JP5946989B2 - 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液 - Google Patents

液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液 Download PDF

Info

Publication number
JP5946989B2
JP5946989B2 JP2010516070A JP2010516070A JP5946989B2 JP 5946989 B2 JP5946989 B2 JP 5946989B2 JP 2010516070 A JP2010516070 A JP 2010516070A JP 2010516070 A JP2010516070 A JP 2010516070A JP 5946989 B2 JP5946989 B2 JP 5946989B2
Authority
JP
Japan
Prior art keywords
electrode
liquid
electrodes
trough member
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010516070A
Other languages
English (en)
Other versions
JP2010540208A (ja
JP2010540208A5 (ja
Inventor
ケー. ピアース,デイビッド
ケー. ピアース,デイビッド
ジー. モーテンソン,マーク
ジー. モーテンソン,マーク
エー. ブライス,デイビッド
エー. ブライス,デイビッド
Original Assignee
ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー
ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー, ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー filed Critical ジーアール インテレクチュアル リザーブ リミティド ライアビリティ カンパニー
Publication of JP2010540208A publication Critical patent/JP2010540208A/ja
Publication of JP2010540208A5 publication Critical patent/JP2010540208A5/ja
Application granted granted Critical
Publication of JP5946989B2 publication Critical patent/JP5946989B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/30Cells comprising movable electrodes, e.g. rotary electrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/47Generating plasma using corona discharges
    • H05H1/471Pointed electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • B01J2219/0811Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes employing three electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/08Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Plasma Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は概して言えば、ナノ粒子、ミクロ粒子、及びナノ粒子/液体溶液を連続的に製造するための新規の方法及び新規の装置に関する。ナノ粒子(及び/又はミクロン・サイズの粒子)は、考えられ得る種々様々な組成、サイズ、及び形状を成す。粒子(例えばナノ粒子)は、例えば好ましくは少なくとも1種の調節可能なプラズマ(例えば少なくとも1つのAC及び/又はDC電源によって生成する)を利用して、液体(例えば水)中に存在(例えば生成)させられることになる。このプラズマは、液体の表面の少なくとも一部と連通する。後続の及び/又は実質的に同時に行われる少なくとも1種の調節可能な電気化学処理技術も好ましい。複数の調節可能なプラズマ及び/又は調節可能な電気化学処理技術が好ましい。連続法は、少なくとも1種の液体をトラフ部材内に流入させ、トラフ部材を貫流させ、そしてトラフ部材から流出させる。このような液体は、前記トラフ部材内で処理され、コンディショニングされ、且つ/又は影響を与えられる。その結果は、液体中に形成された成分を含む。これらの成分は、液体中に存在する、新規のサイズ、形状、組成、及び特性を有するミクロン・サイズの粒子及び/又はナノ粒子(例えば金属系ナノ粒子)を含む。
Brian L. Cushing, Vladimire L. Kolesnichenko及びCharles J. O'Connor著, “Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles”, Chemical Reviews, American Chemical Society, 2004年, 第104巻、第3893-3946頁(非特許文献1)(この対象内容を参考のため本明細書中に明示的に引用する)に示された技術を含めて、ナノ粒子の製造のために多くの技術が存在する。
さらに、Clemens Burda, Xiaobo Chen, Radha Narayanan及びMostafa A. El-Sayed著, 論文“Chemistry and Properties of Nanocrystals of Different Shapes”, Chemical Reviews, American Chemical Society, 2005年, 第105巻, 第1025-1102頁(非特許文献2)(この対象内容を参考のため本明細書中に明示的に引用する)は、付加的な処理技術を開示している。
論文“Shape Control of Silver Nanoparticles”がBenjamin Wiley, Yugang Sun, Brian Mayers及びYounan Xiaによって著され、Chemistry--A European Journalに発表されている(非特許文献3)。
さらに、“Methods of Controlling Nanoparticle Growth”と題する、2006年4月25日付けでMirkin他に発行された米国特許第7,033,415号明細書(特許文献1);及び“Non-Alloying Core Shell Nanoparticles”と題する、2006年11月14日付けでMirkin他に発行された米国特許第7,135,055号明細書(特許文献2)、の双方はナノ粒子の成長のための付加的な技術を開示している。両対象内容を参考のため本明細書中に明示的に引用する。
さらに、“Nanoprisms and Method of Making Them”と題する、2006年11月14日付けでJin他に発行された米国特許第7,135,054号明細書(特許文献3)も参考のため本明細書中に明示的に引用する。
本発明は、公知の処理技術に存在する種々の欠陥/非効率を克服するために、また、種々の形状及びサイズのナノ粒子、及び/又は以前には達成できなかった新しいナノ粒子/液体材料を製造する新規の制御可能な方法を達成するために開発された。
米国特許第7,033,415号明細書 米国特許第7,135,055号明細書 米国特許第7,135,054号明細書
Brian L. Cushing, Vladimire L. Kolesnichenko及びCharles J. O'Connor, "Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles", Chemical Reviews, American Chemical Society, 2004年, 第104巻、第3893-3946頁 Clemens Burda, Xiaobo Chen, Radha Narayanan及びMostafa A. El-Sayed, "Chemistry and Properties of Nanocrystals of Different Shapes", Chemical Reviews, American Chemical Society, 2005年, 第105巻, 第1025-1102頁 Benjamin Wiley, Yugang Sun, Brian Mayers及びYounan Xia, "Shape Control of Silver Nanoparticles", Chemistry--A European Journal
本発明は概して言えば、ミクロン・サイズ粒子、ナノ粒子、及びナノ粒子/液体溶液を含む、液体中の種々の成分を連続的に製造するための新規の方法及び新規の装置に関する。産出されたナノ粒子は、考えられ得る種々様々な組成、サイズ、及び形状を成すことができ、これらは、新規の興味深い種々様々な物理、触媒、生体触媒、及び/又は生物物理特性を呈する。この過程中に使用され、生成/改質される液体は、ミクロン・サイズ粒子及びナノ粒子を製造し、且つ/又は機能させる上で重要な役割を果たす。粒子(例えばナノ粒子)は、例えば好ましくは少なくとも1種の調節可能なプラズマ(例えば少なくとも1つのAC及び/又はDC電源によって生成する)を利用して、少なくとも1種の液体(例えば水)中に存在(例えば生成)させられることになる。この調節可能なプラズマは、液体の表面の少なくとも一部と連通する。調節可能なプラズマの形成には、種々の組成及び/又は独自の形態を有する金属系電極が好ましいが、しかし非金属系電極を利用することもできる。後続の及び/又は実質的に同時に行われる少なくとも1種の調節可能な電気化学処理技術を利用することも好ましい。電気化学処理技術に使用するためには、種々の組成及び/又は独自の形態を有する金属系電極が好ましい。調節可能なプラズマ及び/又は調節可能な電気化学処理技術によって好都合な影響を与えることができる変数のいくつかの例としては、電界、磁界、電磁界、電気化学特性、pHなどが挙げられる。本発明の処理の利点の多くを達成し、また好ましい実施態様の教示を実施することから生じる新規の組成の多くを達成するために、複数の調節可能なプラズマ及び/又は調節可能な電気化学技術が好ましい。全過程は、多くの利益が付随する連続過程である。この過程において、少なくとも1種の液体、例えば水が少なくとも1つのトラフ部材内に流入し、トラフ部材を貫流し、そしてトラフ部材から流出し、そしてこのような液体は、前記少なくとも1種の調節可能なプラズマ及び/又は前記少なくとも1種の調節可能な電気化学技術によって処理され、コンディショニングされ、修正され、且つ/又は影響を与えられる。連続処理の結果は、液体中の新たな成分を含む。これらの成分は、液体中に懸濁された、新規のサイズ、形状、組成、及び/又は特性を有するミクロン・サイズの粒子及び/又はナノ粒子(例えば金属系ナノ粒子)を含み、このようなナノ粒子/液体混合物は、効率的且つ経済的に製造される。
「トラフ部材」という表現はテキスト全体を通して使用される。この表現は、ここに開
示された方法と適合し得る限り、管、半管、材料又は物体中に存在する通路又は溝、流路(conduit)、ダクト、チューブ、シュート、ホース及び/又は樋を含む多種多様の流体処理装置を意味するものと理解されるべきである。
付加的な処理技術、例えば或る結晶成長技術の適用が、2003年3月21日付けで出願され、2003年10月30日付けで国際公開第03/089692号パンフレットとして公開された“Methods for Controlling Crystal Growth, Crystallization, Structures and Phases in Materials and Systems”と題する同時係属中の特許出願、及び2005年6月6日付けで出願され、2006年2月23日付けで米国特許出願公開第2006/0037177号明細書として公開された米国特許出願に開示されている(それぞれの発明者はBentley J. Blum, Juliana H. J. Brooks及びMark G. Mortenson)。両対象内容を参考のため本明細書中に明示的に引用する。これらの出願公開明細書は、例えば溶液から1種又は2種以上の特定の結晶又は結晶形状をどのように優先的に成長させるかを教示する。さらに、乾燥、濃縮、及び/又は凍結乾燥を利用することにより、懸濁液の少なくとも一部、又はほぼ全てを除去し、その結果、例えば脱水ナノ粒子を生じさせることもできる。
本発明の1実施態様の重要な特徴は、調節可能なプラズマの生成に関与する。この調節可能なプラズマは、液体表面の少なくとも一部の近く(例えば上方)に位置決めされた少なくとも1つの電極と、液体表面自体の少なくとも一部との間に配置されている。液体は、少なくとも1つの第2電極(又は複数の第2電極)と電気的に連通させられ、これにより液体表面は、調節可能なプラズマを形成するのを助ける電極として機能することになる。このような構造は、液体表面がこの構造では活性電極として関与することを除けば、誘電体バリア放電構造と類似のいくらかの特性を有している。
利用される各調節可能なプラズマは、少なくとも1つの導電性電極を液体中(例えば少なくとも部分的に)のどこかに配置することにより、液体表面の上方に配置された少なくとも1つの電極と、液体表面との間に配置することができる。少なくとも1つの電源(好ましい実施態様では、ボルト及びアンペアの少なくとも1つの源、例えば変圧器)が、液体表面の上方に配置された少なくとも1つの電極と、液体表面と接触する(例えば少なくとも部分的又はほぼ完全に液体中に配置される)少なくとも1つの電極との間に電気的に接続されている。電極は、任意の好適な組成及び好適な物理形態(例えばサイズ及び形状)を有していてよく、その結果、液体表面の上方に配置された電極と、液体表面自体の少なくとも一部との間に望ましいプラズマが形成される。
電極(プラズマを形成するための少なくとも1つの電極として機能する液体表面を含む)間の印加電力(例えばボルト数又はアンペア数)は、AC源及びDC源の双方、及びこれらの変更形及び組み合わせを含む任意の好適な源(例えば変圧器からの電圧)によって発生させることができる。一般に、液体中に配置された(例えば液体表面の下方に少なくとも部分的に配置された)電極又は電極組み合わせは、液体又は溶液に電圧及び電流を提供することにより、プラズマの形成に関与するが、しかし、調節可能なプラズマは、実際に、液体表面の上方に配置された電極の少なくとも一部(例えばその先端又は点)と、液体表面自体の1つ又は2つ以上の部分又は区域との間に配置される。これに関しては、電極と液体表面との周り及び/又は間の気体又は蒸気が破壊電圧に達するか、又は維持されるときに、調節可能なプラズマを、上述の電極間(すなわち液体表面の少なくとも一部の上方に配置された電極と、液体表面自体の一部との間)に形成することができる。
本発明の1つの好ましい実施態様の場合、液体は水を含み、そして水面と水面の上方に位置する電極との間の気体(すなわち、調節可能なプラズマの形成に関与する気体又は雰囲気)は、空気を含む。空気は、種々異なる含水量及び所期湿度を含有するように制御することができ、その結果、ナノ粒子の種々異なる組成、サイズ、及び/又は形状を本発明に従って製造することができ(例えば、調節可能なプラズマ中及び/又は溶液中の或る成分の種々異なる量は、液体表面の上方に位置する空気中の含水量の関数であり得る)、又は種々異なる処理時間などをもたらすことができる。
乾燥空気に対する標準的な圧力及び温度における破壊電界は、約3MV/m又は約30kV/mである。こうして、例えば金属点の周りの局所的電界が約約30kV/mを超えると、プラズマを乾燥空気中で発生させることができる。等式(1)は、破壊電界「Ec」と2電極間の距離「d」(メートル)との経験的関係は:
Figure 0005946989
を与える。もちろん、破壊電界「Ec」は、電極間に位置する気体の特性及び組成の関数として変化することになる。このことに関して、水が液体である場合の1つの好ましい実施態様の場合、顕著な水蒸気量が「電極」間(すなわち、液体表面の上方に配置された少なくとも1つの電極と、プラズマ形成の1つの電極として機能する液体表面自体との間)の空気中に固有に存在することが可能であり、またこのような水蒸気は、少なくとも、これらの間にプラズマを生成するために必要となる破壊電界に対して効果を与えるはずである。さらに、調節可能なプラズマと水面との相互作用により、生成されたプラズマ中及びプラズマの周りに局所的により高い濃度の水蒸気を存在させることもできる。生成されたプラズマ中及びプラズマの周りに存在する「湿分」の量は、本明細書中で後で詳しく論じる種々様々な技術によって制御又は調節することができる。同様に、任意の液体中に存在する或る構成要素が、液体表面と、液体表面に隣接して(例えば沿って)配置された電極との間に位置する調節可能なプラズマを形成する成分の少なくとも一部を形成することもできる。調節可能なプラズマ中の成分、並びにプラズマ自体の物理特性は、液体に対して、また処理技術のうちの或るものに対して劇的な影響を与えることができる(本明細書中で後で詳しく論じる)。
電極に、そして電極近くに生成された電界強度は、典型的には電極表面で最大となり、そして典型的にはこの表面からの距離が増大するのに伴って減少する。液体表面と、液体に隣接して(例えば上方に)配置された少なくとも1つの電極との間に、調節可能なプラズマを生成することを伴う事例では、液体表面の上方に配置された電極と、液体表面自体の少なくとも一部との間の気体の体積の一部が、調節可能なプラズマを生成するのに十分な破壊電界を含有することができる。生成されたこれらの電界は、例えば調節可能なプラズマの挙動、液体の挙動、液体中の成分の挙動などに影響を与えることができる。
これに関連して、図1aは、例えば「F」の方向に流動する液体3の表面2の上方に距離「x」を置いて配置された三角形の断面形状を有する点源電極1の1実施態様を示している。点源電極1と、液体3に連通する電極5(例えば電極5は少なくとも部分的に液体3の表面2の下方にある)との間に適切な電源10が接続されていると、電極1の先端又は点9と液体3の表面2との間に、調節可能なプラズマ4を発生させることができる。なお、或る条件下では、電極5の先端9’は実際には、液体3のバルク表面2の物理的に僅かに上方に配置されていてよいが、しかし液体は、「テイラーコーン(Taylor cones)」として知られる現象を通して電極とまだ連通している。テイラーコーンについては、“Method and Apparatus for Ozone Generation and Treatment of Water”と題する、1995年12月26日付けでInculetに発行された米国特許第5,478,533号明細書において論じられている。この対象内容を参考のため本明細書中に明示的に引用する。これに関して、図1bは、テイラーコーン「T」が電極5と液体3の表面2(又は実際には有効表面2’)との間の電気的接続のために利用されることを除いて、図1aに示されたものと同様の電極構造を示している。テイラーコーンの生成及び使用に関しては、本明細書中の別の個所で詳細に論じる。
図1aに示された実施態様において生成された調節可能なプラズマ領域4は、典型的には、過程の少なくとも一部にわたって、円錐状構造に相当する形状を有することができ、本発明のいくつかの実施態様の場合、実質的に全過程にわたってこのような円錐状形状を維持することができる。調節可能なプラズマ4の体積、強度、成分(例えば組成)、活性、正確な位置は、数多くのファクタに応じて変化することになり、これらのファクタの一例としては、距離「x」、電極1の物理的及び/又は化学的な組成、電極1の形状、電源10(例えばDC、AC、整流AC、DC及び/又は整流AC、RFなどの印加極性)、電源によって印加される電力(例えば印加されるボルト数、印加されるアンペア数、電子速度など)、適用される電源によって生成される電界及び/又は磁界、周囲の電界、磁界、又は電磁界、音場の周波数及び/又は大きさ、電極1と液体3の表面2との間及び/又はその周りの、自然発生する又は供給された気体又は雰囲気の組成(例えば空気、窒素、ヘリウム、酸素、オゾン、還元性雰囲気など)、温度、圧力、体積、方向「F」における液体3の流量、スペクトル特性、液体3の組成、液体3の導電率、電極1及び5の近く及び周りの液体の断面積(例えば体積)、(例えば液体3が、調節可能なプラズマ4と相互作用することを許される時間量、及びこのような相互作用の強度)、液体3の表面2における又は表面2の近くの雰囲気流(例えば空気流)の存在(ファン又は雰囲気運動手段の提供)(本明細書中で後から詳しく論じる)が挙げられる。
図1aの調節可能なプラズマ4の生成に関与する電極1の組成は、本発明の1つの好ましい実施態様の場合、金属系組成物(例えば白金、金、銀、亜鉛、銅、チタン、及び/又はこれらの合金又は混合物などのような金属)であるが、しかし電極1及び5は、本明細書中に開示された本発明の種々の特徴(例えば処理パラメータ)と適合性のある任意の好適な材料から形成されていてよい。これと関連して、例えば液体3(例えば水)の表面2の上方の空気中にプラズマ4を生成している間、典型的には、少なくとも若干のオゾン、並びに所定量の窒素酸化物及びその他の成分(本明細書中の別の個所で詳細に論じる)が産出される。これらの産出成分は制御することができ、結果として産出されたナノ粒子及び/又はナノ粒子/溶液の形成及び/又は性能にとって有用なことも有害なこともあり、本明細書中で後から詳しく論じる種々異なる技術によって制御されることが必要となる場合がある。さらに、各プラズマ4の発光スペクトルも、同様のファクタの関数である(本明細書中で後から詳しく論じる)。図1aに示されているように、調節可能なプラズマ4は実際には、液体3の表面2と接触する。本発明のこの実施態様の場合、電極1に由来する材料(例えば金属)は、調節可能なプラズマ4の一部を含んでいてよく(例えば、従ってプラズマの発光スペクトルの一部であってよい)、そして、液体3(例えば水)上及び/又は液体3(例えば水)中に「スパッタリング」させられてよい。従って、電極1として金属が使用されるときには、調節可能なプラズマ4と関連する特定の一連の動作条件に応じて、元素金属、金属イオン、ルイス酸、ブレンステッド−ラウリ酸、金属酸化物、金属窒化物、金属水素化物、金属水和物、及び/又は金属炭化物などを液体3中に(例えば過程の少なくとも一部にわたって)見いだすことができる。このような成分は、一時的に存在してよく、或いは半永久的又は永久的であってもよい。さらに、例えば液体3中及び液体3の周りの電界、磁界、及び/又は電磁界の強さ、及び液体3の体積(本明細書中で後から詳しく論じる)、電極1及び5の物理的及び化学的な組成、(自然発生する又は供給された)雰囲気、液体組成に応じて、より多量又はより少量の電極材料(例えば金属又は金属の誘導体)を液体3中に見いだすことができる。或る状況では、液体3中又はプラズマ4中に見いだされる材料(例えば金属又は金属複合材料)又は成分(例えばルイス酸、ブレンステッド−ラウリ酸など)が極めて望ましい効果を有することがある。この場合には、このような材料は比較的多量であることが望ましい。これに対して他の事例では、液体3中に見いだされる或る材料(例えば副産物)が望ましくない影響を及ぼすおそれがあり、ひいては、このような材料を最小限にすることが液体ベースの最終生成物において望ましい場合がある。従って、電極の組成は、本明細書中に開示された実施態様に従って形成される材料において重要な役割を果たすことができる。本発明のこれらの成分間の相互作用については、本明細書中で後から詳しく論じる。
さらに、電極1及び5は、液体の種々の組成及び/又は構造、及び/又は本明細書中で後から詳しく論じる特定の効果を達成するために、同様の化学組成及び/又は機械構造を有するか、又は完全に異なる組成を有していてもよい。
電極1と5;又は1と1(本明細書中に後で示す)、又は5と5(本明細書中に後で示す)との間の距離は、本発明の1つの重要な特徴である。一般に、本発明に使用される電極の最も近い部分の間の最小距離「y」の位置は、望ましくないアーク又は望まれないコロナ又はプラズマの形成が電極間(例えば電極1と電極5との間)に生じるのを防止するために、距離「x」よりも大きくあるべきである。電極のデザイン、電極の位置、及び種々の電極間の電極相互作用に関する本発明の特徴について、本明細書中で後から詳しく論じる。
電源10を通して印加される電力は、本発明の全ての方法条件下で、望ましい調節可能なプラズマ4を生成する任意の好適な電力であってよい。本発明の1つの好ましい態様において、昇圧器(本明細書中で後から詳しく論じる)からの交流が利用される。別の好ましい実施態様の場合、整流AC源が、正荷電電極1と液体3の負荷電表面2とを形成する。別の好ましい実施態様の場合、整流AC源が、負荷電電極1と液体3の正荷電表面2とを形成する。さらに、他の電源、例えばRF電源を本発明ととも使用することもできる。一般には、電極構成部材1及び5の組み合わせ、電極1及び5の物理的なサイズ及び形状、電極製造法、電極1及び/又は5の質量、液体3の表面2とその上方の電極1の先端9との間の距離「x」、電極先端9と表面2との間の気体の組成、液体3の流量及び/又は流動方向「F」、液体3の提供量、電源10のタイプが全て、そのデザイン、ひいては液体3の表面2と電極先端9との間に制御された又は調節可能なプラズマ4を得るために必要となる電力要件(例えば破壊電界)に関与する。
図1aに示された構造をさらに参照すると、電極ホルダ6a及び6bは、任意の好適な手段によって昇降させることができる(ひいては電極も昇降させることができる)。例えば電極ホルダ6a及び6bは、絶縁部材8(断面で示す)内を通って昇降させることができる。ここに示す機械的な実施態様は雄/雌ねじ山を含む。部分6a及び6bは、例えば付加的な電気絶縁部分7a及び7bによってカバーすることができる。電気絶縁部分7a及び7bは、任意の好適な材料(例えばプラスチック、ポリカーボネート、ポリ(メチルメタクリレート)、ポリスチレン、アクリル、ポリビニルクロリド(PVC)、ナイロン、ゴム、繊維性材料であってよい。)これらの材料は、人が電極ホルダ6a及び6bを調整するとき(例えば電極の高さを調節しようとするとき)に発生するおそれのある望ましくない電流、電圧、アークなどを防止する。同様に、絶縁部材8は、望ましくない電気的事象(例えばアーク形成、溶融など)が発生するのを防止する任意の好適な材料、並びに、本発明を実施するのに構造的且つ環境的に適した任意の材料から形成することもできる。典型的な材料は、構造用プラスチック、例えばポリカーボネート、プレキシガラス(ポリ(メチルメタクリレート))、ポリスチレン、及びアクリルなどを含む。本発明とともに使用するための付加的な好適な材料については、本明細書中の別の個所で詳細に論じる。
図1cは、電極1,5を昇降させるための別の実施態様を示している。この実施態様の場合、各電極の電気絶縁部分7a及び7bが、摩擦機構13a,13b及び13cと、部分7a及び7bとの間に存在するプレス嵌め部によって所定の位置に保持される。摩擦機構13a,13b及び13cは、例えば十分な接触がその間に維持される限り、例えばばね鋼、可撓性ゴムなどから形成されていてもよい。
電極1,5を自動的に上昇及び/又は降下させる好ましい技術については、本明細書中で後から詳しく論じる。電源10は、電極1及び5に任意の好都合な電気的形式で接続することができる。例えば、部分11a,11b間、ひいては電極1,5間に電気的接続を達成することを主な目的として、電極ホルダ6a,6b(及び/又は電気絶縁部分7a,7b)の少なくとも一部の内部にワイヤ11a及び11bを配置することができる。
図2aは、本発明の好ましい実施態様の別の概略図を示している。ここでは、本発明の制御装置20が電極1及び5に接続されているので、制御装置20は、液体3の表面2に対して電極1,5を遠隔位置から(例えば別の装置からの命令で)上昇及び/又は降下させることができる。本発明の制御装置20については、本明細書中で後から詳しく論じる。本発明のこの1つの好ましい特徴において、電極1及び5は、例えば遠隔位置から降下させ制御することができ、また、ソフトウェア・プログラム(本明細書中で後から詳しく論じる)を含有する好適なコントローラ又はコンピュータ(図2aには示されない)によって監視し制御することもできる。これに関して、図2bは、テイラーコーン「T」が電極5と液体3の表面2(又は実際には有効表面2’)との間の電気的接続のために利用されることを除いて、図2aに示されたものと同様の電極構造を示している。従って、図1a,1b及び1cに示された実施態様は、本発明の技術とともに使用するための手動制御式装置であると考えられるべきであり、これに対して、図2a及び2bに示された実施態様は、適宜の命令に応答して電極1及び5を遠隔位置から昇降させることができる自動的な装置又は集成体を含むと考えられるべきである。さらに、図2a及び図2bに示す本発明の好ましい実施態様は、表面2から離隔した電極1の先端9(及び電極5の先端9’)の距離「x」をコンピュータで監視し、そしてコンピュータ制御することを採用することもできる(本明細書中で後から詳しく論じる)。従って、電極1及び5を上昇及び/又は降下させる適宜の命令は、個々の操作者及び/又は好適な制御装置、例えばコントローラ又はコンピュータ(図2aには示されない)から出ることが可能である。
図3aは、図2a及び2bに大部分が相当するが、図3b、3c及び3dは、本発明の或る好ましい実施態様とともに利用し得る種々様々な代わりの電極構造を示している。図3bは図3aに示された電極集成体から、本質的に鏡像電極集成体を示している。具体的には、図3bに示されているように、液体3の流動方向に相当する方向「F」に関して、電極5は、流体3が長手方向「F」で流動するとこの流体3と連通する最初の電極であり、これに続いて、電極1に生成されたプラズマ4との接触が生じる。図3cは、流体3中に配置された2つの電極5a及び5bを示している。この特定の電極構造は、本発明の別の好ましい実施態様に相当する。具体的には、本明細書中で詳しく論じるように、図3cに示された電極構造は単独で、或いは、例えば図3a及び3bに示された電極構造との組み合わせで使用することができる。同様に、考えられ得る第4の電極構造は図3dで示されている。この図3dには、電極5が示されておらず、電極1a及び1bだけが示されている。この場合、電極先端9a及び9bと、液体3の表面2との間に、2つの調節可能なプラズマ4a及び4bが存在している。距離「xa」及び「xb」は、ほぼ同じであってよく、或いは、それぞれの距離「xa」及び「xb」が、電極9a/9bと液体3の表面2との間にプラズマ4を形成することができる最大距離を超えない限り、実質的に異なっていてよい。上記のように、図3dに示された電極構造は単独で、或いは、例えば図3a、3b及び3cに示された電極構造のうちの1つ又は2つ以上との組み合わせで使用することができる。流体の流動方向「F」に関して、互いに組み合わされた特定の電極構造を利用することの望ましさについては、本明細書中で後から詳しく論じる。
同様に、図1aに概ね相当する一連の手動制御式の電極構造が図4a、4b、4c及び4dに示されている。これらの全てが部分断面図に示されている。具体的には、図4aは図1aに相当する。さらに、図4bは電極構造において、図3bに示された電極構造に相当し、図4cは図3cに相当し、そして図4dは図3dに相当する。本質的には、図4a〜4dに示された手動電極構造は機能的に、結果として、図3a〜3dに示された遠隔調節可能な(コンピュータ又はコントローラ手段によって遠隔制御される)電極構造に対応して製造される材料と同様の材料を、本発明の或る特徴に従って製造することができる。電極構造の種々の組み合わせを利用することの望ましさについては、本明細書中で後から詳しく論じる。
図5a〜5eは、図1〜4(及びその他の図面、及び本明細書中で後から論じる実施態様)に示された電極1のための種々様々な望ましい電極構造の斜視図を示している。図5a〜5eに示された電極構造は、本発明の種々の実施態様において有用な種々異なる数多くの構造の代表である。電極1に対する適宜の電極選択の基準の一例としては、下記条件、すなわち、極めて明確な先端又は点9の必要性、組成、機械的制限、電極1を含む材料から所定の形状を形成する能力、便宜性、プラズマ4内に導入される成分、液体3に対する影響など、が挙げられる。これに関して、例えば図1〜4に示された電極1を含む小さな質量の材料は、本発明に従って調節可能なプラズマ4を生成すると(本明細書中で後から詳しく論じる)、動作温度まで上昇することがある。この温度では、電極1のサイズ及び/又は形状が不都合な影響を受けるおそれがある。これに関しては、例えば、電極1が比較的小さな質量を有しており(例えば電極1が銀から形成されておりその重量が約0.5グラム以下である)、そして極めて微細な点を含むならば、或る種の付加的な相互作用(例えば冷却手段、例えばファンなど)がない限り、微細な点(例えば直径が僅か数ミリメートルであり、数100〜数1000ボルトに曝露される細いワイヤ;又は三角形の金属片)は電極1として機能できなくなることが、或る一連の条件下ではあり得る。従って、電極1(例えば電極を含む材料)の組成は、例えば融点、感圧性、環境反応(例えば調節可能なプラズマ4の局所的環境は、電極の化学的、機械的及び/又は電磁的腐食を生じさせるおそれがある)などに起因して、電極の考えられ得る好適な物理的形状に影響を及ぼすことがある。
さらに、言うまでもなく、本発明の別の好ましい実施態様では、明確な鋭利な点が常に必要とされるわけではない。これに関連して、図5eに示された電極1は、丸みを帯びた点を含む。なお、部分的に丸みを帯びた又は円弧状の電極が、電極1として機能することもできる。なぜならば、本明細書中に示された本発明の実施態様(例えば図1〜4参照)において生成される調節可能なプラズマ4は、丸みを帯びた電極、又はより鋭利な又はより尖った構成要件を有する電極から生成することができるからである。本発明の技術の実施中、このような調節可能なプラズマは、図5eに示された電極1の種々の点に沿って位置決めするか又は配置することができる。これに関して、図6は種々様々な点「a〜g」を示しており、これらの点は、電極1と液体3の表面2との間に発生するプラズマ4a〜4gの開始点9に相当する。従って、言うまでもなく、電極1に対応する種々のサイズ及び形状を、本発明の教示に従って利用することができる。さらに、ここで種々の図面に示された、それぞれ電極1及び5の先端9,9’は、比較的鋭利な点又は比較的丸みのある端部として示されることがある。これらの電極先端の具体的な特徴を文脈上より詳細に論じるのでない限り、図面に示す電極先端の実際の形状はさほど重要でないものとする。
図7aは、トラフ部材30内部に含有される、図2a(及び図3a)に示されているものに相当する電極構造を示す断面斜視図である。このトラフ部材30は、図7aの符号31として示される後ろ側から内部に供給された液体3を有しており、流動方向「F」は、この頁から読者に向かって、また符号32として示された断面区域に向かっている。トラフ部材30はここでは1つの材料から成る一体部分として示されているが、しかし、1つにまとめられ、そして例えば材料を互いに付着させるための任意の許容し得る手段によって固定された(例えば接着、機械的付着など)複数の材料から形成することもできる。さらに、ここに示されたトラフ部材30は長方形又は正方形の断面形状を有しているが、しかし、種々異なる断面形状を含んでいてもよい(本明細書中で後から詳しく論じる)。従って、流体3の流動方向は、この頁から読者に向かっており、そして液体3は電極1及び5のそれぞれを流過する。電極1及び5は、この実施態様の場合、トラフ部材30内部の流体3の長手方向流動方向「F」に対して互いに実質的に一列に配置されている。これにより、液体3は、調節可能なプラズマ4との相互作用(例えばコンディショニング反応)を最初に被り、続いて、コンディショニングされた流体3は、電極5と相互作用することを許される。これらの電極/液体の相互作用及び電極の配置の具体的な望ましい特徴については、本明細書中の別の個所で詳細に論じる。
図7bは、図2a(及び図3a)に示された電極構造を示す断面斜視図であるが、これらの電極1及び5は、この頁上では、図2a及び3aに示された電極1及び5に対して90度だけ回転している。本発明のこの実施態様において、液体3は、電極1と液体3の表面2との間に発生する調節可能なプラズマ4と接触し、また、トラフ部材30の長手方向の流動方向「F」(すなわち頁から出る方向)に沿ったほぼ同じ点で電極5と接触する。液体3の流動方向は図7aのように、トラフ部材30に沿って長手方向に、紙から読者に向かっている。この電極構造の種々の望ましい特徴については、本明細書中の別の個所で詳細に論じる。
図8aは、図7aに示されたものと同じ実施態様を示す断面斜視図である。この実施態様では、図7aにおけるように、流体3は、電極1と液体3の表面2との間に生成された調節可能なプラズマ4と最初に相互作用する。その後、調節可能なプラズマ4によって変化(コンディショニング、改質、又は調製)させられた、影響されるか又はコンディショニングを施された流体3は、その後、電極5と連通し、ひいては、種々の電気化学反応が発生するのを可能にする。このような反応は、本明細書中の別の個所で詳細に論じる状態(例えば、流体3(及び流体3中の成分)の化学組成、物理又は結晶構造、励起状態など)によって影響を受ける。別の実施態様が図8bに示されている。この実施態様は一般的な配列において、図3b及び4bに示された実施態様に本質的に相当する。この実施態様において、流体3は電極5と最初に連通し、そしてその後流体3は、電極1と液体3の表面2との間に生成された調節可能なプラズマ4と連通する。
図8cは、2つの電極5a及び5b(図3c及び4cに示された実施態様に相当)を示す断面斜視図である。流体3の長手方向の流動方向「F」は、第1電極5aと接触し、そしてその後、流体の流動方向「F」において第2電極5bに接触する。
同様に、図8dは断面斜視図であり、そして図3d及び4dに示された実施態様に相当する。この実施態様において、流体3は、第1電極1aによって生成された第1の調節可能なプラズマ4aと連通し、その後、第2電極1bと流体3の表面2との間に生成された第2の調節可能なプラズマ4bと連通する。
図9aは断面斜視図を示しており、図7bに示された電極構造に相当する(及び図3a及び4aに示された電極構造にも概ね相当するが、しかし図9aの電極構造は90度だけ回転している)。図9a〜9dに示された電極構造の全ては、図示の電極対は、図7bにおけるように、トラフ部材30に沿ったほぼ同じ長手方向の点に配置されるように構成されている。
同様に、図9bも、図3b及び4bに示された電極構造に概ね相当し、図8bに示された構造に対して90度だけ回転させられている。
図9cも、図3c及び4cに概ね相当する電極構造を示し、図8cに示された電極構造に対して90度だけ回転させられている。
図9dも、図3d及び4dに概ね相当する電極構造を示し、図8dに示された電極構造に対して90度だけ回転させられている。
図7、8及び9に大まかに示された電極構造は全て、種々様々な構成要件の関数として種々異なる結果(流体3の種々異なるコンディショニング効果、流体3中の種々異なるpH、種々異なるサイズ、形状、及び/又は流体3中に見いだされる粒状物質の量、流体/ナノ粒子の組み合わせの異なる機能、など)をもたらすことができる。これらの構成要件は、流体流動方向「F」に対する電極の配向及び位置、提供される電極対の数、及びトラフ部材30内の相互の位置を含む。さらに、電極の組成、サイズ、具体的な形状、提供される異なるタイプの電極の数、印加されるボルト数、印加されるアンペア数、AC源、DC源、RF源、電極極性などは全て、液体3がこれらの電極1,5を流過するのに伴って、液体3(及び/又は液体3中に含有される成分)の特性、ひいてはこれから産出される材料(例えばナノ粒子溶液)の結果としての特性に影響を与えることができる。加えて、液体を含有するトラフ部材30はいくつかの好ましい実施態様において、図7、8及び9に示された複数の電極組み合わせを含有している。これらの電極集成体は全て同じ構造であってよく、或いは、種々異なる電極構造の組み合わせであってもよい(本明細書中の別の個所で詳細に論じる)。さらに、電極構造は流体「F」と順次連通してよく、或いは同時に、又は並列に流体「F」と連通してもよい。種々異なる好ましい電極構造例について、ここから産出される種々異なるナノ粒子及びナノ粒子/溶液との関連において、後から付加的な図面に示し、本明細書中で後から詳しく論じる。
