JP5948783B2 - 固体撮像装置、および電子機器 - Google Patents

固体撮像装置、および電子機器 Download PDF

Info

Publication number
JP5948783B2
JP5948783B2 JP2011223613A JP2011223613A JP5948783B2 JP 5948783 B2 JP5948783 B2 JP 5948783B2 JP 2011223613 A JP2011223613 A JP 2011223613A JP 2011223613 A JP2011223613 A JP 2011223613A JP 5948783 B2 JP5948783 B2 JP 5948783B2
Authority
JP
Japan
Prior art keywords
film
sensor substrate
wiring
light
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011223613A
Other languages
English (en)
Other versions
JP2013084763A (ja
JP2013084763A5 (ja
Inventor
健太郎 秋山
健太郎 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2011223613A priority Critical patent/JP5948783B2/ja
Priority to TW101133370A priority patent/TWI577001B/zh
Priority to DE202012013576.7U priority patent/DE202012013576U1/de
Priority to KR1020147006318A priority patent/KR102051155B1/ko
Priority to CN201610686559.3A priority patent/CN106169493B/zh
Priority to PCT/JP2012/074945 priority patent/WO2013051462A1/ja
Priority to US14/346,607 priority patent/US9184205B2/en
Priority to CN201280045395.6A priority patent/CN103797579B/zh
Priority to EP12838953.3A priority patent/EP2747139B1/en
Priority to EP19177082.5A priority patent/EP3561873B1/en
Publication of JP2013084763A publication Critical patent/JP2013084763A/ja
Publication of JP2013084763A5 publication Critical patent/JP2013084763A5/ja
Priority to US14/871,345 priority patent/US9374511B2/en
Priority to US15/087,729 priority patent/US9576998B2/en
Application granted granted Critical
Publication of JP5948783B2 publication Critical patent/JP5948783B2/ja
Priority to US15/411,470 priority patent/US10312281B2/en
Priority to US16/413,045 priority patent/US11329091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本技術は、固体撮像装置、固体撮像装置の製造方法、および電子機器に関し、特には半導体基板の受光面とは逆の表面側に駆動回路が設けられた固体撮像装置と、この固体撮像装置の製造方法と、この固体撮像装置を用いた電子機器に関する。
固体撮像装置においては、入射光に対する光電変換効率や感度の向上を図ることを目的とし、半導体基板の表面側に駆動回路を形成し裏面側を受光面とする、いわゆる裏面照射型の構造が提案されている。またさらに、光電変換部が形成された半導体基板とは別に、駆動回路を形成した回路基板を用意し、半導体基板における受光面と反対側の面に、回路基板を貼り合わせた3次元構造も提案されている。
以上のような裏面照射型の固体撮像装置には、光電変換部を有する画素領域の外側の周辺領域に、半導体基板の駆動回路または回路基板の駆動回路に達する複数の貫通ビアが、半導体基板を貫通して設けられている。この半導体基板の受光面上の構成は、次の手順で作製される。まず半導体基板に埋め込み形成された貫通ビアを覆ってキャップ膜を受光面上に設け、その上に遮光膜を設ける。次に貫通ビアの設けられた周辺領域において、貫通ビア間を接続する配線および電極パッドを、キャップ膜上に設ける。続いて、配線および電極パッドを覆って平坦化膜を設け、その上に各光電変換部に対応するカラーフィルタおよびオンチップレンズを設ける。最後に、周辺領域において配線および電極パッドを覆う平坦化膜を選択的にエッチング除去し、電極パッドを露出させるパッド開口を設ける。(以上、下記特許文献1参照)
特開2010−245506号公報(例えば図3および関連記載部参照)
しかしながらこのような構成の裏面照射型の固体撮像装置においては、受光面上において、遮光膜の下部に貫通ビアを覆うキャップ膜が設けられている。したがって、受光面と遮光膜との距離が大きく、斜め光入射による混色が発生しやすく、光電変換部の受光特性が劣化する。
そこで本技術は、半導体基板の受光面と遮光膜との距離を小さくすることにより、光電変換部の受光特性の向上を図ることが可能な裏面照射型の固体撮像装置を提供することを目的とする。また本技術は、このような構成の固体撮像装置の製造方法およびこの固体撮像装置を用いた電子機器を提供することを目的とする。
このような目的を達成するための本技術の固体撮像装置は、光電変換部が配列形成された画素領域を有するセンサ基板と、このセンサ基板において光電変換部に対する受光面とは逆の表面側に設けられた駆動回路とを備えている。さらに画素領域における受光面上には、光電変換部に対応した受光開口を有する遮光膜が設けられ、この遮光膜を覆って保護絶縁膜が設けられている。また画素領域の外側の周辺領域においては、保護絶縁膜からセンサ基板にかけて埋め込まれ駆動回路に接続された複数の貫通ビアが設けられている。
このような固体撮像装置は、光電変換部を設けたセンサ基板において、駆動回路が形成された表面側と反対側の面を受光面とした裏面照射型であり、受光面上において遮光膜を覆う保護絶縁膜に貫通ビアが埋め込まれている。これにより、受光面と遮光膜との距離を小さくすることができる。
また本技術はこのような固体撮像装置の製造方法でもあり、次の手順が行われる。まず、センサ基板の画素領域に光電変換部を配列形成し、センサ基板において光電変換部に対する受光面とは逆の表面側に駆動回路を形成する。また画素領域における受光面上に遮光膜を形成し、この遮光膜を覆う保護絶縁膜を形成する。さらに受光面側において画素領域の外側に設けられた周辺領域に、保護絶縁膜からセンサ基板にかけて埋め込まれ駆動回路に接続された複数の貫通ビアを形成する。
