管(16)に間欠的に噴射するように構成された
    ことを特徴とする排ガス浄化装置
  2. 記空気分離器(44)で分離された酸素富化ガス中の酸素の一部を前記オゾン発生器(43)に導入して前記オゾン発生器(43)によりオゾンに変換し、前記空気分離器(44)で分離された窒素富化ガスにより前記ドライヤ(42)内の水分を除去して前記ドライヤ(42)を再生するように構成された請求項1記載の排ガス浄化装置。
  3. 前記空気分離器(44)が酸素富化膜(44a)により構成され、前記酸素富化ガスは前記ドライヤ(42)により乾燥された圧縮空気が前記酸素富化膜(44a)を通過することにより生成され、前記窒素富化ガスは前記ドライヤ(42)により乾燥された圧縮空気が前記酸素富化膜(44a)を通過せずに素通りすることにより生成される請求項記載の排ガス浄化装置。
  4. 前記空気分離器(44)で分離された窒素富化ガスがパージ管(46)を通って前記ドライヤ(42)に供給されるように構成され、前記パージ管(46)にこのパージ管(46)を通過する前記窒素富化ガスの流量を調整する流量調整弁(49)が設けられた請求項2又は3記載の排ガス浄化装置。
  5. 前記コンプレッサ(41)と前記ドライヤ(42)との間に前記コンプレッサ(41)で圧縮された圧縮空気を貯留するエアタンク(48)が設けられた請求項ないし4いずれか1項に記載の排ガス浄化装置。
  6. 前記尿素系流体(21)がアンモニアガス又は尿素水のいずれかである請求項1記載の排ガス浄化装置。
  7. 前記選択還元型触媒(19)がハニカム担体にゼオライト又はジルコニアをコーティングして構成された請求項1記載の排ガス浄化装置。
  8. 前記流体噴射ノズル(23)及び前記オゾン噴射ノズル(33)より排ガス上流側であって前記酸化触媒(62)より排ガス下流側の排気管(16)に前記排ガス中のパティキュレートを捕集するパティキュレートフィルタ(63)が設けられた請求項1記載の排ガス浄化装置。
JP2011143032A 2011-03-15 2011-06-28 排ガス浄化装置 Active JP5952533B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011143032A JP5952533B2 (ja) 2011-06-28 2011-06-28 排ガス浄化装置
CN201280011011.9A CN103547774B (zh) 2011-03-15 2012-03-06 废气净化装置
US14/003,540 US9021792B2 (en) 2011-03-15 2012-03-06 Exhaust gas purification device
EP12756980.4A EP2687694A4 (en) 2011-03-15 2012-03-06 EMISSION CONTROL DEVICE
PCT/JP2012/055606 WO2012124531A1 (ja) 2011-03-15 2012-03-06 排ガス浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011143032A JP5952533B2 (ja) 2011-06-28 2011-06-28 排ガス浄化装置

Publications (2)

Publication Number Publication Date
JP2013011193A JP2013011193A (ja) 2013-01-17
JP5952533B2 true JP5952533B2 (ja) 2016-07-13

Family

ID=47685273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011143032A Active JP5952533B2 (ja) 2011-03-15 2011-06-28 排ガス浄化装置

Country Status (1)

Country Link
JP (1) JP5952533B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145235A1 (ja) 2016-02-22 2017-08-31 日野自動車 株式会社 排気浄化システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978909A (ja) * 1982-10-22 1984-05-08 Mitsubishi Electric Corp オゾン製造装置
JP2765671B2 (ja) * 1993-02-09 1998-06-18 宇部興産株式会社 酸素富化気体の製造法
DE10241063A1 (de) * 2002-09-05 2004-03-11 Robert Bosch Gmbh Verfahren zur Abgasnachbehandlung und Vorrichtung hierzu
JP4529822B2 (ja) * 2005-07-05 2010-08-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4952645B2 (ja) * 2008-04-25 2012-06-13 トヨタ自動車株式会社 内燃機関の排気ガス浄化装置
JP2009264283A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP4726926B2 (ja) * 2008-05-22 2011-07-20 株式会社デンソー 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
JP2013011193A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
WO2012124531A1 (ja) 排ガス浄化装置
JP5465361B2 (ja) 排ガス浄化装置
JP5456943B2 (ja) 排ガス浄化装置
US9504961B2 (en) Exhaust gas purification system and ozone generator
KR100981338B1 (ko) 내연기관의 배기정화장치
JP5770409B2 (ja) 排ガス浄化装置
US20100199643A1 (en) Exhaust gas purification system
JP2012193620A (ja) 排ガス浄化装置
JP2014047670A (ja) オゾン生成手段を含むエンジン用NOx後処理装置の制御方法および制御装置
JP2013010647A (ja) オゾン発生装置
JP2006266192A (ja) エンジンの排気ガス浄化装置
JP2013174203A (ja) 排ガス浄化装置
JP5952533B2 (ja) 排ガス浄化装置
JP5993698B2 (ja) 排ガス浄化装置
JP5761139B2 (ja) オゾン生成手段を含むエンジン用NOx後処理装置
EP1706606A1 (en) System containing oxygen enriched diesel particulate filter and method thereof
JP2002295243A (ja) エンジンの排ガスを浄化する装置
EP1905972A1 (en) Exhaust gas purifier for internal combustion engine
JP2009220033A (ja) 排気浄化触媒装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250