図10aは、図7、8及び9に示された、液体を含有するトラフ部材30を示す断面図である。トラフ部材30は、長方形又は正方形に相当する断面を有しており、電極(図10aには示されていない)をトラフ部材30内に適当に位置決めすることができる。
同様に、液体含有トラフ部材30のいくつかの付加的な代わりの実施態様が、図10b、10c、10d及び10eに断面図で示されている。図10a〜10eのそれぞれに示された好ましい実施態様の距離「S」及び「S’」は、例えば約1インチ〜約3インチ(約2.5cm〜7.6cm)である。距離「M」は約2〜約4インチ(約5cm〜10cm)である。距離「R」は約1/16インチ〜1/2インチから約3インチまで(約1.6mm〜3mmから約76mmまで)の範囲である。これらの実施態様の全て(また、別の実施態様を表す付加的な構造も本発明の範囲に含まれる)は、本発明の他の特徴との組み合わせで利用することができる。なお、液体含有トラフ部材30のそれぞれの内部に含有される液体3の量は、深さ「d」の関数であるだけでなく、実際の断面の関数でもある。手短に言うと、電極1及び5の中及び周りに存在する流体3の量は、液体3に対する調節可能なプラズマ4の1つ又は2つ以上の効果、並びに、電極5と液体3との電気化学相互作用に影響を与えることができる。これらの効果は、液体3に対する、調節可能なプラズマ4のコンディショニング効果(例えばプラズマの電界及び磁界の相互作用、プラズマの電磁線の相互作用、液体中の種々の化学種(例えばルイス酸、ブレンステッド−ラウリ酸)の生成、pHの変化、など)を含むだけでなく、濃度、又は調節可能なプラズマ4と液体3との相互作用をも含む。同様に、液体3に対する電極5の多くの特徴の影響(例えば電気化学相互作用)は、少なくとも部分的には、電極5と並置された液体の量の関数でもある。さらに、電界及び磁界の強濃度も、プラズマ4と液体3との相互作用をもたらし、また、電極5と液体3との相互作用をもたらす。これらの重要な相互作用のいくつかの重要な特徴について、本明細書中で後から詳しく論じる。さらに、トラフ部材30は、その長手方向の全長に沿って、2つ以上の断面形状を含んでいてもよい。トラフ部材30の長手方向の全長に沿って複数の断面形状を組み入れる結果、例えば、本明細書中に開示された本発明の実施態様によって生成される場又は濃度又は反応効果を変化させることができる(本明細書中の別の個所で詳細に論じる)。さらに、トラフ部材30は直線形状又は「I字形」でないこともあり、むしろ「Y字形」、又は「Ψ字形」であってもよい。この場合「Y」(又は「Ψ」の各部分は異なる(又は同様の)断面形状及び/又は一連の寸法を有している。
図11aは、入口部分又は入口端部31と出口部分又は出口端部32とを含む、図10bに示されたトラフ部材30のほぼ全体の1実施態様を示す斜視図である。本明細書中で他の図面において論じた流動方向「F」は、端部31で又は端部31の近くで入り(例えば、入口部分31で又は入口部分31の近くでトラフ部材30内に流体を供給する適宜の手段を利用する)、そして端部32を通ってトラフ部材30を出る液体に相当する。図11bは、トラフ部材30に取り外し可能に取り付けられた3つの制御装置20a,20b及び20cを含有する、図11aのトラフ部材30を示している。電極1及び/又は5を含有する制御装置20a,20b及び20cの相互作用及び動作に関しては、本明細書中で後から詳しく論じる。しかしながら、本発明の好ましい実施態様の場合、制御装置20は、トラフ部材30の上側部分に取り外し可能に取り付けることができるので、制御装置20は、トラフ部材30に沿った種々異なる位置に位置決めすることができ、これにより、或る特定の処理パラメータ、生成される成分、生成される成分の反応性、並びにこれから生成されるナノ粒子/流体に影響を与えることができる。
図11cは、雰囲気制御装置カバー35’を示す斜視図である。雰囲気制御装置又はカバー35’には、複数の制御装置20a,20b及び20cが取り付けられている。制御装置20a,20b及び20cは、電極1及び/又は5に制御可能に取り付けられている。カバー35’は、トラフ部材30の長手方向の大部分(長手方向の50%超)の内部及び/又は大部分に沿って雰囲気を制御する能力を提供するように意図されているので、任意の電極1と液体3の表面2との間に生成された任意の調節可能なプラズマ4は、電圧、電流、電流密度、極性など(本明細書中の別の個所で詳細に論じる)、並びに制御された雰囲気の関数であり得る(本明細書中の別の個所で詳細に論じる)。
図11dは、トラフ部材30を(その外部で)支持し、また制御装置20(図11dには示されていない)を(少なくとも部分的に)支持するための付加的な支持手段34を含む、図11cの装置を示している。例えば、この開示内容の範囲に含まれるトラフ部材30、雰囲気制御装置(例えばカバー35’)及び外部支持手段(例えば支持手段34)に対して示される断面形状に関して、種々の詳細を変化させることができることは、読者には明らかである(本明細書中の別の個所で詳細に論じる)。
図11eは、トラフ部材30の別の構造を示している。具体的には、トラフ部材30は斜視図で示されており、「Y字形」である。具体的には、トラフ部材30は上側部分30a及び30bと、下側部分30oとを含む。同様に、入口31a及び31bが、出口32とともに設けられている。部分30dは、30aと30bとが30oに合体する点に相当する。
図11fは、図11eの部分30dがここでは混合区分30d’として示されていることを除けば、図11eに示されているのと同じ「Y字形」トラフ部材を示している。これに関して、例えば部分30a,30b及び/又は30cのうちの1つ又は全てにおいて液体3中で製造又は産出される特定の成分は、点30d(又は30d’)で混ぜ合わされるのが望ましい場合がある。このような混合は、図11eに示された交差点30dで自然に発生してよく(すなわち特定の又は特別な区分30d’は必要でない)、或いは、部分30d’で、より特定的に制御されてもよい。言うまでもなく、部分30d’を任意の効果的な形状、例えば正方形、円形、長方形などに成形することもでき、トラフ部材30の他の部分に対して同じ又は異なる深さを有することもできる。これに関して、区域30dは混合ゾーン又は後続の反応ゾーンであってもよい。
図11g及び11hは、「Ψ字形」トラフ部材30を示している。具体的には、新しい部分30cが加えられている。図11g及び11hの他の構成要件は、図11e及び11fに示された構成要件と同様である。
言うまでもなく、トラフ部材30のためには種々異なる形状が存在し得る。これらの形状のいずれも望ましい結果をもたらすことができる。
図12aは、局所的雰囲気制御装置35を示す斜視図である。この雰囲気制御装置35は、電極セット1及び/又は5の周りの局所的雰囲気を制御する手段として機能するので、種々の局所的な気体を利用することにより、例えば電極1と液体3の表面2との間の調節可能なプラズマ4中の或る成分を制御し且つ/又はこれに影響を与え、また、電極5における及び/又は電極の周りの調節可能な電気化学反応に影響を与えることができる。雰囲気制御装置35内に示された貫通孔36及び37は、装置35の一部内を通って外部と連通するのを可能にするように設けられている。具体的には、孔又は入口37は、任意の気体種が装置35の内側に導入されるように入口接続部として設けられている。孔36は、これを貫通して延びる電極1及び/又は5のための連通ポートとして設けられている。これらの電極は、例えば装置35の上方に配置された制御装置20に接続されている。入口37を通って導入される気体は、局所的な外部雰囲気に対して正圧で提供すればよく、任意の好適な手段又は経路によって逃すことが許されてよい。気体を逃すことは、例えば、装置35の部分39a及び/又は39bが例えば少なくとも部分的に液体3の表面2の下方に沈められたときに、このような部分39a及び/又は39bの周りで発泡させることを含む(本明細書中で後から詳しく論じる)。或いは、雰囲気制御装置35内の他の場所に、第2の孔又は出口(図示せず)を設けることもできる。一般には、部分39a及び39bは、液体3の表面2を分割することができ、これにより、表面2は、電極セット1及び/又は5の周りに局所的な雰囲気を形成するためのシール部分として効果的に作用させられる。所望される気体の正圧が入口ポート37を通って入るときに、小さな気泡を、例えば部分39a及び/又は39bを通過するように発生させることができる。或いは、気体は雰囲気制御装置35内の好適な出口を通って出ることもできる。
図12bは、支持ハウジング34内部に含まれるトラフ部材30の前景に設けられた第1の雰囲気制御装置35aを示す斜視図である。第2の雰囲気制御装置35bが含まれ、この上に配置された制御装置20が示されている。「F」は、トラフ部材30を通る液体3の長手方向流動方向を示している。異なる電極セット1及び/又は5の周りの雰囲気が局所制御される(例えば実質的に同じ化学成分、例えば空気又は窒素から成る雰囲気、又は実質的に異なる化学成分、例えばヘリウム及び窒素から成る雰囲気)ことの望ましさについては、本明細書中で後から詳しく論じる。
図13は、別の雰囲気制御装置38を示す斜視図である。ここでは、トラフ部材30全体と支持手段34とが雰囲気制御装置38内部に含まれている。この場合、例えば気体出口37a(37a’)と一緒に、気体入口37(37’)を設けることができる。雰囲気制御装置38上に気体入口37(37’)及び気体出口37a(37a’)を正確に位置決めすることは、便宜上の事柄であり、装置内部に含有される雰囲気の組成に応じて行われる。これに関して、気体が空気よりも重い又は空気よりも軽い場合、入口及び出口の位置はこれに応じて調節することができる。これらのファクタの特徴について、本明細書中で後から詳しく論じる。
図14は、本発明の好ましい実施態様のうちのいくつかの教示内容に従って利用される一般的な装置を示す概略図である。具体的には、この図14は、液体3を含有するトラフ部材30を示す側面概略図である。トラフ部材30の上側に、複数の制御装置20a〜20dが載置されており、これらの制御装置はこの実施態様では、取り外し可能にトラフ部材30に取り付けられている。制御装置20a〜20dはもちろん、本発明の種々の実施態様を実施するときに、永久的に所定の位置に固定されていてよい。制御装置20(及び対応する電極1及び/又は5並びにこのような電極の構造)の正確な数、及び制御装置20(及び対応する電極1及び/又は5)の位置決め又は配置は、本明細書中で後から詳しく論じる本発明の種々の好ましい実施態様の関数である。しかしながら、一般には、流入液体3(例えば水又は純水)は、液体搬送手段40(例えば液体ポンプ、液体3をポンピングするための重力、液体ポンピング手段)、例えば液体水3をトラフ部材30内にその第1端部31でポンピングするための蠕動ポンプに提供される。正確にどのように液体3が導入されるかについては、本明細書中で後から詳しく論じる。液体搬送手段40は、例えば重力送り手段又は静水圧手段、ポンピング手段、調節手段又は弁手段などを含む、液体3を動かすための任意の手段を含んでいてよい。但し、液体搬送手段40は、既知量の液体3をトラフ部材30内に信頼性高く且つ/又は制御可能に導入できなくてはならない。一旦、液体3がトラフ部材30内に提供されると、トラフ部材30内部で液体3を連続して動かす手段が必要とされることも必要とされないこともある。しかしながら、液体3を連続して動かす単純な手段は、トラフ部材30が、これが載置された支持面に対して僅かな角度θ(例えば低粘度流体、例えば水の場合には、1度未満〜数度)を成して設置されることを含む。例えば、液体3の粘度が余りにも高くない限り(例えば水の粘度付近の任意の粘度は、一旦このような流体がトラフ部材30内部に含有又は配置されたら、重力流によって制御することができる)、支持面に対して約6フィート(約1.8メートル)だけ間隔を置いて設けられた入口部分31と出口部分32との間に1インチ未満の鉛直方向高さの差を形成するだけで済む。これに関して、図15a及び15bは、水のような低粘度流体を含む種々の粘度を処理することができるトラフ部材30に対する、2つのそれぞれ許容し得る角度θ1及びθ2を示している。より大きい角度θは、粘度が水よりも高い液体3を処理する結果として、また、液体3がより高速でトラフ30を通過する必要があるときなどに、必要となることがある。さらに、液体3の粘度が重力単独では不十分なほど増大するときには、静水圧ヘッド圧又は静水圧を具体的に用いるように他の現象を利用して、望ましい流体流を達成することもできる。さらに、トラフ部材30に沿って液体3を動かすための付加的な手段を、トラフ部材30内部に設けることもできる。流体を動かすためのこのような手段は、機械手段、例えばパドル、ファン、プロペラ、オーガーなど、音響手段、例えばトランスデューサ、熱手段、例えばヒータ(付加的な処理上の利益を有することができる)などを含み、これらは、本発明と一緒に使用するのに望ましい。
図14はまた、トラフ部材30の端部32に設けられた貯蔵タンク又は貯蔵器41を示している。このような貯蔵器41は、例えばトラフ部材30内部に産出された液体3と不都合に相互作用することのない1種又は2種以上の材料から成る任意の許容し得る容器及び/又はポンピング手段であってよい。許容し得る材料の一例としては、プラスチック、例えば高密度ポリエチレン(HDPE)、ガラス、金属(例えば特定の等級のステンレス鋼)などが挙げられる。さらに、この実施態様では貯蔵タンク41が示されているが、タンク41は、トラフ部材30内で処理された流体3を分配するか又は直接にボトリング又はパッケージングするための手段を含むものとして理解されるべきである。
図16a,16b及び16cは、本発明の1つの好ましい実施態様の斜視図を示している。これらの図16a,16b及び16cにおいて、8つの別個の制御装置20a〜hがより詳細に示されている。このような制御装置20は、例えば図8a,8b,8c及び8dに示された電極構造のうちの1つ又は2つ以上を利用することができる。制御装置20(及び対応する電極1及び/又は5)の正確な位置決め及び作業については、本明細書中の別の個所で詳細に論じる。図16bは、2つの空気分配装置又は空気処理装置(例えばファン342a及び342b)を使用することを含む。同様に、図16cは、2つの別の空気分配装置又は空気処理装置342c及び342dを使用することを含む。
図17は、本発明による装置の別の実施態様を示す別の斜視図である。ここでは6つの制御装置20a〜20fが、図16a,16b及び16cに示された8つの制御装置20a〜20hに対してほぼ90度だけ回転している。制御装置20及び連携する電極1及び/又は5の正確な配置及び作業については、本明細書中の別の個所で詳細に論じる。
図18は、図16aに示された装置を示す斜視図であるが、しかしこの装置はここでは、雰囲気制御装置38によってほぼ完全に密閉されたものとして示されている。このような装置38は、トラフ部材39の周りの雰囲気を制御する手段であり、或いは、外部の望ましくない物質を、トラフ部材30内に入らないように、またトラフ部材30と不都合に相互作用しないように隔絶するために使用することができる。さらに、トラフ部材30の出口32は、出口パイプ42を通って貯蔵器41と連通しているものとして示されている。さらに、貯蔵タンク41に設けられた出口43も示されている。このような出口管43は、液体3を貯蔵し、パッケージングし、且つ/又は処理するための任意の他の好適な手段に向けることができる(本明細書中で詳細に論じる)。
図19a,19b,19c及び19dは、本発明に従って使用することができる、付加的な電極構造の実施態様を示す付加的な断面斜視図である。
具体的には、図19aは、トラフ部材30の長手方向に沿って互いにほぼ平行に、トラフ部材30を通る液体3の流動方向「F」に対してほぼ垂直(すなわち60°〜90°)に配置された2組の電極5(すなわち全部で4つの電極5a,5b,5c及び5d)を示している。これとは異なり、図19bは、トラフ部材30の長手方向に沿って互いに隣接して配置された2組の電極5(すなわち電極5a,5b,5c及び5d)を示している。
これとは異なり、図19cは、流体流動方向「F」に対してほぼ垂直に配置された1組の電極5(5a,5b)と、流体流動方向「F」に対してほぼ平行に配置された別の1組の電極5(5c,5d)とを示している。図19dは、図19cに示された電極構造の鏡像を示している。図19a,19b,19c及び19dのそれぞれは電極5だけを示しているが、図19a〜19dのそれぞれに示された電極5のいくつか又は全ての代わりに電極1を使用し得ること、及び/又は、(例えば図8a〜8d及び図9a〜9dに開示された電極構造と同様に)電極1を混ぜ合わせ得ることは明らかである。これらの選択的な電極構造、及びこれらの付随する利点については、本明細書中で詳細に論じる。
図20a〜20pは、図19aに示された実施態様にだけ対応する電極1及び5の全ての構造に対して考えられ得る使用可能な種々様々な電極構造の実施態様を示す種々の断面斜視図である。具体的には、例えば電極1又は5の数、並びに、このような電極1及び5の特定の相対位置が図20a〜20pにおいて変化する。もちろん、図20a〜20pに示されたこれらの電極1及び5は、図19b,19c及び19dに示された別の電極構造のそれぞれに従って構成することもできる(すなわち図19b,19c及び19dのそれぞれに相当する16の付加的な図面)が、しかし簡潔にするために、付加的な図面はここには含まれていない。これらの電極集成体の特定の利点、及びその他については、本明細書中の別の個所で詳細に論じる。
図20a〜20pに示された電極構造のそれぞれは、特定の運転条件に応じて、本発明のメカニズム、装置、及び方法から種々異なる生成物を生じさせることができる。これらの種々の構造及びこれらの利点については、本明細書中の別の個所で詳細に論じる。
図21a,21b,21c及び21dは、本発明の付加的な実施態様を示す断面斜視図である。これら図21a〜21dに示された電極配列は、それぞれ図19a,19b,19c及び19dに示された電極配列と配列が類似している。しかし、これらの図21a〜21dには、膜集成体又はバリア集成体50も含まれている。本発明のこれらの実施態様の場合、異なる電極セットで又はその近くで形成された異なる生成物を分離するための手段として膜50が設けられているので、膜50の一方の側で電極セット1及び/又は5によって形成された生成物のいくつか又は全てを少なくとも部分的に単離又は分離することができ、或いは、膜50の他方の側で電極セット1及び/又は5で又はその近くで形成された特定の生成物からほぼ完全に単離することもできる。この膜手段50は、機械的バリア、物理的バリア、機械物理的バリア、化学的バリア、電気的バリアなどとして作用してよい。従って、第1の電極セット1及び/又は5から形成された特定の生成物は、第2の電極セット1及び/又は5から形成された特定の生成物から少なくとも部分的に、或いはほぼ完全に単離することができる。同様に、直列に配置された付加的な電極セットを同様に設けることもできる。換言すれば、各電極セット1及び5で又はその近くで異なる膜50を利用することができ、そしてここから産出された特定の生成物を制御して、ここから長手方向で見て下流側の付加的な電極セット1及び/又は5に選択的に供給することができる。このような膜50は、液体3及び/又はトラフ部材30内で産出された液体3中に存在するナノ粒子又はイオン又は成分から成る種々異なる組成物をもたらすことができる(本明細書中で詳細に論じる)。例えば、液体3中の異なる形成済組成物を互いに単離することができる。
図22aは、図9cに示された電極集成体5a,5bに相当する電極集成体を示す斜視断面図である。この電極集成体は、化学的、物理的、化学物理的及び/又は機械的分離のための膜50を利用することもできる。これに関して、図22bは、電極5a,5b間に配置された膜50を示す。言うまでもなく、電極5a,5bは、例えば図9a〜9cに示された複数の構造のうちのいずれかを成す電極1と交換することもできる。図22bの場合、膜集成体50は、電極5aで形成された生成物のうちのいくつか又は全てを、電極5bで形成された生成物のうちのいくつか又は全てから部分的に又はほぼ完全に単離する能力を有している。従って、電極5a及び5bのいずれかで形成された様々な種は、液体3がトラフ部材30の長手方向の長さに沿って被る長手方向流動方向「F」において、付加的な電極集成体セット5a,5b及び/又は電極セット5及び電極セット1の組み合わせと順次反応できるように制御することができる。従って、膜50の適宜選択することにより、どの電極(又は後続又は下流側の電極セット)に位置するどの生成物も制御、操作、及び/又は調節することができる。電極5a及び5bの極性が対向する好ましい実施態様の場合、種々異なる生成物が、電極5bに対して電極5aに形成され得る。
図22cは、電極5a及び5bのための完全に異なる別の電極構造の本発明の別の異なる実施態様を、断面概略図で示している。この事例では、電極5a(又はもちろん電極1a)が膜50の上方に配置されており、電極5bが膜50の下方に配置されている(例えば液体3中にほぼ完全に沈んでいる)。これに関して、電極5bは複数の電極を含むことができ、或いは、トラフ部材30の長手方向の少なくともいくらかの長さ又は全長に沿って延びる単一の電極であってもよい。この実施態様において、膜50の上方の電極5に生成された特定の種は、膜50の下方に生成された特定の種とは異なることが可能であり、このような種は、トラフ部材30の長手方向の長さに沿って異なる形で反応することができる。これに関して、膜50は、トラフ部材30の全長にわたって延びる必要はなく、このような長さの一部だけにわたって存在していてよく、そしてその後、順次の電極集成体1及び/又は5は、そこから産出された生成物と反応することができる。明示的に述べられたこれらの実施態様を凌ぐ種々様々な付加的な実施態様が、明示的に開示された実施態様の思想の範囲に含まれることは読者には明らかである。
図22dは、本発明の別の選択的な実施態様を示しており、ここでは、図22cに示された電極5aの構造(及びもちろん電極1)が、トラフ部材30の長さに沿って少なくとも一部にわたって延びる膜50の一部の上方に配置されており、そして、第2の電極(又は複数の電極)5b(図22cの電極5bと類似する)が、トラフ部材30の底部に沿って長手方向長さの少なくとも一部にわたって延びている。複数の電極5aを利用するこの実施態様では、付加的な動作柔軟性を達成することができる。例えば、電圧及び電流を少なくとも2つの電極5a内に分割することにより、複数の電極5aにおける反応は、同様のサイズ、形状及び/又は組成の単一の電極5aで発生する反応とは異なる可能性がある。もちろん、この複数電極構造は、本明細書中に開示された実施態様の多くに利用することができるが、しかし簡潔にするために明示的に論じてはいない。しかしながら一般には、複数の電極1及び/又は5(すなわち単一の電極1及び/又は5ではなく)は、本発明に従って産出された生成物に大きい柔軟性を加えることができる。これらの利点のうちの特定のものの詳細については、本明細書中の別の個所で論じる。
図23aは、本発明の別の実施態様を示す断面斜視図であり、この図は、図19aに示された電極セット5に概ね相当する電極セット5を示している。但し、図23aの実施態様の相違は、図19aに示された2組の電極5a,5b,5c及び5dに加えて第3組の電極5e,5fが設けられていることである。もちろん、電極セット5a,5b,5c,5d,5e及び5fを90度だけ回転させて、図19bに示された2組の電極に概ね相当するようにすることもできる。これらの電極セット構造の付加的な実施態様を示す付加的な図面は、簡潔にするためにここには含まれていない。
図23bは、本発明の別の実施態様を示しており、この実施態様も多くの付加的な実施態様に並べ替えられる。3組の電極5a,5b,5c,5d,5e及び5fの間に、膜集成体50a及び50bが挿入されている。電極構造と、電極数と、分離を達成するために使用される正確な膜手段50との組み合わせには、多くの実施態様が含まれることはもちろん明らかである。これらのうちのそれぞれは、本発明の教示を受けると、種々異なる生成物を産出することができる。これらの実施態様の生成物及び動作については、本明細書中の別の個所で詳細に論じる。
図24a〜24e;25a〜25e;及び26a〜26eは、本明細書中に開示された種々の実施態様に従って利用することができる種々様々な膜手段50の構成及び/又は位置を示す断面図である。これらの実施態様のそれぞれにおいて、膜手段50は、1つ又は2つ以上の電極集成体1/5で形成された1種又は2種以上の生成物を分離する手段を提供する。
本発明による手動電極集成体を示す概略断面図である。 本発明による手動電極集成体を示す概略断面図である。 本発明による手動電極集成体を示す概略断面図である。 本発明による自動電極集成体を示す概略断面図である。 本発明による自動電極集成体を示す概略断面図である。 自動装置によって制御される電極1及び5の4つの選択的な電極構造を示す図である。 自動装置によって制御される電極1及び5の4つの選択的な電極構造を示す図である。 自動装置によって制御される電極1及び5の4つの選択的な電極構造を示す図である。 自動装置によって制御される電極1及び5の4つの選択的な電極構造を示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造を示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造を示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造を示す図である。 手動で制御される電極1及び5の4つの選択的な電極構造を示す図である。 電極1のための構造の5つの異なる実施態様を示す図である。 電極1のための構造の5つの異なる実施態様を示す図である。 電極1のための構造の5つの異なる実施態様を示す図である。 電極1のための構造の5つの異なる実施態様を示す図である。 電極1のための構造の5つの異なる実施態様を示す図である。 図6は、電極1の1つの具体的な構造を利用して産出されたプラズマを示す断面概略図である。 利用される2つの電極集成体を示す断面透視図である。 利用される2つの電極集成体を示す断面透視図である。 それぞれ図3a〜3dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図3a〜3dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図3a〜3dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図3a〜3dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図4a〜4dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図4a〜4dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図4a〜4dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 それぞれ図4a〜4dに示された電極集成体に相当する4つの異なる電極集成体を示す概略透視図である。 種々のトラフ部材30を示す断面図である。 種々のトラフ部材30を示す断面図である。 種々のトラフ部材30を示す断面図である。 種々のトラフ部材30を示す断面図である。 種々のトラフ部材30を示す断面図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 種々のトラフ部材及び雰囲気制御・支持装置を示す斜視図である。 電極セット1及び/又は5の周りの雰囲気を局所的に制御するための種々の雰囲気制御装置を示す図である。 電極セット1及び/又は5の周りの雰囲気を局所的に制御するための種々の雰囲気制御装置を示す図である。 トラフ部材30全体の周りの雰囲気を制御するための雰囲気制御装置を示す図である。 液体3が貫流するトラフ部材30上に配置された1組の制御装置20を示す概略断面図である。 トラフ部材30の種々の角度θ1及びθ2を示す概略断面図である。 トラフ部材30の種々の角度θ1及びθ2を示す概略断面図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20を示す斜視図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20を示す斜視図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20を示す斜視図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20を示す斜視図である。 トラフ部材30の上側に配置された、電極集成体1及び/又は5を含む種々の制御装置20であって、装置全体の周りの環境を制御する密閉容器38と、さらに保持タンク41とを含む制御装置20を示す透視図である。 トラフ部材30内部に含有された複数の電極セットを示す斜視概略図である。 トラフ部材30内部に含有された複数の電極セットを示す斜視概略図である。 トラフ部材30内部に含有された複数の電極セットを示す斜視概略図である。 トラフ部材30内部に含有された複数の電極セットを示す斜視概略図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 複数の電極セット1/5を16の考えられ得る異なる組み合わせで示す斜視図である。 膜50によって分離された、考えられ得る電極構造を示す4つの斜視概略図である。 膜50によって分離された、考えられ得る電極構造を示す4つの斜視概略図である。 膜50によって分離された、考えられ得る電極構造を示す4つの斜視概略図である。 膜50によって分離された、考えられ得る電極構造を示す4つの斜視概略図である。 膜50によって分離された、4つの異なる電極組み合わせを示す斜視概略図である。 膜50によって分離された、4つの異なる電極組み合わせを示す斜視概略図である。 膜50によって分離された、4つの異なる電極組み合わせを示す斜視概略図である。 膜50によって分離された、4つの異なる電極組み合わせを示す斜視概略図である。 3組の電極を示す斜視概略図である。 2つの膜50a及び50bによって分離された3組の電極を示す斜視概略図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 種々の断面のトラフ部材30内に配置された種々の膜50を示す図である。 制御装置20を示す斜視図である。 制御装置20を示す斜視図である。 制御装置20を示す斜視図である。 電極ホルダを示す斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 局所的雰囲気制御装置を有する、そして有さない、種々の制御装置20を示す種々様々な斜視図である。 耐火部材29とヒートシンク28とを含む熱管理装置を示す斜視図である。 制御装置20を示す斜視図である。 制御装置20を示す斜視図である。 本発明の異なる実施態様とともに使用するためのAC変圧器の電気配線を示す配線図である。 本発明の異なる実施態様とともに使用するためのAC変圧器の電気配線を示す配線図である。 本発明の異なる実施態様とともに使用するためのAC変圧器の電気配線を示す配線図である。 変圧器を示す概略図である。 同相及び異相の2つの正弦波を示す概略図である。 同相及び異相の2つの正弦波を示す概略図である。 8組の電極と一緒に使用するための8つの電気配線図を示す概略図である。 8組の電極と一緒に使用するための8つの電気配線図を示す概略図である。 8組の電極と一緒に使用するための8つの電気配線図を示す概略図である。 変圧器の二次コイルの出力からの電圧を監視するために利用される電気配線図を示す概略図である。 Velleman K 8056回路リレーボードと連携する配線図を示す概略図である。 Velleman K 8056回路リレーボードと連携する配線図を示す概略図である。 Velleman K 8056回路リレーボードと連携する配線図を示す概略図である。 銀系ナノ粒子及びナノ粒子溶液を製造するために例1に使用される8つの電極セットの16個の異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 銀系ナノ粒子及びナノ粒子溶液を製造するために例2に使用される8つの電極セットの16個の異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例2に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 銀系ナノ粒子及びナノ粒子溶液を製造するために例3に使用される8つの電極セットの16個の異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例3に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 亜鉛系ナノ粒子及びナノ粒子溶液を製造するために例4に使用される8つの電極セットの16個の異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例4に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 銅系ナノ粒子及びナノ粒子溶液を製造するために例5に使用される8つの電極セットの16個の異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例5に使用される16個の異なる電極に対して時間の関数として印加される実電圧を示す図である。 例1〜5の各例において形成された材料のSEM−EDSプロットである。 例1〜5の各例において形成された材料のSEM−EDSプロットである。 例1〜5の各例において形成された材料のSEM−EDSプロットである。 例1〜5の各例において形成された材料のSEM−EDSプロットである。 例1〜5の各例において形成された材料のSEM−EDSプロットである。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 例1〜5の原材料を利用して形成された(すなわち表8及び表9に従って形成された)10種の異なるGR1〜GR10に相当する。 (i)‐(ii)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、例1〜5の原材料に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(ii)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (iii)‐(iv)は、表8及び表9で開示された溶液GR1〜GR10に相当する各図面で4つの異なる倍率で示されたSEM顕微鏡写真である。 (i)‐(iii)は、AT031を製造するために用いられた生産パラメータに対応して形成された銀成分を3つの異なる倍率で撮影したTEM顕微鏡写真を開示している。 (i)‐(vi)は、AT060を製造するために用いられた生産パラメータに対応して形成された銀成分を3つの異なる倍率で撮影した6つの異なるTEM顕微鏡写真を開示している。 (i)‐(ii)は、BT006を製造するために用いられた生産パラメータに従って形成された亜鉛成分を2つの異なる倍率で撮影した2つの異なるTEM顕微鏡写真を開示している。 (i)‐(v)は、溶液GR5の3つの異なる倍率で撮影した5つの異なるTEM顕微鏡写真を開示している。 (i)‐(vi)は、溶液GR8の3つの異なる倍率で撮影した10個の異なるTEM顕微鏡写真を開示している。 (vii)‐(x)は、溶液GR8の3つの異なる倍率で撮影した10個の異なるTEM顕微鏡写真を開示している。 例1〜5に従って製造された原材料の5つのUV−Visスペクトルを示す図である。 例1〜5に従って原材料と一緒に製造された、表8及び表9に示された10種の異なる溶液GR1〜GR10のUV−Visスペクトルを示す図である。 例1〜5に従って原材料と一緒に製造された、表8及び表9に示された10種の異なる溶液GR1〜GR10のUV−Visスペクトルを示す図である。 例1〜5に従って原材料と一緒に製造された、表8及び表9に示された10種の異なる溶液GR1〜GR10のUV−Visスペクトルを示す図である。 例1〜5に従って原材料と一緒に製造された、表8及び表9に示された10種の異なる溶液GR1〜GR10のUV−Visスペクトルを示す図である。 表8及び表9に示された10種の溶液GR1〜GR10のそれぞれのラマンスペクトルを示す図である。 例1〜5の原材料、及び、表8及び表9に示された溶液GR1〜GR10に対するE. coliの生物学的バイオスクリーンの結果を示す図である。 E. coliに対してGR3を利用してバイオスクリーン装置で得られた生物学的最小阻止濃度(「MIC」)を示す図であり、最適密度が時間の関数としてプロットされている。 E. coliに対してGR8を利用してバイオスクリーン装置で得られた生物学的最小阻止濃度(「MIC」)を示す図であり、最適密度が時間の関数としてプロットされている。 例2から製造された原材料と、例4において製造された種々の変動量の原材料とを組み合わせたものを利用して、バイオスクリーン装置から得られた生物学的結果を示す図であり、最適密度が時間の関数としてプロットされている。 種々の量の処理済水が添加された、バイオスクリーン装置で得られた例2において製造された原材料の生物学的結果を示す図であり、最適密度が時間の関数としてプロットされている。 種々の量の処理済水が添加された、バイオスクリーン装置で得られた例2において製造された原材料の生物学的結果を示す図であり、最適密度が時間の関数としてプロットされている。 、種々の量の処理済水が添加された、バイオスクリーン装置で得られた例2において製造された原材料の生物学的結果を示す図であり、最適密度が時間の関数としてプロットされている。 、種々の量の処理済水が添加された、バイオスクリーン装置で得られた例2において製造された原材料の生物学的結果を示す図であり、最適密度が時間の関数としてプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞及びマウス肝上皮細胞の両方に対する溶液GR3,GR5,GR8及びGR9に関する種々の細胞成長及び細胞毒性の曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対するGR3,GR5及びGR8の細胞毒性(LD50)結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対するGR3,GR5及びGR8の細胞毒性(LD50)結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対するGR3,GR5及びGR8の細胞毒性(LD50)結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対するGR3,GR5及びGR8の細胞毒性(LD50)結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対するGR3,GR5及びGR8の細胞毒性(LD50)結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対するGR3,GR5及びGR8の細胞毒性(LD50)結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 ミニブタ腎線維芽細胞に対するGR3,GR5,GR8及びGR9に関するLD50結果(曲線)を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 表8において形成された溶液GR5の性能に関するバイオスクリーン装置からの生物学的結果を示し、凍結乾燥して水で戻したGR5と比較した図であり、最適密度が時間の関数としてプロットされている。 銀系ナノ粒子及びナノ粒子溶液を製造するために例6に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例6に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例6に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例7に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例7に対する動的光散乱測定を示す図である。 例7に対する動的光散乱測定を示す図である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された乾燥試料を示すSEM顕微鏡写真である。 例7に従って製造された液体試料から求められたUV−Visスペクトルである。 例7に従って製造された液体試料から求められたUV−Visスペクトルである。 例7に従って製造された液体試料から求められたUV−Visスペクトルである。 例7に従って製造された試料に対する生物学的バイオスクリーンの結果を示す図である。 銀系ナノ粒子及びナノ粒子溶液を製造するために例8に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例8に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例8に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例8に対する動的光散乱測定を示す図である。 例8に対する動的光散乱測定を示す図である。 例8に対する動的光散乱測定を示す図である。 例8に対する生物学的バイオスクリーンの結果を示す図である。 、銀系ナノ粒子及びナノ粒子溶液を製造するために例9に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例9に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例9に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例9に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 銀系ナノ粒子及びナノ粒子溶液を製造するために例9に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例9で使用されるスペクトル収集装置を示す斜視図である。 例9で使用されるスペクトル収集装置を示す斜視図である。 例9から収集されたスペクトルを示す図である。 例9から収集されたスペクトルを示す図である。 例9から収集されたスペクトルを示す図である。 例9から収集されたスペクトルを示す図である。 例9から収集されたスペクトルを示す図である。 当業者に知られている代表的スペクトルを示す図である。 当業者に知られている代表的スペクトルを示す図である。 当業者に知られている代表的スペクトルを示す図である。 当業者に知られている代表的スペクトルを示す図である。 当業者に知られている代表的スペクトルを示す図である。 当業者に知られている代表的スペクトルを示す図である。 例9に対する生物学的バイオスクリーンの結果を示す図である。 銀系ナノ粒子及びナノ粒子溶液を製造するために例10に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 例10から収集されたスペクトルを示す図である。 例10から収集されたスペクトルを示す図である。 例10から収集されたスペクトルを示す図である。 例10から収集されたスペクトルを示す図である。 例10から収集されたスペクトルを示す図である。 例10から収集されたスペクトルを示す図である。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 銀系ナノ粒子及びナノ粒子溶液を製造するために例11に使用される種々異なる電極に印加される種々のターゲット電圧及び実平均電圧を示す棒グラフである。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 マウス肝上皮細胞に対する例11で使用される溶液の種々の細胞毒性曲線を示す図であり、対照(100%)細胞に対する蛍光量が、増大するナノ粒子量に対してプロットされている。 例11に対する生物学的バイオスクリーンの結果を示す図である。 例11に対する生物学的バイオスクリーンの結果を示す図である。 例12に対する生物学的バイオスクリーンの結果を示す図である。 例12に対する生物学的バイオスクリーンの結果を示す図である。 例12に対する生物学的バイオスクリーンの結果を示す図である。 例12に対する生物学的バイオスクリーンの結果を示す図である。 例12に対する生物学的バイオスクリーンの結果を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。 例12に対する動的光散乱測定を示す図である。