また本技術は、上述した固体撮像装置を備えた電子機器でもあり、光電変換部に入射光を導く光学系を備えている。
以上のような本技術によれば、裏面照射型の固体撮像装置において、受光面上の遮光膜を覆う保護絶縁膜に貫通ビアを埋め込んで設けたことにより、受光面と遮光膜との距離を小さくできる。この結果、光電変換部においての受光特性の向上を図ることが可能になる。
本技術が適用される固体撮像装置の一例を示す概略構成図である。 第1実施形態の固体撮像装置の構成を示す要部断面図である。 第1実施形態の固体撮像装置の製造手順を示す断面工程図(その1)である。 第1実施形態の固体撮像装置の製造手順を示す断面工程図(その2)である。 第1実施形態の固体撮像装置の製造手順を示す断面工程図(その3)である。 第2実施形態の固体撮像装置の構成を示す要部断面図である。 第2実施形態の固体撮像装置の製造手順を示す断面工程図である。 本技術を適用して得られた固体撮像装置を用いた電子機器の構成図である。
以下、本技術の実施の形態を、図面に基づいて次に示す順に説明する。
1.実施形態の固体撮像装置の概略構成例
2.第1実施形態(遮光膜を覆う保護絶縁膜に配線を埋め込んで設けた例)
3.第2実施形態(保護絶縁膜を2層構造にした例)
4.電子機器(固体撮像装置を用いた電子機器の例)
なお、各実施形態において共通の構成要素には同一の符号を付し、重複する説明は省略する。
≪1.実施形態の固体撮像装置の概略構成例≫
図1に、本技術が適用される裏面照射型の固体撮像装置の一例として、三次元構造の固体撮像装置の概略構成を示す。この図に示す固体撮像装置1は、光電変換部が配列形成されたセンサ基板2と、このセンサ基板2に対して積層させた状態で貼り合わされた回路基板9とを備えている。
センサ基板2は、一方の面を受光面Aとし、光電変換部を含む複数の画素3が受光面Aに対して2次元的に配列された画素領域4を備えている。画素領域4には、複数の画素駆動線5が行方向に配線され、複数の垂直信号線6が列方向に配線されており、1つの画素3が1本の画素駆動線5と1本の垂直信号線6とに接続される状態で配置されている。これらの各画素3には、光電変換部と、電荷蓄積部と、複数のトランジスタ(いわゆるMOSトランジスタ)および容量素子等で構成された画素回路とが設けられている。なお、画素回路の一部は、受光面Aとは反対側の表面側に設けられている。また複数の画素で画素回路の一部を共有していてもよい。
またセンサ基板2は、画素領域4の外側に周辺領域7を備えている。この周辺領域7には、電極パッド8が設けられている。この電極パッド8は、必要に応じてセンサ基板2に設けられた画素駆動線5、垂直信号線6、および画素回路、さらには回路基板9に設けられた駆動回路に接続されている。
回路基板9は、センサ基板2側に向かう一面側に、センサ基板2に設けられた各画素3を駆動するための垂直駆動回路10、カラム信号処理回路11、水平駆動回路12、およびシステム制御回路13などの駆動回路を備えている。これらの駆動回路は、センサ基板2側の画素回路に接続されている。なお、センサ基板2の表面側に設けられた画素回路も、駆動回路の一部である。
≪2.第1実施形態≫
<固体撮像装置の構成>
(遮光膜を覆う保護絶縁膜に配線を埋め込んで設けた例)
図2は、第1実施形態の固体撮像装置1−1の構成を示す要部断面図であり、図1における画素領域4と周辺領域7との境界付近の断面図である。以下、この要部断面図に基づいて第1実施形態の固体撮像装置1−1を説明する。
図2に示す第1実施形態の固体撮像装置1−1は、上述したようにセンサ基板2と回路基板9とを積層させた状態で貼り合わせた3次元構造の固体撮像装置である。センサ基板2の表面側、すなわち回路基板9側に向かう面上には、配線層2aと、配線層2aを覆う保護膜2bとが設けられている。一方、回路基板9の表面側、すなわちセンサ基板2側に向かう面上には、配線層9aと、配線層9aを覆う保護膜9bとが設けられている。また回路基板9の裏面側には、保護膜9cが設けられている。これらのセンサ基板2と回路基板9とは、保護膜2bと保護膜9bとの間で貼り合わせられている。
またセンサ基板2の受光面A上には、反射防止膜41、界面準位抑制膜42、遮光膜43、および保護絶縁膜44が設けられている。この保護絶縁膜44には、配線45と、配線45からセンサ基板2を貫通する状態で設けられた貫通ビア23が埋め込まれている。この配線45および貫通ビア23を覆う状態で、保護絶縁膜44上にキャップ膜46が設けられている。さらに画素領域4においてキャップ膜46上に、カラーフィルタ47、およびオンチップレンズ48が積層されている。また周辺領域7にはパッド開口8aが設けられている。
次に、センサ基板2側の各層、および回路基板9側の各層の構成、反射防止膜41、界面準位抑制膜42、遮光膜43、保護絶縁膜44、貫通ビア23、配線45、キャップ膜46、カラーフィルタ47、オンチップレンズ48、およびパッド開口8aの構成をこの順に説明する。
[センサ基板2]
センサ基板2は、例えば単結晶シリコンからなる半導体基板を薄膜化したものである。このセンサ基板2における画素領域4には、受光面Aに沿って複数の光電変換部20が配列形成されている。各光電変換部20は、例えばn型拡散層とp型拡散層との積層構造で構成されている。なお、光電変換部20は画素毎に設けられており、図面においては1画素分の断面を図示している。
またセンサ基板2において受光面Aとは逆の表面側には、n+型不純物層からなるフローティングディフュージョンFD、トランジスタTrのソース/ドレイン21、さらにはここでの図示を省略した他の不純物層、および素子分離22などが設けられている。
さらにセンサ基板2において、画素領域4の外側の周辺領域7には、以後に説明する貫通ビア23およびパッド開口8aが設けられている。
[配線層2a(センサ基板2側)]
センサ基板2の表面上に設けられた配線層2aは、センサ基板2との界面側に、ここでの図示を省略したゲート絶縁膜を介して転送ゲートTGおよびトランジスタTrのゲート電極25、さらにはここでの図示を省略した他の電極を有している。またこれらの転送ゲートTGおよびゲート電極25は、層間絶縁膜26で覆われており、この層間絶縁膜26に設けられた溝パターン内には、例えば銅(Cu)を用いた埋込配線27が多層配線として設けられている。これらの埋込配線27は、ビアによって相互に接続され、また一部がソース/ドレイン21、転送ゲートTG、さらにはゲート電極25に接続された構成となっている。また、埋込配線27には、センサ基板2に設けられた貫通ビア23も接続され、トランジスタTrおよび埋込配線27等によって画素回路が構成されている。ここで必要に応じて、多層配線のうちの一層はアルミニウム(Al)配線として構成され、そのうちの周辺領域に配置される配線の一部は電極パッド8として設けられている。
以上のような多層配線が形成された層間絶縁膜26上に、絶縁性の保護膜2bが設けられ、この保護膜2b表面においてセンサ基板2が回路基板9に貼り合わせられている。
[回路基板9]
回路基板9は、例えば単結晶シリコンからなる半導体基板を薄膜化したものである。この回路基板9において、センサ基板2側に向かう表面層には、トランジスタTrのソース/ドレイン31、さらにはここでの図示を省略した不純物層、および素子分離32などが設けられている。
さらに回路基板9には、これを貫通する貫通ビア33が設けられている。この貫通ビア33は、回路基板9を貫通して形成された接続孔内に、分離絶縁膜34を介して埋め込まれた導電性材料によって構成されている。