本明細書中に開示された実施態様は、ナノ粒子、及びナノ粒子/液体溶液を含む、液体中の種々の成分を連続的に製造するための新規の方法及び新規の装置に関する。種々の液体中に産出されたナノ粒子は、考えられ得る種々様々な組成、サイズ、及び形状、集合体、複合体及び/又は表面形態を成すことができ、これらは、新規の興味深い種々様々な物理、触媒、生体触媒、及び/又は生物物理特性を呈する。この過程中に使用され、且つ/又は生成/改質される液体は、ナノ粒子及び/又はナノ粒子/液体溶液を製造し、且つ/又は機能させる上で重要な役割を果たす。使用される雰囲気は、ナノ粒子及び/又はナノ粒子/液体溶液を製造し、且つ/又は機能させる上で重要な役割を果たす。ナノ粒子は、例えば好ましくは少なくとも1種の調節可能なプラズマ(例えば1種又は2種以上の雰囲気中で形成される)を利用して、少なくとも1種の液体(例えば水)中に存在(例えば生成)させられることになる。この調節可能なプラズマは、液体の表面の少なくとも一部と連通する。プラズマを生成するために使用される電源は、ナノ粒子及び/又はナノ粒子/液体溶液を製造し、且つ/又は機能させる上で重要な役割を果たす。例えば、ボルト数、アンペア数、極性など、全てが、産出された生成物の処理及び/又は最終特性に影響を与えることが可能である。調節可能なプラズマの形成には、種々の組成及び/又は独自の形態を有する金属系電極が好ましいが、しかし非金属系電極を利用することもできる。後続の及び/又は実質的に同時に行われる少なくとも1種の調節可能な電気化学処理技術を利用することも好ましい。調節可能な電気化学処理技術に使用するためには、種々の組成及び/又は独自の形態を有する金属系電極が好ましい。
調節可能なプラズマ電極及び調節可能な電気化学的な電極
本発明の1実施態様の重要な特徴は、調節可能なプラズマの生成に関与する。この調節可能なプラズマは、液体表面の少なくとも一部の上方に位置決めされた少なくとも1つの電極(又は複数の電極)と、液体表面自体の少なくとも一部との間に配置されている。液体の表面は、少なくとも1つの第2電極(又は複数の第2電極)と電気的に連通している。このような構造は、液体表面がこの構造では活性電極として関与することを除けば、誘電体バリア放電構造と類似のいくらかの特性を有している。
図1aは、例えば「F」の方向に流動する液体3の表面2の上方に距離「x」を置いて配置された三角形の断面形状を有する電極1の1実施態様の部分断面図を示している。図示の電極1は二等辺三角形であるが、しかし直角三角形又は正三角形として成形されていてもよい。点源電極1と、液体3に連通する電極5(例えば電極5は少なくとも部分的に液体3の表面2(例えばバルク表面又は有効表面)の下方にある)との間に適切な電源10が接続されていると、電極1の先端又は点9と液体3の表面2との間に、調節可能なプラズマ4が発生する。なお、或る条件下では、電極5の先端9’は実際には、液体3のバルク表面2の物理的に僅かに上方に配置されていてよいが、しかし液体は、「テイラーコーン(Taylor cones)」として知られる現象を通して電極とまだ連通しており、これにより有効表面2’を形成する。テイラーコーンについては、“Method and Apparatus for Ozone Generation and Treatment of Water”と題する、1995年12月26日付けでInculetに発行された米国特許第5,478,533号明細書において論じられている。この対象内容を参考のため本明細書中に明示的に引用する。これに関して、図1bは、テイラーコーン「T」が電極5と液体3の表面2(2’)との間の電気的接続を達成するように有効表面2’を形成するために利用されることを除いて、図1aに示されたものと同様の電極構造を示している。テイラーコーンは、Inculetの特許では「印加された場」によって形成されるものとして参照されている。具体的には、テイラーコーンは、1960年初めにSir Geoffrey Taylorによって最初に分析された。Taylorは、十分な強度を有する電界の印加により、水滴が円錐形状を成すようになると報告している。なお、テイラーコーンは、電界の関数である一方で、流体の導電率の関数でもある。従って、導電率が変化するのに伴って、テイラーコーンの形状及び/又は強度も変化することができる。従って、種々の強度のテイラーコーンは、電極5の周りに発生する電界の関数として、本発明の電極5の先端9’の近くで観察することができるだけでなく、液体3中の成分(例えば調節可能なプラズマ4によって提供された導電性成分)及びその他の関数でもある。さらに、電界の変化はまた、印加された電流量に対して比例する。テイラーコーンの生成及び使用に関しては、本明細書中の別の個所で詳細に論じる。
図1aに示された実施態様において生成された調節可能なプラズマ領域4は、典型的には、過程の少なくとも一部にわたって、円錐状構造に相当する形状を有することができ、本発明のいくつかの実施態様の場合、実質的に全過程にわたってこのような円錐状形状を維持することができる。他の実施態様の場合、調節可能なプラズマ領域4の形状は、むしろ稲妻状に成形されてよい。調節可能なプラズマ4の体積、強度、成分(例えば組成)、活性、正確な位置などは、数多くのファクタに応じて変化することになり、これらのファクタの一例としては、距離「x」、電極1の物理的及び/又は化学的な組成、電極1の形状、電極1から上流側に配置された他の電極1に対する電極1の位置、電源10(例えばDC、AC、整流AC、DC及び/又は整流AC、RFなどの極性)、電源によって印加される電力(例えば印加されるボルト数、印加されるアンペア数など)、プラズマ4で又はその近くで生成される電界及び/又は磁界、電極1と液体3の表面2との間及び/又はその周りの、自然発生する又は供給された気体又は雰囲気の組成、温度、圧力、方向「F」における液体3の流量、液体3の組成、液体3の導電率、電極1及び5の近く及び周りの液体の断面積(例えば体積)(例えば液体3が、調節可能なプラズマ4と相互作用することを許される時間量、及びこのような相互作用の強度)、液体3の表面2の又はその近くの雰囲気流(例えば空気流)の存在(冷却ファン又は雰囲気運動手段の提供)が挙げられる。具体的には、例えば、調節可能なプラズマ4のために利用できる最大距離「x」は、このような距離「x」が例えば等式1に示された破壊電界「Ec」に相当するような距離、換言すれば、電極1の先端9と液体3の表面2との間に形成された気体又は雰囲気の破壊が達成される距離である。距離「x」が電気破壊「Ec」を達成するのに必要な最大距離を超えると、付加的な技術又は相互作用が用いられなければ、プラズマ4は観察されない。しかし、距離「x」が調節可能なプラズマ4を形成するのに必要となる最大距離以下であればいつでも、プラズマ4を物理的且つ/又は化学的に調節することができる。このような変化は、液体3の表面2におけるプラズマ4の直径、プラズマ4の強度(例えば明るさ及び/又は強度及び/又は反応性)、プラズマ4によって生成され液体3の表面2に向かって吹く電気風の強度などを含むことになる。
電極1の組成物は、調節可能なプラズマ4を形成する上で重要な役割を果たすこともできる。例えば、本明細書中に開示された実施態様の電極1として使用するためには、種々の周知の材料が好適である。これらの材料は、白金、金、銀、亜鉛、銅、チタン、及び/又はこれらの合金又は混合物などのような金属を含む。しかし、電極1(及び5)は、金属を含んでよい任意の好適な材料(例えば適切な酸化物、炭化物、窒化物、炭素、ケイ素、及びこれらの混合物又は複合材料を含む)から形成することもできる。さらに、本発明と一緒に使用するためには、種々の金属の合金も望ましい。具体的には、合金は、調節可能なプラズマ4中の、種々異なる量の化学成分、強度及び/又は反応性を提供し、例えばプラズマ4中又はプラズマ4の周りの種々異なる特性、及び/又は液体中3の種々異なる成分をもたらすことできる。例えば、プラズマ4から種々異なるスペクトルを発光させることができ、またプラズマ4から種々異なる場を放出することもできる。このように、種々異なるナノ粒子及び/又はナノ粒子/溶液及び/又は所望の成分、或いは所望の最終生成物を達成するのに必要な液体3中に存在する中間体を形成する上で、プラズマ4を関与させることができる。さらに、調節可能なプラズマ4を形成する役割を果たすのは電極1,5の化学組成及び形状ファクタだけでなく、電極1,5が製造された様式も、電極1,5の性能に影響を与えることができる。これに関して、電極を形成するために利用される鍛造、伸線、及び/又は鋳造技術を含む正確な成形技術は、熱力学的及び/又は動力学的な事柄を含む、電極1,5の化学及び/又は物理活性に影響を与えることができる。
例えば液体3(例えば水)の表面2の上方の空気中に、調節可能なプラズマ4を生成すると、通常は、少なくともいくらかのオゾン、並びに、所定量の種々様々な窒素系化合物及びその他の成分が産出される。種々様々な材料例を調節可能なプラズマ4中に産出することができ、これらの材料は、電極1と液体3の表面2との間の雰囲気を含む数多くのファクタに依存する種々様々な材料を含む。プラズマ4及び/又は液体3(液体が水を含む場合)中に存在し得る多様な種を理解するのを助けるために、Wilhelmus Frederik Laurens Maria Hoeben著, “Pulsed corona-induced degradation of organic material in water”と題する論文, 2000年6月15日を参照されたい(この対象内容を参考のため本明細書中に明示的に引用する)。前述の論文における研究は、主として、水中に存在する望ましくない材料をコロナ誘発型分解させることに関連している。このようなコロナは、パルスDCコロナと呼ばれる。しかしこの論文で言及されている化学種の多くは、特に調節可能なプラズマ4の生成を支援する雰囲気が湿った空気を含み、そして液体3が水を含むときには、本明細書中に開示された実施態様の調節可能なプラズマ4中にも存在し得る。これに関しては、多くの基、イオン、及びメタ安定性元素が、電極1と表面2との間に存在する任意の気相分子又は原子の解離及び/又はイオン化に起因して、調節可能なプラズマ4中に存在し得る。空気の湿度が存在し、このような湿った空気が、調節可能なプラズマ4を「供給する」雰囲気の少なくとも主成分である場合、酸化性種、例えばヒドロキシル基、オゾン、原子酸素、一重項酸素、及びヒドロペレオキシル基が形成され得る。さらに、NOx及びN2Oのような窒素酸化物も形成され得る。このように、液体3が水を含み、そして調節可能なプラズマ4に原材料を供給するか、又は提供するのを助ける雰囲気が湿った空気を含むときには、調節可能なプラズマ4中に存在すると予想できる反応物質のいくつかを表1に挙げる。
Figure 0005946989
J. Lelievre, N. Dubreuil及びJ.-L. Brisset著 “Electrolysis Processes in D.C. Corona Discharges in Humid Air”と題する論文, 1995年4月, J. Phys. III France 5, 第447-457頁(この対象内容を参考のため本明細書中に明示的に引用する)は、DCコロナ放電に最初に焦点を当て、活性電極の極性に従って、アニオン、例えば亜硝酸塩及び硝酸塩、炭酸塩及び酸素アニオンが負の放電時の顕著なイオンとなるのに対して、プロトン、酸素、及びNOxカチオンが、正の放電時に形成される主要カチオン性種となることに注目した。亜硝酸塩及び/又は硝酸塩の濃度は、電流強度とともに変化し得る。この論文の表I(すなわち本明細書中では表2として再現した)には、生成されたDCプラズマ中に存在することができる多様な種及び標準的な電極電位も開示された。従って、このような種は、調節可能なプラズマ4を生成するために利用される具体的な動作条件に応じて、本発明の調節可能なプラズマ4内に存在するものとして予測することになる。
Figure 0005946989
XinPei Lu, Frank Leipold及びMounir Laroussi著, “Optical and electrical diagnostics of a non-equilibrium air plasma”と題する2003年10月15日付けの論文, Journal of Physics D: Applied Physics, 第2662-2666頁(この対象内容を参考のため本明細書中に明示的に引用する)は、エアギャップによって分離された並列の電極対にAC(60Hz)高電圧(<20kV)を印加することに焦点を当てた。電極のうちの一方が金属ディスクであるのに対して、他方の電極は水の表面である。実施された分光測定は、プラズマからの発光がOH(A−X、N2(C−B)及びN2 +(B−X)転移によって支配されていることを示した。この論文の図4aのスペクトルは、図67aとして再現されている。
Z. Machala他による“Emission spectroscopy of atmospheric pressure plasmas for bio-medical and environmental applications”と題する論文, 2007年刊, Journal of Molecular Spectroscopyは、大気圧プラズマの付加的な発光スペクトルを開示している。この論文の図3及び4のスペクトルは、図67b及び67cとして再現されている。
M. Laroussi及びX. Luによる“Room-temperature atmospheric pressure plasma plume for biomedical applications”と題する論文、2005年刊、Applied Physics Lettersは、OH、N2、N2 +、He及びOの発光スペクトルを開示する。この論文の図4のスペクトルは、図67d,67e及び67fとして再現されている。
Petr Lukes他の論文“Generation of ozone by pulsed corona discharge over water surface in hybrid gas-liquid electrical discharge reactor”, J. Phys. D: Appl. Phys. 38 (2005) 409-416(この対象内容を参考のため本明細書中に明示的に引用する)によって開示されているように、水表面上でパルスコロナ放電を行うことにより、オゾンが発生する。Lukes他は、平面高電圧電極(網状ガラス状炭素製)と、水表面との間の気相内で発生するパルス正コロナ放電によってオゾンを形成することを開示している。この水中には、接地ステンレス鋼「点」として機械成形された電極が沈められており、この電極は、別個の電源によって給電される。種々の望ましい種が、液体中に形成されるものとして開示されており、これらの種のうちのいくつかは、本明細書中に開示された実施態様の具体的な動作条件に応じて、存在すると予測することもできる。
さらに、“Method for Disinfecting a Dense Fluid Medium in a Dense Medium Plasma Reactor”と題する、2004年6月15日付けでDenes他に発行された米国特許第6,749,759号明細書(対象内容を参考のため本明細書中に明示的に引用する)には、高密度媒質プラズマ反応器内の高密度流体媒質を消毒する方法が開示されている。Denes他は、種々の目的で、飲用水を汚染除去して消毒することを開示している。Denes他は、種々の大気圧プラズマ環境、並びに気相放電、パルス高電圧放電などを開示している。Denes他は、高密度流体媒質中に沈められた第1の導電性材料を含む第1電極と、やはり高密度流体媒質中に沈められた第2導電性材料を含む第2電極とを使用する。Denes他はこの場合、第1電極と第2電極との間に電位を印加することにより、高密度流体媒質中に反応性種を産出するように電極間に放電ゾーンを生成する。
上述の成分の全ては、もしも存在するならば、結果として産出されたナノ粒子及び/又はナノ粒子/溶液にとって有用又は有害なこのような種に応じて、少なくとも部分的に(又はほぼ完全に)管理、制御、調節、最大化、最小化、排除することなどが可能であり、そして次いで、種々異なる技術によって制御される必要がある場合がある(本明細書中で後から詳しく論じる)。図1aに示されているように、調節可能なプラズマ4は、液体3の実際の表面2と接触する。本発明のこの実施態様の場合、電極1に由来する材料(例えば金属)は、調節可能なプラズマ4の一部を含んでいてよく、そして、液体(例えば水)上及び/又は液体(例えば水)中に「スパッタリング」させられてよい。従って、電極1として金属が使用されるときには、調節可能なプラズマ4と関連する特定の一連の動作条件(並びに他の動作条件)に応じて、元素金属、金属イオン、ルイス酸、ブレンステッド−ラウリ酸、金属酸化物、金属窒化物、金属水素化物、金属水和物、金属炭化物、及び/又はこれらの混合物などを液体中に(例えば過程の少なくとも一部にわたって)見いだすことができる。
さらに、例えば液体3中及び液体3の周りの電界、磁界、及び/又は電磁界の強さ、極性、など、並びに存在する液体3の体積(例えば、本明細書中で後から詳しく論じる、トラフ部材30の断面のサイズ及び形状及び/又は液体3の流量の関数)、電極1及び5の物理的及び化学的な構造、(自然発生する又は供給された)雰囲気、液体3の組成に応じて、より多量又はより少量の電極材料(例えば金属又は金属の誘導体)を液体3中に見いだすことができる。付加的な重要な情報が、2003年3月21日付けで出願され、2003年10月30日付けで国際公開第03/089692号パンフレットとして公開された“Methods for Controlling Crystal Growth, Crystallization, Structures and Phases in Materials and Systems”と題する同時係属中の特許出願、及び2005年6月6日付けで出願され、2006年2月23日付けで米国特許出願公開第2006/0037177号明細書として公開された米国特許出願に開示されている(それぞれの発明者はBentley J. Blum, Juliana H. J. Brooks及びMark G. Mortenson)。両対象内容を参考のため本明細書中に明示的に引用する。これらの出願公開明細書は(とりわけ)、例えば電界、磁界、電磁エネルギーなどの影響が、種々の固体、液体、気体及び/又はプラズマの形態で種々の構造を形成及び/又は制御する上で極めて重要であることが判ったことを開示している。開示されたこのような影響は、本明細書中に開示された実施態様においても当てはまる。さらに、電位が印加された(そして電流が貫流された)電極内の又はその周りのpHを極端に変化させることにより、反応生成物及び/又は反応速度が制御されることが観察された。このように、複雑な一連の反応が各電極1,5及び電極集成体又は電極セット(例えば1,5;1,1;5,5;など)において発生しやすい。
或る状況では、(例えば液体の処理後)液体3中に見いだされる材料(例えば金属、金属イオン、又は金属複合材料)又は成分(例えばルイス酸、ブレンステッド−ラウリ酸など)、及び/又は無機物が、極めて望ましい効果を有することがある。この場合には、このような材料は比較的多量であることが望ましい。これに対して他の事例では、液体中に見いだされる或る材料(例えば望ましくない副産物)が望ましくない影響を及ぼすおそれがあり、ひいては、このような材料を最小限にすること最終生成物において望ましい場合がある。さらに、液体3自体の構造/組成は、本発明の処理条件によって有益又は不都合な影響を及ぼされることがある。従って、電極の組成は、本明細書中に開示された実施態様に従って形成される最終的な材料(例えばナノ粒子及び/又はナノ粒子/溶液)において重要な役割を果たすことができる。本明細書中で上述したように、電極1(及び5)で発生する反応と関与する雰囲気は、重要な役割を果たす。しかし、電極組成物も、電極1及び5自体が、少なくとも部分的に、形成された中間体及び/又は最終生成物の一部となり得る点で重要な役割を果たす。或いは、電極は最終生成物において相当の役割を果たすこともある。換言すれば、電極の組成は、本発明の最終生成物中に大部分を見いだすことができ、又は本明細書中に開示された実施態様に従って産出された生成物の僅かな化学的部分だけを含むこともある。これに関して、電極1,5が本明細書中に開示された種々の実施態様の方法条件に従って或る程度反応性であることが判ったときには、電極に由来するイオン及び/又は物理的粒子(例えば単結晶又は多結晶の金属系粒子)が最終生成物の部分に成り得ることを予想することができる。このようなイオン及び/又は物理的成分は最終生成物中の粒子の支配的部分として存在してよく、或いは、過程の一部にわたってのみ存在してよく、或いは、最終生成物中に存在するコア−シェル配列のコアの一部であってもよい。さらに、コア−シェル配列は、完全なシェルを含む必要はない。例えば部分的なシェル及び/又は形成済ナノ粒子上の表面不規則性及び/又は具体的な望ましい表面形状は、意図された用途におけるこのようなナノ粒子の最終的な性能に対して多大な影響を与えることが可能である。当業者に明らかなように、化学組成物、反応性雰囲気、電力強度などを僅かに調節すると、種々異なる化合物(半永久的及び一時的)のナノ粒子(及びナノ粒子成分)、並びに種々異なるナノ粒子/溶液((例えば水)自体の構造を改質することを含む液体3)を形成することができる。
さらに、液体中のイオン、化合物、及び/又は物理的粒子、及び/又は液体自体の構造、及び/又は結果としての最終生成物を得るために、電極1及び5は、同様の化学組成又は完全に異なる化学組成から成り、且つ/又は、同様の又は完全に異なる形成法によって形成することができる。例えば、本明細書中に示された電極対が同じ又はほぼ同様の組成を有することが望ましい場合があり、或いは、本明細書中の種々の実施態様に示された電極対が異なる化学組成を有することが望ましい場合もある。種々異なる化学組成の結果、もちろん、種々のプラズマ及び/又は本明細書中に開示された電気化学的な実施態様において生じ得る反応のために種々異なる成分が存在することになる場合もある。さらに、単一電極1又は5(又は電極対)は、少なくとも2種の異なる金属から形成することができるので、それぞれの金属の成分は、開示された実施態様の方法条件下で、相互に作用することができ、またプラズマ4及び/又は液体3、場などの中の、例えばプラズマ4及び液体3中に存在する他の成分と相互作用することもできる。
電極1と5;又は1と1(例えば図3d、4d、8d及び9d)、又は5と5(例えば図3c、4c、8c及び9c)との間の距離は、本発明の1つの重要な特徴である。一般に、本発明に使用される電極の最も近い部分の間の最小距離「y」の位置は、望ましくないアーク又は望まれないコロナ又はプラズマの形成が電極間(例えば電極1と電極5との間)に生じるのを防止するために、距離「x」よりも大きくあるべきである。種々の電極のデザイン、電極の位置、及び電極相互作用について、本明細書中の例の項において詳しく論じる。
電源10を通して印加される電力は、本発明の全ての方法条件下で、望ましい調節可能なプラズマ4、及び望ましい調節可能な電気化学反応を生成する任意の好適な電力であってよい。本発明の1つの好ましい態様において、昇圧器(「電源」の項及び「例」の項で論じる)からの交流が利用される。本発明の他の好ましい実施態様の場合、交流電源の極性をダイオードブリッジによって変更することにより、正電極1と負電極5とを形成し、また正電極5と負電極1とを形成する。一般には、電極構成部材1及び5の組み合わせ、電極1及び5の物理的なサイズ及び形状、電極製造法、電極1及び/又は5の質量、液体3の表面2とその上方の電極1の先端9との間の距離「x」、電極先端9と表面2との間の気体の組成、液体3の流量及び/又は流動方向「F」、液体3の組成、液体3の導電率、ボルト数、アンペア数、電極の極性などが全てそのデザインに関与し、ひいては電力要件(例えば破壊電界又は等式1の「Ec」)が、液体3の表面2と電極先端9との間に制御された又は調節可能なプラズマ4を形成する際に影響を与える。
図1a及び1bに示された構造をさらに参照すると、電極ホルダ6a及び6bは、絶縁部材8(断面で示す)内を通って昇降させることができる(ひいては電極も昇降させることができる)。ここに示す機械的な実施態様は雄/雌ねじ山を含む。しかし電極ホルダ6a及び6bは、電極ホルダ6a及び6bが信頼性高く上昇及び/又は下降させられるのを可能にする任意の好適な手段として構成することができる。このような手段は、絶縁部材8と電極ホルダ6a及び6bとの間のプレス嵌め部、切欠き、機械的懸吊手段、可動円環などを含む。換言すれば、電極ホルダ6a及び6bの高さを信頼性高く固定する任意の手段は、本明細書中に開示された実施態様の境界内に含まれるものとして考えられるべきである。
例えば、図1cは、電極1,5を昇降させるための別の実施態様を示している。この実施態様の場合、各電極の電気絶縁部分7a及び7bが、摩擦機構13a,13b及び13cと、部分7a及び7bとの間に存在するプレス嵌め部によって所定の位置に保持される。摩擦機構13a,13b及び13cは、例えば十分な接触がその後に維持される限り、例えばばね鋼、可撓性ゴムなどから形成されていてもよい。
部分6a及び6bは、例えば付加的な電気絶縁部分7a及び7bによってカバーすることができる。電気絶縁部分7a及び7bは、任意の好適な電気絶縁材料(例えばプラスチック、ゴム、繊維性材料など)であってよい。これらの材料は、人が電極ホルダ6a及び6bを調整するとき(例えば電極の高さを調節しようとするとき)に発生するおそれのある望ましくない電流、電圧、アークなどを防止する。さらに、電気絶縁部分7a及び7bを電極ホルダ6a及び6bの単にカバーとして形成するのではなく、このような電気絶縁部分7a及び7bを、電気絶縁材料からほぼ完全に形成することができる。これに関しては、それぞれ電気絶縁部分7a/7bと電極ホルダ6a/6bとの間に、長手方向の界面が存在していてよい(電極ホルダ6a/6bを、電気絶縁部分7a/7bとは完全に異なる材料から形成し、電気絶縁部分7a/7bに機械的又は化学的に(例えば接着により)付着させてよい)。
同様に、絶縁部材8は、望ましくない電気的事象(例えばアーク形成、溶融など)が発生するのを防止する任意の好適な材料、並びに、本発明を実施するのに構造的且つ環境的に適した任意の材料から形成することもできる。典型的な材料は、構造用プラスチック、例えばポリカーボネート、プレキシガラス(ポリ(メチルメタクリレート))、ポリスチレン、及びアクリルなどを含む。構造用プラスチックなどの具体的な選択基準の一例としては、この過程の電気的条件、温度条件、及び環境条件を被っている間、形状及び/又は剛性を維持する能力が挙げられる。好ましい材料は、アクリル、プレキシガラス、及び周知の化学的、電気的、電気的な抵抗並びに比較的高い機械的剛性を有するその他のポリマー材料を含む。これに関して、部材8の望ましい厚さは、約1/16インチ〜3/4インチ(1.6mm〜19.1mm)のオーダーである。
電源10は、電極1及び5に任意の好都合な電気的形式で接続することができる。例えば、部分11a,11b間、ひいては電極1,5間に電気的接続を達成することを主な目的として、電極ホルダ6a,6bの少なくとも一部の内部にワイヤ11a及び11bを配置することができる。好ましい電気的接続の具体的な詳細については、本明細書中の別の個所で論じる。
図2aは、本発明の好ましい実施態様の別の概略図を示している。ここでは、本発明の制御装置20が電極1及び5に接続されているので、制御装置20は、液体3の表面2に対して電極1,5を遠隔位置から(例えば別の装置からの命令で)上昇及び/又は降下させることができる。本発明の制御装置20については、本明細書中で後から詳しく論じる。本発明のこの1つの好ましい実施態様において、電極1及び5は、例えば遠隔位置から降下させ制御することができ、また、ソフトウェア・プログラム(本明細書中で後から詳しく論じる)を含有する好適なコントローラ又はコンピュータ(図2aには示されない)によって監視し制御することもできる。これに関して、図2bは、テイラーコーン「T」が電極5と液体3の表面2(又は実際には有効表面2’)との間の電気的接続のために利用されることを除いて、図2aに示されたものと同様の電極構造を示している。従って、図1a,1b及び1cに示された実施態様は、本発明の技術とともに使用するための手動制御式装置であると考えられるべきであり、これに対して、図2a及び2bに示された実施態様は、適宜の命令に応答して電極1及び5を遠隔位置から昇降させることができる自動的な装置又は集成体を含むと考えられるべきである。さらに、図2a及び図2bに示す本発明の好ましい実施態様は、表面2から離隔した電極1の先端9(及び電極5の先端9’)の距離「x」をコンピュータで監視し、そしてコンピュータ制御することを採用することもできる(本明細書中で後から詳しく論じる)。従って、電極1及び5を上昇及び/又は降下させる適宜の命令は、個々の操作者及び/又は好適な制御装置、例えばコントローラ又はコンピュータ(図2aには示されない)から出ることが可能である。
図3aは、図2a及び2bに大部分が相当するが、図3b、3c及び3dは、本発明の或る好ましい実施態様とともに利用し得る種々様々な代わりの電極構造を示している。図3bは図3aに示された電極集成体から、本質的に鏡像電極集成体を示している。具体的には、図3bに示されているように、液体3の流動方向に相当する方向「F」に関して、電極5は、流体3が長手方向「F」で流動するとこの流体3と連通する最初の電極であり、電極1はこれに続いて、電極5によって既に改質された流体3と接触する。図3cは、流体3中に配置された2つの電極5a及び5bを示している。この特定の電極構造は、本発明の別の好ましい実施態様に相当する。具体的には、図3a〜3dに示された電極構造のいずれかを互いに組み合わせて使用することができる。例えば、図3aに示された電極構造(すなわち電極セット)は、方向「F」に流れる液体3が遭遇する最初の電極セット又は電極構造であり得る。その後、液体3は、第2の電極セット又は電極構造3aに遭遇することもでき、或いは、液体3は、第2の電極セット又は電極構造3bに遭遇することもでき、或いは、方向「F」に流れる液体3は、図3cに示されたもののような第2の電極セットに遭遇することもでき、或いは、方向「F」に流れる液体3は、図3dに示されたものと同様の第2の電極セットに遭遇することもできる。或いは、方向「F」に流れる液体3が遭遇する最初の電極構造又は電極セットが図3aに示された電極構造である場合、第2の電極セット又は電極構造は図3cに示されたものに類似していてもよく、そしてその後、方向「F」に流れる液体3が遭遇する第3の電極セット又は電極構造は、図3a〜3dに示された電極構造のいずれかであってもよい。或いは、方向「F」に流れる液体3が遭遇し得る最初の電極構造又は電極セットは図3dに示された電極構造であってよく、その後、方向「F」に流れる液体3が遭遇し得る第2の電極セット又は電極構造は図3cに示された電極構造であってもよく、そしてその後、図3a〜3dに示された電極セット又は電極構造のいずれかが、第3の電極セットの構造を含んでいてもよい。さらに、方向「F」に流れる液体3が遭遇し得る最初の電極構造は、図3aに示された電極構造であってもよく、そして第2の電極構造は図3aに示された電極構造であってもよく、そしてその後、図3cに示されたものに類似した複数の電極構造が使用されてもよい。別の実施態様の場合、電極構造の全てが、図3aに示されたものに類似していてよい。これに関しては、種々様々な電極構造(利用される電極セットの数を含む)が可能であり、そのそれぞれの電極態様は、液体3中の著しく異なる成分(例えばナノ粒子又はナノ粒子/溶液混合物)をもたらすか、又は僅かだけ異なる成分(例えばナノ粒子又はナノ粒子/溶液混合物)をもたらし、これらの全ては異なる特性を呈することができる(例えば異なる化学特性、異なる反応特性、異なる触媒特性など)。電極セットの所期数及び所期電極構造、及びより具体的には望ましい電極セット配列を決めるために、本明細書中で論じた全て、例えば電極組成、プラズマ組成(及び雰囲気の組成)及び強度、電源、電極極性、ボルト数、アンペア数、液体流量、液体組成、液体導電率、断面(及び処理される流体の体積)、各電極集成体内の電極のそれぞれの中及びその周りに形成される磁界、電磁界、及び/又は電界、場増強手段が含まれているか否か、付加的な所期処理工程(例えば電磁線処理)、中間生成物中及び最終生成物中の所期量の特定の成分、などを含む多くのファクタを考慮する必要がある。電極集成体の組み合わせの例は、本明細書中で後から「例」の項に記載されている。しかしながら言うまでもなく、本発明の実施態様は多くの電極組み合わせ及び多数の電極セットを可能にする。これらのうちのいずれも、種々異なる特定の化学的、触媒的、生物学的及び/又は物理的用途のための極めて望ましいナノ粒子/溶液をもたらすことができる。
図3a,3b及び3dに示された調節可能なプラズマ4に関しては、距離「x」(又は図3dの「xa」及び「xb」)は、調節可能なプラズマ4の或る特徴を制御する1つの手段である。これに関しては、距離「x」以外、図3a,3b及び3dにおける他のものが変えられない場合、異なる強度の調節可能なプラズマ4のを達成することができる。換言すれば、プラズマ4(例えば強度)を調節する1つの調節手段は、電極1の先端9と流体3の表面2との間の距離「x」を調節することである。このような距離は、最大距離「x」まで変化させることができる。最大距離「x」において、ボルト数及びアンペア数の組み合わせが、等式1に従って先端9と表面2との間の雰囲気を破壊させるのにもはや十分ではなくなる。従って、好ましい最大距離「x」は、雰囲気の「Ec」破壊が発生し始める範囲に丁度僅かに含まれるか又は僅かに下回る。或いは、最小距離「x」は、本明細書中で前述した現象とは異なり、調節可能なプラズマ4が形成され、テイラーコーンが形成される距離である。これに関しては、距離「x」が液体3が電極1の先端9にウィッキング又は接触する傾向があるほど小さくなると、視覚的に吸収可能なプラズマは形成されなくなる。従って、最小距離及び最大距離「x」は、システムに印加される電力の量、雰囲気の組成、液体の組成(例えば導電率)などを含む本明細書中の別の個所で詳細に論じるファクタの全ての関数である。さらに、プラズマ4の強度変化の結果、特定の種が他の処理条件に対して活性になることもある。その結果、異なるスペクトル放出、並びに、プラズマ4内の種々のスペクトル線の振幅の変化をもたらすことがある。種々の電極構造及び電極組成の或る好ましい距離「x」については、本明細書中で後から詳しく論じる「例」の項で論じる。
さらに、図3dに関しては、距離「xa」及び「xb」は、ほぼ同じであってよく、或いは実質的に異なっていてもよい。これに関して、本発明の1つの好ましい実施態様の場合、方向「F」に流れる液体3に関して、調節可能なプラズマ4aが調節可能なプラズマ4bとは異なる特性を有することが望ましい。これに関しては、プラズマ4a及び4bの組成が互いに異なるように、異なる雰囲気を提供することが可能であり、また、高さ「xa」及び「xb」が互いに異なるようにすることも可能である。高さを異なるようにする場合、プラズマ4a及び4bのそれぞれと連携する強度又は電力が異なっていてよい(例えば異なる電圧を達成することができる)。これに関しては、電極1a及び1bは電気的に接続されているので、システム内の総電力量はほぼ一定のままであり、一方の電極1a又は1bにこうして提供される電力量は、他方の電極1a又は1b内の電力を減少させて、増大することになる。従って、これは、プラズマ4a及び4bにおける成分及び/又は強度及び/又はスペクトル・ピークの有無を制御し、ひいては方向「F」に流れる液体3との相互作用を調節するための別の本発明の実施態様である。