[配線層9a(回路基板9側)]
回路基板9の表面上に設けられた配線層9aは、回路基板9との界面側に、ここでの図示を省略したゲート絶縁膜を介して設けられたゲート電極35、さらにはここでの図示を省略した他の電極を有している。これらのゲート電極35および他の電極は、層間絶縁膜36で覆われており、この層間絶縁膜36に設けられた溝パターン内にはたとえば銅(Cu)を用いた埋込配線37が多層配線として設けられている。これらの埋込配線37は、ビアによって相互に接続され、また一部がソース/ドレイン31やゲート電極35に接続された構成となっている。また、埋込配線37には、回路基板9に設けられた貫通ビア33およびセンサ基板2に設けられた貫通ビア23も接続され、トランジスタTrおよび埋込配線37等によって駆動回路が構成されている。ここで必要に応じて、多層配線のうちの一層例えば最上層はアルミニウム(Al)配線として構成され、そのうちの周辺領域に配置される配線の一部は電極パッドとして設けられていてもよい。
以上のような埋込配線37が形成された層間絶縁膜36上に、絶縁性の保護膜9bが設けられ、この保護膜9b表面において回路基板9がセンサ基板2に貼り合わせられている。また、回路基板9において、配線層9aが設けられた表面側とは逆の裏面側には、回路基板9を覆う保護膜9cが設けられ、この保護膜9cには貫通ビア33を露出させるパッド開口33aが設けられている。
[反射防止膜41、界面準位抑制膜42]
反射防止膜41および界面準位抑制膜42は、センサ基板2の受光面A上にこの順に設けられている。反射防止膜41は、例えば酸化ハフニウム(HfO2)、酸化タンタル(Ta2O5)、または窒化シリコンなど、酸化シリコンよりも高屈折率の絶縁性材料を用いて構成される。界面準位抑制膜42は、例えば酸化シリコン(SiO2)を用いて構成される。
[遮光膜43]
遮光膜43は、画素領域4において、受光面A上に反射防止膜41および界面準位抑制膜42を介して設けられている。このような遮光膜43は、各光電変換部20に対応する複数の受光開口43aを備えている。
このような遮光膜43は、アルミニウム(Al)やタングステン(W)のような遮光性に優れた導電性材料を用いて構成され、反射防止膜41および界面準位抑制膜42に設けた開口43bにおいてセンサ基板2に対して接地された状態で設けられている。
[保護絶縁膜44]
保護絶縁膜44は、受光面A側の周辺領域7および画素領域4において、遮光膜43を覆って、表面平坦に設けられている。このような保護絶縁膜44は、例えば酸化シリコン(SiO2)を用いて構成される。
[配線45]
配線45は、受光面A側の周辺領域7において、遮光膜43を覆う保護絶縁膜44に埋め込まれた埋込配線として設けられている。この配線45は貫通ビア23と一体に埋め込まれて形成されたものであり、貫通ビア23間を接続する。
[貫通ビア23]
貫通ビア23は、受光面A側の周辺領域7において、配線45から界面準位抑制膜42および反射防止膜41を貫通し、さらにセンサ基板2を貫通し、配線層2aに達して設けられている。この貫通ビア23は複数あり、センサ基板2の埋込配線27、アルミニウム配線または回路基板9の埋込配線37、アルミニウム配線に接続している。
このような貫通ビア23は、保護絶縁膜44に形成された配線溝とその底部の接続孔の内壁を連続的に覆う分離絶縁膜24を介して、これらの配線溝及び接続孔に銅(Cu)を埋め込んで一体に構成される。ここで配線溝の部分が配線45に相当し、接続孔の部分が貫通ビア23に相当する。また分離絶縁膜24は、例えば窒化シリコン(SiN)のような銅(Cu)の拡散防止機能を有する材料を用いて構成される。このように、貫通ビア23間を配線45で接続することにより、貫通ビア23がそれぞれ接続しているセンサ基板2の埋込配線27および回路基板9の埋込配線37の間を電気的に接続する。つまり、センサ基板2の駆動回路と回路基板9の駆動回路とが接続される。
[キャップ膜46]
キャップ膜46は、受光面A側における周辺領域7および画素領域4において、貫通ビア23と一体形成された配線45を覆って保護絶縁膜44上に設けられている。このキャップ膜46は、貫通ビア23および配線45の構成材料である銅(Cu)の拡散防止機能を有する材料からなり、例えば窒化シリコン(SiN)を用いて構成される。
[カラーフィルタ47、オンチップレンズ48]
カラーフィルタ47は、各光電変換部20に対応して設けられ、各光電変換部20に対応する各色で構成されている。各色のカラーフィルタ47の配列が限定されることはない。
オンチップレンズ48は、各光電変換部20に対応して設けられ、各光電変換部20に入射光が集光されるように構成されている。
なお必要に応じて、キャップ膜46とカラーフィルタ47との間に、密着コート膜または平坦化コート膜を設ける。例えば、密着コート膜および平坦化コート膜はアクリル樹脂からなる膜を用いる。
[パッド開口8a]
パッド開口8aは、周辺領域において、受光面A上のオンチップレンズ材料膜48a、キャップ膜46、保護絶縁膜44、界面準位抑制膜42、および反射防止膜41を貫通し、さらにセンサ基板2を貫通して設けられている。このパッド開口8aは、センサ基板2側の配線層2aにおける電極パッド8を露出させる。
<第1実施形態の固体撮像装置1−1の効果>
以上説明した第1実施形態の固体撮像装置1−1では、センサ基板2の受光面A上において、遮光膜43を覆う保護絶縁膜44に貫通ビア23および配線45が埋め込まれ、これを覆って保護絶縁膜44上にキャップ膜46が設けられている。つまり、キャップ膜46が遮光膜43の上部に設けられている。このため、キャップ膜が遮光膜の下部に設けられた従来の構成に比べて、受光面Aと遮光膜43との距離を小さくできる。これにより、斜め光入射の隣接画素への光漏れ込みによる混色、および入射角が大きくなったときのシェーディング、入射光の減衰などを抑制し、光電変換部20の受光特性を向上することが可能となる。
さらに第1実施形態の固体撮像装置1−1では、配線45は受光面A上に設けられ、貫通ビア23と一体形成されたデュアルダマシン構造となっている。また電極パッド8がセンサ基板2の受光面Aとは反対側の配線層2aに設けられ、この電極パッド8を露出させるパッド開口8aが、受光面A側からセンサ基板2を貫通して設けられている。つまり、受光面A上には厚膜な電極パッド8は設けられず、薄膜な配線45のみが設けられている。このため、受光面上に厚膜な電極パッドを設けた構造と比較して、受光面A上の層構造の高さを抑えることができ、受光面Aとオンチップレンズ48との距離を小さくできる。例えば、受光面上には電極パッドを設けない第1実施形態の固体撮像装置1−1ではこの距離を630nm程度に近づけることができる。このことからも、斜め光入射の隣接画素への光漏れ込みによる混色、および入射角が大きくなったときのシェーディング、入射光の減衰などを抑制し、光電変換部20の受光特性を向上することが可能となる。
<固体撮像装置の製造方法>
次に、上述した構成の固体撮像装置1−1の製造方法を図3〜図6の断面工程図に基づいて説明する。