同様に、一連の手動制御式の電極構造が図4a、4b、4c及び4dに、部分断面図として示されている。具体的には、図4aは図1aに実質的に相当する。さらに、図4bは電極構造において、図3bに示された電極構造に相当し、図4cは図3cに相当し、そして図4dは図3dに相当する。本質的には、図4a〜4dに示された手動電極構造は機能的に、結果として、図3a〜3dに示された遠隔調節可能な(例えば遠隔制御される)電極構造に対応して製造される材料及び組成物と同様の材料を、本発明の或る特徴に従って製造することができる。但し、電極構造を手動で調節するために、1人又は2人以上の操作者が必要となる。さらに、或る実施態様では、手動制御式及び遠隔制御式の電極及び/又は電極セットの組み合わせが望ましい場合がある。
図5a〜5eは、図面に示した電極1の種々の電極構造を示す斜視図である。図5a〜5eに示された電極構造は、本発明の種々の実施態様において有用な種々異なる数多くの構造の代表である。電極1に対する適宜の電極選択の基準の一例としては、下記条件、すなわち、極めて明確な先端又は点9の必要性、電極1の組成、電極1を含む組成物を種々の形状に形成するときに被る機械的制限、成形のために利用される鍛造技術、伸線、及び/又は鋳造法と関連する成形能力、便宜性など、が挙げられる。これに関して、例えば図1〜4に示された電極1を含む小さな質量の材料は、本発明に従って調節可能なプラズマ4を生成すると、動作温度まで上昇することがある。この温度では、電極1のサイズ及び/又は形状が不都合な影響を受けるおそれがある。「小さな質量」という言い回しを用いるときには、これは、電極1に使用される材料量を相対的に記述したものとして理解されるべきである。この材料の量は、組成、形成手段、トラフ部材30内で被る方法条件の関数として変化する。例えば、電極1が銀を含み、そして図5aに示された電極と同様に成形されている場合、本明細書中の「例」の項に示される或る好ましい実施態様では、その質量は約0.5グラム〜8グラムとなり、好ましい質量は約1グラム〜3グラムであり;これに対して、電極1が銅を含み、そして図5aに示された電極と同様に成形されている場合、本明細書中の「例」の項に示される或る好ましい実施態様では、その質量は約0.5グラム〜6グラムとなり、好ましい質量は約1グラム〜3グラムであり;これに対して、電極1が亜鉛を含み、そして図5aに示された電極と同様に成形されている場合、本明細書中の「例」の項に示される或る好ましい実施態様では、その質量は約0.5グラム〜4グラムとなり、好ましい質量は約1グラム〜3グラムであり;これに対して、電極1が金を含み、そして図5eに示された電極と同様に成形されている場合、本明細書中の「例」の項に示される或る好ましい実施態様では、その質量は約1.5グラム〜20グラムとなり、好ましい質量は約5グラム〜10グラムである。これに関しては、例えば、電極1が比較的小さな質量を有する場合、小質量電極1を利用することには、特定の電力制限が付随する。これに関して、多量の電力が比較的小さな質量に印加され、このような電力の結果として調節可能なプラズマ4が形成される場合、多量の熱エネルギーを小質量電極1内に集中させることができる。小質量電極1が極めて高い融点を有する場合、このような電極は、本発明において電極1として機能することができる。しかし電極1が、比較的低い融点を有する組成物から形成されている場合(例えば銀、又はアルミニウムなど)、本発明のいくつかの(しかし全てではない)実施態様において、小質量電極1に転移される熱エネルギーは、小質量電極1の融解、亀裂、又は分解を含む1つ又は2つ以上の望ましくない作用を引き起こすおそれがある。従って、低融点金属を利用する1つの選択肢は、より大きい質量のこのような金属を使用して、熱エネルギーをこのような大きい質量全体を通して散逸できるようにすることである。或いは、低融点の小質量電極1が望まれる場合には、或る種類の冷却手段が必要となることがある。このような冷却手段は例えば、吹き付けにより、周囲の又は加えられた雰囲気が電極1を通過するようにするシンプルなファン、適宜のその他のこのような手段を含む。しかし、小質量電極1と並置された冷却ファンを設けることに関する1つの潜在的な望ましくない特徴は、調節可能なプラズマ4の形成に関与する雰囲気が不都合な影響を及ぼされるおそれがあることである。例えば、先端9と液体3の表面2との周り又は間の雰囲気流が活発になる場合、プラズマは、望ましくなく運動又は旋回することが見いだされる場合がある。従って、電極1の組成(例えば電極を構成する材料)は、例えば融点、感圧性、環境反応(例えば調節可能なプラズマ4の局所的環境は、電極の化学的、機械的及び/又は電磁的腐食を生じさせるおそれがある)などに起因して、電極の考えられ得る好適な物理的形状に影響を及ぼすことがある。
さらに、言うまでもなく、本発明の別の好ましい実施態様では、先端9の明確な鋭利な点が常に必要とされるわけではない。これに関連して、図5e(斜視図)に示された電極1は、丸みを帯びた点を含む。なお、部分的に丸みを帯びた又は円弧状の電極が、電極1として機能することもできる。なぜならば多くの場合、調節可能なプラズマ4は、図5eに示された電極1の種々の点に沿って位置決め又は配置することができるからである。これに関して、図6は種々様々な点「a〜g」を示しており、これらの点は、電極1と液体3の表面2との間に発生するプラズマ4a〜4gの開始点9に相当する。例えば、本発明の或る好ましい実施態様を実施する上で、調節可能なプラズマ4の正確な位置は、時間の関数として変化することになる。具体的には、最初のプラズマ4dが電極1の先端9上の点dに形成されてよい。その後、先端9上のプラズマ接点の正確な位置は、例えば他の点4a〜4gのいずれかに変わってよい。なお、図6に示された概略図は、電極1上の先端9が、電極1の先端9上の開始点又は接点としての種々の正確な点a〜gを可能にすることを指摘するために、本発明の実施態様における実際の配列に比べて大幅に拡大されている。本質的には、調節可能なプラズマ4の場所は、時間の関数として位置が変化することができ、また、電極1と液体3の表面2との間に位置する雰囲気の電気破壊(本明細書中の等式1に従う)によって支配することができる。さらに、プラズマ4a〜4gが円錐形状として表されているが、言うまでもなく、図5a〜5eに示された、電極1のいずれかと接続されて形成されたプラズマ4は、方法条件の一部又はほぼ全てにわたって、円錐以外の形状を含んでもよい。例えば稲妻又は白熱円筒として最もよく記述される形状が存在してもよい。さらに、このようなプラズマ4(例えば可視スペクトル内)によって放射された色は、赤みを帯びた色、青みを帯びた色、黄色、橙色、紫色、白色など多様であってよく、これらの色は、存在する雰囲気、ボルト数、アンペア数、電極組成、液体組成などの関数である。
従って、言うまでもなく、電極1に対応する種々のサイズ及び形状を、本発明の教示に従って利用することができる。さらに、ここで種々の図面に示された、電極1の先端9は、比較的鋭利な点又は比較的丸みのある端部として示されることがある。これらの電極先端の具体的な特徴を文脈上より詳細に論じるのでない限り、図面に示す電極先端の実際の形状はさほど重要でないものとする。
図7aは、トラフ部材30内部に含有される、図2a(及び図3a)に示されているものに相当する電極構造を示す断面斜視図である。このトラフ部材30は、図7aの後ろ側31から内部に供給された液体3を有しており、流動方向「F」は、この頁から読者に向かって、また符号32として示された断面区域に向かっている。トラフ部材30はここでは1つの材料から成る一体部分として示されているが、しかし、1つにまとめられ、そして例えば材料を互いに付着させるための任意の許容し得る手段によって固定された(例えば接着、機械的付着など)複数の材料から形成することもできる。さらに、ここに示されたトラフ部材30は長方形又は正方形の断面形状を有しているが、しかし、種々異なる断面形状を含んでいてもよい。さらに、トラフ部材30は必ずしも、単一の断面形状から成る必要はなく、本明細書中の別の好ましい実施態様では、複数の異なる断面形状を含む。第1の好ましい実施態様の場合、断面形状は、トラフ部材30の長手方向寸法全体にわたって概ね同じであるが、断面形状のサイズ寸法は、異なるプラズマ及び/又は電気化学反応と調和して変化する。さらに、2つよりも多い断面形状を一体的なトラフ部材30内に利用することもできる。異なる断面形状の利点の一例としては、異なる電力、電界、磁界、電磁相互作用、電気化学効果、異なる部分における異なる化学反応などが挙げられる。これらの利点は、同じ一体的トラフ部材30の異なる長手方向部分において達成することができる。さらに、異なる断面形状のうちのいくつかは、例えば局所的又は全体的に提供される異なる雰囲気との関連において利用することができるので、電極5で発生する調節可能なプラズマ4のうちの少なくとも1つ及び/又は電気化学反応のうちの少なくとも1つが、存在し得る異なる雰囲気及び/又は成分の雰囲気濃度の関数となる。さらに、加えられた及び/又は生成された流体の量または強度は、例えば断面形状によって、また、例えば、そこで発生する1種又は2種以上の反応を増強又は減衰するために種々の電極セット又は電極構造に、又はこの近くに、又はこれに隣接して、又はこれに並置して種々の場濃縮手段を設けることにより、増強することができる。従って、トラフ部材30の断面形状は、液体3と電極との相互作用、並びに調節可能なプラズマ4と液体3との相互作用の両方に影響を与えることができる。
さらに、言うまでもなく、トラフ部材は単に直線形状又は「I字形」である必要はなく、むしろ「Y字形」、又は「Ψ字形」であってもよい。これらの各部分は類似又は非類似の断面を有していてよい。「Y字形」又は「Ψ字形」のトラフ部材30を形成する1つの理由は、2つの異なる一連の処理条件が「Y字形」トラフ部材30の2つの上側部分内に存在し得ることである。さらに第3の一連の処理条件が、「Y字形」トラフ部材30の下側部分内に存在し得る。こうして異なる組成及び/又は異なる反応物質から成る2種の異なる流体3を一緒にして、「Y字形」トラフ部材30の下側部分に運び、そして一緒に処理することにより、多種多様な最終生成物を形成することもできる。
図11eは、トラフ部材30の別の構造を示している。具体的には、トラフ部材30は斜視図で示されており、「Y字形」である。具体的には、トラフ部材30は上側部分30a及び30bと、下側部分30oとを含む。同様に、入口31a及び31bが、出口32とともに設けられている。部分30dは、30aと30bとが30oに合体する点に相当する。
図11fは、図11eの部分30dがここでは混合区分30d’として示されていることを除けば、図11eに示されているのと同じ「Y字形」トラフ部材を示している。これに関して、例えば部分30a,30b及び/又は30cのうちの1つ又は全てにおいて液体3中で製造又は産出される特定の成分は、点30d(又は30d’)で混ぜ合わされるのが望ましい場合がある。このような混合は、図11eに示された交差点30dで自然に発生してよく(すなわち特定の又は特別な区分30d’は必要でない)、或いは、部分30d’で、より特定的に制御されてもよい。言うまでもなく、部分30d’を任意の効果的な形状、例えば正方形、円形、長方形などに成形することもでき、トラフ部材30の他の部分に対して同じ又は異なる深さを有することもできる。これに関して、区域30dは混合ゾーン又は後続の反応ゾーンであってもよい。
図11g及び11hは、「Ψ字形」トラフ部材30を示している。具体的には、新しい部分30cが加えられている。図11g及び11hの他の構成要件は、図11e及び11fに示された構成要件と同様である。
言うまでもなく、トラフ部材30のためには種々異なる形状が存在し得る。これらの形状のいずれも望ましい結果をもたらすことができる。
再び図7aを参照すると、流体3の流動方向は、この頁から読者に向かっており、そして液体3は電極1及び5のそれぞれを順次流過する。電極1及び5は、この実施態様の場合、トラフ部材30内部の流体3の長手方向流動方向「F」に対して互いに実質的に一列に配置されている(例えばこれらの配列関係は互いに、そしてトラフ部材30の長手方向寸法に対して平行である)。これにより、液体3は、調節可能なプラズマ4と液体3との相互作用(例えばコンディショニング反応)を最初に被り、続いて、コンディショニングされた流体3は、電極5と相互作用することができる。本明細書中で前述したように、種々多様な成分が、調節可能なプラズマ4中に存在すると予測することができ、また、このような成分又は構成要素の少なくとも一部(例えば化学的、物理的、及び/又は流体成分)が、液体3の少なくとも一部と相互作用し、そして液体3を変化させる。従って、このような構成要素又は成分又は別の液体構造が液体3中に存在させられた後、後続の反応(例えば電気化学反応)が電極5で発生することができる。このように、本明細書中の種々の実施態様の開示内容から明らかなように、調節可能なプラズマ4中の成分又は構成要素のタイプ、量、活性は、本発明の好ましい実施態様の実施と関連する種々様々な条件の関数である。このような成分(一時的なものであれ半永久的なものであれ)は、一旦存在したら、且つ/又は液体3を少なくとも部分的に改質したら、液体3が方向「F」にトラフ部材を貫流するのに伴って、トラフ部材30の長手方向に沿って後続の反応に好ましい影響をを与えることができる。これらのタイプの反応を調節し(例えば電極集成体及びこれと関連する反応)、そして付加的な同様の又は異なる電極セット又は電極集成体(例えば図3a〜3dに示されているもの)を順次設けることにより、種々多様な化合物、ナノ粒子、及びナノ粒子/溶液を得ることができる。例えば、液体3中の成分が、トラフ部材30の長手方向長さに沿って種々の電極セット(例えば5,5)を通過してこれらと相互作用するのに伴って、ナノ粒子は、液体3中で成長させられ得る(例えば見掛け又は実際の成長)(「例」の項で詳細に論じる)。例えば電極セット5,5に観察されるこのような成長は、液体3が電極セット1,5及び/又は1,1及び/又は5,1と前に接触したときに大幅に促進されるように見える。本発明により産出された液体3の具体的な最終用途に応じて、液体3中の特定のナノ粒子、いくつかの成分などは極めて望ましいと考えることが可能であり、これに対して他の成分は望ましくないと考えることが可能である。しかし、電極デザインの多用途性、電極セットの数、電極セットの構造、流体組成、各電極集成体又は電極セット内の各電極における処理条件、トラフ部材30の長手方向に沿った種々異なる電極集成体又は電極セットの配列、トラフ部材30の形状、トラフ部材30の断面のサイズ及び形状に起因して、全てのこのような条件は、本明細書中に開示された過程の少なくとも一部の間、液体3中に存在する望ましい又は望ましくない成分又は構成要素(一時的又は半永久的)及び/又は液体自体の異なる構造を多くする又は少なくすることに関与することができる。
図7bは、図2a(及び図3a)に示された電極構造を示す断面斜視図であるが、これらの電極1及び5は、この頁上では、図2a及び3aに示された電極1及び5に対して90度だけ回転している。本発明のこの実施態様において、液体3は、電極1と液体3の表面2との間に発生する調節可能なプラズマ4と接触し、また、トラフ部材30の長手方向の流動方向「F」(すなわち頁から出る方向)に沿ったほぼ同じ点で電極5と接触する。液体3の流動方向は図7aのように、トラフ部材30に沿って長手方向に、紙から読者に向かっている。従って、本明細書中ですぐ上で論じたように、図7bに示された電極集成体を、本明細書中で上述した、また後から論じる電極集成体又は電極セットのうちの1つ又は2つ以上と一緒に利用できることが明らかになる。例えば、図7bに示された集成体のための1つの用途は、調節可能なプラズマ4中に生成された成分(又は液体3中の結果として生じた生成物)が液体3の表面2との接点から下流に流れるときに、種々の後続の処理工程が生じ得ることである。例えば、電極1と電極5との間の距離「y」(例えば図7bに示されているような)は、特定の最小距離並びに特定の最大距離に制限される。最小距離「y」は、距離が、電極1及び5間の最も近い点の間に提供された雰囲気の電気破壊「Ec」を僅かに超えるような距離である。これに対して最大距離「y」は、流体の少なくともいくらかの導電率が、電源10から電極1及び5のそれぞれの中へ入り、そして電極を通り、そして液体3を通る電気的接続を可能にする最大限の距離に相当する。最大距離「y」は、例えば液体3中の成分(例えば液体3の導電率)の関数として変化することになる。従って、調節可能なプラズマ4を含む高いエネルギーを供給されたこれらの成分のうちのいくらかは、著しく反応性であることが可能であり、そして液体3中に化合物(反応性又はその他の)を生成することができ、そしてこのような成分の存在によって、後続の処理工程を促進することができ、或いは、著しく反応性のこのような構成要素又は成分は、例えば時間の関数として低反応性となることが可能である。さらに、例えば例7bに示されている電極セットから下流側の付加的な電極セットと関連する位置及び/又は処理条件によって、特定の望ましい又は望ましくない反応を最小化又は最大化することもできる。
図8aは、図7aに示されたものと同じ実施態様を示す断面斜視図である。この実施態様では、図7aの実施態様におけるように、流体3は、電極1と液体3の表面2との間に生成された調節可能なプラズマ4と最初に相互作用する。その後、調節可能なプラズマ4によって変化(コンディショニング、改質、又は調製)させられた、影響されるか又はコンディショニングを施された流体3は、その後、電極5と連通し、ひいては、種々の電気化学反応が発生するのを可能にする。このような反応は流体3(及び流体3中の成分)の状態(例えば化学組成、物理又は結晶構造、励起状態など)によって影響を受ける。別の実施態様が図8bに示されている。この実施態様は概ね、図3b及び4bに示された実施態様に本質的に相当する。この実施態様において、流体3は電極5と最初に連通し、そしてその後流体3は、電極1と液体3の表面2との間に生成された調節可能なプラズマ4と連通する。
図8cは、2つの電極5a及び5b(図3c及び4cに示された実施態様に相当)を示す断面斜視図である。流体3の長手方向の流動方向「F」は、第1電極5aと接触し、そしてその後、流体の流動方向「F」において第2電極5bに接触する。
同様に、図8dは断面斜視図であり、そして図3d及び4dに示された実施態様に相当する。この実施態様において、流体3は、第1電極1aによって生成された第1の調節可能なプラズマ4aと連通し、その後、第2電極1bと流体3の表面2との間に生成された第2の調節可能なプラズマ4bと連通する。
従って、図8a〜8dに示された種々の電極構造又は電極セットを単独で、又は種々異なる構造の相互の組み合わせで使用できることが開示された実施態様から明らかである。数多くのファクタが、種々の望ましい結果を達成するためにどの電極構造を使用することが最良であるかという選択を導く。同様に、このような電極構造の数及びこのような電極構造の相互の位置も全て、液体3中の結果として生じる成分、これらの成分から結果として生じるナノ粒子及び/又はナノ粒子/液体溶液に影響を与える。電極構造の依存関係のいくつかの具体例は、本明細書中の「例」の項に含まれている。しかしながら、種々異なる生成物及び望ましい設備が、本明細書中に存在する教示内容(明示的及び内在的の両方)に従って実現可能である。これらの異なる設備は結果として、種々異なる生成物をもたらすことができる(本明細書中の「例」の項でさらに論じる)。
図9aは断面斜視図を示しており、図7bに示された電極構造に相当する(及び図3a及び4aに示された電極構造にも概ね相当するが、しかし図9aの電極構造は90度だけ回転している)。図9a〜9dに示された電極構造の全ては、図示の電極対は、図7bにおけるように、トラフ部材30に沿ったほぼ同じ長手方向の点に配置されるように構成されている。
同様に、図9bも、図3b及び4bに示された電極構造に概ね相当し、図8bに示された構造に対して90度だけ回転させられている。
図9cも、図3c及び4cに概ね相当する電極構造を示し、図8cに示された電極構造に対して90度だけ回転させられている。
図9dも、図3d及び4dに概ね相当する電極構造を示し、図8dに示された電極構造に対して90度だけ回転させられている。
本明細書中で論じるように、図7、8及び9に大まかに示された電極構造又は電極セットは全て、流体流動方向「F」に対するこれらの配向及び位置、及びトラフ部材30内の相互の位置の関数として種々異なる結果(例えば、異なるサイズ、形状、量、化合物、成分、液体中に存在するナノ粒子の機能、異なる液体構造、種々異なるpHなど)をもたらすことができる。さらに、電極の数、組成、サイズ、具体的な形状、印加されるボルト数、印加されるアンペア数、形成される場、各電極セット内の電極間の距離、電極セット間の距離などは全て、液体3がこれらの電極を流過するのに伴って、液体3の特性、ひいてはこれから産出される材料(例えば流体3中の成分、ナノ粒子及び/又はナノ粒子/溶液)の結果としての特性に影響を与えることができる。加えて、液体を含有するトラフ部材30はいくつかの好ましい実施態様において、図7、8及び9に示された複数の電極組み合わせを含有している。これらの電極集成体は全て同じ構造であってよく、或いは、種々異なる電極構造の組み合わせであってもよい。さらに、電極構造は流体「F」と順次連通してよく、或いは同時に、又は並列に流体「F」と連通してもよい。種々異なる電極構造例について、液体3中で産出される種々異なる成分、ここから産出されるナノ粒子及び/又はナノ粒子/溶液との関連において、後から付加的な図面に示し、本明細書中(「例」の項)で後から詳しく論じる。
図10aは、図7、8及び9に示された、液体を含有するトラフ部材30を示す断面図である。トラフ部材30は、長方形又は正方形に相当する断面を有しており、電極(図10aには示されていない)をトラフ部材30内に適当に位置決めすることができる。
同様に、液体含有トラフ部材30のいくつかの付加的な代わりの断面実施態様が、図10b、10c、10d及び10eで示されている。図10a〜10eのそれぞれに示された好ましい実施態様の距離「S」及び「S’」は、例えば約1インチ〜約3インチ(約2.5cm〜7.6cm)である。距離「M」は約2〜約4インチ(約5cm〜10cm)である。距離「R」は約1/16インチ〜1/2インチから約3インチまで(約1.6mm〜13mmから約76mmまで)の範囲である。これらの実施態様の全て(また、別の実施態様を表す付加的な構造も本発明の範囲に含まれる)は、本発明の他の特徴との組み合わせで利用することができる。なお、液体含有トラフ部材30のそれぞれの内部に含有される液体3の量は、深さ「d」の関数であるだけでなく、実際の断面の関数でもある。手短に言うと、電極1及び5の中及び周りに存在する流体3の量又は体積は、液体3に対する調節可能なプラズマ4の1つ又は2つ以上の効果(例えば流体又は場濃縮効果を含む濃縮効果)、並びに、電極5と液体3との化学又は電気化学相互作用に影響を与えることができる。これらの効果は、液体3に対する、調節可能なプラズマ4のコンディショニング効果(例えばプラズマの電界及び磁界の相互作用、プラズマの電磁線の相互作用、液体中の種々の化学種(例えばルイス酸、ブレンステッド−ラウリ酸など)の生成、pHの変化、など)を含むだけでなく、調節可能なプラズマ4の濃縮、又は調節可能なプラズマ4と液体3との相互作用、及び電極5と液体3との電気化学相互作用をも含む。各電極集成体1及び/又は5の長手方向部分の周りに存在する液体の実体積に起因して、種々異なる効果が可能である。換言すれば、トラフ部材30の長手方向に沿った所与の長さにわたって、種々異なる量または体積の液体3が、断面形状の関数として存在することになる。具体例として、図10a及び10cを参照されたい。図10aの場合、図示の長方形の形状は、図10cに示された上側部分とほぼ同じ距離だけ離れた上側部分を有している。しかし、同じ所与の長手方向(頁の中へ向かう方向)に沿った流体の量は、図10a及び10cのそれぞれにおいて著しく異なることになる。
同様に、液体3に対する電極5の多くの特徴の影響(例えば電気化学相互作用)もまた、本明細書中のすぐ上で論じたように、電極5と並置された流体の量の関数でもある。
さらに、電界及び磁界の濃縮は、プラズマ4と液体3との相互作用に著しく影響を与えることもでき、電極5と液体3との相互作用に影響を与えることもできる。例えば、特定の理論又は説明によって縛られたくないが、液体3が水を含む場合には、種々の電界、磁界、及び/又は電磁界の影響が生じ得る。具体的には、水は、電界によって少なくとも部分的に整列することができる周知の双極性分子である。電界によって水分子を部分的に整列させることにより、例えば以前から存在する水素結合及び結合角度が、電界曝露前とは異なる角度を成して配向されることになり、又は異なる振動活性が生じ、又はこのような結合が実際に破断され得る。水構造のこのような変化は、異なる(より高い)反応性を有する水をもたらすことができる。さらに、電界及び磁界の存在は、水及び/又は水中に存在するナノ粒子の秩序化又は構造化に対して反対の効果を有し得る。非構造化水又は、例えば著しく構造化された水と比べて水素結合が比較的少ない小さな構造化水は、結果としてより反応性(例えば化学的により反応性)の環境をもたらすことが可能である。このことは、例えば増大した粘度、低減された拡散性、及びより小さな水分子活性に起因して反応を遅くすることができる開いた又は高次水素結合網状構造とは対照的である。従って、水素結合及び水素結合強度を明らかに低減し(例えば電界)且つ/又は振動活性を高めるファクタは、反応性及び種々の反応の動力学的特性を促進することができる。
さらに、電磁線も、水に対して直接及び間接の影響を与えることができ、個々の電界又は磁界ではなく電磁線自体(例えばプラズマ4から発せられた放射線)が、“Methods for Controlling Crystal Growth, Crystallization, Structures and Phases in Materials and Systems”と題する、参考のため本明細書中に引用した前述の特許出願公開明細書に開示されたような効果を有することも可能である。異なるプラズマ4と関連する異なるスペクトルに関しては、本明細書中の「例」の項で論じる。
さらに、電流を本明細書中に開示された電極1及び/又は5に通すことにより、例えば電極5上に存在する電圧は、水分子に対して配向効果(すなわち一時的、半永久的又はそれよりも長い期間)を有することができる。水中の他の成分(すなわち荷電種)の存在はこのような配向効果を増強することがある。このような配向効果は、例えば水素結合破断、及び局所的な密度変化(すなわち減少)を引き起こすことがある。さらに、電界は、水素結合網状構造を変化(例えば低減)させることに起因して、水の誘電定数を低下させることも知られている。網状構造のこのような変化は、水の溶解特性を変化させるはずであり、またトラフ部材30内部の液体3(例えば水)中の種々の気体及び/又は成分又は反応性種の濃縮又は溶解を助けることもできる。さらに、電磁線(及び/又は電界及び磁界)の印加から生じる水素結合の変化又は破断が、気体/液体界面を攪乱し、より反応性の種をもたらすことが可能である。さらに、水素結合の変化は、二酸化炭素水和に影響を与え、このことはとりわけ、pHを変化させる。このように、局所的なpH変化が例えば電極5(又は電極1)のうちの少なくとも1つ又は2つ以上の周りで発生するときには、生じ得る反応物質(本明細書中の別の個所で詳細に論じる)の多くはこれら自体及び/又は雰囲気及び/又は調節可能なプラズマ4、並びに電極1及び/又は5自体と異なる形で反応することになる。ルイス酸及び/又はブレンステッド−ラウリ酸の存在が、反応に多大な影響を与えることもできる。
さらに、トラフ部材30は、長手方向全長に沿って2つ以上の断面形状を含むことができる。トラフ部材30の長手方向全長に沿って複数の断面形状を組み込む結果、例えば本明細書中に開示された本発明の実施態様によって、変化する場又は濃縮効果又は反応効果がもたらされる。加えて、トラフ部材30の長手方向長さに沿った点に種々の変更を加えることができる。このような変更により、本明細書中で上述した種々の場効果を増強及び/又は減衰することができる。これに関して、トラフの中及び/又は周りの材料から成る組成物(例えばトラフ部材30の少なくとも一部の外側又は内部に位置する金属)は、電極1及び/又は5の中及び周りに存在する種々の場の濃縮因子又は増強因子として作用することができる。加えて、外部から印加される場(例えば電界、磁界、電磁界など)の適用、及び/又はトラフ部材30内部の特定の反応性材料の配置(例えばその傍らを流れる液体3の一部と少なくとも部分的に接触する)の結果、(1)望ましくない種を収集、捕集、又は濾過することもでき;又は(2)例えば上流に既に形成されているナノ粒子の外面の少なくとも一部に望ましい種を配置することもできる。さらに、言うまでもなく、トラフ部材30は直線形状又は「I字形」ではない場合があり、むしろ「Y字形」又は「Ψ字形」であってもよい。Y及びΨの各部分は異なる(又は類似の)断面を有していてよい。「Y字形」又は「Ψ字形」のトラフ部材30を形成する1つの理由は、2つ(又は3つ以上)の異なる一連の処理条件が「Y字形」又は「Ψ字形」のトラフ部材30の2つ(又は3つ以上)の上側部分内に存在し得ることである。さらに別の付加的な一連の処理条件が、「Y字形」トラフ部材30の下側部分内に存在し得る。こうして異なる組成及び/又は異なる反応物質から成る異なる流体3を一緒にして、「Y字形」トラフ部材30の下側部分に運び、そして一緒に処理することにより、多種多様な最終生成物を形成することもできる。
図11aは、入口部分又は入口端部31と出口部分又は出口端部32とを含む、図10bに示されたトラフ部材30のほぼ全体の1実施態様を示す斜視図である。本明細書中で他の図面において論じた流動方向「F」は、端部31で又は端部31の近くで入り(例えば、入口部分31で又は入口部分31の近くでトラフ部材30内に流体を供給する適宜の手段を利用する)、そして端部32を通ってトラフ部材30を出る液体に相当する。加えて、図11aには単一の入口端部31が示されているが、図11aに示されたものの近くに複数の入口端部31が存在することができ、或いは、トラフ部材30の長手方向長さに沿った種々の位置(例えばトラフ部材30に沿って位置する電極セットのうちの1つ又は2つ以上からすぐ上流側)に配置することもできる。こうして、複数の入口31は、その第1の長手方向端部31で2種以上の液体3を導入すること、又は長手方向端部31で複数の液体3を導入すること、及び/又はトラフ部材30の長手方向長さに沿った異なる位置で異なる液体3を導入することを可能にする。
図11bは、トラフ部材30の上側に取り外し可能に取り付けられた3つの制御装置20を含有する、図11aのトラフ部材30を示している。電極1及び/又は5を含有する制御装置20の相互作用及び動作に関しては、本明細書中で後から詳しく論じる。
図11cは、雰囲気制御装置カバー35’を組み込んだトラフ部材30を示す斜視図である。雰囲気制御装置又はカバー35’には、電極1及び/又は5を含有する複数の制御装置20(図11cでは、3つの制御装置20a,20b及び20cが示されている)が取り付けられている。カバー35’は、トラフ部材30の長手方向の大部分(長手方向の50%超)の内部及び/又は大部分に沿って雰囲気を制御する能力を提供するように意図されているので、任意の電極1に生成された任意の調節可能なプラズマ4は、電圧、電流、電流密度など、並びに制御された雰囲気の関数であり得る。雰囲気制御装置カバー35’は、1つ又は2つ以上の電極セットを内部に含有できるように構成することができる。例えば、局所的雰囲気は、トラフ部材30の長手方向の長さのほぼ全て又は一部に沿って、端部39a及び39bの間に、そして雰囲気制御装置35’の上側部分に形成することができる。雰囲気制御装置35’内に組み込まれた少なくとも1つの入口ポート(図示せず)内に雰囲気を流入させ、そしてこれを、少なくとも1つの出口ポート(図示せず)を通して出すか、又は例えば部分39a及び39bに沿って又はその近くで入る/出るのを可能にすることができる。これに関して、正圧が雰囲気制御装置35’の内部に提供される限り(すなわち外部雰囲気に対して正)、このようないずれの気体を部分39a及び/又は39bの周りで発泡させることができる。さらに、例えば、部分39a又は39bの一方の部分が他方に対して高い場合に応じて、内部雰囲気を適切に制御することもできる。雰囲気制御装置35’内部に使用するのに適した種々様々の雰囲気は、希ガスのような従来より非反応性と見なされている雰囲気(例えばアルゴン又はヘリウム)、又は従来より反応性と見なされている雰囲気、例えば酸素、窒素、オゾン、制御された空気などを含む。雰囲気制御装置35’内部の雰囲気の正確な組成は、所期の処理技術、及び/又はプラズマ4中に存在するべき所期成分、及び/又は液体3、所期のナノ粒子/複合ナノ粒子及び/又は所期のナノ粒子/溶液の関数である。
図11dは、トラフ部材30を(その外部で)支持し、また制御装置20(図11cには示されていない)を(少なくとも部分的に)支持するための付加的な支持手段34を含む、図11cの装置を示している。言うまでもなく、例えば、全て本発明の開示内容の範囲内に含まれると考えられるトラフ部材30、雰囲気制御装置(例えば雰囲気制御装置35’)及び外部支持手段(例えば支持手段34)に対して示される断面形状に関して、種々の詳細を変化させることができる。トラフ部材30を支持するための付加的な支持部材34を含む材料は、本発明の開示内容に関して実施される処理条件下で好都合であり、構造的に妥当であり、非反応性であるいかなる材料であってもよい。許容し得る材料は、本明細書中の別の個所で詳細に論じるように、ポリビニル、アクリル、プレキシグラス、構造用プラスチック、ナイロン、テフロン(登録商標)などを含む。
図11eは、トラフ部材30の別の構造を示している。具体的には、トラフ部材30は斜視図で示されており、「Y字形」である。具体的には、トラフ部材30は上側部分30a及び30bと、下側部分30oとを含む。同様に、入口31a及び31bが、出口32とともに設けられている。部分30dは、30aと30bとが30oに合体する点に相当する。
図11fは、図11eの部分30dがここでは混合区分30d’として示されていることを除けば、図11eに示されているのと同じ「Y字形」トラフ部材を示している。これに関して、例えば部分30a,30b及び/又は30cのうちの1つ又は全てにおいて液体3中で製造又は産出される特定の成分は、点30d(又は30d’)で混ぜ合わされるのが望ましい場合がある。このような混合は、図11eに示された交差点30dで自然に発生してよく(すなわち特定の又は特別な区分30d’は必要でない)、或いは、部分30d’で、より特定的に制御されてもよい。言うまでもなく、部分30d’を任意の効果的な形状、例えば正方形、円形、長方形などに成形することもでき、トラフ部材30の他の部分に対して同じ又は異なる深さを有することもできる。これに関して、区域30dは混合ゾーン又は後続の反応ゾーンであってもよい。
図11g及び11hは、「Ψ字形」トラフ部材30を示している。具体的には、新しい部分30cが加えられている。図11g及び11hの他の構成要件は、図11e及び11fに示された構成要件と同様である。
言うまでもなく、トラフ部材30のためには種々異なる形状が存在し得る。これらの形状のいずれも望ましい結果をもたらすことができる。
図12aは、局所的雰囲気制御装置35を示す斜視図である。この雰囲気制御装置35は、電極セット1及び/又は5の周りの局所的雰囲気を制御する手段として機能するので、種々の局所的な気体を利用することにより、例えば電極1と液体3の表面2との間の調節可能なプラズマ4中の或るパラメータを制御し且つ/又はこれに影響を与え、また、液体3中の或る成分及び/又は電極5における及び/又は電極の周りの調節可能な電気化学反応に影響を与えることができる。雰囲気制御装置35内に示された貫通孔36及び37は、装置35の一部内を通って外部と連通するのを可能にするように設けられている。具体的には、孔又は入口37は、任意の気体種が装置35の内側に導入されるように入口接続部として設けられている。孔36は、これを貫通して延びる電極1及び/又は5のための連通ポートとして設けられている。これらの電極は、例えば装置35の上方に配置された制御装置20に接続されている。入口37を通って導入される気体は、局所的な外部雰囲気に対して正圧で提供すればよく、任意の好適な手段又は経路によって逃すことが許されてよい。気体を逃すことは、例えば、装置35の部分39a及び/又は39bが例えば少なくとも部分的に液体3の表面2の下方に沈められたときに、このような部分39a及び/又は39bの周りで発泡させることを含む。一般には、部分39a及び39bは、液体3の表面2を分割することができ、これにより、表面2は、電極セット1及び/又は5の周りに局所的な雰囲気を形成するためのシール部分として効果的に作用させられる。所望される気体の正圧が入口ポート37を通って入るときに、小さな気泡を、例えば部分39a及び/又は39bを通過するように発生させることができる。加えて、入口37の正確な位置は、これを貫流する気体の関数であり得る。具体的に、局所的雰囲気の少なくとも一部が空気よりも重いならば、液体3の表面2の上方に入口部分があれば十分である。しかしながら、言うまでもなく、入口37を例えば39a又は39bに配置することもでき、また液体3を通して発泡させ、そしてこれを局所的雰囲気制御装置35の内部で捕捉することもできる。従って、雰囲気制御装置35内の入口及び/又は出口の正確な位置は、いくつかのファクタの関数である。
図12bは、支持ハウジング34内部に含まれるトラフ部材30の前景に設けられた第1の雰囲気制御装置35aを示す斜視図である。第2の雰囲気制御装置35bが含まれ、この上に配置された制御装置20が示されている。「F」は、トラフ部材30を通る液体3の長手方向流動方向を示している。図11cに示されているような単一の雰囲気制御装置の代わりに、複数の雰囲気制御装置35a,35b(並びに図示していない35c,35dなど)を利用することができる。複数の局所的雰囲気制御装置35a〜35xを設ける理由は、所望の場合に、各電極集成体の周りに異なる雰囲気が存在し得ることである。従って、調節可能なプラズマ4の具体的な特徴、並びに液体3中に存在する具体的な成分、及び例えば電極5に生じる調節可能な電気化学反応の具体的な特徴が、とりわけ局所的雰囲気の関数となる。従って、1つ又は2つ以上の局所的雰囲気制御装置35aを使用することにより、所期の成分、ナノ粒子、及びナノ粒子溶液混合物を形成する上で著しい柔軟性が提供される。
図13は、別の雰囲気制御装置38を示す斜視図である。ここでは、トラフ部材30全体と支持手段34とが雰囲気制御装置38内部に含まれている。この場合、例えば、1つ又は2つ以上の気体出口37a,37a’と一緒に、1つ又は2つ以上の気体入口37,37’を設けることができる。雰囲気制御装置38上に気体入口37,37’及び気体出口37a,37a’を正確に位置決めすることは、便宜上の事柄であり、雰囲気の組成に応じて行われる。これに関して、例えば提供される雰囲気が空気よりも重い又は空気よりも軽い場合、入口及び出口の位置はこれに応じて調節することができる。本明細書中の別の個所で論じるように、気体入口部分及び気体出口部分は、液体3の表面2の上方又は下方に設けることができる。もちろん、気体入口部分が液体3の表面2の下方に設けられる(この図面に具体的には示されていない)ときには、言うまでもなく、気体入口37を通して挿入された気体の気泡(例えばナノ気泡及び/又はミクロ気泡)を、処理時間の少なくとも一部にわたって、液体3中に組み入れることもできる。このような気泡は、液体3との所期反応成分(すなわち液体3と反応性の成分)及び/又は液体3及び電極5中の成分であってよい。従って、局所的雰囲気を液体3の表面2の下方に導入する際の柔軟性が、付加的な処理制御及び/又は処理増強を可能にする。
図14は、本発明の好ましい実施態様のうちのいくつかの教示内容に従って利用される一般的な装置を示す概略図である。具体的には、この図14は、液体3を含有するトラフ部材30を示す側面概略図である。トラフ部材30の上側に、複数の制御装置20a〜20d(これらのうち4つが図示されている)が載置されており、これらの制御装置はこの実施態様では、取り外し可能にトラフ部材30に取り付けられている。制御装置20はもちろん、本発明の種々の実施態様を実施するときに、永久的に所定の位置に固定されていてよい。制御装置20(及び対応する電極1及び/又は5並びにこのような電極の構造)の正確な数、及び制御装置20(及び対応する電極1及び/又は5)の位置決め又は配置は、本明細書中の「例」の項でそれらのうちのいくつかを詳しく論じる本発明の種々の好ましい実施態様の関数である。しかしながら、一般には、流入液体3(例えば水)は、液体水3をトラフ部材30内にその第1端部31でポンピングするための液体搬送手段40(例えば液体蠕動ポンプ、液体3をポンピングするための液体ポンピング手段)に提供される。例えば、流入液体3(例えば水)は静かに導入するか、又は攪拌された状態で導入することもできる。攪拌は典型的には、ナノ気泡又はミクロ気泡の導入を含む。このことは望ましい場合も望ましくない場合もある。静かな導入が望まれる場合には、このような流入液体3(例えば水)は、静かに提供することができる(例えばトラフの底部分内に流入する)。或いは、トラフ部材30の上方にリザーバ(図示せず)を提供し、そして液体3をこのようなリザーバ内にポンピングすることもできる。次いで、リザーバに提供された流体レベルが適切なレベルに達するのに従って、リザーバの下側部分、中央部分、又は上側部分から液体を流出させることができる。流入液体3をトラフ部材30内へ第1端部31で供給するための正確な手段は、種々のデザイン選択肢の関数である。さらに、本明細書中で上述したように、言うまでもなく、付加的な入口部分31は、トラフ部材30の異なる部分に沿って長手方向に存在することができる。距離「c−c」も図14に示されている。一般には、距離「c−c」(各制御装置20間の中心間長手方向測定値に相当する)は、本明細書中に開示された実施態様の所期の機能を可能にする任意の量又は距離であり得る。距離「c−c」は、距離「y」(例えば1/4インチ〜2インチ;6mm〜51mm)及び好ましい実施態様では図1〜4及び図7〜9に示されている約1.5インチ(約38mm)よりも小さくあるべきではない。距離「c−c」を一般的に理解するために、例は種々の距離「c−c」を示しているが、概算距離は、約4インチ〜約8インチ(約102mm〜約203mm)である。但し、これよりも大きい又は小さい離隔ももちろん、本明細書中に開示された前記実施態様の全ての適用に応じて可能である(又は必要となる)。本明細書中で後から開示される例において、例のうちの多くのものにおける好ましい距離「c−c」は、約7インチ〜8インチ(約177〜203mm)である。
一般に、液体搬送手段40は、例えば重力送り手段又は静水圧手段、ポンピング手段、蠕動ポンピング手段、調節手段又は弁手段などを含む、液体3を動かすための任意の手段を含んでいてよい。但し、液体搬送手段40は、既知量の液体3をトラフ部材30内に信頼性高く且つ/又は制御可能に導入できなくてはならない。一旦、液体3がトラフ部材30内に提供されると、トラフ部材30内部で液体3を連続して動かす手段が必要とされることも必要とされないこともある。しかしながら、液体3を連続して動かす単純な手段は、トラフ部材30が、これが載置された支持面に対して僅かな角度θ(例えば1度未満〜数度)を成して設置されることを含む。例えば、液体3の粘度が余りにも高くない限り(例えば水の粘度付近の任意の粘度は、一旦このような流体がトラフ部材30内部に含有又は配置されたら、重力流によって制御することができる)、支持面に対する、入口部分31と出口部分32との間の鉛直方向高さの差を形成するだけで済む。これに関して、図15aは、角度θ1を成すトラフ部材30を示す断面図であり、そして図15bは、角度θ2を成すトラフ部材30を示す断面図であり、また、水のような低粘度流体を含む種々の粘度を処理する、トラフ部材30に対する種々の許容し得る角度が示されている。トラフ部材30の種々異なる断面及び低粘度流体のための望ましい角度は、典型的には、低粘度流体に対する約0.1〜5度の最小値と、より高粘度の流体に対する5〜10度の最大値との間の範囲である。しかし、このような角度は、既に述べた種々のファクタ、並びに、例えば底部又は液体3がトラフ部材30に接触する界面に沿って特定の流体妨害手段又はダム80が含まれているかどうかの関数である。このような流体妨害手段は、例えばトラフ部材30の長手方向流動方向に沿って設けられた部分的な機械的ダム又はバリアを含むことができる。これに関しては、θ1はほぼ5〜10°であり、θ2はほぼ0.1〜5°である。図15a及び15bは、トラフ部材30の出口部分32の近くのダム80を示している。トラフ部材30の長手方向長さに沿った種々の部分に、複数のダム80装置を配置することができる。寸法「j」は例えば約1/8インチ〜1/2インチ(約3〜13mm)であってよく、また寸法「k」は例えば約1/4インチ〜3/4インチ(約6〜19mm)であってよい。ダム80の断面形状(すなわち「j〜k」形状)は、鋭利なコーナー、丸みを帯びたコーナー、三角形状、円筒形状などを含むことができ、これらの全ては、トラフ部材30の種々の部分を貫流する液体3に液体することができる。
さらに、液体3の粘度が重力単独では不十分なほど増大するときには、静水圧ヘッド圧又は静水圧を具体的に用いるように他の現象を利用して、望ましい流体流を達成することもできる。さらに、トラフ部材30に沿って液体3を動かすための付加的な手段を、トラフ部材30内部に設けることもできる。流体を動かすためのこのような手段は、機械手段、例えばパドル、ファン、プロペラ、オーガーなど、音響手段、例えばトランスデューサ、熱手段、例えばヒータ(付加的な処理上の利益を有することができる)などを含む。液体3を動かす付加的な手段は、液体3が、トラフ部材30の長手方向長さに沿った種々の部分を種々の量で流れるようにすることができる。これに関して、例えば、液体3が最初にトラフ部材30の第1の長手方向部分をゆっくりと貫流した場合、液体3は、例えば本明細書中で前述したように、トラフ部材30の断面形状を変えることにより、そのさらに下流側により迅速に流れるように形成することができる。加えて、トラフ部材30の断面形状は付加的な流体処理手段を含有することもできる。この付加的な流体処理手段は、液体3がトラフ部材30を貫流する速度を加速又は減速することができる。従って、液体3を動かすこのような手段を加えることにより、顕著な柔軟性を得ることができる。
図14はまた、トラフ部材30の端部32に設けられた貯蔵タンク又は貯蔵器41を示している。このような貯蔵器41は、例えばトラフ部材30内に導入された液体3及び/又はトラフ部材30内部に産出された生成物と不都合に相互作用することのない1種又は2種以上の材料から成る任意の許容し得る容器及び/又はポンピング手段であってよい。許容し得る材料の一例としては、プラスチック、例えば高密度ポリエチレン(HDPE)、ガラス、金属(例えば特定の等級のステンレス鋼)などが挙げられる。さらに、この実施態様では貯蔵タンク41が示されているが、タンク41は、トラフ部材30内で処理された流体3を分配するか又は直接にボトリング又はパッケージングするための手段を含むものとして理解されるべきである。
図16a,16b及び16cは、本発明の1つの好ましい実施態様の斜視図を示している。これらの図16a,16b及び16cにおいて、8つの別個の制御装置20a〜20hがより詳細に示されている。このような制御装置20は、例えば図8a,8b,8c及び8dに示された電極構造のうちの1つ又は2つ以上を利用することができる。制御装置20の正確な位置決め及び作業については、本明細書中の別の個所で詳細に論じる。しかしながら、制御装置20のそれぞれは、距離「c−c」(図14参照)によって分離される。この距離は、本明細書中に論じた好ましい実施態様のうちのいくつかの場合、約8インチ(約203mm)である。図16bは、2つの空気分配装置又は空気処理装置(例えばファン342a及び342b)を使用することを含み、図16cは、2つの別の又は望ましい空気処理装置342c及び342dを使用することを含む。ファン342a,342b,342c及び/又は342dは任意の好適なファンであってよい。例えばDynatron DF124020BA、DCブラシレス、9000 RPM、約40mm x 40mm x 20mmのボールベアリング・ファンが良く働く。具体的には、このようなファンは、1分当たりほぼ10立方フィートの空気流を有している。
図17は、別の好ましい実施態様による装置の別の実施態様を示す別の斜視図である。ここでは6つの制御装置20a〜20f(すなわち6つの電極セット)が、図16a及び16bに示された8つの制御装置20a〜20hに対してほぼ90度だけ回転している。従ってこの実施態様は、図9a〜9dに示された電極集成体の実施態様に概ね相当する。
図18は、図16aに示された装置を示す斜視図であるが、しかしこの装置はここでは、雰囲気制御装置38によってほぼ完全に密閉されたものとして示されている。このような装置38は、トラフ部材30の周りの雰囲気を制御する手段であり、或いは、外部の望ましくない物質を、トラフ部材30内に入らないように、またトラフ部材30と不都合に相互作用しないように隔絶するために使用することができる。さらに、トラフ部材30の出口32は、出口パイプ42を通って貯蔵器41と連通しているものとして示されている。さらに、貯蔵タンク41に設けられた出口43も示されている。このような出口管43は、液体3を貯蔵し、パッケージングし、且つ/又は処理するための任意の他の好適な手段に向けることができる。例えば、出口パイプ43は、トラフ部材30内で産出された液体生成物3をボトリング又はパッケージングするための任意の好適な手段と連通することができる。或いは、貯蔵タンク41は取り外すこともでき、また出口パイプ42は、液体生成物3を処理、ボトリング、又はパッケージングするための好適な手段に直接に接続することもできる。
図19a,19b,19c及び19dは、本発明に従って使用することができる、付加的な電極構造の実施態様を示す付加的な断面斜視図である。
具体的には、図19aは、トラフ部材30の長手方向に沿って互いにほぼ平行に、トラフ部材30を通る液体3の流動方向「F」に対してほぼ垂直に配置された2組の電極5(すなわち全部で4つの電極5a,5b,5c及び5d)を示している。これとは異なり、図19bは、トラフ部材30の長手方向に沿って互いに隣接して配置された2組の電極5(すなわち電極5a,5b,5c及び5d)を示している。
これとは異なり、図19cは、流体流動方向「F」に対してほぼ垂直に配置された1組の電極5(すなわち5a,5b)と、流体流動方向「F」に対してほぼ平行に配置された別の1組の電極5(すなわち5c,5d)とを示している。図19dは、図19cに示された電極構造の鏡像を示している。図19a,19b,19c及び19dのそれぞれは電極5だけを示しているが、図19a〜19dのそれぞれに示された電極5のいくつか又は全ての代わりに電極1を使用し得ること、及び/又は、(例えば図8a〜8d及び図9a〜9dに開示された電極構造と同様に)電極1を混ぜ合わせ得ることは明らかである。これらの選択的な電極構造は、全てが種々異なる望ましいナノ粒子又はナノ粒子/溶液をもたらすことができる種々の選択的な電極構造の可能性を提供する。今や読者には明らかなように、他の電極集成体の上流側に配置された電極集成体は、原材料、pH変化、成分及び/又はコンディショニング又は結晶又は構造の変化を、液体3の少なくとも一部に提供することができるので、最初の電極セット1及び/又は5から下流側の電極1及び/又は5で発生する反応は、例えばナノ粒子の成長、ナノ粒子の縮小(例えば部分的又は完全な溶解)、既存のナノ粒子上の異なる組成物の配置(例えば、ナノ粒子の性能を改質する種々のサイズ及び/又は形状及び/又は組成を含む表面構成要件)、ナノ粒子上の既存の表面構成要件又は被膜の除去などをもたらすことができる。換言すれば、複数の構造を有する複数の電極セット、及び1つ又は2つ以上の雰囲気制御装置を、複数の調節可能な電気化学反応及び/又は調節可能なプラズマ4とともに提供することによって、産出される種々の成分、ナノ粒子、複合ナノ粒子、シェル層(例えば部分又は完全)被膜の厚さ、又は基体ナノ粒子上の表面構成要件は極めて多様であり、液体3の構造及び/又は組成を信頼性高く制御することもできる。
図20a〜20pは、図19aに示された実施態様にだけ対応する電極1及び5の全ての構造に対して考えられ得る使用可能な種々様々な電極構造の実施態様を示す種々の断面斜視図である。具体的には、例えば電極1又は5の数、並びに、このような電極1及び5の特定の相対位置が図20a〜20pにおいて変化する。もちろん、図20a〜20pに示されたこれらの電極1及び5は、図19b,19c及び19dに示された別の電極構造のそれぞれに従って構成することもできる(すなわち図19b,19c及び19dのそれぞれに相当する16の付加的な図面)が、しかし簡潔にするために、付加的な図面はここには含まれていない。これらの電極集成体の特定の利点、及びその他については、本明細書中の別の個所で詳細に論じる。
図20a〜20pに示された電極構造のそれぞれは、特定の運転条件に応じて、本発明のメカニズム、装置、及び方法から種々異なる生成物を生じさせることができる。
図21a,21b,21c及び21dは、本発明の付加的な実施態様を示す断面斜視図である。これら図21a〜21dに示された電極配列は、それぞれ図19a,19b,19c及び19dに示された電極配列と配列が類似している。しかし、これらの図21a〜21dには、膜集成体又はバリア集成体50も含まれている。本発明のこれらの実施態様の場合、異なる電極セットで形成された異なる生成物を分離するための手段として膜50が設けられているので、膜50の一方の側で電極セット1及び/又は5によって形成されたいずれの生成物も少なくとも部分的に単離又は分離することができ、或いは、膜50の他方の側で電極セット1及び/又は5で形成された特定の生成物からほぼ完全に単離することもできる。種々異なる生成物を分離又は単離するこの膜手段50は、機械的バリア、物理的バリア、機械物理的バリア、化学的バリア、電気的バリアなどとして作用してよい。従って、第1の電極セット1及び/又は5から形成された特定の生成物は、第2の電極セット1及び/又は5から形成された特定の生成物から少なくとも部分的に、或いはほぼ完全に単離することができる。同様に、直列に配置された付加的な電極セットを同様に設けることもできる。換言すれば、各電極セット1及び/又は5で又はその近くで異なる膜50を利用することができ、そしてここから産出された特定の生成物を制御して、ここから長手方向で見て下流側の付加的な電極セット1及び/又は5に選択的に供給することができる。このような膜50は、液体3及び/又はトラフ部材30内で産出された液体3中に存在するナノ粒子又はイオンから成る種々異なる組成をもたらすことができる。
本発明と一緒に使用するための分離手段として機能する、考えられ得るイオン交換膜50は、アニオン性膜とカチオン性膜とを含む。これらの膜は、均一、不均一又は多孔質、対称又は非対称の構造、固体又は液体であってよく、正電荷又は負電荷を担持することができ、又は中性又は双極性であってよい。膜厚は100ミクロンの小ささから数mmまでであってよい。
本発明の或る実施態様と一緒に使用するためのいくつかの具体的なイオン膜の一例として、次のものが挙げられる:
・均一重合タイプの膜、例えばスルホン化及びアミノ化スチレン−−ジビニルベンゼンコポリマー。
・凝縮不均一膜。
・ペルフルオロカーボン・カチオン交換膜。
・膜塩素アルカリ技術。
・この業界で使用されているカチオン・アニオン交換膜のほとんどは、スチレン−ジビニルベンゼンコポリマー、クロロメチルスチレン−ジビニルベンゼンコポリマー、又はビニルピリジン−ジビニルベンゼンコポリマーの誘導体から成っている。
・膜の基材として使用されるフィルムは一般に、ポリエチレン、ポリプロピレン(U'参照、ポリテトラフルオロエチレン、PFA、及びFEPなど)。
・トリフルオロアクリレート及びスチレンがいくつかの事例において使用される。
・コンベンショナルなポリマー、例えばポリエーテルスルホン、ポリフェニレンオキシド、ポリ塩化ビニル、及びポリフッ化ビニリデンなど。特にポリエーテルスルホン又はポリフェニレンオキシドのスルホン化又はクロロメチル化及びアミノ化。
・炭化水素イオン交換膜は一般に、スチレン−ジビニルベンゼンコポリマー、及びその他の不活性ポリマー、例えばポリエチレン、及びポリ塩化ビニルなどの誘導体から成っている。
図22aは、図9cに示された電極集成体5a,5bに相当する電極集成体を示す斜視断面図である。この電極集成体は、化学的、物理的、化学物理的及び/又は機械的分離のための膜50を利用することもできる。これに関して、図22bは、電極5a,5b間に配置された膜50を示す。言うまでもなく、電極5a,5bは、例えば図9a〜9cに示された複数の構造のうちのいずれかを成す電極1と交換することもできる。図22bの場合、膜集成体50は、電極5aで形成された生成物のうちのいくつか又は全てを、電極5bで形成された生成物のうちのいくつか又は全てから部分的に又はほぼ完全に単離する能力を有している。従って、電極5a及び5bのいずれかで形成された様々な種は、液体3がトラフ部材30の長手方向の長さに沿って被る長手方向流動方向「F」において、付加的な電極集成体セット5a,5b及び/又は電極セット5及び電極セット1の組み合わせと順次反応できるように制御することができる。従って、膜50の適宜選択することにより、どの電極(又は後続又は下流側の電極セット)に位置するどの生成物も制御することができる。電極5a及び5bの極性が対向する好ましい実施態様の場合、種々異なる生成物が、電極5bに対して電極5aに形成され得る。
図22cは、電極5a及び5bのための完全に異なる別の電極構造の本発明の別の異なる実施態様を、断面概略図で示している。この事例では、電極5a(又はもちろん電極1a)が膜50の上方に配置されており、電極5bが膜50の下方に配置されている(例えば液体3中にほぼ完全に沈んでいる)。これに関して、電極5bは複数の電極を含むことができ、或いは、トラフ部材30の長手方向の少なくともいくらかの長さ又は全長に沿って延びる単一の電極であってもよい。この実施態様において、膜50の上方の電極5に生成された特定の種は、膜50の下方に生成された特定の種とは異なることが可能であり、このような種は、トラフ部材30の長手方向の長さに沿って異なる形で反応することができる。これに関して、膜50は、トラフ部材30の全長にわたって延びる必要はなく、このような長さの一部だけにわたって存在していてよく、そしてその後、順次の電極集成体1及び/又は5は、そこから産出された生成物と反応することができる。明示的に述べられたこれらの実施態様を凌ぐ種々様々な付加的な実施態様が、明示的に開示された実施態様の思想の範囲に含まれることは読者には明らかである。
図22dは、本発明の別の選択的な実施態様を示しており、ここでは、図22cに示された電極5aの構造(及びもちろん電極1)が、トラフ部材30の長さに沿って少なくとも一部にわたって延びる膜50の一部の上方に配置されており、そして、第2の電極(又は複数の電極)5b(図22cの電極5bと類似する)が、トラフ部材30の底部に沿って長手方向長さの少なくとも一部にわたって延びている。複数の電極5aを利用するこの実施態様では、付加的な動作柔軟性を達成することができる。例えば、電圧及び電流を少なくとも2つの電極5a内に分割することにより、複数の電極5aにおける反応は、同様のサイズ、形状及び/又は組成の単一の電極5aで発生する反応とは異なる可能性がある。もちろん、この複数電極構造は、本明細書中に開示された実施態様の多くに利用することができるが、しかし簡潔にするために明示的に論じてはいない。しかしながら一般には、複数の電極1及び/又は5(すなわち単一の電極1及び/又は5ではなく)は、本発明に従って産出された生成物に大きい柔軟性を加えることができる。これらの利点のうちの特定のものの詳細については、本明細書中の別の個所で論じる。
図23aは、本発明の別の実施態様を示す断面斜視図であり、この図は、図19aに示された電極セット5に概ね相当する電極セット5を示している。但し、図23aの実施態様の相違は、図19aに示された2組の電極5a,5b,5c及び5dに加えて第3組の電極5e,5fが設けられていることである。もちろん、電極セット5a,5b,5c,5d,5e及び5fを90度だけ回転させて、図19bに示された2組の電極に概ね相当するようにすることもできる。これらの電極セット構造の付加的な実施態様を示す付加的な図面は、簡潔にするためにここには含まれていない。
図23bは、本発明の別の実施態様を示しており、この実施態様も多くの付加的な実施態様に並べ替えられる。3組の電極5a,5b;5c,5d;及び5e,5fの間に、膜集成体50a及び50bが挿入されている。電極構造と、電極数と、分離を達成するために使用される正確な膜手段50との組み合わせには、多くの実施態様が含まれることはもちろん明らかである。これらのうちのそれぞれは、本発明の教示を受けると、種々異なる生成物を産出することができる。このような生成物及び動作については、本明細書中の別の個所で詳細に論じる。
図24a〜24e;25a〜25e;及び26a〜26eは、本発明に従って利用することができる種々様々な膜50の位置を示す断面図である。これらの膜50構造のそれぞれは、種々異なるナノ粒子/ナノ粒子/溶液混合物をもたらすことができる。種々の電極集成体と組み合わせて特定の膜を利用することの望ましさは、処理上の種々の利点を本発明に加える。この付加的な柔軟性は、新規のナノ粒子/ナノ粒子溶液混合物をもたらす。
電極制御装置
例えば図2、3、11、12、14、16、17及び18に全体的に示された電極制御装置は、図27及び図28a〜28lに詳細に示されている。具体的には、図27は、本発明の制御装置20の1実施態様を示す斜視図である。さらに、図28a〜28lは、制御装置20の種々の実施態様を示す斜視図である。図28bは、2つの電極5a/5bの代わりに2つの電極1a/1bが設けられていることを除けば、図28aに示されたものと同じ制御装置20を示している。
先ず、特に図27、28a及び28bを参照する。これら3つの図のそれぞれにおいて、ベース部分25が設けられており、前記ベース部分は上側部分25’と下側部分25’’とを有している。ベース部分25は、例えば構造用プラスチック、樹脂、ポリウレタン、ポリプロピレン、ナイロン、テフロン(登録商標)、ポリビニルなどから形成された材料を含む好適な剛性プラスチック材料から成っている。2つの電極調節集成体の間に隔壁27が設けられている。隔壁27は、ベース部分25を含む材料と同様の又は異なる材料から形成することができる。ベース部分25の表面25’に、2つのサーボ−ステッピングモータ21a及び21bが固定されている。ステッピングモータ21a,21bは、ステッピングモータ21a/21bの周方向運動が、モータと連通する電極1又は5を鉛直方向に昇降させるように、僅かに運動可能な(例えば360度を基準として、1度よりも僅かに小さく運動可能又は僅かに大きく運動可能な)いかなるステッピングモータであってもよい。これに関して、第1のホイール状の構成部分23aが、駆動モータ21aの出力軸231aに結合された駆動輪であるので、駆動軸231aが回転すると、駆動輪23aの周方向運動が形成される。さらに、追従輪24aが駆動輪23aに押しつけられるので、これらの間に摩擦接触が存在する。駆動輪23a及び/又は追従輪24aは、電極1,5を収容するのを助けるためにその外側部分に切欠き又は溝を含んでいてよい。追従輪24aは、追従輪24aに取り付けられた部分241a及び261aの間に配置されたばね285によって、駆動輪23aに押しつけられる。具体的には、ブロック261aから延びる軸262aの部分の周りにコイルばね285を配置することができる。ばねは、駆動輪23aと追従輪24aとの間に妥当な摩擦力を生じさせるのに十分な張力を有することにより、軸231aが所定の量だけ回転すると、電極集成体5a,5b,1a,1bなどがベース部分25に対して鉛直方向に動くようになるべきである。駆動輪23aのこのような回転運動又は周方向運動の結果、図示の電極1,5を直接、鉛直方向に移動させる。駆動輪23aの少なくとも一部が、電気絶縁材料から形成されているべきであり、これに対して追従輪24aは、導電性材料又は電気絶縁材料から、しかし好ましくは電気絶縁材料から形成することができる。
駆動モータ21a/21bは、小さく回転することができる(例えば1°/360°を僅かに下回るか又は1°/360°を僅かに上回る)ので、駆動軸231aの小さな回転変化は、電極集成体の小さな鉛直方向の変化に変換される。好ましい駆動モータは、RMS Technologies製の駆動モータ、モデル1MC17-S04ステッピングモータを含む。これはDC作動型駆動モータである。このステッピングモータ21a/21bはそれぞれRS-232接続部22a/22bを含む。この接続部は、ステッピングモータが、遠隔制御装置、例えばコンピュータ又はコントローラによって駆動されるのを可能にする。
特に図27、28a及び28bを参照すると、部分271,272及び273はトラフ部材30に対するベース部分25の高さを調節する、主に高さ調節部分である。部分271,272及び273は、ベース部分25と同じ、類似の、又は異なる材料から形成することができる。部分274a/274b及び275a/275bも、ベース部分25と同じ、類似の、又は異なる材料から形成することができる。但しこれらの部分は、これらが電圧及び電流を電極集成体1a/1b,5a/5bなどに供給することに関連する種々のワイヤ構成部材を収容する点で、電気絶縁部分であるべきである。
図28aに具体的に示された電極集成体は、電極5a及び5b(例えば、図3cに示された電極集成体に相当)を含む。しかしこの電極集成体は電極1だけ、電極1及び5、電極5及び1、又は電極5だけを含むこともできる。これに関しては、図28bは、図28aに示された2つの電極5a/5bの代わりに2つの電極1a/1bが設けられている集成体を示している。図28bに示された全ての他の要素は、図28aに示されたものと同様である。
図27、28a及び28bに示された制御装置20のサイズに関して、寸法「L」及び「W」は、ステッピングモータ21a/21bのサイズ及びトラフ部材30の幅を収容する任意の寸法であってよい。これに関して、図27に示された寸法「L」は、この寸法「L」が少なくともトラフ部材30の幅と同じ長さであるように、また好ましくは僅かに長く(例えば10〜30%)なるのに十分である必要がある。図27に示された寸法「W」は、ステッピングモータ21a/21bを収容するのに十分に幅広であり、しかも、トラフ部材30の長さに沿った長手方向スペースを不必要に遊ばせておくほどには幅広でないことが必要である。本発明の1つの好ましい実施態様の場合、寸法「L」は約7インチ(約19ミリメートル)であり、寸法「W」は約4インチ(約10.5ミリメートル)である。ベース部材25の厚さ「H」は、ベース部材25のために構造的、電気的及び機械的剛性を提供するのに十分な任意の厚さであり、約1/4インチ〜3/4インチ(約6mm〜19mm)のオーダーであるべきである。これらの寸法はさほど重要ではないが、これらの寸法は、本発明の1つの好ましい実施態様の特定の構成部分の大まかなサイズを理解することを可能にする。
さらに、図27、28a及び28bに示された本発明の実施態様のそれぞれにおいて、ベース部材25(及びこれに装着された構成部分)を、好適なカバー290(図28dに初めて示される)によってカバーすることにより、電気的に絶縁し、またベース部材25に取り付けられた構成部分の全てのための局所的な保護環境を形成することができる。このようなカバー290は、好適な安全性及び動作柔軟性を提供する任意の好適な材料から形成することができる。材料の例は、トラフ部材30の他の部分及び/又は制御装置20のために使用されるものと同様のプラスチックを含み、好ましくは透明である。
図28cは、例えば電極5を案内するために利用される電極ガイド集成体280を示す斜視図である。具体的には、ベース部分25に上側部分281が取り付けられている。貫通孔/スロットの組み合わせ282a,282b及び282cは全て、電極5を貫通案内するのに役立つ。具体的には、部分283は、トラフ部材30内で流動する液体3に向かって、そしてこの液体3中に電極5の先端9’を導く。図28cに示されたガイド280は、トラフ部材30の他の部分及び/又はベース部材25などを形成するために使用される材料と類似の、又は全く同じ材料から形成することができる。
図28dは、図27及び28に示されたものと同様の制御装置20を示しているが、ここではまたカバー部材290を含んでいる。このカバー部材290は、ベース部分25を形成するために使用されるものと同じタイプ材料から形成することができる。カバー部材290は、2つの貫通孔291及び292を有するものとして示されている。具体的には、これらの貫通孔は例えば、電極5の余剰部分と整列させることができる。これらの余剰部分は、例えば電極ワイヤのスプールに接続することができる(これらの図面に示されていない)。
図28eは、ベース部分25に取り付けられたカバー部分290を、電極5a,5bが、カバー部分290のそれぞれ孔292,291を通って延びている状態で示している。
図28fは、カバー290を有する制御装置20を示す、底部から見た斜視図である。具体的には、電極ガイド装置280は、これを電極5が貫通しているものとして示されている。より具体的には、この図28fは、電極1が、図28fの矢印によって示すような方向「F」に流れる流体3に最初に接触する配列を示している。
図28gは、図28fに示されたものと同じ装置を、雰囲気制御装置35が加えられた状態で示している。具体的には、雰囲気制御装置は、制御された雰囲気を電極1のために提供するものとして示されている。さらに、気体入口管286が設けられている。気体入口管は、雰囲気制御装置35内に望ましい気体の流れを提供するので、電極1によって形成されたプラズマ4が、制御された雰囲気内で形成される。
図28hは、トラフ部材30及び支持手段341の内部に配置された図28gの集成体を示している。
図28iは、ここでは電極5がトラフ部材30内部の矢印「F」の方向に流れる液体3に接触する最初の電極であることを除けば、図28fと同様である。
図28jは、電極5が最初にトラフ部材30内部の流動液体3に接触することを除けば、図28gに相当する。
図28kは、他の図28に示された装置の下側を示すより詳細な斜視図である。
図28lは、2つの電極1が設けられていることを除けば、図28f及び28iに示されたものと同様の制御装置20を示している。
図29は、本発明の別の好ましい実施態様を示しており、耐火材料29はヒートシンク28と組み合わされているので、本発明の実施態様に従って実施された過程中に発生した熱は、熱管理プログラムを必要とするのに十分な量の熱を生じさせる。これに関して、構成部材29は、例えば酸化アルミニウムなどを含む好適な耐火成分から形成されている。耐火部材29は、電極1及び/又は5との電気的な接続を可能にする横方向貫通孔291を有している。さらに、長手方向貫通孔292が耐火部材29の長さに沿って存在しているので、電極集成体1/5がこれを貫通して延びることができる。ヒートシンク28は耐火部材29と熱的に連通しているので、電極集成体1及び/又は5から発生する熱は耐火部材29内へ入り、ヒートシンク28内へ入り、そしてフィン282並びにヒートシンク28のベース部分281を通って排出される。フィン282及びベース部分281の正確な数、サイズ、形状及び位置は、例えば散逸される必要のある熱の量の関数である。さらに、顕著な量の熱が発生する場合、ファンのような冷却手段によって、フィン282を横切るように吹き付けを行うことができる。ヒートシンクは好ましくは熱伝導性金属、例えば銅、アルミニウムなどから形成される。
図30は、図29のヒートシンクを、図27に示された装置に加えられたものとして示す斜視図である。これに関して、電極5aがベース部分25に直接に接触しているのではなく、耐火部材29が、電極1/5とベース部材25との間の緩衝材として設けられている。
図面に示されていないファン集成体を、周りのハウジングに取り付けることができる。このファン集成体は、冷却用空気が冷却フィン282を横切るように吹き付けるのを可能する。ファン集成体は、コンピュータ冷却ファンなどと同様のファンを含むことができる。好ましいファン集成体は、例えばDynatron DF124020BA、DCブラシレス、9000 RPM、約40mm x 40mm x 20mmのボールベアリング・ファンが良く働く。具体的には、このようなファンは、1分当たりほぼ10立方フィートの空気流を有している。
図31は、図30aに示された制御装置20の底部を示す概略図である。図31において、1つの電極1aは、第1耐火部分29aを通って延びるものとして示されており、そして1つの電極5aは、第2耐火部分29bを通って延びるものとして示されている。従って、本明細書中に明示的に開示された、また本明細書中で言及された電極集成体のそれぞれは、図27〜31に示された制御装置の好ましい実施態様との組み合わせで利用することができる。制御装置20を作動させるためには、2つの大まかな過程が行われることが必要である。第1過程は、電極1及び/又は5を電気的に活性化する(例えば、好ましい電源10から電力を印加する)ことを伴い、また、第2の大まかな過程の発生は、どれだけ多くの電力を電極に印加するかを割り出し、このような割り出した値に応じて電極1/5の高さを適切に調節する(例えば電極1/5の高さを手動及び/又は自動で調節する)ことを伴う。制御装置20を利用する場合、好適な支持が、RS-232ポート22a及び22bを介してステッピングモータ21に伝えられる。制御装置20の構成部分、並びに電極活性方法の重要な実施態様については、本明細書中で後から論じる。
電源
種々の電源が本発明とともに使用するのに適している。電源、例えばAC源、DC源、種々の極性の整流AC源などを使用することができる。しかしながら本明細書中に開示された好ましい実施態様では、AC電源が直接に利用されるか、或いは、AC電源が、可変極性を有する特定のDC源を形成するために整流されている。
図32aは、変圧器60に接続されたAC電源62を示している。加えて、例えば回路内の損失係数を調節できるように、キャパシタ61が設けられている。変圧器60の出力は、制御装置20を介して電極1/5に接続される。本発明とともに使用するための好ましい変圧器は、容易に磁束を導くコア602内に交流磁束を確立するために、一次コイル601内に流れる交流電流を使用する変圧器である。
二次コイル603が一次コイル601及びコア602の近くに位置していると、この磁束は二次コイル603を一次コイル601にリンクすることになる。二次コイル603のこのようなリンクは、二次端子を横切る電圧を誘導する。二次端子における電圧の大きさは、一次コイルの巻き数と二次コイルの巻き数との比に対して直接に関連する。一次コイル601よりも二次コイル603の巻き数が多いと、電圧が増大するのに対して、巻き数が少ないと電圧が減少する。
本明細書中に開示された種々の実施態様において使用するための好ましい変圧器は、変圧器60内の磁気分路の使用によって可能にされる、意図的に低い出力電圧調節力を有している。これらの変圧器60はネオンサイン変圧器として知られる。このような形態は、電極1/5内への電流を制限する。出力付加電圧が大きく変化すると、変圧器60は、比較的狭い範囲内に出力付加電圧を維持する。
変圧器60は、二次開回路電圧と、二次短絡回路電流とに関して格付けされる。開回路電圧(OCV)は、電気的接続が存在しないときだけ、変圧器60の出力端子に現れる。同様に、短絡が出力端子を横切って存在する場合にだけ、短絡回路電流が出力端子から引き出される(この場合、出力電圧がゼロに等しい)。しかしながら、負荷がこれらの同じ端子を横切って接続されているときに、変圧器60の出力電圧はゼロと定格OCVとの間のいずれかの値でなければならない。事実、変圧器60が適切に付加されると、電圧はおよそ定格OCVの半分になる。
変圧器60は、平衡中間点参照デザイン(Balanced Mid-Point Referenced Design)(例えば以前は平衡中間点接地としても知られていた)として知られている。これは中電圧から高電圧の格付けを有する変圧器、及びほとんどの60mA変圧器において最も共通に見いだされる。これは、「中間帰線」システムにおいて許容され得る唯一のタイプの変圧器である。「平衡」変圧器60は、1つの一次コイル601と、2つの二次コイル603とを有していて、それぞれの二次コイルが一次コイル601の各側に位置している(図33aの概略図に全体的に示されている)。この変圧器60は様々な意味で、2つの変圧器のように機能することができる。不平衡の中間点参照型のコア及びコイルと同様に、各二次コイル603の一方の端部はコア602に取り付けられ、続いて変圧器容器に取り付けられ、また各二次コイル603の他方の端部は出力リード又は端子に取り付けられている。こうして、コネクタの存在なしに、無負荷時15,000ボルトのこのタイプの変圧器は、各二次端子から変圧器容器まで約7,500ボルトとなるが、しかし2つの出力端子の間では約15,000ボルトとなる。
ライン力率1(又は100%)を処理する交流(AC)回路において、電圧及び電流はそれぞれゼロで始まり、頂点まで上昇し、ゼロまで降下し、負の頂点へ行き、そしてゼロまで戻る。これにより、典型的な正弦波の1サイクルが完結される。このサイクルは典型的な米国の適用では1秒当たり60回生じる。こうして、このような電圧又は電流は、1秒当たり60サイクルの特徴的な「周波数」(又は60ヘルツ)の電力を有する。力率は、電流波形に対する電圧波形の位置に関連する。両波形が一緒にゼロを通過し、これらの頂点を一緒に通過する場合、これらの波形は同相であり、力率は1又は100%である。図33bに示す2つの波形「V」(電圧)及び「C」(電流)は互いに同相であり、力率1又は100%であるのに対して、図33cに示す2つの波形「V」(電圧)及び「C」(電流)は互いに異相であり、力率1又は約60%であり、両波形は同時にゼロを通過することはない。波形は異相であり、これらの力率は100%未満である。
大抵のこのような変圧器60の標準力率は主として、磁気分路604及び二次コイル603の効果に起因する。磁気分路604及び二次コイル603は、変圧器60の回路の出力内にインダクタを加えることにより、電極1/5への電力を制限する。力率は、変圧器60の一次コイル601を横切るように配置されたキャパシタ61を使用することにより、より高い力率に増大させることができる。キャパシタ61は、電圧波及び電流波をより同相にする。
本発明において使用されるべき任意の変圧器60の無負荷電圧、並びに変圧器の内部構造は重要である。本発明において使用するのに望ましい無負荷変圧器は、約9,000ボルト、10,000ボルト、12,000ボルト及び15,000ボルトである変圧器を含む。しかし、これらの特定の無負荷ボルト変圧器の測定値は、付加的な実施態様として許容し得る電源の範囲を限定するものとして見るべきではない。本明細書中に開示された本発明の種々の実施態様と一緒に使用するための具体的な望ましい変圧器は、Franceformer製のCatalog No. 9060-P-Eである。これは一次側では120ボルト、60Hz、及び二次側では9,000ボルト、60mAで動作する。
図32b及び32cは本発明の別の実施態様を示している。電極集成体1/5内へ入力される変圧器60の出力は、ダイオード集成体63又は63’によって整流されている。その結果、一般には、AC波はDC波とほぼ同様になる。換言すれば、ほとんど平らなラインDC出力が生じる(実際には僅かな120Hzパルスを時々得ることができる)。この特定の集成体により、本発明の(例えば電極の配向に関して)2つの付加的な好ましい実施態様が達成される。これに関して、実質的に正の端子又は出力と、実質的に負の端子又は出力とが、ダイオード集成体63から生成される。ダイオード集成体63’によって反対の極性が達成される。このような正及び負の出力は、電極1及び/又は5のいずれかに入力することができる。従って、電極1は実質的に正又は実質的に負であってよく、且つ/又は、電極5は実質的に負及び/又は実質的に正であってよい。さらに、図32bの集成体を利用するときには、図29、30及び31に示された集成体が望ましい。これに関して、図32bに示された配線図は、所与の一連の動作(例えば電力)条件下で例えば図32aに示されているものよりも多くの熱(熱出力)を発生させることができる。さらに、1つ又は2つ以上の整流AC電源は、例えば図21〜26に示された膜集成体と組み合わせると特に有用であり得る。