図3Aに示すように、センサ基板2における画素領域4に、複数の光電変換部20を配列形成すると共に、センサ基板2にフローティングディフュージョンFD他の不純物層や素子分離22を形成する。次に、センサ基板2の表面上に転送ゲートTGおよびゲート電極25を形成し、さらに層間絶縁膜26と共に埋込配線27を形成して配線層2aを設け、この配線層2aの上部を保護膜2bで覆う。一方、回路基板9に、ソース/ドレイン31他の不純物層や素子分離32を形成する。次に、回路基板9の表面上にゲート電極35を形成し、さらに層間絶縁膜36と共に埋込配線37を形成して配線層9aを設け、また配線層9aから回路基板9にかけてビア33を形成し、配線層9aの上部を保護膜9bで覆う。なお必要に応じて、配線層2aまたは配線層9aの多層配線の一層をアルミニウム(Al)配線として形成し、そのうちの周辺領域に配置される配線の一部を電極パッド8とする。
以上の後、センサ基板2と回路基板9とを、保護膜2bと保護膜9bとの間で貼り合わせる。貼り合わせの終了後には、必要に応じてセンサ基板2の受光面A側を薄膜化する。ここまでの工程は、特に手順が限定されることはなく、通常の貼り合わせ技術を適用して行うことができる。
図3Bに示すように、センサ基板2の受光面A上に、反射防止膜41および界面準位抑制膜42をこの順に積層成膜する。反射防止膜41は、例えば酸化ハフニウム(HfO2)からなり、原子層蒸着法によって膜厚10nm〜300nm(例えば60nm)で成膜される。界面準位抑制膜42は、例えば酸化シリコン(SiO2)からなり、P−CVD(plasma-chemical vapor deposition)法によって膜厚100nmで成膜される。
次に、この反射防止膜41および界面準位抑制膜42に、センサ基板2を露出させる受光開口43bを形成する。この際、ここでの図示を省略したレジストパターンをマスクにして、界面準位抑制膜42と反射防止膜41をエッチングする。なお、この受光開口43bは、画素領域4内において光電変換部20の上方を避けた位置に形成される。
続いて、反射防止膜41および界面準位抑制膜42に形成された受光開口43bを介してセンサ基板2に接地された遮光膜43をパターン形成する。この遮光膜43は、光電変換部20に対応する受光開口43aを有している。ここでは先ず、スパッタ成膜法によって、絶縁層14上にアルミニウム(Al)やタングステン(W)のような遮光性を有する導電性材料膜を成膜する。その後、ここでの図示を省略したレジストパターンをマスクにして導電性材料膜をパターンエッチングすることにより、各光電変換部20に対応する受光開口43aを有し、センサ基板2に接地された遮光膜43を形成する。この遮光膜43は、周辺領域7には形成されず、画素領域4に形成される。
図4Aに示すように、センサ基板2の周辺領域7および画素領域4において、界面準位抑制膜42および遮光膜43上に保護絶縁膜44を成膜し、次に化学的機械研磨(CMP)法により表面を平坦化する。この際、保護絶縁膜44は、例えば酸化シリコン(SiO2)からなり、P−CVD法によって成膜される。CMPにより平坦化された後の保護絶縁膜44の膜厚は、界面準位抑制膜42の上面から保護絶縁膜44の上面までの厚みが400nm程度となるように調整される。
その後、センサ基板2の周辺領域7において、保護絶縁膜44に配線溝45aを形成する。この際、ここでの図示を省略したレジストパターンをマスクにして、酸化シリコン(SiO2)からなる保護絶縁膜44のエッチングを行う。エッチングの終了後にはレジストパターンを除去する。
図4Bに示すように、配線溝45aの底部に、必要に応じた深さの各接続孔23aを形成する。これらの各接続孔23aは、センサ基板2の表面側に設けられた、配線層2aの埋込配線27および配線層9aの埋込配線37の上部に達する各深さで形成されればよく、底部に埋込配線27および埋込配線37を露出させなくてもよい。この際、接続孔23aの深さ毎に、ここでの図示を省略したレジストパターンを形成し、これらのレジストパターンをマスクにしてセンサ基板2および層間絶縁膜26に対して複数回のエッチングを行う。各エッチングの終了後には各レジストパターンを除去する。
図4Cに示すように、配線溝45aおよび接続孔23aの内壁を覆う状態で、保護絶縁膜44上に、分離絶縁膜24を成膜する。ここでは例えば2層構造の分離絶縁膜24を形成することとし、先ずp−CVD法によって膜厚70nmの窒化シリコン膜24−1を成膜し、次いでp−CVD法によって膜厚900nmの酸化シリコン膜24−2を成膜する。なお、分離絶縁膜24は、積層構造に限定されることはなく、例えば酸化シリコン膜または窒化シリコン膜の単層構造であってもよい。
図5Aに示すように、異方性の高いエッチング条件により分離絶縁膜24をエッチング除去することにより、保護絶縁膜44上および配線溝45aの底部、さらには接続孔23aの底部の分離絶縁膜24を除去する。引き続き、異方性の高いエッチング条件により接続孔23aの底部の層間絶縁膜26、保護膜2b、および保護膜9bをエッチング除去し、接続孔23aを掘り進める。これにより、各接続孔23aの底部に埋込配線27、アルミニウム配線、および埋込配線37を露出させる。
図5Bに示すように、配線溝45aおよび接続孔23aを導電性材料で一体に埋め込むことにより、配線溝45a内に埋込配線として配線45を形成し、さらにセンサ基板2を貫通する接続孔23a内に貫通ビア23を形成する。ここでは先ず、配線溝45aおよび接続孔23a内を埋め込む状態で、保護絶縁膜44上に導電性材料膜[例えば銅(Cu)膜]を成膜し、次に化学的機械研磨(CMP)法によって保護絶縁膜44上の導電性材料膜を研磨除去する。これにより、配線溝45aおよび接続孔23a内のみに導電性材料膜を残し、センサ基板2の受光面A側における周辺領域7に、配線45およびこれに接続された貫通ビア23を形成する。
図5Cに示すように、貫通ビア23と一体形成された配線45を覆って保護絶縁膜44上に、貫通ビア23および配線45を構成する銅(Cu)に対する拡散防止効果を有するキャップ膜46を成膜する。ここではキャップ膜46として、例えば窒化シリコン膜を70nmの膜厚で成膜する。なお、最上層の窒化シリコンからなるキャップ膜46上には、さらに必要に応じて酸化シリコン膜を成膜してもよい。
以上の後には先の図2に示したように、キャップ膜46上に光電変換部20に対応する各色のカラーフィルタ47を形成し、さらにこの上に光電変換部20に対応するオンチップレンズ48を形成する。
次に、周辺領域7において、センサ基板2側の配線層2aに形成された電極パッド8を受光面A側に露出させるパッド開口8aを形成する。この際、ここでの図示を省略したレジストパターンをオンチップレンズ材料膜48a上に形成する。このレジストパターンをマスクにして、オンチップレンズ材料膜48a、キャップ膜46、保護絶縁膜44、界面準位抑制膜42、反射防止膜41、センサ基板2、および配線層2aを順にエッチングする。電極パッド8を露出させてエッチングを終了し、レジストパターンを除去する。
また回路基板9の露出面を研磨することで回路基板9を薄膜化し、ビア33を露出させて貫通ビア33とする。その後、貫通ビア33を覆う状態で回路基板9上に保護膜9cを成膜し、貫通ビア33を露出するパッド開口33aを形成する。
以上により、固体撮像装置1−1を完成させる。
<第1実施形態の製造方法の効果>
以上説明した第1実施形態の固体撮像装置1−1の製造方法は、先に遮光膜43を形成し、その後貫通ビア23および配線45を形成する手順で行う。この手順により、遮光膜43の上部に、貫通ビア23および配線45を覆うキャップ膜46が設けられた構成となる。一方、従来の製造方法は、遮光膜を形成する前に、貫通ビアを形成する手順で行われ、遮光膜の下部に、貫通ビアを覆うキャップ膜が設けられた構成となる。したがって、このような従来の製造方法と比較して、第1実施形態の固体撮像装置1−1の製造方法では、受光面Aと遮光膜43との距離を小さくできる。