図34aは、8つの別個の変圧器60a〜60hを示しており、変圧器のぞれぞれは、対応する制御装置20a〜20hにそれぞれ接続されている。この変圧器セット60及び制御装置20は、本明細書中の「例」の項で後から論じる1つの好ましい実施態様において利用される。
図34bは、8つの別個の変圧器60a’〜60h’を示しており、変圧器のぞれぞれは、図32bに示された整流変圧器配線図に相当する。この変圧器集成体も、一組の制御装置20a〜20hと連通しており、そして本発明の好ましい実施態様として使用することができる。
図34cは、8つの別個の変圧器60a’’〜60h’’を示しており、変圧器のぞれぞれは、図32cに示された整流変圧器配線図に相当する。この変圧器集成体も、一組の制御装置20a〜20hと連通しており、そして本発明の好ましい実施態様として使用することができる。
従って、各変圧器集成体60a〜60h(及び/又は60a’〜60h’;及び/又は60a’’〜60h’’)は、同じ変圧器であってよく、又は異なる変圧器(並び異なる極性)の組み合わせであってもよい。変圧器の選択肢、力率、キャパシタ61、極性、電極のデザイン、電極の位置、電極の組成、トラフ部材30の断面形状、局所的又は全体的な電極組成、雰囲気、局所的又は全体的な液体3の流量、液体3の局所的成分、トラフ部材30内の種々の場に局所的に曝露される液体3の体積、近隣(上流側及び下流側の両方)の電極セット、局所的な場の濃度、任意の膜50の使用及び/又は位置及び/又は組成、などは全て、処理条件、並びに液体3中で産出された成分の組成及び/又は体積、本明細書中に開示された種々の実施態様により形成されるナノ粒子及び/又はナノ粒子/溶液に影響を与える。従って、数多くの実施態様を、本明細書中に提供した詳細な開示内容に従って実施することができる。
電極高さ制御/自動制御装置
本発明の好ましい実施態様は、種々の図面に示された自動制御装置20を利用する。例えば図27〜31に示されたステッピングモータ21a及び21bは、図35、36a、36b及び36cのそれぞれに示された電気回路によって制御される。具体的には、図35の電気回路は電圧監視回路である。具体的には、変圧器60内の二次コイル603の出力脚部のそれぞれから出力された電圧が、点「P−Q」及び点「P’−Q’」にわたって監視される。具体的には、「RL」によって示された抵抗器は、マルチメータ測定装置(図示せず)の内部抵抗に相当する。点「P−Q」及び「P’−Q’」の間で測定された出力電圧は典型的には、本明細書中で後から「例」の項で示すいくつかの好ましい実施態様の場合、約200ボルト〜約4,500ボルトである。しかしこれよりも高い、またこれよりも低い電圧も、本明細書中に開示された実施態様の多くと連携することができる。本明細書中の後述の例において、トラフ部材30に沿った各位置における各電極セット1及び/又は5毎に、望ましいターゲット電圧が割り出されている。このような望ましいターゲット電圧は、例えば図36a、36b及び36cに示された回路制御を利用することによって、実際の印加電圧として達成される。これら図36にはVelleman K8056回路集成体(マイクロチップPIC16F630-I/Pを有する)によって制御されたリレーセットを示している。具体的には、「P−Q」又は「P’−Q’」の位置を横切って、電圧が検出され、そしてこのような電極は、所定の基準電圧と比較される(実際にターゲット電圧範囲と比較)。例えば点「P−Q」を横切る測定電圧が、所定の電圧ターゲット範囲の最高値に接近しつつあると、例えば、Velleman K8056回路集成体により、サーボモータ21(図28aを具体的に参照)が、電極5aを流体3に向かって且つ/又は流体3中に降下させるように、時計回り方向に回転させられる。これとは対照的に、点「P−Q」又は「P’−Q’」のいずれかを横切る測定電圧がターゲット電圧の最低値に接近しつつあると、例えばここでもまた図28aを参照して、サーボモータ21aにより、駆動輪23aが反時計回りに回転させられ、これにより、流体3に対して電極5aを上昇させる。
本発明の各実施態様におけるそれぞれの電極セットは、確立されたターゲット電圧範囲を有している。許容範囲のサイズ又は規模は、ターゲット電圧の約1%と、約10%〜15%との間の量だけ変換する。本発明のいくつかの実施態様は、電圧の変化に対してより鋭敏であり、これらの実施態様の許容電圧範囲は典型的にはより狭くなり、これに対して本発明の他の実施態様は、電圧に対してさほど鋭敏ではなく、これらの実施態様の許容電圧範囲は典型的にはより広くなる。従って、図35に示された回路図を利用することにより、変圧器60の二次コイル603から出力された実電圧が、「RL」で(端子「P−Q」又は「P’−Q’」を横切って)測定され、そして次いで所定の電圧範囲と比較される。サーボモータ21は、必要に応じて、時計回り方向又は反時計回り方向で所定の量だけ回転することにより応答する。さらに、具体的に図36を参照して、各電極の電極を割り出し、(必要であれば)高さを調節し、次いで次の電極に進むことにより、問い合わせ手順が順次生じることに注目すべきである。換言すれば、各変圧器60は、図35に示された形式で電気的に接続される。各変圧器60及び関連する測定点「P−Q」又は「P’−Q’」が、個々のリレーに接続されている。例えば、点「P−Q」は、図36aのリレー501に相当し、点「P’−Q’」は、図36aのリレー502に相当する。従って、2つのリレーが各変圧器60に対して必要となる。各リレー501,502などは順次、二次コイル603の第1脚部からの第1出力電圧を問い合わせ、次いで二次コイル603の第2脚部からの第2出力電圧を問い合わせ、そしてこのような問い合わせは、第2変圧器60bの二次コイル603の第1脚部からの第1出力電圧に対して、次いで二次コイル603の第2脚部に対して、以下同様に続けられる。
論じられた問い合わせ電極調節技術のためのコンピュータ又は論理制御は、例えば、好ましい実施態様の場合、PC内で利用される標準的なビジュアル・ベーシック・プログラミング・ステップを含む任意のコンベンショナルのプログラム又はコントローラによって達成される。このようなプログラミング・ステップは、問い合わせ、読み取り、比較、及び適切な作動符号の送信を行うことにより、電圧を増減する(例えば液体3の表面2に対して電極を昇降させる)ことを含む。このような技術は、当業者には明らかなはずである。
例1〜12
下記例は、本発明の或る実施態様を説明するのに役立つが、しかし開示内容の範囲を限定するものとして解釈するべきではない。
一般に、12の例のそれぞれは、図16b及び16cに大まかに示された装置と関連する本発明の或る実施態様を利用する。処理及び装置の具体的な差異は、各例において明らかになる。トラフ部材30はプラキシガラスから形成した。プラキシガラスの全ての厚さは約3mm〜4mm(約1/8インチ)であった。支持構造34も、約1/4インチ厚(約6mm〜7mm厚)であるプラキシガラスから形成した。トラフ部材30の断面形状は、図10bに示された形状に相当した(すなわち切頂「V」)。切頂「V」のベース部分「R」は約0.5インチ(約1cm)であり、そして各サイド部分「S」,「S’」は約1.5インチ(約3.75cm)であった。V字形トラフ部材30のサイド部分「S」,「S’」を離隔する距離「M」は約(2+1/4)インチ〜(2+5/16)インチ(約5.9cm)(内側から内側まで測定)であった。やはり測定された各部分の厚さは約1/8インチ(約3cm)厚であった。V字形トラフ部材30の長手方向長さ「LT」(図11a参照)は、点31から点32まで、約6フィート(約2メートル)長であった。トラフ部材30の端部31から端部32までの鉛直方向高さの差は、その6フィートの全長(約2メートル)にわたって、約1/4インチ〜1/2インチ(約6〜12.7mm)(すなわち1°未満)であった。
例1〜12の全てにおいて液体3として、精製水(本明細書中で後から論じる)を使用した。V字形トラフ部材30内の水3の深さ「d」(図10b参照)は、トラフ部材30に沿った種々の点において、約7/16インチ〜約1/2インチ(約11mm〜約13mm)であった。深さ「d」は、ダム80(図15a及び15bに示す)を使用することによって部分的に制御した。具体的に、ダム80は端部32の近くに設けられ、約7/16インチ〜約1/2インチ(約11mm〜約13mm)の深さになるように深さ「d」(図10bに示す)を形成するのを助けた。ダム80の高さ「j」は約1/4インチ(約6mm)であり、また長手方向長さ「k」は約1/2インチ(約13mm)であった。幅(図示せず)は、トラフ部材30の底部寸法「R」を完全に横切る。従って、動作中のV字形トラフ部材30内の水3の総体積は、約26立方インチ(約430ml)であった。
トラフ部材30内の水3の流量は、どの例を実施するかに応じて、約150〜200ml/分であった。具体的には、例えば、例1〜3及び5において形成される銀系及び銅系ナノ粒子/溶液原材料は全て、流量約200ml/分を利用し、そして例4において形成される亜鉛系ナノ粒子/溶液原材料は、流量約150ml/分を利用した。水3のこのような流れは、定格0.1馬力、10-600rpmのMasterflex(登録商標) L/Sポンプ駆動装置40を利用することにより得られた。Masterflex(登録商標)ポンプ40のモデル番号は77300-40であった。ポンプ駆動装置は、やはりEasy-Load Model No. 7518-10として知られている、これもMasterflex(登録商標)製のポンプヘッドを有した。一般的に言うと、ポンプ40のためのヘッドは蠕動ヘッドとして知られている。ポンプ40及びヘッドは、Masterflex(登録商標) LS Digital Modular Driveによって制御された。Digital Modular Driveのモデル番号は77300-80である。Digital Modular Driveの正確な設定値は例えば、例4に対しては1分間当たり150ミリリットルであり、そして他の例1〜3及び5に対しては200ml/分であった。蠕動ヘッド内に、直径1/4インチ(すなわちサイズ06419-25)のTygon(登録商標)管を入れた。管は、Masterflex(登録商標)のSaint Gobainによって製造された。管の一方の端部をトラフ部材30の第1の端部31に、その中に配置された流れ拡散手段の傍らで供給した。流れ拡散手段は、トラフ部材30内に導入された水中3の攪乱及び気泡、並びに、蠕動ポンプ40によって発生したパルス状態を最小限にする傾向があった。これに関して、小型リザーバが拡散手段として役立ち、これをトラフ部材30の端部31の鉛直方向上方の点に設けたので、リザーバがオーバーフローしたときに、比較的定常的な水3の流れが、V字形トラフ部材30の端部31内に流入した。
加えて、制御装置20のプラスチック部分も、約1/8インチ厚(約3mm)のプラキシガラスから形成した。図27を参照すると、制御装置20は、約4インチ(約10cm)の寸法「w」と、約7.5インチ(約19cm)の寸法「L」とを有した。ベース部分25の厚さは約1/4インチ(約0.5cm)であった。図27に示された他の構成部分の全てを、実寸に極めて近く示す。表面25’及び25’’に取り付けられた全ての個々の構成部分も、プラキシガラスから形成し、これらを所定のサイズにカットし、所定の位置に接着した。
図16b及び16cに関して、8つの別個の電極セット(セット1、セット2、セット3〜セット8)を、8つの別個の制御装置20に取り付けた。表3〜7のそれぞれは、8つの電極セットのそれぞれを「セット#」と呼ぶ。さらに、いかなるセット#の内部でも、図3a及び3cに示された電極集成体と同様の電極1及び5を利用した。8つの電極セットの各電極を、特定のターゲット電圧範囲内で動作するように設定した。実際のターゲット電圧を表3〜7のそれぞれに挙げる。各電極セットの中心線と隣接電極セットとの距離「c−c」(図14参照)も表す。さらに、任意の電極1と関連する距離「x」も報告する。いずれの電極5に関しても距離「x」は報告しない。他の関連距離は、表3〜7のそれぞれに報告する。
利用される各電極1のサイズ及び形状は、ほぼ同じであった。各電極1の形状は、寸法約14mm x 23mm x 27mmの直角三角形であった。各電極1の厚さは約1mmであった。各三角形電極1はまた、ベース部分に貫通孔を有した。この貫通孔は、23mmの辺と27mmの辺とによって形成された点が水3の表面2を指し示すのを可能にする。各電極1を含む材料は、明細書中で特に断りのない場合には、純度99.95%(すなわち3N5)であった。各電極1のために銀を使用する場合には、各電極の重量は約2グラムであった。各電極1のために亜鉛を使用する場合には、各電極の重量は約1.1グラムであった。各電極1のために銅を使用する場合には、各電極の重量は約1.5グラムであった。
各三角形電極1を変圧器60に取り付けるために使用されるワイヤーは、例1〜4に対しては直径約1.016mmの純度99.95%(3N5)銀線であった。例5の各三角形電極1を取り付けるために使用されるワイヤーは、直径約1.016mmの純度99.95%(3N5)銅線であった。従って、小さなワイヤループを各電極1の孔に通し、これに電気的に接続した。
各電極5のために使用されるワイヤーは、それぞれ直径が約1.016mmの純度99.95%(3N5)ワイヤーを含んだ。電極5の組成は例1〜3では銀であり、例4では亜鉛であり、そして例5では銅であった。電極1/5のための全ての材料は、1050 Benson WAy, Ashland, Oregon 97520在、ESPIから入手した。
トラフ部材30内へ流入させるものとして例1〜12に使用される水3を、逆浸透法及び脱イオン化法によって製造した。本質的には、逆浸透(RO)は、溶解された種及び/又は懸濁物質を地下水から分離する圧力駆動膜分離法である。これは、自然の浸透流(膜の両側の物質の濃度を平衡させようとする)を逆転させるために圧力が加えられるので「逆」浸透と呼ばれる。加えられた圧力は水が強制的に膜を通るようにし、膜の一方の側に汚染物質を残し、そして他方の側に精製水を残す。逆浸透膜は、互いに結合されてプラスチック管の周りに螺旋形態を成して巻き付けられたいくつかの薄層膜又は薄板膜を利用した(これは薄膜複合体又はTFC膜としても知られている)。溶解された種の除去に加えて、RO膜はまた、水中に存在し得る微生物を含む懸濁物質を分離する。RO処理後、混床脱イオン化フィルタを使用した。両処理後の総溶解溶媒量(「TDS」)は、Accumet(登録商標) AR20 pH/導電率メータによって測定して、約0.2ppmであった。
例1(参考例)
銀系ナノ粒子/ナノ粒子溶液AT059及びAT038の製造
この例は、純度99.95%の銀電極1及び5を利用する。表3は、電極のデザイン、位置、及び動作電圧の部分を要約する。表3から明らかなように、ターゲット電圧は最低約550ボルト及び最高約2,100ボルトに設定した。
さらに、8つの電極セット、セット#1〜セット#8のそれぞれにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図37aに示す。さらに、記録された実電圧並びに時刻の関数を、図37b〜37iのそれぞれに示す。従って、表3及び図37a〜37iに含まれるデータによって、各電極セットにおける電極デザイン、並びに、製造過程期間にわたる各電極に印加されるターゲット電圧及び実電圧について完全に理解することができる。
Figure 0005946989
例2
銀系ナノ粒子/ナノ粒子溶液AT060及びAT036の製造
表4は、電極セットのデザイン、電圧、距離などに関連する表3に示されたデータと同様の情報を含む。表4から明らかなように、セット#1及びセット#2の電極構造は、表3及び例1のセット#1〜8と同じであった。さらに、更なる電極セット3〜8は全て同じ形式で構成されており、この例のセット#1及びセット#2とは異なる電極構造に相当した。この電極構造は、図8cに示された構造に相当する。
Figure 0005946989
図38aは、8つの電極セット(すなわちセット#1〜セット#8)のそれぞれにおける各電極毎のターゲット電圧及び実際の平均電圧の棒グラフを示す。
図38b〜38iは、8つの電極セットのそれぞれの電極に印加された実電圧を示す。
例2に従って産出された生成物を「AT060」と呼ぶ。
例3
銀系ナノ粒子/ナノ粒子溶液AT031の製造
表5は、「AT031」とここでは呼ばれる、この例で形成される生成物を形成するために利用される8つの電極セット(すなわちセット#1〜セット#8)のそれぞれにおける16個の電極のそれぞれに対する電極デザイン及びターゲット電圧を示す。
Figure 0005946989
図39aは、8つの電極セットのそれぞれにおける16個の電極のそれぞれに対するターゲット電圧及び実際の平均電圧の棒グラフを示す。
図39b〜39iは、8つの電極セットのそれぞれにおける16個の電極のそれぞれに印加された実電圧を、時間の関数として示す。
なお、電極セット#1はこの例3において、例1及び2のそれぞれにおけるものと同じであった(すなわち1/5の電極構造)。他の電極セットのそれぞれに対しては、別の1/5構造を利用した。つまり、セット#2及びセット#5〜8を全て、5/5構造に基づく形で構成した。
例4(参考例)
亜鉛系ナノ粒子/ナノ粒子溶液BT006及びBT004の製造
ここでは「BT006」と称する材料を、例4の開示内容に従って製造した。例1〜3と同様に、この表6は8つの電極セット(すなわちセット#1〜セット#8)のそれぞれにおける正確な電極組み合わせを開示している。同様に、ターゲット電圧及び実電圧、距離なども報告する。なお、電極5のためにだけ純度99.95%亜鉛を使用したことを除けば、例4の電極セット集成体は、例1に使用された電極セット集成体と類似している。電極1の三角形部分も、同純度の亜鉛を含んだが、三角形電極との電気的接続部は全て、本明細書中で上述した純度99.95%銀線であった。また、反応物3の流量は、全ての他の例におけるよりもこの例において低かった。
Figure 0005946989
図40aは、8つの電極セットにおける16個の電極のそれぞれのために利用されるターゲット電圧及び実際の印加平均電圧の棒グラフを示す。また、図40b〜40iは、16個の電極のそれぞれに印加された実電圧を、時間の関数として示す。
例5
銅系ナノ粒子/ナノ粒子溶液CT006の製造
例5に開示された手順に従って、「CT006」と称する銅系ナノ粒子溶液を形成した。これに関して、表7は、8つの電極セット内の16個の電極のそれぞれと関連する関連動作パラメータを示す。
Figure 0005946989
さらに図41aは、8つの電極セットにおける16個の電極のそれぞれに印加された平均実電圧のそれぞれの棒グラフを示す。なお、電極構造は例1〜4のそれぞれにおける電極構造とは僅かに異なった。具体的には、電極セット#1及び3は、1/5構造を有しており、そして全ての他のセットは5/5構造を有した。
図41b〜41iは、16個の電極のそれぞれに印加された実電圧を、時間の関数として示す。上述のように、電極1及び5のそれぞれのために利用されるワイヤは、直径約0.04インチ(1.016mm)及び純度99.95%のワイヤを含んだ。
例1〜5の材料及びこれらの混合物の特徴付け
例1〜3においてそれぞれ形成された銀系ナノ粒子及びナノ粒子/溶液のそれぞれ(AT−059/AT−038)、(AT060/AT036)、及び(AT031);並びに、例4において形成された亜鉛系ナノ粒子及びナノ粒子/溶液の(BT−004);及び例5において形成された銅系ナノ粒子及びナノ粒子/溶液の(CT−006)を、種々様々な技術によって物理的に特徴付けした。具体的には、本明細書中の表8及び9は、例1〜5に従って形成された5種の「原材料」、並びに、これらの原材料から形成された10種の溶液又は混合物のそれぞれを示しており、溶液のそれぞれを「GR1〜GR10」又は「GR1B〜GB10B」と称する。「原材料」のそれぞれの体積量を、製造された10種の溶液のそれぞれに関して報告する。さらに、例1〜5の原材料のそれぞれ、並びにこれらから誘導された10種のGR1〜GR10のそれぞれにおいて、原子吸収分光法(「AAS」)を実施した。こうしてこの中の銀成分、亜鉛成分、及び/又は銅成分の量を割り出した。原子吸収分光法(AAS)の結果を、金属系成分によって報告する。
Figure 0005946989
AAS値はPerkin Elmer AAnalyst 300 Spectrometerシステムから得た。例1〜5及び溶液GR1〜GR10からの試料は、結果の精度を改善するために、少量の硝酸及び塩酸(通常は最終体積の2%)を添加し、次いで特定の元素の望ましい特徴的な濃度範囲又は線形範囲まで希釈することにより調製した。「望ましい」範囲は、製品開発中に確立された生産パラメータに基づく概算推定値である。純金属分析のために、既知量の原材料を既知量の酸中に消化し、希釈することにより、吸収信号強度が許容限度内、より具体的には、線形範囲としてよりよく知られている、最も正確な検出器設定値範囲にあるようになることを保証する。
Perkin Elmer AAnalyst 300システムの具体的に作業手順は、以下の通りである:
I)原理
Perkin Elmer AAnalyst 300システムは、Universal GemTipネブライザと、原子吸光分析装置とを備えた高効率バーナーシステムから成っている。バーナーシステムは、化合物を解離させるのに必要な熱エネルギーを提供し、原子吸収が発生するように、遊離する被分析原子を提供する。この分析装置は、主要光源としての中空陰極ランプ、モノクロメーター、及び検出器を使用して、特定波長で吸収される光の量を測定する。重水素アーク灯が、原子雲中の非原子種によって引き起こされるバックグラウンド吸収を補正する。
II)機器のセットアップ
A) 廃棄物容器を印まで空にする。脱イオン水を排液管に添加することにより、水が排液システム・フロート集成体内に存在することを確認する。
B) 被分析物を分析するための適宜の中空陰極ランプがタレット内に適正に設けられていることを確認する。
C) AAnalyst 300及びコンピュータの電源をオンにする。
E) AAnalyst 300をほぼ3分間ウォームアップした後、AAWin Analystソフトウェアを開始する。
F) 分析方法を呼び戻す。
G) 正しいデフォルト条件が入力されていることを確認する。
H) 中空陰極ランプを調整する。
1)適正なピーク及びエネルギーレベルが特定のランプに対して確立されていることをチェックする。
2)ランプ設備の出力及び周波数を調節することにより、最大エネルギーを得る。
I) パラメータ入力、オプション、保存及び#の方法変更を保存する。
J) バーナー高さを調節する。
1)バーナーの背後に白い紙を置くことにより、光ビームの位置を確認する。
2)鉛直方向調節ノブによって、バーナーヘッドを光ビームの下方に降下させる。
3)Cont(Continuous)を押すことにより、吸光値を表示する。
4)A/Zを押してオートゼロにする。
5)ディスプレイが僅かな吸光度(0.002)を示すまで、鉛直方向調節ノブによってバーナーヘッドを上昇させる。ディスプレイがゼロに戻るまで、ヘッドをゆっくりと降下させる。ヘッドをさらに4分の1回転分だけ降下させることにより、調節を完了させる。
K) 点火する。
1)有毒ガス排出フードのスイッチをオンする。
2)空気圧縮機弁を開く。圧力を50〜65psiに設定する。
3)アセチレンガス・シリンダ弁を開く。出力圧力を12〜14psiを設定する。圧力は85psiまで低下したら、アセトンの存在から生じる弁及び管の損傷を防止するため、シリンダを交換する。
4)Gases On/Offを押す。オキシダント流を4単位に調節する。
5)Gases On/Offを押す。アセチレン・ガス流を2単位に調節する。
6)Flame On/Offを押すことにより、火炎をオンにする。
注意:紫外線用保護眼鏡を着用せずにランプ又は火炎を直接見てはならない。
L) バーナーヘッドを通して脱イオン水を数分間吸引する。
M) バーナーの位置及びネブライザを調節する。
1)ほぼ0.2の吸光度単位の信号を有する標準を吸引する。
2)水平方向及び回転方向の調節ノブを回転させることにより、バーナー位置の最大吸光度を得る。
3)ネブライザの固定リングを、時計回り方向に回すことにより緩める。ネブライザ調節ノブをゆっくりと回すことにより、最大吸光度を得る。ノブを固定リングで所定の位置にロックする。
注意:ガスが吸収しない波長にあるマグネシウムのような元素が、バーナー及びネブライザを調節するのに最適である。
N) 30分間、火炎及びランプをウォームアップさせておく。
III)較正手順
A) 試料濃度を一括りにした標準で較正する。
B) WinAA Analystソフトウェアが、試料の測定値に関する較正曲線を自動的に形成する。しかし、適正な吸収が各較正標準で確立されることを確認するようにチェックしなければならない。
C) デフォルト条件における標準濃度値を入力することにより、AAnalyst 300標準曲線を形成する。
1)有効数字を使用してSTD1の最低標準の濃度を入力する。
2)較正曲線の他の標準の濃度を昇順で、そして再勾配標準の濃度を入力する。
3)各標準の前にブランクでオートゼロにする。
4)標準1を吸引し、0 Calibrateを押すことにより、前の曲線をクリアする。番号順に標準を吸引する。
標準の番号を押し、そして標準毎に較正する。
5)Printを押すことにより、グラフ及び相関係数をプリントする。
6)必要であれば、1つ又は全ての標準を再実行する。標準3を再実行するために、標準を吸引し、そして3 Calibrateを押す。
7)指定の再勾配標準を吸引した後、Reslopeを押すことにより標準曲線を再勾配付けする。
D) 相関係数は0.990以上であるべきである。
E) 20種の試料毎に標準及び対照を用いて、ドリフト、正確さ、及び精度に関して較正曲線をチェックする。
IV)分析手順
A) 各標準、対照及び試料の前にブランクでオートゼロにする。
B) 試料を吸収し、Read Sampleを押す。ソフトウェアは3つの吸光度測定値を求め、次いでこれらの測定値を平均する。ソフトウェアがアイドル状態を告げるまで待つ。標準偏差が試料結果の10%を上回る場合には、試料を再実行する。
V)機器のシャットダウン
A) 5%塩酸(HCl)を5分間にわたって吸引し、脱イオン水を10分間にわたって吸引することによりバーナーヘッドを清浄化する。水から毛管を取り外す。
B) Flame On/Offを押すことにより、火炎をオフにする。
C) 空気圧縮機弁を閉じる。
D) アセチレン・シリンダ弁を閉じる。
E) Bleed Gasesを押すことにより、ラインからアセチレンガスを抜き取る。シリンダ圧力はゼロまで低下することになる。
F) ソフトウェアを終了し、AAnalyst 300の電源をオフにし、そしてコンピュータをシャットダウンする。
さらに、表8の最後の4つの欄は、「金属PPM(イオン性)」;及びO2(ppm);NO3(ppm);及び「pH」を開示する。これらの数値集合のそれぞれは、イオン選択電極測定技術を利用して割り出した。具体的には、NICOイオン分析装置を利用した。表8(及び表9)のこれらの3つの欄のそれぞれにおけるデータを収集するための正確な安定化時間及び実際試験手順について、すぐ下で説明する。
定義:
安定化時間 − 電極を新しい溶液中に浸漬した後で、mV測定値は通常、最初に数mVだけ急速に低下し、次いで、ISE膜が平衡して基準電極液界電位が安定するのに伴って、徐々に、そしてますますゆっくりと安定な測定値まで低下する。このような平衡は、完全に安定な値に達するのに最大3分又は4分かかることがある。測定値は短時間の安定後再び上昇し始めることがあり、この上昇が大規模に進行する前に、最低点で記録するのを保証することが重要である。この研究において、完全に安定な測定値を待つ必要はないが、しかし予め設定された時間後に測定値を求めることにより、申し分ない結果が得られることが判った。最適な性能を得るために、この遅延時間は、測定値が曲線のより浅い部分にあることを保証するために、少なくとも2分間であるべきであることが判った。
手順:
1. 使用するべき各電極毎に2つの150mLビーカーを入手する(典型的4つ)。一方のビーカーは溶液自体のために使用し、他方のビーカーには、各溶液を試験した後で各電極の膜を均等化するために、脱イオン(DI)H2Oを満たすことになる。
2. 使用される各電極毎にほぼ50mLの当該溶液及びそのそれぞれのビーカーを入手する(一般には、Ag、NO3、NO2、及び溶液のPHの試験のために約200mL)。
3. まだ所定の位置にない場合には、それぞれの所期イオン選択電極及びそのその基準電極を好適な容器内に配置して挿入する。両イオン選択電極が同じ基準電極の使用を必要としない限り、1容器当たり唯1つの電極及びその基準電極を使用する。各電極及びその対応基準電極からキャップを取り外し、これらの電極を電極ホルダ内に入れる。
4. NICO Ion Analyserと連携するコンピュータ及びこれを操作するためのソフトウェアをオンにする。
5. 装置を操作するために8-Channel Ion Electrode Analyser Softwareを開く。
6. 我々の目的にとって最も正確な標準を使用して、各イオン選択電極を較正しなければならない。この較正は機械がオンにされる度に、行わなくてはならず、また最も正確な結果を得るために、それぞれ個々の試料を使用する前に較正するべきである。各イオン選択電極に対して、目下のところ、1ppm、10ppm、及び100ppmが我々の溶液及びこれらの相対測定値のための最良の較正をもたらす。「Calibrate」ボタンをソフトウェア・インターフェース上に置き、指示に従う。
7. 各ビーカーを、DI H2Oで濯ぎ、そしてそれぞれの使用前に、糸くずの出ない布で拭き取る。
8. 各「溶液」ビーカーに、ほぼ50mLの当該溶液を満たし、そして「イコライザー」ビーカーにほぼ100mLのDI H2Oを満たす。
9. 「イコライザー」ビーカー内にほぼ15秒間にわたって各電極を入れることにより、各新しい溶液を試験する前には膜が同じ状態であり均等であることを保証する。
10. DI H2Oから電極を取り外し、そして糸くずの出ない布地でそっと拭う。
11. 各電極及び基準電極が少なくとも2cm浸漬するように、溶液中に電極を入れる。均質性を保証し、そして電極と溶液との間に存在し得るいかなる気泡をもよく除去するように、電極とビーカーを静かに旋回させる。
12. 特定の溶液のための安定化時間に応じて、2〜5分間にわたって電極を乱さずにそのままにしておく。
13. 操作者が測定値に満足し、これが安定化時間中に生じるときには、ソフトウェアを使用してこれを記録しなければならない。「Record」ボタンを叩くと、この特定のデータセットのファイル名を付けるように促される。また、数値を外部のスプレッドシートなどに移すために使用することができる実験室ブックにこれらの測定値を記録する。
14. 電極を溶液から取り出し、溶液を廃棄する。
15. 各電極をDI H2O流で濯ぐ。
16. 各150mLビーカーをDI H2Oで濯ぐ。
17. 電極及びビーカーの両方を、糸くずのでない布地で乾かす。
18. 各電極をそのホルダに戻し、また行うべき更なる試験がない場合にはキャップを元に戻す。
本明細書中にやはり含まれる表9は、AT−031を唯一の例外として、表8に示された(そして例1〜5において論じられた)データと同様のデータを含んでいる。表9のデータは、このような手順がかなり後の時点(数ヶ月の間を置く)で行われたことを除けば、例1〜5から複製された手順に由来する。表9にまとめられた原材料及び関連する溶液は、原材料、並びにこれから得られた溶液が実質的に一定であることを示している。従って、この方法は極めて信頼性及び再現性が高い。
Figure 0005946989
走査電子顕微鏡法/EDS
新しい材料、及び例1〜5に従って形成された溶液GR1〜GR10のそれぞれに対して、走査電子顕微鏡法を実施した。
図42a〜42eはそれぞれ、例1〜5の各例において形成された5種の原材料のそれぞれに相当する走査電子顕微鏡のEDS結果を示す。
図42f〜42oは、表8及び9に示された10種の溶液のそれぞれに対するEDS分析を示す。
IXRFシステム・デジタル・プロセッサにカップリングされたEDAXリチウム泳動ケイ素検出器システムを使用して、XEDSスペクトルを得た。IXRFシステム・デジタル・プロセッサは、LaB6電子銃を有するAMRAY 1820 SEMとインターフェース形成した。発生する全てのスペクトルをIXRF EDS2008, version 1.0 Rev Eデータ収集・処理ソフトウェアを使用して解釈した。
計装用のハードウェア及びソフトウェアのセットアップは、当該区域が撮像目的で電子ビームの下にあるのを可能にする一方で、放出されたエネルギーがXEDS検出器への最適経路を有するのを可能にするように、SEM内部の試料段上に各試験IDの液体試料を位置決めすることを伴う。試料は典型的には、最終レンズのためのアパーチャの約18mm下側に位置決めされ、XEDS検出器に向かって公称18°を成して傾倒される。全ての作業は、約10-6torrで維持された真空チャンバ内部で行われる。
最終レンズの口径を直径200〜300μmに調節し、ビーム・スポットサイズを、デジタル「パルス」プロセッサのための十分なx線光子計数率を達成するように調節する。データ収集期間は200〜300秒であり、「無駄時間」は15%未満である。
液体試料溶液のアリコートを、AuPdでスパッタリングされたガラス・スライド上に置き、続いて脱水ステップを施す。この脱水ステップは、溶液を凍結乾燥させるか、又は乾燥窒素ガス流下で溶液を乾燥させることにより、懸濁液から粒子を産出することを含む。粒子の性質に起因して、撮像又はXEDS分析のために二次被覆は必要とならない。
図43a(i-iv)〜43e(i-iv)はそれぞれ、例1〜5で産出された材料のそれぞれの凍結乾燥、並びに表8及び表9に記録された溶液GR1〜GR10のそれぞれの凍結乾燥、に相当する4つの異なる倍率で示された顕微鏡写真を開示している。具体的には、図43f(i-iv)〜43o(i-iv)は、それぞれ溶液GR1〜GR10に相当する。顕微鏡写真の全ては、LaB6電子銃を備えたAMRAY 1820 SEMで生成する。レンズの倍率サイズは各顕微鏡写真に示されている。
透過電子顕微鏡法
GR5及びGR8、並びに溶液GR5及びGR8を製造するために使用される成分に相当する原材料に対して、透過電子顕微鏡法を施した。具体的には、AT031(すなわちGR5中の銀成分)を製造することに関連する生産パラメータに対応して、付加的な試験を実施し、AT060(すなわちGR8中の銀成分)を製造することに関連する生産パラメータに対応して、付加的な試験を実施し、そしてBT006(すなわちGR5及びGR8の両方に使用される亜鉛成分)を製造することに関連する生産パラメータに対応して、付加的な試験を実施した。次いで、これらの成分を上述のものと同様に混合し、前に製造されたGR5及びGR8と等価の溶液を生じさせた。
図43p(i)〜43p(iii)は、AT031を製造するために用いられた生産パラメータに対応して形成された銀成分を3つの異なる倍率で撮影したTEM顕微鏡写真を開示している。
図43q(i)〜43q(vi)は、AT060を製造するために用いられた生産パラメータに対応して形成された銀成分を3つの異なる倍率で撮影した6つの異なるTEM顕微鏡写真を開示している。
図43r(i)〜43r(ii)は、BT006を製造するために用いられた生産パラメータに従って形成された亜鉛成分を2つの異なる倍率で撮影した2つの異なるTEM顕微鏡写真を開示している。
図43s(i)〜43s(v)は、溶液GR5の3つの異なる倍率で撮影した5つの異なるTEM顕微鏡写真を開示している。
図43t(i)〜43t(x)は、溶液GR8の3つの異なる倍率で撮影した10個の異なるTEM顕微鏡写真を開示している。
TEM顕微鏡写真のそれぞれに対応する試料は、室温で調製した。具体的には、4マイクロリットルの各液体試料を、濾紙の上側に配置された孔付き炭素膜上に置いた(過剰の液体を逃すために使用)。濾紙を乾いたスポットに移し、この手順を繰り返す結果、全部で8マイクロリットルの各液体試料を、孔付き炭素膜の一部と接触させることになる。次いで、炭素膜格子を単一の傾倒ホルダ内に入れ、JEOL 2100 Cryo TEMのロードロック内に置くことにより、約15分間にわたってポンピングした。次いで、試料をカラム内に導入し、TEM顕微鏡分析作業を実施した。
JEOL 2100 Cryo TEMは200kv加速電位で動作した。超高感度のGatanデジタル・カメラに、画像を記録した。典型的な条件は50ミクロンのコンデンサ・アパーチャ、スポット・サイズ2、及びアルファ3であった。
これらのTEM顕微鏡写真は、図43pの粒子(GR05中の銀成分に対応する粒子)の平均粒度が、図43qに示された粒子(すなわちGR8中の銀成分に対応する粒子)よりも小さいことを明示している。さらに、図43p及び43qの両方の集合において、液晶面が明示されている。さらに、図43qは、明確な液晶ファセットの成長を示している。液晶ファセットのうちのいくつかは、銀のための周知の111立方構造に相当する。
TEM顕微鏡写真43rは、亜鉛の有意な結晶化を示している。
TEM顕微鏡写真43s(溶液GR5に相当)も、図43pに示されたものと同様の銀の特徴を示しており、そしてTEM顕微鏡写真43t(すなわち溶液GR8に相当)も、図43qに示されたものと同様の銀の特徴を示している。
このように、これらのTEM顕微鏡写真は、GR5を製造するために利用される処理パラメータが、GR8と関連する銀系ナノ粒子と比較すると、若干小さな銀系ナノ粒子をもたらしたことを示唆する。GR5とGR8との間の生産パラメータの主な差異は、各溶液中の銀成分を形成するために使用される2つの調節可能なプラズマ4の位置であった。GR5及びGR8の両方における亜鉛成分は同じである。しかしながら、GR5中の銀成分は、第1電極セット及び第4電極セットに位置する調節可能なプラズマ4によって形成されるのに対して、GR8中の銀成分は、第1及び第2電極セットに位置する調整可能なプラズマ4によって形成される。
UV−VISスペクトロスコピー
UV−VIS顕微分光測光法を用いて、エネルギー吸収スペクトルを得た。この情報は、波長範囲190nm〜1100nmを走査することができるデュアルビーム走査モノクロメータ・システムを使用して獲得された。2つのUV−VISスペクトロメータを使用することにより、吸収スペクトルを収集した。これらのスペクトロメータはJasco V530及びJasco MSV350であった。数多くの石英ガラス試料ホルダ又は「キュベット」のうちの1つを使用して、低濃度液体試料の測定を支援するために、機器を配置した。種々のキュベットは、データが10mm、1mm又は0.1mmの試料光路で収集されるのを可能にする。次のパラメータ、すなわち帯域幅2nm、データピッチ0.5nm、水ベースライン・バックグラウンド有及び無のパラメータで、PMT及びLED検出器の両方を使用して、上記波長範囲にわたってデータを獲得した。主要エネルギー源として、タングステン「ハロゲン」エネルギー源及び水素「D2」エネルギー源の両方を使用した。これらのスペクトロメータの光路を、エネルギービームが試料を通過して試料キュベットの中心に向かうのを可能にするように設定した。試料の調製は、キュベットを充填してキャップし、次いで、完全密閉された試料区分内部のキュベット・ホルダ内に試料を物理的に入れることに制限した。当該材料によるエネルギーの光吸収を割り出した。出力データを測定し、そして波長及び周波数に対して吸収度単位(ランベルト・ベールの法則)として表示した。
例1〜5において産出された原材料のそれぞれに対して、並びに表8及び9に示された溶液GR1〜GR10のそれぞれにおいて、UV−可視範囲におけるスペクトル特徴を得た。
具体的には、図44aは、波長約190nm〜600nmにわたる、5種の原材料のそれぞれのUV−Visスペクトル特徴を示す図である。
図44bは、同じ波長範囲に対する10種の溶液GR1〜GR10のそれぞれのUV−Visスペクトル・パターンを示す図である。
図44cは、約190nm〜225nmの範囲にわたる、10種の溶液GR1〜GR10のそれぞれのUV−Visスペクトル・パターンを示す図である。
図44dは、約240nm〜500nmの範囲にわたる、10種の溶液GR1〜GR10のそれぞれのUV−Visスペクトルである。
図44eは、約245nm〜450nmの波長範囲にわたる、溶液GR1〜GR10のそれぞれのUV−Visスペクトル・パターンである。
図44a〜44eのそれぞれに対応するUV−Visスペクトル・データを、Jasco V530 UV-Vis分光光度計から得た。各UV−Visスペクトル・データを収集するための関連動作条件を図44a〜44eに示す。