さらに第1実施形態の製造方法では、配線溝45aとこの底部に延設された接続孔23aとを埋め込み、貫通ビア23および配線45を一体形成し、配線45が受光面A上に形成される。また電極パッド8をセンサ基板2の受光面Aとは反対側の配線層2aに形成する。つまり、受光面A上に薄膜な配線45のみを形成し、厚膜な電極パッド8を形成しない。このため、受光面上に厚膜な電極パッドを形成する場合と比較して、受光面A上の層構造の高さを抑えることができ、受光面Aとオンチップレンズ48との距離を小さくできる。
以上のとおり、第1実施形態の固体撮像装置1−1の製造方法では、受光面Aと遮光膜43との距離が小さく、さらに受光面Aとオンチップレンズ48との距離が小さい構成を形成できる。これにより、斜め光入射の隣接画素への光漏れ込みによる混色、および入射角が大きくなったときのシェーディング、入射光の減衰などを抑制し、光電変換部20の受光特性を向上することが可能となる。
また第1実施形態の固体撮像装置1−1の製造方法では、凹凸な形状の遮光膜43を覆って保護絶縁膜44を成膜し、CMPにより平坦化した後、配線45の埋込配線形成を行う。平坦化された保護絶縁膜44に対して、埋込配線形成のための配線溝45aをパターン形成するので、パターニング精度よく配線45の形成を行なえる。
≪3.第2実施形態≫
<固体撮像装置の構成>
(保護絶縁膜を2層構造にした例)
図6は、第2実施形態の固体撮像装置1−2の構成を示す要部断面図であり、図1における画素領域4と周辺領域7との境界付近の断面図である。以下、この要部断面図に基づいて第2実施形態の固体撮像装置1−2構成を説明する。
図6に示す第2実施形態の固体撮像装置1−2が、図2を用いて説明した第1実施形態の固体撮像装置と異なるところは、保護絶縁膜44を2層構造としたところにあり、他の構成は第1実施形態と同様である。
すなわち保護絶縁膜44は、低屈折率膜44aおよび高屈折率膜44bの2層構造であり、遮光膜43上にこの順で積層されてなる。低屈折率膜44aは薄膜であり、その表面には遮光膜のパターン形状が引き継がれ、凹凸のある表面を有している。一方、高屈折率膜44bは、遮光膜43の受光開口43aによる凹部を埋め込む以上の厚膜であり、表面は平坦化されている。
このような低屈折率膜44aは屈折率1.5以下の材料からなり、例えば酸化シリコン(SiO2)を用いる。高屈折率膜44bは屈折率1.5以上の材料からなり、例えば窒化シリコン(SiN)を用いる。
上述した第2実施形態の固体撮像装置1−2は、受光面A上の構成が次のようになっている。遮光膜43を覆う2層構造からなる保護絶縁膜44が設けられ、この保護絶縁膜44に貫通ビア23および配線45が一体に埋め込まれ、これらを覆うキャップ膜46が保護絶縁膜44上に設けられた構成である。
<第2実施形態の固体撮像装置1−2の効果>
以上説明した第2実施形態の固体撮像装置1−2では、第1実施形態と同様に、受光面A上において遮光膜43の上部にキャップ膜46が設けられている。このため、第2実施形態の固体撮像装置1−2でも、遮光膜の下部に貫通ビアを覆うキャップ膜が設けられた従来の構成に比べて、受光面Aと遮光膜43との距離を小さくできる。
さらに第2実施形態の固体撮像装置1−2では、第1実施形態と同様に、電極パッド8は受光面A上ではなく、センサ基板2の受光面Aとは反対側の配線層2aに設けられている。つまり、受光面A上に厚膜な電極パッド8は設けられず、薄膜な配線45のみが設けられている。このため、受光面上に厚膜な電極パッドを設けた構造と比較して、受光面A上の層構造の高さを抑えることができ、受光面Aとオンチップレンズ48との距離を小さくできる。
以上のとおり、第2実施形態の固体撮像装置1−2では、第1実施形態と同様に、受光面Aと遮光膜43との距離が小さく、さらに受光面Aとオンチップレンズ48との距離が小さい構成である。これにより、斜め光入射の隣接画素への光漏れ込みによる混色、および入射角が大きくなったときのシェーディング、入射光の減衰などを抑制し、光電変換部20の受光特性を向上することが可能となる。
また第2実施形態の固体撮像装置1−2では、第1実施形態と異なり、保護絶縁膜44が低屈折率膜44aおよび高屈折率膜44bの2層構造となっている。まず遮光膜43上に設けられた低屈折率膜44aによって、入射光が遮光膜43で吸収されることを低減する。さらに、光電変換部20の上部にある遮光膜43の受光開口43aによる凹部においては、凹部の側壁および底部に低屈折率膜44aが設けられ、その上に凹部を埋め込んで高屈折率膜44bが設けられた構造となっている。これにより、光電変換部20の上部が導波路構造となっている。この結果、微細な画素サイズに対しても集光効率を高めることができ、固体撮像装置のさらなる微細化が可能となる。
<固体撮像装置の製造方法>
次に、上述した構成の固体撮像装置1−2の製造方法を図7の断面工程図に基づいて説明する。
図3Aおよび図3Bを用いて説明したセンサ基板2と回路基板9とを貼合せ、受光面A上に遮光膜43を形成するところまでは、第1実施形態の製造方法と同様である。これ以降の遮光膜43上に保護絶縁膜44を形成する手順から、第2実施形態の製造方法は第1実施形態の製造方法とは異なる。
図7Aに示すように、センサ基板2の受光面A上に、界面準位抑制膜42および遮光膜43上に低屈折率膜44aを成膜する。この際、遮光膜43が膜厚230nmの場合には、低屈折率膜44aは、例えば酸化シリコン(SiO2)を用いて膜厚100nmに成膜される。ここでは、遮光膜43の受光開口43aによる凹部において、この凹部の側壁および底面に沿うような薄膜で、低屈折率膜44aを成膜すればよい。
図7Bに示すように、低屈折率膜44a上に高屈折率膜44bを成膜し、次にCMP法により表面を平坦化する。この際、高屈折率膜44bは、例えば窒化シリコン(SiN)からなり、P−CVD法によって成膜される。CMPにより平坦化された後の高屈折率膜44bの膜厚は、界面準位抑制膜42の上面から保護絶縁膜44の上面までの厚みが430nm程度となるように調整される。ここでは、遮光膜43の受光開口43aによる凹部を埋め込む膜厚で、高屈折率膜44bを成膜すればよく。以上により、低屈折率膜44aおよび高屈折率膜44bの2層からなる保護絶縁膜44を形成する。
なお、高屈折率膜44b成膜後のCMPにより、低屈折率膜44aが露出するまで研磨し、最終的に受光開口43aによる凹部内にのみ高屈折率膜44bが残された構成であってもよい。
これ以降の手順は、図4および図5を用いて説明した第1実施形態と同様にして行う。つまり、2層構造の保護絶縁膜44に貫通ビア23および配線45を埋め込み一体に形成し、これらを覆ってキャップ膜46を成膜し、その上にカラーフィルタ47およびオンチップレンズ48を形成し、パッド開口8aを形成する。以上により、第2実施形態の固体撮像装置1−2を完成させる。
なお、配線45は、高屈折率膜44bのみに埋め込まれてもよく、または高屈折率膜44bおよび低屈折率膜44aにわたる深さで埋め込まれてもよい。
<第2実施形態の製造方法の効果>
以上説明した第2施形態の固体撮像装置1−2の製造方法は、第1実施形態と同様に、先に遮光膜43を形成し、その後貫通ビア23および配線45を形成する手順で行う。この手順により、遮光膜43の下部ではなく上部に、貫通ビア23および配線45を覆うキャップ膜46が設けられた構成となる。したがって、第2実施形態の固体撮像装置1−2の製造方法では、受光面Aと遮光膜43との距離を小さくできる。
さらに第2実施形態の製造方法では、第1実施形態と同様に、受光面A上の保護絶縁膜44に貫通ビア23および配線45を埋め込み一体形成する。また電極パッド8をセンサ基板2の受光面Aとは反対側の配線層2aに形成する。つまり、受光面A上に薄膜な配線45のみを形成し、厚膜な電極パッド8を形成しない。このため、受光面上に厚膜な電極パッドを形成する場合と比較して、受光面A上の層構造の高さを抑えることができ、受光面Aとオンチップレンズ48との距離を小さくできる。
以上のとおり、第2実施形態の固体撮像装置1−2の製造方法では、第1実施形態と同様に、受光面Aと遮光膜43との距離が小さく、さらに受光面Aとオンチップレンズ48との距離が小さい構成を形成できる。これにより、斜め光入射の隣接画素への光漏れ込みによる混色、および入射角が大きくなったときのシェーディング、入射光の減衰などを抑制し、光電変換部20の受光特性を向上することが可能となる。
また第2実施形態の製造方法では、第1実施形態と異なり、保護絶縁膜44を低屈折率膜44aおよび高屈折率膜44bの2層構造として形成する。まず遮光膜43上に低屈折率膜44aを形成したことにより、入射光が遮光膜43で吸収されることを低減する。さらに、光電変換部20上部の遮光膜43の受光開口43aによる凹部においては、凹部の側壁および底部に低屈折率膜44aを形成し、その上に凹部を埋め込んで高屈折率膜44bを形成した構造となっている。これにより、光電変換部20の上部が導波路構造となっている。この結果、微細な画素サイズに対しても集光効率を高めることができ、固体撮像装置のさらなる微細化が可能となる。
なお、上述した第1実施形態および第2実施形態においては、センサ基板2の受光面A上において保護絶縁膜44に配線45が埋め込まれた構成を説明した。しかしながら、配線45が保護絶縁膜44からセンサ基板2にわたる深さで埋め込まれた構成であってもよい。この場合においても、貫通ビア23および配線45を覆うキャップ膜46は遮光膜43の上部に設けられるので、受光面Aと遮光膜43との距離を小さくできる。この結果、第1実施形態および第2実施形態と同様の効果を得られる。
さらに、上述した第1実施形態および第2実施形態においては、貫通ビア23および配線45が一体に形成され、共に銅からなる構成を説明した。しかしながら、貫通ビアと配線を別体に形成し、貫通ビア上のアルミニウム配線を電極パッドとする構成であってもよい。つまり、遮光膜形成後に、まず銅を用いて貫通ビアを埋め込み形成し、次に貫通ビアを覆って銅拡散防止のためのキャップ膜46を成膜し、その後キャップ膜上に貫通ビア間を接続するアルミニウム配線をパターン形成する。さらに必要に応じて、このアルミニウム配線を露出させるパッド開口を設ける。この場合においても、貫通ビア23および配線45を覆うキャップ膜46は遮光膜43の上部に設けられるので、受光面Aと遮光膜43との距離を小さくできる。この結果、第1実施形態および第2実施形態と同様の効果を得られる。
また、上述した第1実施形態および第2実施形態においては、裏面照射型の固体撮像装置の一例として三次元構造の固体撮像装置に本技術を適用した構成を説明した。しかしながら本技術は、三次元構造に限定されることなく裏面照射型の固体撮像装置に広く適用可能である。
≪4.固体撮像装置を用いた電子機器の一例≫
上述の実施形態で説明した本技術に係る固体撮像装置は、例えばデジタルカメラやビデオカメラ等のカメラシステム、さらには撮像機能を有する携帯電話、あるいは撮像機能を備えた他の機器などの電子機器に適用することができる。
図8は、本技術に係る電子機器の一例として、固体撮像装置を用いたカメラの構成図を示す。本実施形態例に係るカメラは、静止画像又は動画撮影可能なビデオカメラを例としたものである。このカメラ90は、固体撮像装置91と、固体撮像装置91の受光センサ部に入射光を導く光学系93と、シャッタ装置94と、固体撮像装置91を駆動する駆動回路95と、固体撮像装置91の出力信号を処理する信号処理回路96とを有する。
固体撮像装置91は、上述した実施形態で説明した構成の固体撮像装置が適用される。光学系(光学レンズ)93は、被写体からの像光(入射光)を固体撮像装置91の撮像面上に結像させる。これにより、固体撮像装置91内に、一定期間信号電荷が蓄積される。このような光学系93は、複数の光学レンズから構成された光学レンズ系としてもよい。シャッタ装置94は、固体撮像装置91への光照射期間及び遮光期間を制御する。駆動回路95は、固体撮像装置91及びシャッタ装置94に駆動信号を供給し、供給した駆動信号(タイミング信号)により、固体撮像装置91の信号処理回路96への信号出力動作の制御、およびシャッタ装置94のシャッタ動作を制御する。すなわち、駆動回路95は、駆動信号(タイミング信号)の供給により、固体撮像装置91から信号処理回路96への信号転送動作を行う。信号処理回路96は、固体撮像装置91から転送された信号に対して、各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体に記憶され、或いは、モニタに出力される。
以上説明した本実施形態に係る電子機器によれば、上述した第1実施形態および第2実施形態の何れかの受光特性の良好な固体撮像装置を用いたことにより、撮像機能を有する電子機器における高精彩な撮像や小型化を達成することが可能になる。
なお、本技術は以下のような構成も取ることができる。
(1)
光電変換部が配列形成された画素領域を有するセンサ基板と、
前記センサ基板において前記光電変換部に対する受光面とは逆の表面側に設けられた駆動回路と、
前記画素領域における前記受光面上に設けられ、前記光電変換部に対応した受光開口を有する遮光膜と、
前記遮光膜を覆って設けられた保護絶縁膜と、
前記画素領域の外側の周辺領域において、前記保護絶縁膜から前記センサ基板にかけて埋め込まれ前記駆動回路に接続された複数の貫通ビアを備えた
固体撮像装置。
(2)
前記保護絶縁膜に埋め込まれ、前記貫通ビアと一体形成された配線を有する
(1)記載の固体撮像装置。
(3)
前記センサ基板の駆動回路に配置された電極パッドを露出させるパッド開口が、前記周辺領域において前記受光面側から前記センサ基板を貫通して設けられた
(1)または(2)記載の固体撮像装置。
(4)
前記保護絶縁膜が高屈折率膜および低屈折率膜を用いて構成され、
前記遮光膜上に前記低屈折率膜が設けられ、
前記遮光膜の前記受光開口を埋め込むように、前記低屈折率膜上に前記高屈折率膜が設けられた
(1)〜(3)の何れかに記載の固体撮像装置。
(5)
前記受光面側の前記光電変換部に対応する各位置において、前記遮光膜の上部に設けられたオンチップレンズを有する
(1)〜(4)の何れかに記載の固体撮像装置。
(6)
前記センサ基板の表面側には、駆動回路を有する回路基板が貼り合わせられた
(1)〜(5)の何れかに記載の固体撮像装置。
(7)
センサ基板に設定された画素領域に光電変換部を配列形成することと、
前記センサ基板において前記光電変換部に対する受光面とは逆の表面側に駆動回路を形成することと、
前記画素領域における前記受光面上に遮光膜を形成することと、
前記遮光膜を覆う保護絶縁膜を形成することと、
前記受光面側において前記画素領域の外側に設けられた周辺領域に、前記保護絶縁膜から前記センサ基板にかけて埋め込まれ前記駆動回路に接続された複数の貫通ビアを形成することを含む
固体撮像装置の製造方法。
(8)
前記貫通ビアを形成する際に、
前記周辺領域において前記保護絶縁膜側に、配線溝および当該配線溝の底部から前記センサ基板を貫通して前記駆動回路まで延設された複数の接続孔を形成し