一般に、UV−Visスペクトロスコピーは、近紫外線及び可視線の試料による吸収波長及び吸収強度を測定することである。紫外線及び可視線は、外殻電子をより高いエネルギーレベルに促進するのに十分に活発である。UV−Visスペクトロスコピーは、分子及び無機イオン又は溶液中の錯体に対して施すことができる。
UV−Visスペクトルは、試料の同定のために使用することができる幅広い特徴を有しているが、定量的測定のためにも役立つ。溶液中の被分析物の濃度は、或る波長における吸光度を測定し、そしてランベルト・ベールの法則を適用することにより割り出すことができる。
当該試料を具体的に特徴付けるために、溶媒(この場合は水)から任意の信号を引き取るために、デュアルビームUV−Vis分光光度計を使用した。この場合、基準は、本明細書中の「例」の項で論じた逆浸透法の出口から引き出された原料水である。
ラマン分光法
図45に示された関連動作情報を有するRenishaw Invia Spectrometerを使用して、ラマンスペクトル特徴を得た。なお、ラマン分光法を用いて、GR1〜GR10のブレンドのそれぞれに対して有意な差異は見られなかった。
Leica DL DM顕微鏡を備えた反射顕微分光光度計に、20x(NA=0.5)水浸レンズ又は5x(NA=.12)乾式レンズを装着した。各レンズの後方口径を、拡張レーザービーム直径に等しいか又はこれを上回るように寸法設定した。2つのレーザー周波数を使用した。これらは、514.5nmに対して設定された1/2電力のマルチライン50mWアルゴンレーザー、及び633nmにおける20mW HeNeであった。モノクロメータ光路内に、50〜4000波数(1/cm)の連続的な走査を可能にする高分解能格子を取り付けた。10〜20秒の積分時間を使用した。試料流体を、レンズの下方の50mlビーカー中に入れた。共振帯を調査するために両レーザーを使用したが、ラマンスペクトルを得るためには前者のレーザーを主に使用した。試料サイズは約25mlであった。5x乾式レンズで行われる測定を、流体の約5mm上方に位置する対物レンズを用いて行うことにより、水メニスカスの約7mm下方の体積を問い合わせた。浸漬測定は、試料中に約4mmだけ入るように位置決めされた20x浸漬レンズを用いて行い、同じ空間体積の調査を可能にした。CCD検出器の捕捉区域を各レンズ毎に個々に調節することにより、信号強度及び信号対雑音比を最大化した。
生物学的特徴付け
バイオスクリーンの結果
例1〜5に従って形成された原材料、並びにこれらの原材料から形成された10種のGR1−GR10の効果を比較するために、Bioscreen C Microbiology Readerを利用した。バイオスクリーンを得るための具体的な手順は下記の通りである。
細菌の菌株
アメリカン・タイプ・カルチャー・コレクション(ATCC)から受入番号25922で、Escherichia coliを入手した。初期ペレットをトリプティカーゼ大豆培養液(TSB、Becton Dickinson and Company, Sparks, MD)中で戻し、10mlのTSBを含有する培養フラスコに無菌状態で移し、続いて、Forma 3157 ウォータ・ジャケット付きインキュベータ(Thermo Scientific, Waltham, MA, USA)内で37℃で一晩にわたるインキュベーションを施した。
細菌の維持及び貯蔵
細菌の菌株をトリプティカーゼ大豆寒天(TSA、Becton Dickinson and Company, Sparks, MD)板上に保持し、アリコートをMicroBank管(Pro-Lab Incorporated, Ontario, Canada)内で−80℃で極低温貯蔵した。
細菌培養物の調製
Microbank管を室温で解凍し、そしてNuAire Labgard 440生物学的クラスIIセーフティ・キャビネット(NuAire Inc., Plymouth, MN, USA)内で開いた。滅菌接種針を使用して、1つのMicrobankビードをストック管から、Bioscreen分析のために10mlのトリプティカーゼ大豆培養液(TSB、Becton Dickinson and Company, Sparks, MD)中へ、又はMIC/MLC分析のためにMueller-Hinton培養液(MHB、Becton Dickinson and Company, Sparks, MD)中へ無菌状態で移した。細菌の菌株の一晩にわたる培養物を、Forma 3157 ウォータ・ジャケット付きインキュベータ(Thermo Scientific, Waltham, MA, USA)内で37℃で18時間にわたって成長させ、そして0.5マクファーランド濁度標準まで希釈した。続いて、マクファーランド標準の10-1希釈を行うことにより、ほぼ1.0x107CFU/mlの細菌数をもたらした。この最終希釈体は、細胞成長による細菌密度の増大を防止するために、生成から30分以内に使わなければならない。
ナノ粒子溶液の希釈
ナノ粒子溶液をMHB及び滅菌dH2O中で、2x試験濃度まで希釈し、総体積1.5mlを産出した。この体積のうち、750μlはMHBから成り、これに対して他の750μlは、2x濃度の特定の被験ナノ粒子溶液を形成するように、変化する量の滅菌dH2Oとナノ粒子とから成った。試験希釈体(反応物における最終濃度)は、0.5ppmのAg〜6.0ppmのAgのナノ粒子濃度であり、この場合試験は0.5ppmインターバルで実施した。
バイオスクリーン反応物の調製
ナノ粒子溶液の最小阻止濃度(MIC)を割り出すために、100ウェル・マイクロタイタープレート(Growth Curves USA, Piscataway, NJ, USA)の別個の滅菌ウェル内に所期試験濃度の100μlの特定のナノ粒子溶液に、100μlの希釈細菌培養物を添加した。100μlの希釈細菌培養物及び100μlの1:1 MHB/滅菌ddH2O混合物の両方が接種されたウェルが、陽性対照として役立ち、これに対して、100μlのMHB及び100μlの1:1 MHB/滅菌ddH2O混合物が接種されたウェルが、反応のための陰性対照として役立った。プレートをBioscreen C Microbiology Reader(Growth Curves USA, Piscataway, NJ, USA)のトレイの内側に置き、そして光学濃度(O.D.)測定値を10分毎に求めながら15時間にわたって一定の37℃でインキュベートした。それぞれのO.D.測定前に、プレートを中程度の強さで10秒間にわたって自動的に震盪させることにより、細菌の沈降を防止し、そして均質な反応ウェルを保証した。
MIC及びMLCの両方の割り出し
全てのデータを、EZExperiment Software(Growth Curves USA, Piscataway, NJ, USA)を使用して収集し、そしてMicrosoft Excel (Microsoft Corporation, Redmond, WA, USA)を使用して分析した。種々異なるナノ粒子溶液で処理された細菌の菌種の成長曲線を構成し、そしてMICを割り出した。MICは、Bioscreen C Microbiology Readerを使用して光学濃度によって測定した、細菌培養物の成長を15時間にわたって阻止するナノ粒子溶液の最低濃度として、定義した。
MICが一旦割り出されたら、MIC及び次に高い濃度の試験培地を各ウェルから取り出し、そして好適な標識を付けられた滅菌エッペンドルフ管内で濃度に従って合体させた。TSAプレートに100μの試験培地を接種し、そしてForma 3157 ウォータ・ジャケット付きインキュベータ(Thermo Scientific, Waltham, MA, USA)内で37℃で一晩にわたってインキュベートした。最小致死量濃度(MLC)を、TSA上でのコロニー成長によって測定した、細菌培養物の成長を防止するナノ粒子溶液の最低濃度と定義した。
バイオスクリーン試験の結果を図46に示す。なお、原材料AT031;AT059及びAT060は妥当な性能を有したのに対して、原材料BT−006及びCT−006は、E. coliの成長を全く減速しなかった。これに関しては、曲線が低い光学濃度(「OD」)のままであればあるほど、細菌に対する性能は良好である。
対照的には、溶液GR1−GR10のそれぞれは、原材料AT031、AT060及びAT059のそれぞれに対して、優れた性能を示した。興味深いことに、銀ナノ粒子と関連する原材料と、亜鉛及び銅の両ナノ粒子と関連する原材料との組み合わせは、予期せぬ相乗効果をもたらした。
付加的なバイオスクリーンの結果が、図47及び48に示されている。これらの図面に報告されたデータは、「MIC」データとして知られている。「MIC」は、最小阻止濃度を意味する。MICデータは、GR3及びGR8に関してのみ生成した。図47及び48のそれぞれのデータを検討することから明らかなように、GR3及びGR8の適切なMIC値は約2〜3ppmであった。
図46に示された予期せぬ好ましい結果により、例4に従って形成された原材料BT−006を、例2に従って形成された原材料AT−060に逐次添加した(すなわち、亜鉛系ナノ粒子溶液を銀系ナノ粒子溶液に添加した)。存在する銀の量(原子吸光分光分析によって測定)を、1ppmに維持した。これに添加されたナノ粒子溶液中BT−006の量を、図49において報告する。E. coliに対する高められた抗菌性能が、亜鉛ナノ粒子溶液の量が増大するのに伴って、すなわちBT−006(例4から)が添加されるのに伴って達成されたことに注目すると興味深い。さらに、図50a〜50cは、コンディショニングされた水(「GZA」)を例2のナノ粒子溶液AT−060に添加することにより、e. coliに対する性能を表す付加的なバイオスクリーン情報を示している。
亜鉛ではなく白金の電極1/5構造を利用することを除いて、BT−006原材料と同様にGZA原材料を形成した。
凍結乾燥
図54は、別の一連のバイオスクリーン結果を示している。図8及び9においてGR5及びGR8と呼ばれる溶液、並びに、最初に完全凍結乾燥され、その後水(液体3)で再水和された同じ溶液を、E. coliに対する効力に関して比較した。このような再水和は同じ元のppmをもたらすように行われた。
GR5及びGR8溶液をプラスチック(nalgene)容器内に入れ、そしてこのプラスチック容器を、約−52℃の温度及び100ミリリットル未満の真空に維持されるBenchTop 2K凍結乾燥器(Virtis製)内に入れることにより、凍結乾燥を達成した。約10〜20mlの溶液を一夜凍結乾燥した。
図54に示されているように、凍結乾燥され再水和されたナノ粒子の性能は、元のGR5及びGR8溶液の性能と同一である。
哺乳動物細胞の生存能力/細胞毒性試験
下記手順を利用することにより、細胞の生存能力/細胞毒性の測定値を得た。
細胞系
Mus musculus(マウス)肝上皮細胞(受入番号CRL−1638)及びSus scrofa domesticus(ミニブタ)腎線維芽細胞(受入番号CCL−166)を、アメリカン・タイプ・カルチャー・コレクション(ATCC)から入手した。
凍結ストックからの細胞培養
Napco 203水浴(Thermo Scientific, Waltham, MA, USA)内で2分間にわたって37℃で、細胞系を解凍した。微生物汚染を低減するために、凍結培養バイアルのキャップ及びOリングを、解凍中に水位よりも上方に維持した。培養バイアルの内容物が解凍されるとすぐに、バイアルを水から取り出し、95%エタノールで噴霧し、そしてNuAire Labgard 440生物学的クラスIIセーフティ・キャビネット(NuAire Inc., Plymouth, MN, USA)内に移した。バイアル内容物を次いで、滅菌75cm2組織培養フラスコ(Corning Life Sciences, Lowell MA, USA)に移し、推奨される量の完全培地で希釈した。マウス肝上皮細胞系CRL−1638は、90%のDulbecco's Modified Eagle's Medium(ATCC, Manassas, VA, USA)と、10%のウシ胎児血清(ATCC, Manassas, VA, USA)とから成る完全培地中での増殖を必要としたのに対し、ミニブタ腎線維芽細胞系CCL−166は、80%のDulbecco's Modified Eagle's Mediumと、20%のウシ胎児血清とから成る完全培地中で成長させられた。細胞系CRL−1638は成長培地で1:15比で希釈されたのに対して、細胞系CCL−166は成長培地で1:10比で希釈された。次いで、NuAire, IR Autoflowウォータ・ジャケット付きCO2インキュベータ(NuAire Inc., Plymouth, MN, USA)内で5%のCO2と95%の加湿雰囲気とを利用して、培養フラスコを約37℃でインキュベートした。
培地の更新及び成長細胞の世話
2日毎に、培養フラスコから古い成長培地を取り出し、新鮮な成長培地と交換した。毎日、微生物の成長、例えば真菌コロニー、及び培地中の濁度を肉眼で観察した。さらに、培養された細胞を、逆位相差顕微鏡(VWR Vistavision, VWR International, and West Chester, PA, USA)下で観察することにより、細胞の全体的な健康状態及び細胞密集度の両方をチェックした。
細胞の継代培養
一旦細胞がほぼ80%密集成長に達したら、細胞は継代培養の準備ができたと見なした。古い成長培地を取り外して廃棄し、そして細胞シートを5mlの予熱されたトリプシン−EDTA解離溶液(ATCC, Manassas, VA, USA)で濯いだ。30秒間にわたる細胞シートとの接触後に、トリプシン−EDTAを取り出して廃棄した。細胞単層全体がカバーされていること、及びフラスコが攪拌されていないことを確認して、3mlの体積の予熱されたトリプシン−EDTA溶液を細胞シートに添加し、続いて、約15分間にわたって37℃で培養フラスコをインキュベートした。細胞解離後、約6mlの完全培地を細胞培養フラスコに添加することによりトリプシン−EDTAを不活化し、続いて、細胞を静かにピペットによって吸引した。
細胞をカウントするために、200μlの細胞懸濁液を15mlの遠心分離管(Corning Life Sciences, Lowell MA, USA)内に捕集した。300μLのリン酸緩衝食塩水(ATCC, Manassas, VA, USA)、及び500μLの0.4%のトリパン・ブルー溶液(ATCC, Manassas, VA, USA)の両方を、捕集された細胞懸濁液に添加し、そして十分に混合した。約15分間にわたって静置しておいた後、10μlの混合物を、iN Cyto, C-Chip使い捨て血球計(INCYTO, Seoul, Korea)の各チャンバ内に入れた。ここで細胞をVWR Vistavision 逆位相差顕微鏡(VWR International, West Chester, PA, USA)によって製造者の指示書に従ってカウントした。血球計から得られた細胞数に基づいて変換式を用いて、懸濁液中の細胞の濃度を計算した。
細胞毒性試験
黒い透明な底部の細胞培養処理マイクロタイタープレート(Corning Life Sciences, Lowell MA, USA)のウェルに、図1に示すようなほぼ1.7x104細胞を含有する200μlの培地を播種した。5%のCO2と95%の加湿雰囲気とを利用して、約48時間にわたって細胞を約37℃でマイクロタイタープレート内で平衡させておいた。平衡期間後、培地を各ウェルから取り出し、そしてプレートのカラム3を除く全てのウェル内で100μlの新鮮な成長培地と取り換えた。所期試験濃度の2xHydronanon(登録商標)を補充された100μl体積の新鮮な培地を、表10に示すようにそれぞれのウェル内に入れた。
Figure 0005946989
5%のCO2と95%の加湿雰囲気とを利用して、約24時間にわたってマイクロタイタープレートを約37℃で処理化合物と一緒にインキュベートした。ナノ粒子溶液とのインキュベーション後、各ウェルから培地を取り出して廃棄し、そしてAlamar Blue(登録商標)(Biosource International, Camarillo, CA, USA)を50μl色素/ml培地の濃度で含有する100μlの新鮮な培地と取り換えた。プレートを約10秒間にわたって手で静かに震盪させ、そして5%のCO2と95%の加湿雰囲気とを利用して、約2.5時間にわたって約37℃でインキュベートした。次いで、励起波長544nm及び発光波長590nmを利用して、各ウェル内で蛍光を測定した。Labsystems(Thermo Scientific, Waltham, MA, USA)によって製造されたFluoroskan II 蛍光光度計で蛍光測定を行った。
データ分析
無処理の対照細胞と比較したときの、処理後の生存細胞の比率を測定することにより、ナノ粒子溶液の細胞毒性を割り出した。処理後の細胞の生存率%を計算し、そしてこれを用いて、50%の細胞死が発生する時(LC50)のナノ粒子濃度のデータを生成した。全てのデータは、GraphPad Prism ソフトウェア(GraphPad Software Inc., San Diego, Ca, USA)を使用して分析した。
生存可能性/細胞毒性試験の結果を、図51a〜51h;52a〜52f;及び図53a〜53hである。
図51a及び51bを参照すると、溶液「GR3」の性能を、ミニブタ腎線維芽細胞(図51a)及びマウス肝上皮細胞(図51b)の両方に対して試験した。
同様に、図51c及び51dでは、それぞれ腎細胞及びマウス肝細胞に対してGR5の性能を試験し;図51e及び51fでは、それぞれ腎細胞及び肝細胞に対してGR8の性能を試験し;そして図51g及び51hでは、それぞれ腎細胞及び肝細胞に対してGR9の性能を試験した。
図51a〜51hのそれぞれにおいて、二相応答が注目される。二相応答はそれぞれの溶液及び細胞集合の種々異なる濃度において発生したが、しかし、一般的な傾向又は各被験溶液が示したところでは、本明細書中で開示された実施態様に従って製造された或る濃度のナノ粒子が、対照と比べて、腎細胞及び肝細胞のそれぞれに対する高められた成長速度を呈する。これに関して、100%(すなわち対照)に相当する点線の鉛直方向上方にある曲線のうちのいずれの曲線のいずれの部分も、本明細書中で上述した、生成された蛍光からのより高い蛍光光度計測定値を有した。従って、本発明により形成された粒子及び/又はナノ粒子溶液が、少なくとも腎細胞及び肝細胞を含む哺乳動物細胞に、高められた成長速度効果を与え得ることは明らかである。
図52a〜52fでは、銀ナノ粒子濃度及び総ナノ粒子濃度の両方の、より狭い応答範囲を試験した。それぞれ図52ab,52cd及び52efのそれぞれにおける溶液3,5及び8のそれぞれに関して報告された値「LD50」の値は、銀系ナノ粒子のppm(図52a,c及びe)及び総ナノ粒子のppm(図52b,d及びfに対応)に相当する。銀ナノ粒子濃度に関して、LD50は約2.5〜約5.4であることが明らかである。対照的に、総ナノ粒子溶液のLD50は、約6〜約16である。
図53a〜53hに関して、ミニブタ腎線維芽細胞に対する「LD50」を各溶液GR3,GR5,GR8及びGR9に関して測定した。これらの図面のそれぞれに示すように、存在する総ナノ粒子の「LD50」は最低約4.3(GR9に対して)〜最高約10.5〜11(GR5及びGR8に対して)であった。
例6(参考例)
いかなるプラズマも使用しない銀系ナノ粒子/ナノ粒子溶液AT098、
AT099及びAT100の製造
この例は、例1〜5の溶液を形成するために使用されたものと同じ基本装置を利用する。しかし、この例はいかなる電極5も利用しない。この例は、各電極1のために純度99.95%の銀電極を利用する。表11a、図11b及び図11cは、電極のデザイン、構造、位置、及び動作電圧の部分を要約する。表11a、図11b及び図11cに示すように、ターゲット電圧を、最低値約2,750ボルト(電極セット#8における)、及び最高値約4,500ボルト(電極セット#1〜3における)に設定した。最高値4,500ボルトは本質的には、電極セット#1〜3における各電極1,1’の間の液体3の最小導電率に起因する開回路に相当する。
さらに、各電極セットにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図55a,55b及び55cに示す。従って、表11a,11b及び11c、並びに図55a,55b及び55cに含まれるデータによって、各電極セット内の電極デザイン、並びに本発明の製造法のために各電極に印加される実電圧及びターゲット電圧に関して完全に理解することができる。例1〜5の報告された電極構造との整合性を維持するために、たとえ試験ID「AT100」が、実際に8組の電極を使用する唯一の試験であっても、8組の電極のためのスペースが、表11a,11b及び11cのそれぞれに含まれている。
Figure 0005946989
Figure 0005946989
Figure 0005946989
原子吸収分光法(AAS)試料を調製し、そして測定値を得た。本明細書中に前述したAAS手順には、僅かなプロセス変更が組み込まれた。これらのプロセス変更はすぐ下で述べる。
AAS値は、例1〜5におけるように、Perkin Elmer AAnalyst 300 Spectrometerシステムから得た。例6〜12に従って製造された試料は、結果の精度を改善するために、少量の硝酸及び塩酸(通常は最終体積の2〜4%)を添加し、次いで特定の元素の望ましい特徴的な濃度範囲又は線形範囲まで希釈することにより調製した。「望ましい」範囲は、製品開発中に確立された生産パラメータに基づく概算推定値である。純金属分析のために、既知量の原材料を既知量の酸中に消化し、希釈することにより、吸収信号強度が許容限度内、より具体的には、線形範囲としてよりよく知られている、最も正確な検出器設定値範囲にあるようになることを保証する。
Perkin Elmer AAnalyst 300 Spectrometerシステムの具体的に作業手順は、以下の通りである:
I)原理
Perkin Elmer AAnalyst 300システムは、サファイアGemTip又はステンレス鋼ビード付きネブライザと、原子吸光分析装置とを備えた高効率バーナーシステムから成っている。バーナーシステムは、化合物を解離させるのに必要な熱エネルギーを提供し、原子吸収が発生するように、遊離する被分析原子を提供する。このスペクトロメータは、主要光源としての中空陰極ランプ、モノクロメーター、及び検出器を使用して、特定波長で吸収される光の量を測定する。重水素アーク灯が、原子雲中の非原子種によって引き起こされるバックグラウンド吸収を補正する。
II)機器のセットアップ
A) 廃棄物容器を印まで空にする。脱イオン水を排液管に添加することにより、水が排液システム・フロート集成体内に存在することを確認する。
B) 被分析物を分析するための適宜の中空陰極ランプがタレット内に適正に設けられていることを確認する。
C) AAnalyst 300及びコンピュータの電源をオンにする。
D) AAnalyst 300を最低30分間ウォームアップした後、AAWin Analystソフトウェアを開始する。
E) 分析方法を呼び戻す。
F) 正しいデフォルト条件が入力されていることを確認する。
G) 中空陰極ランプを調整する。
1)最低15分間にわたってHCLを温め、安定化させておく。
2)適正なピーク及びエネルギーレベルが特定のランプに対して確立されていることをチェックする。
3)ランプ設備の出力及び周波数を調節することにより、最大エネルギーを得る。
H) パラメータ入力、オプション、保存及び#の方法変更を保存する。
I) バーナー高さを調節する。
1)バーナーの背後に白い紙を置くことにより、光ビームの位置を確認する。
2)鉛直方向調節ノブによって、バーナーヘッドを光ビームの下方に降下させる。
3)Cont(Continuous)を押すことにより、吸光値を表示する。
4)A/Zを押してオートゼロにする。
5)ディスプレイが僅かな吸光度(0.002)を示すまで、鉛直方向調節ノブによってバーナーヘッドを上昇させる。ディスプレイがゼロに戻るまで、バーナーヘッドをゆっくりと降下させる。ヘッドをさらに4分の1回転分だけ降下させることにより、調節を完了させる。
J) 点火する。
1)空気圧縮機弁を開く。圧力を50〜65psiに設定する。
2)アセチレンガス・シリンダ弁を開く。出力圧力を12〜14psiを設定する。圧力は75psiまで低下したら、アセトンの存在から生じる弁及び管の損傷を防止するため、シリンダを交換する。
3)Gases On/Offを押す。オキシダント流を4単位に調節する。
4)Gases On/Offを押す。アセチレン・ガス流を2単位に調節する。
5)Flame On/Offを押すことにより、火炎をオンにする。
注意:紫外線用保護眼鏡を着用せずにランプ又は火炎を直接見てはならない。
K) バーナーヘッドを通して脱イオン水を3〜5分間吸引する。
L) バーナーの位置及びネブライザを調節する。
1)ほぼ0.2〜0.5の吸光度単位の信号を有する標準を吸引する。
2)水平方向、鉛直方向、及び回転方向の調節ノブを回転させることにより、バーナー位置の最大吸光度を得る。
3)ネブライザの固定リングを、時計回り方向に回すことにより緩める。ネブライザ調節ノブをゆっくりと回すことにより、最大吸光度を得る。ノブを固定リングで所定の位置にロックする。
注意:ガスが吸収しない波長にある銀のような元素が、バーナー及びネブライザを調節するのに最適である。
III)較正手順
A) 試料濃度を一括りにした標準で較正する。
B) WinAA Analystソフトウェアが、試料の測定値に関する較正曲線を自動的に形成する。しかし、適正な吸収が各較正標準で確立されることを確認するようにチェックしなければならない。
C) デフォルト条件における標準濃度値を入力することにより、AAnalyst 300標準曲線を形成する。
1)有効数字を使用してSTD1の最低標準の濃度を入力する。
2)較正曲線の他の標準の濃度を昇順で、そして再勾配標準の濃度を入力する。
3)較正値を獲得する前にブランクでオートゼロにする。
4)標準1を吸引し、0 Calibrateを押すことにより、前の曲線をクリアする。番号順に標準を吸引する。
標準の番号を押し、そして標準毎に較正する。
5)Printを押すことにより、グラフ及び相関係数をプリントする。
6)必要であれば、1つ又は全ての標準を再実行する。標準3を再実行するために、標準を吸引し、そして3 Calibrateを押す。
D) 相関係数は0.990以上であるべきである。
E) 20種の試料毎に少なくとも1回、動作中に連続して、較正標準を用いて、ドリフト、正確さ、及び精度に関して較正曲線をチェックする。
IV)分析手順
A) 試料毎に最小数3個の複製物(replicate)を用いて3部(triplicate)について測定した。
B) 試料を吸収し、Read Sampleを押す。ソフトウェアは3つの吸光度測定値を求め、次いでこれらの測定値を平均する。ソフトウェアがアイドル状態を告げるまで待つ。標準偏差が試料結果の10%を上回る場合には、試料を再実行する。
V)機器のシャットダウン
A) 2%硝酸(HNO3)を1〜3分間にわたって吸引し、脱イオン水を3〜5分間にわたって吸引することによりバーナーヘッドを清浄化する。水から毛管を取り外し、バーナーヘッドを約1分間にわたって乾燥させる。
B) Flame On/Offを押すことにより、火炎をオフにする。
C) 空気圧縮機弁を閉じる。
D) アセチレン・シリンダ弁を閉じる。
E) Bleed Gasesを押すことにより、ラインからアセチレンガスを抜き取る。シリンダ圧力はゼロまで低下することになる。
F) ソフトウェアを終了し、AAnalyst 300の電源をオフにし、そしてコンピュータをシャットダウンする。
Figure 0005946989
表11dは、例6から得られた結果を示す。図11dは、「電極構造」と題する欄を含む。この欄は文字「0」及び「X」を含む。文字「0」は、1つの電極セット5,5’に相当する。文字「X」は、電極が存在しなかったことを表す。このように、試験ID「AT098」の場合には、単一の電極セット5a,5a’だけが利用された。本明細書中に開示されたAAS技術によっては、検出可能な量の銀は測定できなかった。試験ID「AT099」は、2つの電極セット5a,5a’及び5b,5b’を利用した。AAS技術は、或る程度の量の銀を、存在するものとして検出したが、その量は0.2ppm未満であった。試験ID「AT100」は8つの電極セット5,5’を利用した。この構造は、7.1ppmという測定ppmをもたらした。従って、電極1(及び関連プラズマ4)を使用することなしに、金属系成分(例えば金属系ナノ粒子/ナノ粒子溶液)を得ることが可能ではある。しかし、金属系成分の形成速度は、1つ又は2つ以上のプラズマ4を使用することによって得られた速度を大きく下回る。例えば、例1〜3は、試験ID AT031、AT036及びAT038と関連する銀系生成物を開示した。これらの試験IDのそれぞれは、調節可能なプラズマ4を含む2つの電極セットを利用した。これらの試料のうちのそれぞれに対する測定銀ppmは40ppmを上回り、この数値は、例6のID AT100に従って形成された生成物中で測定されたものの5〜6倍である。このように、少なくとも1つの調節可能なプラズマ4(本明細書中の教示内容に従う)を使用することなしに、金属系成分を製造することは可能であるものの、生産技術の一部としてプラズマ4を使用しないと、金属系成分の形成速度が大幅に低減される。
従って、試験ID AT100と関連する生成物を形成するために8つの電極セット5,5が利用されたとしても、少なくとも1つの電極1を含む電極セットがないと(すなわちプラズマ4がないと)、生成される溶液中の銀含有率ppmを厳しく制限した。
例7
単一のプラズマだけを使用する銀系ナノ粒子/ナノ粒子溶液AT080、
AT081、AT082、AT083、AT084、AT085、
AT086及びAT097の製造(AT097のみ参考例)
この例は、例1〜5の溶液を形成するために使用されたものと同じ基本装置を利用するが、しかしこの例は、単一のプラズマ4だけを使用する。具体的には、電極セット#1の場合、この例は、「1a,5a」電極構造を使用する。後続の電極セット#2〜#8が順次加えられる。電極セット#2〜#8のそれぞれは、「5,5’」電極構造を有している。この例はまた、各電極セット内の電極1及び5のそれぞれのために純度99.95%の銀電極を利用する。
表12a〜12hは、電極のデザイン、構造、位置、及び動作電圧の部分を要約する。表12a〜12hに示すように、ターゲット電圧を、最低値約900ボルト(電極セット#8における)、及び最高値約2,300ボルト(電極セット#1における)に設定した。
さらに、各電極セットにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図56a,56b,56c,56d,56e,56f,56g及び56hに示す。従って、表12a〜12h、並びに図56a,56b,56c,56d,56e,56f,56g及び56hに含まれるデータによって、各電極セット内の電極デザイン、並びに本発明の製造法のために各電極に印加される実電圧及びターゲット電圧に関して完全に理解することができる。例1〜5の報告された電極構造との整合性を維持するために、たとえ試験ID「AT080」が、実際に8組の電極を使用する唯一の試験であっても、8組の電極のためのスペースが、表12a,12b,12c,12d,12e,12f,12g及び12hのそれぞれに含まれている。
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
例6に論じられているように、原子吸収分光法(AAS)試料を調製し、そして測定値を得た。表12iは結果を示している。なお、表12iは「電極構造」と題する欄を含む。この欄は文字「1」及び「0」及び「X」を含む。「1」は電極セット#1(すなわち1,5の組み合わせ)に相当する電極構造を表す。文字「0」は、5,5’の電極組み合わせを表す。文字「X」は、電極が存在しなかったことを表す。このように、例えば「AT084」は「1000XXXX」によって表される。これは、「AT084」を形成するために4つの電極セット組み合わせが使用されたことを意味し、そしてこの組み合わせは、セット#1=1,5;セット#2=5,5;セット#3=5,5及びセット#4=5,5に相当した(「XXXX」によって表されているように、セット#4の後にセットはなかった)。
Figure 0005946989
表12iは、「測定Ag PPM(初期)」と題する欄を含む。この欄は、生産から1時間以内に測定された8種の溶液のうちのそれぞれの銀含有率に相当する。表に示すように、測定ppmは、それぞれの電極セットが加えられるのに伴って増大する。試験AT080は、例3の試験ID AT031と匹敵する量の銀のppmレベルを産出する。しかし、「測定Ag PPM(10日)」と題する別の欄は、別の話を語るデータを示す。具体的には、「初期」及び「10日」のPPM測定値は、試験ID AT097、AT086、AT085、AT084及びAT083に相当する試料に関しては本質的に同じである(例えばAASの走査誤差の範囲内)。このことは、8つの試験のうちの5つに見いだされる成分粒子の顕著な沈降が本質的に発生しなかったことを意味する。しかし、ID AT082、AT081及びAT080と関連する試料が10日後に試験されると、成分粒子の顕著な部分が沈降しており、試験AT080から採取された試料は、粒子の沈降に起因して、40ppmから約10ppmを失う。
この例7と関連する8種の試料のそれぞれにおいてどのような粒度が産出されているかを考えるために、動的光散乱(DLS)アプローチを利用した。具体的には、LEDレーザーからの散乱光強度の変化を利用する動的光散乱法が、ブラウン運動による粒子運動から生じる強度の変化を割り出すために、経時的に測定された。これらの測定を実施するために使用される機器は、Dual Alternating Technology (D. A. T.)を有するVISCOTEK 802 DLSであった。
12μLの石英セルを使用して、全ての測定を行った。石英セルは、温度制御されたセルブロック内に配置された。1つの827.4nmレーザービームを、被測定溶液に通した。レーザー光路に対して横方向に設けられた観察光路を有するCCD検出器を利用して、散乱強度を測定した。次いで、アインシュタイン−ストークス及びレイリーの方程式のバリエーションを使用して、試験データを数学的に変換することにより、粒度及び粒度分布の情報を代表する値を誘導した。データ収集及び数学的変換は、Viscotek Omnisize バージョン3,0,0,291ソフトウェアを使用して行った。この機器のハードウェア及びソフトウェアは、半径0.8nm〜2μmの粒子に対する測定を信頼性高く可能にする。
この技術は、溶液がミクロ気泡、及びストークス沈降運動(この運動のいくらかは、この例7において少なくとも3種の試料において明らかに発生した)を被る粒子を含まないときに最良に働く。被験材料を含有して調製するために使用される全ての容器を、濯いて送風乾燥させることによりデブリを除去した。容器及び試料を調製するために使用される全ての水は、二重に脱イオン化し、0.2μmのフィルタで濾過した。溶媒が必要となるならば、分光学的等級のイソプロピルアルコールだけを使用する。溶媒曝露後、全てを清浄な水で濯ぎ、そして糸くずのでない清浄な綿布だけで拭った。
総体積約3mlの溶液試料のアリコートを、小型注射器内に引き込み、次いで約4ドラムの清浄なガラス試料バイアル内に小分けした。2つの注射器フィルタ(0.45μm)をこの作業中に注射器上に固定することにより、試料を二重濾過し、こうして、溶液の部分としては意図されない大型粒子を除去した。この試料を小型真空チャンバ内に入れた。ここで、試料を、低レベル真空(<29.5インチHg)に1分間曝露することにより、懸濁液を沸騰させ、懸濁されたミクロ気泡を除去した。真空は、小型二重段回転真空ポンプ、例えばVarian SD-40を通して引かれた。20ゲージ以下の丸みのある針を有するガラス/ツベルクリン注射器を使用して、注射器を充填するように試料を引き出すことにより、次いで濯ぎ、次いで、12μL試料セル/キュベット内に入れた。付加的な同様のタイプの注射器を使用することにより、使用された試料及び濯ぎ流体をこのセルから引き出した。充填されたキュベットを、光路内部の明らかな捕捉気泡に関して検査した。
このセルを、VISCOTEK 802 DLS内に配置されたホルダ内に挿入した。このステップの前に、機器を、約30分間にわたって動作温度まで十分に温めておき、制御コンピュータ内に取り込まれた「OmniSIZE」ソフトウェアを作動させた。このソフトウェアは、機器と連通して機器を製造業者指定の条件にセットアップする。「新しい」測定を選択する。正しい試料測定パラメータ、すなわち、温度40%、1秒当たりの「ターゲット」レーザー減衰値300kカウント、3秒間の測定期間、溶媒としての水、それぞれ20%及び15%のスパイク及びドリフトが選択されていることを確認する。必要であれば修正する。次いでコントロール・メニューバーから「ツール・オプション」を選択する。適正なオプション、すなわち200の分解能、2データポイントを先ず無視する、0及び256相関チャネルのピーク方向閾値が注釈付けされていることを確認する。
一旦試料をホルダ内に入れたら、カバーの蓋をしっかりと締め、レーザーシャッタを開いた。試料は5〜10分間にわたって温度安定化させておいた。メニューツールバー上で「自動減衰」を選択することにより、レーザー出力の調節を測定要件に適合させた。機器及び試料がセットアップされたら、散乱強度グラフィック・ディスプレイを観察した。パターンは、連行ナノ/ミクロ気泡、又は大型粒子の沈降に起因するランダムなスパイクが最小限に抑えられた状態で、均一に見えることが望ましい。
次いで測定を実施した。発生する相関曲線も観察する。この曲線は「逆S字」のような形状を示し、限度外の「スパイク」を示さないことが望ましい。セットアップが正しければ、100測定値を収集するようにパラメータを調節し、次いで「実行」を選択した。機器はデータを自動収集し、そしてブラウン運動挙動を呈さない相関曲線を廃棄した。一連の測定の終了時に、維持された相関曲線を調査した。全ては、期待形状を呈し、また30%〜90%の期待運動挙動を示すことが望ましい。この時点で、収集されたデータを保存し、ソフトウェアは粒度情報を計算した。再現性を実証するために、測定を繰り返した。次いで、結果としてのグラフィック・ディスプレイを調査した。残余はランダムに分散されて見えるべきであり、データ測定点は、計算された理論上の相関曲線に従わなければならない。グラフィック分布ディスプレイは、0.8nm〜2μmに制限された。懸濁液中に存在する各粒子の粒度及び相対比率を見いだすために、強度分布ヒストグラム及び質量分布ヒストグラムを検討した。次いで全て情報を記録し、文書化した。
図57aは、AT097に対応する代表的なViscotek出力に相当し、そして図57bは、AT080に対応する代表的なViscotek出力に相当する。図57a及び57bに報告された数値は、各溶液中に検出された粒子の半径に相当する。なお、多数の(例えば数百)のデータ点を試験することにより、表12iに報告された数値を出し、図57a及び57bはこれらの測定値から選択したものに過ぎない。
例7に示された種々異なる電極組み合わせの関数として産出された粒子をさらに理解するために、この例で形成された8種の溶液のそれぞれに相当する乾燥済の各溶液から、同様の倍率のSEM顕微鏡写真を撮影した。これらのSEM顕微鏡写真が図58a〜58hに示されている。図58aは、試験ID AT086の試料に相当し、そして図58gは、試験ID AT080の試料に相当する。各SEM顕微鏡写真は「1μ」(すなわち1ミクロン)バーを示している。これらの顕微鏡写真から観察できる一般的な傾向は、粒度は試料AT086からAT083までは徐々に大きくなるが、しかしその後は、AT082からAT080まで試料中で急速に増大し始めることである。なお、粒子状物質が小さく低濃度なので、試験ID AT097の画像は入手できない。
なお、産出された各溶液を少量、ガラススライド上で空気乾燥させておくことにより、SEMのために試料を調製した。従って、何らかの結晶成長が乾燥中に生じたこともあり得る。しかし、試料AT082〜AT080のそれぞれに示された「成長」の量は、乾燥中にだけ生じ得たと考えられる量よりも多い。SEM顕微鏡写真からは、立方形の結晶がAT082,AT081及びAT080において見えることが明らかである。事実、ほぼ完全な立方形の結晶が、試料AT080と関連して図58gに示されている。