前記配線溝および前記接続孔に同時に導電部材を埋め込むことにより、前記貫通ビアと当該貫通ビアに接続された配線とを一体に形成する
(7)記載の固体撮像装置の製造方法。
(9)
前記保護絶縁膜を成膜後、当該保護絶縁膜の表面を平坦化し、
平坦化された前記保護絶縁膜に前記配線溝を形成する
(8)記載の固体撮像装置の製造方法。
(10)
光電変換部が配列形成された画素領域を有するセンサ基板と、
前記センサ基板において前記光電変換部に対する受光面とは逆の表面側に設けられた駆動回路と、
前記画素領域における前記受光面上に設けられ、前記光電変換部に対応した受光開口を有する遮光膜と、
前記遮光膜を覆って設けられた保護絶縁膜と、
前記画素領域の外側の周辺領域において、前記保護絶縁膜から前記センサ基板にかけて埋め込まれ前記駆動回路に接続された複数の貫通ビアと、
前記光電変換部に入射光を導く光学系を備えた
電子機器。
1−1,1−2…固体撮像装置、2…センサ基板、4…画素領域、7…周辺領域、8…電極パッド、8a…パッド開口、9…回路基板、20…光電変換部、23…貫通ビア、23a…接続孔、27,37…埋込配線(駆動回路)、43…遮光膜、43a…受光開口、44…保護絶縁膜、44a…低屈折率膜、44b…高屈折率膜、45…配線、45a…配線溝、A…受光面

Claims (7)

  1. 光電変換部が配列形成された画素領域を有するセンサ基板と、
    前記センサ基板において前記光電変換部に対する受光面とは逆の表面側に設けられた駆動回路と、
    前記画素領域における前記受光面上に設けられ、前記光電変換部に対応した受光開口を有する遮光膜と、
    前記遮光膜を覆って設けられた保護絶縁膜と、
    前記画素領域の外側の周辺領域において、前記保護絶縁膜から前記センサ基板にかけて埋め込まれ前記駆動回路に接続された複数の貫通ビアと、
    前記保護絶縁膜に埋め込まれ、前記貫通ビアと一体形成された配線と、
    前記配線の表面とともに前記画素領域における前記保護絶縁膜の表面をも覆って設けられたキャップ膜と、
    前記受光面側の前記光電変換部に対応する各位置の上部に前記キャップ膜に接して設けられた光学部材とを備え、
    前記駆動回路は、前記センサ基板における前記表面側に設けられた多層配線と、当該センサ基板における前記表面側に貼り合わせられた回路基板側に設けられた多層配線とを備え、
    前記貫通ビアは、前記センサ基板側の多層配線と、前記回路基板側の多層配線とのそれぞれに達して設けられ、
    前記配線は、前記センサ基板側の多層配線に達する貫通ビアと前記回路基板側の多層配線に達する貫通ビア、および前記センサ基板側の多層配線に達する貫通ビア同志を、それぞれ接続する
    固体撮像装置。
  2. 前記保護絶縁膜は平坦化絶縁膜である
    請求項1記載の固体撮像装置。
  3. 前記センサ基板の駆動回路に配置された電極パッドを露出させるパッド開口が、前記周辺領域において前記受光面側から前記センサ基板を貫通して設けられた
    請求項1または2記載の固体撮像装置。
  4. 前記保護絶縁膜が高屈折率膜および低屈折率膜を用いて構成され、
    前記遮光膜上に前記低屈折率膜が設けられ、
    前記遮光膜の前記受光開口を埋め込むように、前記低屈折率膜上に前記高屈折率膜が設けられた
    請求項1〜3の何れかに記載の固体撮像装置。
  5. 前記光学部材として、カラーフィルタとその上部に設けられたオンチップレンズを有する
    請求項1〜4の何れかに記載の固体撮像装置。
  6. 前記センサ基板の表面側には、駆動回路を有する回路基板が貼り合わせられた
    請求項1〜5の何れかに記載の固体撮像装置。
  7. 光電変換部が配列形成された画素領域を有するセンサ基板と、
    前記センサ基板において前記光電変換部に対する受光面とは逆の表面側に設けられた駆動回路と、
    前記画素領域における前記受光面上に設けられ、前記光電変換部に対応した受光開口を有する遮光膜と、
    前記遮光膜を覆って設けられた保護絶縁膜と、
    前記画素領域の外側の周辺領域において、前記保護絶縁膜から前記センサ基板にかけて埋め込まれ前記駆動回路に接続された複数の貫通ビアと、
    前記保護絶縁膜に埋め込まれ、前記貫通ビアと一体形成された配線と、
    前記配線の表面とともに前記画素領域における前記保護絶縁膜の表面をも覆って設けられたキャップ膜と、
    前記受光面側の前記光電変換部に対応する各位置の上部に前記キャップ膜に接して設けられた光学部材と、
    前記光電変換部に入射光を導く光学系を備え、
    前記駆動回路は、前記センサ基板における前記表面側に設けられた多層配線と、当該センサ基板における前記表面側に貼り合わせられた回路基板側に設けられた多層配線とを備え、
    前記貫通ビアは、前記センサ基板側の多層配線と、前記回路基板側の多層配線とのそれぞれに達して設けられ、
    前記配線は、前記センサ基板側の多層配線に達する貫通ビアと前記回路基板側の多層配線に達する貫通ビア、および前記センサ基板側の多層配線に達する貫通ビア同志を、それぞれ接続する
    電子機器。
JP2011223613A 2011-10-04 2011-10-11 固体撮像装置、および電子機器 Active JP5948783B2 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2011223613A JP5948783B2 (ja) 2011-10-11 2011-10-11 固体撮像装置、および電子機器
TW101133370A TWI577001B (zh) 2011-10-04 2012-09-12 固體攝像裝置、固體攝像裝置之製造方法及電子機器
EP19177082.5A EP3561873B1 (en) 2011-10-04 2012-09-27 Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
CN201610686559.3A CN106169493B (zh) 2011-10-04 2012-09-27 固态图像拾取单元和电子设备
PCT/JP2012/074945 WO2013051462A1 (ja) 2011-10-04 2012-09-27 固体撮像装置、固体撮像装置の製造方法、および電子機器
US14/346,607 US9184205B2 (en) 2011-10-04 2012-09-27 Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
CN201280045395.6A CN103797579B (zh) 2011-10-04 2012-09-27 固态图像拾取单元、制造固态图像拾取单元的方法和电子设备
EP12838953.3A EP2747139B1 (en) 2011-10-04 2012-09-27 Semiconductor image pickup device, method for making semiconductor image pickup device, and electronic device
DE202012013576.7U DE202012013576U1 (de) 2011-10-04 2012-09-27 Festkörper-Bildaufnahmeeinheit und elektronische Vorrichtung
KR1020147006318A KR102051155B1 (ko) 2011-10-04 2012-09-27 고체 촬상 장치, 고체 촬상 장치의 제조 방법 및 전자 기기
US14/871,345 US9374511B2 (en) 2011-10-04 2015-09-30 Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
US15/087,729 US9576998B2 (en) 2011-10-04 2016-03-31 Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
US15/411,470 US10312281B2 (en) 2011-10-04 2017-01-20 Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
US16/413,045 US11329091B2 (en) 2011-10-04 2019-05-15 Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011223613A JP5948783B2 (ja) 2011-10-11 2011-10-11 固体撮像装置、および電子機器

Publications (3)

Publication Number Publication Date
JP2013084763A JP2013084763A (ja) 2013-05-09
JP2013084763A5 JP2013084763A5 (ja) 2014-11-20
JP5948783B2 true JP5948783B2 (ja) 2016-07-06

Family

ID=48529661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011223613A Active JP5948783B2 (ja) 2011-10-04 2011-10-11 固体撮像装置、および電子機器

Country Status (1)

Country Link
JP (1) JP5948783B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076569A (ja) * 2013-10-11 2015-04-20 ソニー株式会社 撮像装置およびその製造方法ならびに電子機器
US10121812B2 (en) 2015-12-29 2018-11-06 Taiwan Semiconductor Manufacturing Co., Ltd. Stacked substrate structure with inter-tier interconnection
JP2018006443A (ja) * 2016-06-29 2018-01-11 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP7038494B2 (ja) * 2017-06-15 2022-03-18 ルネサスエレクトロニクス株式会社 固体撮像素子
WO2021199680A1 (ja) * 2020-03-31 2021-10-07 ソニーセミコンダクタソリューションズ株式会社 受光素子および電子機器
JP2022187526A (ja) * 2021-06-08 2022-12-20 ソニーセミコンダクタソリューションズ株式会社 撮像素子パッケージおよび電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168074A (ja) * 1997-08-13 1999-03-09 Sony Corp 固体撮像素子
JP2003209235A (ja) * 2002-01-16 2003-07-25 Sony Corp 固体撮像素子及びその製造方法
JP2007201266A (ja) * 2006-01-27 2007-08-09 Fujifilm Corp マイクロレンズ、その製造方法、これを用いた固体撮像素子およびその製造方法
JP2009071182A (ja) * 2007-09-14 2009-04-02 Sony Corp 固体撮像装置及びその製造方法、並びにカメラ
JP4900876B2 (ja) * 2007-09-14 2012-03-21 カシオ計算機株式会社 表示装置の製造方法
KR101648200B1 (ko) * 2009-10-22 2016-08-12 삼성전자주식회사 이미지 센서 및 그 제조 방법
JP5442394B2 (ja) * 2009-10-29 2014-03-12 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器

Also Published As

Publication number Publication date
JP2013084763A (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
US11329091B2 (en) Solid-state image pickup unit, method of manufacturing solid-state image pickup unit, and electronic apparatus
JP5760923B2 (ja) 固体撮像装置の製造方法
US8981275B2 (en) Solid-state image pickup device with an optical waveguide, method for manufacturing solid-state image pickup device, and camera
JP4944399B2 (ja) 固体撮像装置
JP4972924B2 (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2009252949A (ja) 固体撮像装置及びその製造方法
JP5948783B2 (ja) 固体撮像装置、および電子機器
JP2013214616A (ja) 固体撮像装置、固体撮像装置の製造方法及び電子機器
KR20160130210A (ko) 고체 촬상 장치 및 그 제조 방법 및 전자 기기
JP5987275B2 (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
JP6083572B2 (ja) 固体撮像装置及びその製造方法
JP5298617B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP2012186396A (ja) 固体撮像装置およびその製造方法
JP4549195B2 (ja) 固体撮像素子およびその製造方法
JP5994887B2 (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
JP2010062437A (ja) 固体撮像装置およびその製造方法
JP5092379B2 (ja) 固体撮像装置及びその製造方法並びに撮像装置
JP5425138B2 (ja) 固体撮像装置の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5948783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250