従って、特定の理論又は説明に縛られたくはないが、例7の結果と例6と比較すると、プラズマ4の形成が本発明の方法に大きな影響を与えることが明らかになる。さらに、一旦プラズマ4が確立されると、条件が、トラフ部材30に沿って順次設けられたそれぞれの新しい電極セット5,5’の関数としての見掛け粒子成長を含めて、銀系ナノ粒子を含む金属系成分の産出を助成する。しかしながら、この過程の目標が、溶液中の金属系ナノ粒子の懸濁液を維持することであるならば、この例7の方法条件下では、産出された粒子のうちのいくつかは、最後の3つの電極セット(すなわち試験ID AT082,AT081及びAT080)の近くで沈降し始める。他面においてこの過程の目標が、粒子状物質を沈降させることであるならば、この目標は、試験AT082,AT081及びAT080の構造に従うことによって達成することができる。
沈降混合物AT097〜AT080のそれぞれに対してUV−Visスペクトルを得た。具体的に、本明細書中に上述したようにUV−Visスペクトルを得た(「例1〜5の材料及びこれらの混合物の特徴付け」と題する項における考察内容を参照のこと)。図59aは、200nm〜220nmの波長に対する試料AT097〜AT080のそれぞれのUV−Visスペクトルを示している。AT097に相当するスペクトルはこのスケールではグラフから外れてしまうので、図56bにおける拡大図を準備した。トラフ部材30に沿って順次加えられた各電極セット5,5’に関して、AT097と関連するスペクトルは量が減少する。
これらの同じ8種の試料のUV−Visスペクトルを図59cにも示す。具体的には、図59cは、220nm〜620nmの波長を試験している。興味深いことには、AT080,AT081及びAT082に相応する3種の試料は全て、他の5つのスペクトルを著しく上回る。
E. coli細菌に対する効力を割り出す(本明細書中に詳しく前述した)ために、例7に従って形成される8種の溶液それぞれを全て銀に関して正確に同じppmに希釈することにより、正規化されたアプローチで、これらの相対的な効力を比較した。これに関して正規化手順は、10日間の沈降後に求められたppm測定値を基準として、試料のそれぞれに対して行った。従って、例えば、試験AT080に従って形成された試料を、31.6ppmから4ppmまで希釈したのに対して、試験AT083と関連して形成された試料は28.1ppmから4ppmまで希釈した。これらの試料を次いでさらに希薄することにより、バイオスクリーン測定が上述のように実施されるのを可能にした。
図60は、試料AT097〜AT080のそれぞれから採用された同じppmの銀で実施されたBioscreen C Microbiology Reader試験に相当する。図60の結果は、8種の溶液のそれぞれの効力が順序通りに完全に並ぶという点で印象的であり、この場合最高の効力はAT086であり、最低の効力はAT080である。なお、試料AT097の効力は、この特定のバイオスクリーン試験には不注意にも含まれなかった。さらに、バイオスクリーン試験における結果は、比較を目的とした場合には極めて信頼性の高いものであるが、離れた時点において実施されたバイオスクリーン試験間の結果は、例えば初期細菌濃度が僅かに異なること、細菌の成長段階が僅かに異なること、などに起因して、信頼性の高い比較を可能にしないおそれがある。従って、異なる時点で実施されたバイオスクリーン試験間では、例のうちのいずれにおいても、比較は行わなかった。
例8
1つ又は2つのプラズマだけを使用する銀系ナノ粒子/ナノ粒子溶液
AT089、AT090及びAT091の製造
この例は、例1〜5の溶液を形成するために使用されたものと同じ基本装置を利用するが、しかしこの例は、AT090を形成するために単一のプラズマ4だけを使用し(すなわちAT080と同様)、AT091を形成するために2つのプラズマ4を使用し(すなわちAT031と同様)、そしてAT089を形成するために2つのプラズマ4を使用し(初回試験)、ここでは電極セット#1及び電極セット#8の両方がプラズマ4を利用する。この例はまた、各電極セット内の電極1及び5のそれぞれのために純度99.95%の銀電極を利用する。
表13a,13b及び13cは、電極のデザイン、構造、位置、及び動作電圧の部分を要約する。表13a〜13cに示すように、ターゲット電圧は平均して、AT089に関連して最高であり、AT091に関連して最低であった。
さらに、各電極セットにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図61a,61b及び61cに示す。従って、表13a〜13c、並びに図61a,61b及び61cに含まれるデータによって、各電極セット内の電極デザイン、並びに製造法のために各電極に印加される実電圧及びターゲット電圧に関して完全に理解することができる。
Figure 0005946989
Figure 0005946989
Figure 0005946989
例6に論じられているように、原子吸収分光法(AAS)試料を調製し、そして測定値を得た。表13dは結果を示している。なお、表13dは「電極構造」と題する欄を含む。この欄は文字「1」及び「0」を含む。「1」は電極セット#1(すなわち1,5の組み合わせ)に相当する電極構造を表す。文字「0」は、5,5’の電極組み合わせを表す。このように、例えば「AT089」は「10000001」によって表される。これは、「AT089」を形成するために8つの電極セット組み合わせが使用されたことを意味し、そしてこの組み合わせは、セット#1=1,5;セット#2〜#7=5,5;及びセット#8=1,5に相当した。
Figure 0005946989
表13dは、「測定Ag PPM(初期)」と題する欄を含む。この欄は、生産から1時間以内に測定された8種の溶液のうちのそれぞれの銀含有率に相当する。表に示すように、3つの試験のうちのそれぞれに対する測定ppmは、ほぼ同様であった。しかし、「測定Ag PPM(20時間)」と題する別の欄は、「初期」及び「20日」のPPM測定値は、試験ID AT089及びAT091に相当する試料に関しては本質的に同じである(例えばAASの走査誤差の範囲内)ことを示す。このことは、これらの試験に見いだされる成分粒子の顕著な沈降が本質的に発生しなかったことを意味する。しかし、ID AT090と関連する試料が20時間後に試験されると、成分粒子の顕著な部分が沈降しており、試験AT089から採取された試料は、粒子の沈降に起因して、40ppmから約3.6ppmを失う。
この例7において論じるように、これら3種の試料のそれぞれにおいて形成される平均粒度を得るために、動的光散乱(DLS)アプローチを利用した。最大粒子はAT090において形成され、そして最小粒子はAT091において形成された。具体的には、図62aはAT090に相当し、図62bはAT091に相当し、そして図62cはAT089に相当する。
E. coli細菌に対する効力を割り出す(本明細書中に詳しく前述した)ために、例8に従って形成される3種の溶液それぞれを全て銀に関して正確に同じppmに希釈することにより、正規化された手順で、これらの相対的な効力を比較した。これに関して正規化手順は、20時間の沈降後に求められたppm測定値を基準として、試料のそれぞれに対して行った。従って、例えば、試験AT090に従って形成された試料を、37.2ppmから4ppmまで希釈したのに対して、試験AT091と関連して形成された試料は44.0ppmから4ppmまで希釈した。これらの試料を次いでさらに希薄することにより、バイオスクリーン測定が上述のように実施されるのを可能にした。図63は、試料AT089〜AT091のそれぞれから採用された同じppmの銀で実施されたBioscreen C Microbiology Reader試験に相当する。図63の結果は、3種の溶液のそれぞれの効力が、図62a〜62cに示された粒度に対応して並ぶということを示しており、この場合最高の効力はAT091であり、最低の効力はAT090である。さらに、バイオスクリーン試験における結果は、比較を目的とした場合には極めて信頼性の高いものであるが、離れた時点において実施されたバイオスクリーン試験間の結果は、例えば初期細菌濃度が僅かに異なること、細菌の成長段階が僅かに異なること、などに起因して、信頼性の高い比較を可能にしないおそれがある。従って、異なる時点で実施されたバイオスクリーン試験間では、比較は行わなかった。
例9
複数の雰囲気中のプラズマを使用する銀系ナノ粒子/ナノ粒子溶液
AT091、AT092、AT093、AT094及びAT095の製造
この例は、例1〜5の溶液を形成するために使用されたものと同じ基本装置を利用するが、しかしこの例は、制御された雰囲気環境内で発生する2つのプラズマ4を使用する。図28hに示された実施態様を用いることにより、制御された雰囲気が得られた。具体的には、電極セット#1及び電極セット#4に対して、この例は、「1,5」電極構造を使用し、電極1は下記雰囲気、すなわち:空気、窒素、還元性雰囲気、オゾン及びヘリウムのうちのそれぞれにおいてプラズマを形成する。全ての他の電極セット#2、#3及び#5〜#8は、「5,5’」電極構造を有している。この例はまた、各電極セット内の電極1及び5のそれぞれのために純度99.95%の銀電極を利用する。
表14a〜14eは、電極のデザイン、構造、位置、及び動作電圧の部分を要約する。表14a〜14eに示すように、ターゲット電圧を、最低値約400〜500ボルト(還元性雰囲気及びオゾン)、及び最高値約3,000ボルト(ヘリウム雰囲気)に設定した。
さらに、各電極セットにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図64a〜64eに示す。従って、表14a〜14e、並びに図64a〜64eに含まれるデータによって、各電極セット内の電極デザイン、並びに本発明の製造法のために各電極に印加されるターゲット電圧及び実電圧に関して完全に理解することができる。電極セット#1及び電極セット#4のための各電極1に対応する各プラズマ4に使用される雰囲気は次の通りであった:AT091−−空気;AT092−−窒素;AT093−−還元性雰囲気又は空気不足雰囲気;AT094−−オゾン;及びAT095−−ヘリウム。試験AT092〜AT095の雰囲気は、例えば図28hに示された雰囲気制御装置35を利用することにより達成された。具体的には、窒素ガス(高純度)を、管286を通して、図28hに示された雰囲気制御装置35の入口部分37内に流入させることにより、電極セット#1及び電極セット#4における各電極1,5の周りで窒素雰囲気が達成された。窒素ガスの流量は、窒素ガスが雰囲気制御装置35内部の水3上で正圧を形成するようにすることにより、窒素の正圧を達成するのに十分な流量である。
同様に、オゾン雰囲気(AT094)は、オゾン発生器によって生成され、本明細書中で上述したように雰囲気制御装置35内に流入させられたオゾンの正圧を形成することにより達成された。なお、供給されたオゾン中に、有意な窒素含有量が存在する可能性がある。
さらに、ヘリウム雰囲気(AT095)は、本明細書中で上述したように、雰囲気制御装置35内に流入させられたヘリウムの正圧を形成することにより達成された。
空気雰囲気は、雰囲気制御装置35を使用することなしに達成された。
還元性雰囲気(又は空気不足雰囲気)は、電極セット#1及び電極セット#4における各電極1,5の周りに雰囲気制御装置35を設け、そして雰囲気制御装置35の入口部分37内に気体を提供しないことにより、達成された。この事例において、外部雰囲気(すなわち空気雰囲気)は、雰囲気制御装置35内に孔37を通って流入することが見いだされ、生成されたプラズマ4は、空気雰囲気プラズマと比べて著しく強い橙色を呈した。
プラズマ4のそれぞれの組成を理解するために、「Photon Control Silicon CCD Spectrometer, SPM-002-E」(Blue Hill Optical Technologies, Westwood, Massachusetts)を使用して、プラズマ4のそれぞれ毎にスペクトルを収集した。
具体的には、図65a及び65bを参照すると、Photon Control Silicon CCD Spectrometer 500を使用して、電極1と水3の表面2との間に発生した各プラズマ4上のスペクトル(200−1090nm,0.8/2.0nm 中心/端 解像度)を収集した。Spectrometer 500はUSBケーブルを介して、Photon Control Spectrometerソフトウェア改訂版2.2.3を取り込んだコンピュータ(図示せず)に接続した。プレキシガラス支持体503の端部に、200μmコア光ファイバーパッチ・ケーブル502(SMA-905, Blue Hill Optical Technologies)を取り付けた。プレキシガラス支持体の反対側506に、レーザーポインタ501(Radio Shack Ultra Slim Laser Pointer, #63-1063)を取り付けた。この集成体503は、照準装置としてレーザーポインタ501を使用して、光ケーブル502が、形成された各プラズマ4の同じ中央部分に直接照準を当てるように正確に繰り返し位置決めできるように形成された。
各プラズマ4によって形成されたスペクトルを収集する前に、雰囲気制御装置35を30秒間にわたって各気体で飽和し、そしてソフトウェア・パッケージに設定された2秒間曝露とともにバックグラウンド・スペクトルを収集した。プラズマ4は、データ収集前の10分間にわたって活性であった。レーザー501からの主要スポットを毎回同じ点と整列させた。試験毎に3つの別々のスペクトルを収集し、次いで平均した。各スペクトルの結果を図66a〜66eに示す(この例で後述する)。
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
Figure 0005946989
例6に論じられているように、原子吸収分光法(AAS)試料を調製し、そして測定値を得た。表14fは結果を示している。なお、表14fは「電極構造」と題する欄を含む。この欄は文字「1」及び「0」を含む。「1」は電極セット#1(すなわち1,5の組み合わせ)に相当する電極構造を表す。文字「0」は、5,5’の電極組み合わせを表す。このように、例えば「AT091」は「10010000」によって表される。これは、「AT091」を形成するために8つの電極セット組み合わせが使用されたことを意味し、そしてこの組み合わせは、セット#1=1,5;セット#2=5,5;セット#3=5,5及びセット#4=1,5;セット#5〜セット#8=5,5に相当した。
Figure 0005946989
表14fは、「測定Ag PPM」と題する欄を含む。この欄は、8種の溶液のうちのそれぞれの銀含有率に相当する。表に示すように、空気、窒素、還元性及びオゾンの雰囲気のそれぞれにおいて産出された測定ppmはほぼ同様であった。しかし、ヘリウム雰囲気(すなわちAT095)は、著しく低いppmレベルをもたらした。また、AT095溶液中の粒子状物質の粒度は、他の4種の溶液のそれぞれにおける粒子状物質の粒度を大幅に上回った。粒度は、本明細書中で前述したように、動的光散乱法によって割り出した。
図66a〜66eから明らかなように、プラズマ4から形成された図示の各スペクトルは、多数の極めて際立ったピークを有した。例えば空気、窒素、還元性、及びオゾンの雰囲気のそれぞれと関連する顕著なピークは全て、強い類似性を有している。しかしながら、プラズマ4によって形成されたスペクトルと関連するスペクトル・ピーク(すなわち、ヘリウムが雰囲気として提供されたとき)が、他の4つのピークとは全く異なる。これに関して、図66aは、この例において使用された気体のそれぞれに対応する各プラズマ4に対する完全なスペクトル応答を、200〜1000nmの全波長範囲にわたって示している。図66b及び66cは、当該スペクトルの特定部分に焦点を当て、各スペクトルと関連する雰囲気を名称で識別する。図66d及び66eは、これらのスペクトルのそれぞれにおける特定の共通のピークを識別する。具体的には、図67a〜67fは、本明細書中で上述した論文からの抜粋である。これらの図67a〜67fは、この例9のプラズマ4における活性ピークを識別するのを助ける。ヘリウム雰囲気と関連するスペクトル・ピークが、他の4種の雰囲気と関連するスペクトル・ピークと全く異なることは明らかである。
E. coli細菌に対する効力を割り出す(本明細書中に詳しく前述した)ために、例9に従って形成される5種の溶液それぞれを全て銀に関して正確に同じppmに希釈することにより、正規化された形で、これらの相対的な効力を比較した。従って、例えば、試験AT091に従って形成された試料を、44.0ppmから4ppmまで希釈したのに対して、試験AT095と関連する試料は28.3ppmから4ppmまで希釈した。これらの試料を次いでさらに希薄することにより、バイオスクリーン測定が上述のように実施されるのを可能にした。図68は、試料AT091〜AT095のそれぞれから採用された同じppmの銀で実施されたBioscreen C Microbiology Reader試験に相当する。図68の結果は、最高の効力がAT094及びAT096であり(注意:AT096は例10に従って形成する。これについては本明細書中で詳細に論じる)、最低の効力がAT095であることを示している。さらに、バイオスクリーン試験における結果は、比較を目的とした場合には極めて信頼性の高いものであるが、離れた時点において実施されたバイオスクリーン試験間の結果は、例えば初期細菌濃度が僅かに異なること、細菌の成長段階が僅かに異なること、などに起因して、信頼性の高い比較を可能にしないおそれがある。従って、異なる時点で実施されたバイオスクリーン試験間では、比較は行わなかった。
例10
プラズマを形成するためにAC電源を整流するダイオードブリッジ整流器を
使用する銀系ナノ粒子/ナノ粒子溶液AT096の製造
この例は、例1〜5の溶液を形成するために使用されたものと同じ基本装置を利用するが、しかしこの例は、DC様電源(すなわちダイオードブリッジ整流型電源)によって形成された2つのプラズマ4を使用する。具体的には、電極セット#1及び電極セット#4に対して、この例は「1,5」電極構造を使用し、電極1は図32cに示された電源に従ってプラズマ4を形成する。全ての他の電極セット#2、#3及び#5〜#8は、「5,5’」電極構造を有している。この例はまた、各電極セット内の電極1及び5のそれぞれのために純度99.95%の銀電極を利用する。
表15は、電極のデザイン、構造、位置、及び動作電圧の部分を要約する。表15に示すように、ターゲット電圧を、最低値約400ボルト(電極セット#4)、及び最高値約1,300ボルト(電極セット#3)に設定した。
さらに、各電極セットにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図69に示す。従って、表15並びに図69に含まれるデータによって、各電極セット内の電極デザイン、並びに製造法のために各電極に印加されるターゲット電圧及び実電圧に関して完全に理解することができる。
Figure 0005946989
例6に論じられているように、原子吸収分光法(AAS)試料を調製し、そして測定値を得た。表15aは結果を示している。なお、表15aは「電極構造」と題する欄を含む。この欄は文字「1*」及び「0」を含む。「1*」は電極セット#1(すなわち1,5の組み合わせ)に相当する電極構造を表す。電極1は負に偏倚されており、電極5が正に偏倚されている。文字「0」は、5,5’の電極組み合わせを表す。
Figure 0005946989
表15aは、「測定Ag PPM」と題する欄を含む。この欄は、溶液の銀含有率に相当する。表に示すように、測定ppmは51.2ppmであった。この銀含有率は、他の例において利用された他の8つの電極セットによって形成された他の試料よりもかなり高かった。
E. coli細菌に対する効力を割り出す(本明細書中に詳しく前述した)ために、本明細書中で上述された例9に従って形成された5種のそれぞれに対して、溶液AT096を試験した。具体的には、例9及びAT096から生じた5種の溶液の全てを銀に関して正確に同じppmに希釈することにより、例9において論じたように、正規化された形で、これらの相対的な効力を比較した。図68は、試料AT092〜AT096のそれぞれから採用された同じppmの銀で実施されたBioscreen C Microbiology Reader試験に相当する。図68の結果は、AT096が最良に機能する溶液の1つであったことを示している。さらに、バイオスクリーン試験における結果は、比較を目的とした場合には極めて信頼性の高いものであるが、離れた時点において実施されたバイオスクリーン試験間の結果は、例えば初期細菌濃度が僅かに異なること、細菌の成長段階が僅かに異なること、などに起因して、信頼性の高い比較を可能にしないおそれがある。従って、異なる時点で実施されたバイオスクリーン試験間では、比較は行わなかった。
AT096のために使用された雰囲気は空気であり、そして空気プラズマの対応スペクトルが図70a,70b及び70cに示されている。これらのスペクトルは、図66a,66b及び66cに示されたものと同様である。加えて、図70a,70b及び70cは、全てAT096中のプラズマ4を形成するために使用されたものと一致する設定に従って産出された、窒素、還元性、空気不足、及びヘリウムの雰囲気と関連するスペクトルを示している。これらの雰囲気及びこれらと関連する測定値は、例9における教示内容に従って形成した
同様に、図71a,71b及び71cは、この例において前に使用された電極1の極性が逆にされたときに、プラズマ4から収集された同様の一連のスペクトルを示している。これに関しては、空気、窒素、還元性又は空気不足、オゾン及びヘリウムの雰囲気の全てがまた利用されるが、しかしこの場合には、電極1は正に偏倚されており、電極5(すなわち水3の表面2)は負に偏倚されている。
例11
関連ナノ粒子溶液の効力及び細胞毒性の試験
この例は例2[AT060]、例3[AT031−AT064]、及び例4[BT006−BT012]の教示内容に従って、2種の異なる銀系ナノ粒子/ナノ粒子溶液及び1種の亜鉛系ナノ粒子/ナノ粒子溶液を製造する。加えて、BT006及びBT012を形成するための本発明の方法に一部基づいて、新しい異なる溶液(すなわちPT001)も産出した。産出されたら3種の溶液を効力及び細胞毒性に関して試験した(PT001の製造方法は参考例である)
具体的には、例2の方法によって形成された溶液(すなわちAT060)を、本明細書中で上述したように、マウス肝上皮細胞に対する細胞毒性に関して試験した。結果を図72aに示す。同様に、図3に従って産出された溶液(すなわちAT031)を「AT064」として形成し、そしてやはり細胞毒性に関して同様に試験した。結果を図72bに示す。さらに、例4(すなわちBT006)に従って産出された材料を形成し、「BT012」と称し、そしてやはり細胞毒性に関して同様に試験した。結果を図72cに示す。
溶液GR5及びGR8に関連して表8に示されているものに従って、GR5及びGR8を形成するために、次いで材料(すなわちAT060,AT064及びBT012)の混合物を形成した。具体的には、AT064とBT012とを混合することによりGR5を形成し、そしてAT060とBT012とを混合することによりGR8を形成し、その結果、それぞれの銀及び亜鉛の量を、表8に示されているものと同じにした。
GR5及びGR8の溶液が一旦形成されると、それぞれの細胞毒性を測定した。具体的には、図73a及び図73bに示すように、GR5の細胞毒性を割り出した。これに関して、銀ナノ粒子濃度を基準としたGR5のLD50は、5.092であるのに対して、総ナノ粒子濃度(すなわち銀及び亜鉛の両方)を基準としたLD50は、15.44であった。
これと比較して、図74aは、銀ナノ粒子濃度を基準としたLD50を示しており、GR8に対してこれは4.874であった。同様に、図74bは、GR8中の総ナノ粒子濃度(すなわち銀粒子及び亜鉛粒子の合計)に関する18.05に等しいLD50を示している。
この例11における他の本発明の材料「PT001」は、下記方法によって形成した。電極セット#1は1,5の組み合わせであった。電極セット#2も1,5の組み合わせであった。位置2〜8には電極セットはなかった。従って、この電極の組み合わせは「11XXXXXX」によって表された。両電極セット#1及び#2における各電極1及び5の組成は高純度白金(すなわち99.999%)であった。表16aは、PT001のための特定の試験条件を示している。
さらに、各電極セットにおける各電極毎の実電圧及びターゲット電圧の棒グラフを図75に示す。従って、表16a、並びに図75に含まれるデータによって、各電極セット内の電極デザイン、並びに製造法のために各電極に印加される実電圧及びターゲット電圧に関して完全に理解することができる。
Figure 0005946989
次いで、溶液PT001を、あたかもこれがBT012中に存在するものと等価の体積(すなわち23ppmの亜鉛)の亜鉛系ナノ粒子を有しているかのように処理した。換言すれば、体積約150mlのPT001を約50mlのAT064に添加することにより、GR5*を産出し、そして体積約170mlのPT001を約33mlのAT060に添加することにより、GR8*を産出した。一旦混合したら、これらの新しい材料溶液(すなわちGR5*及びGR8*)を、細胞毒性の試験を行う前に24時間にわたって静置しておいた。
図76aは、GR5*のLD50が8.794であった(すなわち総銀ナノ粒子濃度を基準として)ことを示す。これと比較して、AT064中の銀単独のLD50は7.050であり、そしてGR5のLD50(銀濃度だけを基準とする)は5.092である。
同様に、図76bは、銀ナノ粒子濃度の関数としてのGR8*の細胞毒性を示す。GR8*のLD50(すなわち銀ナノ粒子濃度を基準とする)は7.165であった。これと直接比較して、AT064のLD50は9.610であり、そしてGR8のLD50(銀濃度だけを基準とする)は4.874である。
従って、GR5*及びGR8*のそれぞれのLD50は、それぞれGR5及びGR8の対応するLD50よりも高かった(すなわち混合物GR5及びGR8のそれぞれにおける銀含有率に関して)。
GR5及びGR5*のそれぞれの、E.coliに対する生物学的効力を次いで比較した。具体的には、図77aは、本明細書中で上述した手順に従って試験されたバイオスクリーン反応を示している。このバイオスクリーン反応において、GR5及びGR5*の性能がほぼ同一であることが明らかである。
同様に、E.coliに対する生物学的効力の比較も、GR8及びGR8*に関して実施した。この比較を図77bに示す。GR8及びGR8*の両方は、実質的に同一の生物学的性能を有した。
従って、この例は、混合物GR5及びGR8のそれぞれにおけるBT012の代わりに溶液PT001を利用することにより、溶液GR5及びGR8の細胞毒性を低下させ得ることを示している。さらに、このような細胞毒性は、図77a及び77bに示しているように、E.coliに対する生物学的効力を犠牲にすることなしに低下される。
しかし、言うまでもなく、例えば溶液GR5及びGR8中のBT012に相当する材料の存在によって、生体内の他の利点を得ることができる。
例12
可変の亜鉛系ナノ粒子/ナノ粒子溶液を添加することによる
2つの異なる銀系ナノ粒子/ナノ粒子溶液の生物学的性能の比較、
及び関連する老化研究
例11に開示された材料、つまりAT064及びAT060と、BT012と等価なもの(すなわちBT013)とを、変化する比率で混合することにより、生物学的効力の差異が観察され得るかどうかを割り出した(例えば図49及び50に示された研究と類似する)。しかしこの研究においては、溶液混合時と生物学的効力の試験時との間に経過した時間の関数としての生物学的効力を調査した。
具体的には、図78aは、AT064とBT013との種々様々な混合物の生物学的効力の結果を示している。ここでは、AT064の量は、添加されたBT013の量に対して一定のppmのままである。従って、その結果、添加される亜鉛は、2ppm Zn、4ppm Zn、8ppm Zn、及び13ppm Znの順序で増大する。これらの異なるZn添加量は、図49及び50と関連するデータを生成するために用いられたものと同様のアプローチによって達成された。図78aが明らかに示すように、AT064の生物学的性能が、BT013を添加することにより高められた。なお、AT064とBT013とを混合した直後に、効力試験を開始した。具体的には、図78aは、種々の銀−亜鉛混合物の生物学的性能を示している。このような混合物は、バイオスクリーン試験の実行開始にできるかぎり近い時点(Δt=0)に混合された。添加された13ppmのZnは、他のより低いppmの亜鉛レベルと同様に、AT064に対して大幅に高められた性能を示す。しかしながら、2ppm、4ppm及び8ppmのZn添加量の間に存在する性能の差は、互いに僅かなものに過ぎなかった。これらの相対的な性能は図78bにおいて大幅に高められた。
具体的には、図78bはΔt=1を示す。これは、バイオスクリーン試験される前のほぼ24時間にわたって混合された後、原材料AT064及びBT013を、攪乱されない状態で静置させておくことに相当する。AT064に添加されるZnのppmの全ての間で、生物学的効力の明らかな区別が見られる。これとともに13ppmは0.8日後にまだ陰性対照に等しく機能する。従って、混合後に所定の時間を生物学的効力試験の前に経過させておくことによって、BT013とAT064とを混合することによる性能の向上が達成される。
図79aは、図78aとは僅かに異なる結果を示す。具体的には、図79aは、2ppm Zn、4ppm Zn、8ppm Zn、及び13ppm Znと混合されたきの、AT060の生物学的効力の変化を示す。図78aとは異なり、AT060に2ppm及び4ppmの亜鉛を添加したときに、混合してすぐに生物学的試験を行った後で生物学的効力の変化を示すことはなかった。従って、この試験においてΔt=0である場合、つまり、AT060とBT013とを混合してすぐにバイオスクリーンで試験することに相当する場合、2ppm及び4ppmのZnの添加に関しては、効力の向上は観察されなかった。8ppm及び13ppmのZnの場合に、AT060の僅かに高められた性能が観察された。
しかしながら、生物学的効力の結果は図79bにおいて劇的に異なる。この効力試験において、成分AT060及びBT013を、ほぼ24時間に相当するΔt=1にわたって静置させておいた。材料AT060及びBT013をほぼ24時間にわたって静置させ、次いでバイオスクリーン試験を実施した後、図78bに示されたものと同様の効力の広がりが観察された。具体的には、それぞれ2ppm、4ppm、8ppm、及び13ppmのZnが添加された各AT060の間に、生物学的効力の明確な区別が存在する。
付加的な「待機時間」が更なる向上効果を有するかどうかを見極めるために、付加的な生物学的効力試験を行った。具体的には、図79cにおけるデータは、増大するZnのppm濃度の関数としてのAT060の効力変化を試験する前の、Δt=2(すなわちほぼ48時間)の「待機時間」に相当する。図79cに示された効力変化が、図79bに示された効力変化とほぼ同一であることが判明した。従って、図79bにおいて発生した反応が、24時間〜48時間のより大きい範囲で発生するようには見えなかったことは明らかである。
図78aと図78bとの間、そして図79aと図79b及び79cとの間に観察される生物学的効力の差異を明らかにするために、本明細書中で論じた手順に従って、動的光散乱(DLS)試験を実施した。
具体的には2組のDLS試験を行った。第1試験は、AT064とBT013とを、GR5を産出するための比率で混合した(すなわち約50mlのAT064及び約150mlのBT013)。第2試験は、AT060とBT013とを、GR8を産出するための比率で混合した(すなわち約33mlのAT060及び約170mlのBT013)。
前記の材料を混合したあとの時間の関数としてのDLSの結果を、図80及び81に示している。具体的に、図80a〜80fは、6つの異なる時点、つまりt=0;t=80分目;t=5時間目;t=5.5時間目;t=6時間目;及びt=21時間目に求められたDLSサイズ測定値を示している。同様に、図81a〜81eは、5つの異なる時点、つまりt=0;t=80分目;t=4時間目;t=5時間目;及びt=21時間目に求められたDLSサイズ測定値を示している。
AT060とBT013との間に発生する1つ又は2つ以上の反応と同様に、AT064とBT013との間にも1つ又は2つ以上の反応が発生することが、図80及び81に示された結果から明らかである。AT064及びAT060の初期粒度は、例えば本明細書中で前述した、図43のTEM顕微鏡写真によれば異なることがある一方、Agを含有する溶液及びZnを含有する溶液の濃度及び性質が、GR5及びGR8のそれぞれで異なっている。いずれの場合にも、GR5及びGR8を含む両混合物のDLS測定値は、比較的大きい粒度が存在することを示している。おそらく何らかの粒子凝集が生じていると考えられる。しかし5〜6時間後には、DLS測定値は、検出された粒度が著しく減少したことを示す。さらに21時間後、DLS測定値は、検出された粒度が著しく等価であったことを示唆する。
特定の理論又は説明によって縛られたくはないが、粒度及び生物学的性能(例えばE. coliに対する効力)が関係することは明らかである。
本発明の実施態様としては、以下の態様を挙げることができる:
《態様1》
少なくとも1種の液体を改質するほぼ連続的な方法であって:
少なくとも1種の液体を、少なくとも1つのトラフ部材を通して流し;
少なくとも1種のプラズマを、前記少なくとも1種の液体の少なくとも一部と接触させ;そして
前記トラフ部材内部で少なくとも1つの電気化学反応を発生させる
ことを含む、少なくとも1種の液体を改質するほぼ連続的な方法。
《態様2》
少なくとも1つのトラフ部材が、液体がその中を流れるのを可能にする導管を含む、態様1に記載の方法。
《態様3》
前記プラズマが、調節可能なプラズマを含む、態様1に記載の方法。
《態様4》
前記調節可能なプラズマが、前記少なくとも1種の液体から所定の間隔を置いて設けられた少なくとも1つの電極と、前記少なくとも1種の液体の一部との間に形成される、態様3に記載の方法。
《態様5》
前記少なくとも1種の電極が、少なくとも1種の調節可能なプラズマ中に存在する少なくとも1つの種の一部を該電極から提供する、態様4に記載の方法。
《態様6》
前記プラズマが、前記少なくとも1種の液体の表面の少なくとも一部と接触する、態様1に記載の方法。
《態様7》
前記少なくとも1つの電気化学反応が、前記1種の液体と接触してこれと反応する少なくとも1組の電極を含む、態様1に記載の方法。
《態様8》
前記少なくとも1つの電気化学反応が、前記少なくとも1種のプラズマと前記少なくとも1種の液体との前記接触に続いて生じる、態様1に記載の方法。
《態様9》
前記少なくとも1種のプラズマが、少なくとも1つのプラズマ形成金属電極と、前記少なくとも1種の液体の表面の少なくとも一部との間に形成されたプラズマを含む、態様1に記載の方法。
《態様10》
前記少なくとも1つのプラズマ形成金属電極の少なくとも1つの成分が、前記プラズマ中に存在する、態様9に記載の方法。
《態様11》
前記少なくとも1つの成分が、前記少なくとも1種の液体の少なくとも一部を含む、態様10に記載の方法。
《態様12》
前記少なくとも1つのプラズマ形成金属電極の前記少なくとも1つの成分が、前記少なくとも1種の液体中に存在してから、前記少なくとも1つの電気化学反応が生じる、態様11に記載の方法。
《態様13》
前記少なくとも1つの電気化学反応を発生させるために、少なくとも2つの電極が前記少なくとも1種の液体と接触する、態様12に記載の方法。
《態様14》
前記少なくとも1つの電気化学反応を発生させるために、前記少なくとも2つの電極の間に、電源が設けられている、態様13に記載の方法。
《態様15》
前記少なくとも2つの電極が、少なくとも1つの金属成分を含む、態様13に記載の方法。
《態様16》
前記少なくとも2つの電極が、前記少なくとも1種の液体中で金属系ナノ粒子を形成するのを助ける、態様14に記載の方法。
《態様17》
少なくとも1種の液体を改質するほぼ連続的な方法であって:
少なくとも1つのトラフ部材を通る少なくとも1種の液体の流動方向を生成し;
前記少なくとも1種の液体の表面から所定の間隔を置いて少なくとも1つの金属系プラズマ形成電極を用意し;
前記少なくとも1つの金属系プラズマ形成電極と、前記少なくとも1種の液体の前記表面との間に少なくとも1種のプラズマを形成し;
前記少なくとも1種の液体の少なくとも一部と接触する少なくとも1組の電極を用意し、前記少なくとも1組の電極は、前記液体が前記少なくとも1つの金属系プラズマ形成電極を流過した後で、前記少なくとも1種の液体と接触し;そして
前記少なくとも1組の電極を、前記少なくとも1種の液体の少なくとも一部と反応させる
ことを含む、少なくとも1種の液体を改質するほぼ連続的な方法。
《態様18》
液体をほぼ連続的に改質する装置であって:
少なくとも1つのトラフ部材と;
少なくとも1つのプラズマ形成金属系電極と;
少なくとも1つの電気化学反応を行うための少なくとも1組の金属系電極と;
前記少なくとも1つのプラズマ形成金属系電極に接続された少なくとも1つの第1電源と;
前記少なくとも1つの電気化学反応を行うための前記少なくとも1組の金属系電極に接続された少なくとも1つの第2電源と
を含む、液体をほぼ連続的に改質する装置。
《態様19》
さらに:
前記少なくとも1つのトラフ部材に液体を供給するための少なくとも1つの手段
を含む、態様18に記載の装置。
《態様20》
前記少なくとも1つのプラズマ形成金属系電極、及び前記少なくとも1組の金属系電極のうちの少なくとも1つから、前記液体中で、金属系ナノ粒子が生成される、態様18に記載の装置。
《態様21》
流動液体中で金属系ナノ粒子を連続的に形成する装置であって:
少なくとも1つの入口部分と少なくとも1つの出口部分とを含む少なくとも1つのトラフ部材と;
前記出口部分よりも前記入口部分の近くに配置されて少なくとも1つの第1電源に接続された、少なくとも1つのプラズマ形成金属系電極と;
前記入口部分よりも前記出口部分の近くに配置されて少なくとも1つの第2電源に接続された、少なくとも1組の金属系電極と
を含む、
流動液体中で金属系ナノ粒子を連続的に形成する装置。
《態様22》
前記液体が水を含む、態様21に記載の装置。
《態様23》
前記少なくとも1つのプラズマ形成金属系電極が、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の材料を含む、態様21に記載の装置。
《態様24》
前記少なくとも1組の金属系電極が、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の材料を含む、態様21に記載の装置。
《態様25》
前記少なくとも1つのプラズマ形成金属系電極、及び前記少なくとも1組の金属系電極は、大部分が異なる金属を含む、態様24に記載の装置。
《態様26》
前記少なくとも1つのプラズマ形成金属系電極、及び前記少なくとも1組の金属系電極は、実質的に同じ金属を含む、態様24に記載の装置。
《態様27》
少なくとも2つのプラズマ形成金属系電極が設けられている、態様21に記載の装置。
《態様28》
少なくとも2組の金属系電極が設けられている、態様21に記載の装置。
《態様29》
少なくとも2つのプラズマ形成金属系電極が、前記出口部分よりも前記入口部分の近くに配置されており、そして少なくとも2組の金属系電極が、前記入口部分よりも前記出口部分の近くに配置されている、態様21に記載の装置。
《態様30》
少なくとも2つの金属系電極が、前記出口部分よりも前記入口部分の近くに配置されており、そして前記流動液体が、前記少なくとも1組の金属系電極と接触する前に、前記少なくとも2つのプラズマ形成金属系電極と接触する、態様21に記載の装置。
《態様31》
前記少なくとも1つのトラフ部材が、直線形状、「Y字形」、及び「Ψ字形」のうちの少なくとも1つを含む、態様21に記載の装置。
《態様32》
少なくとも1種の流動液体を連続的に改質する装置であって:
少なくとも1つの入口部分と少なくとも1つの出口部分とを含む少なくとも1つのトラフ部材と;
前記出口部分よりも前記入口部分の近くに配置された少なくとも1つのプラズマ形成電極と;
前記入口部分よりも前記出口部分の近くに配置された少なくとも1組の金属系電極と
を含み、前記流動液体が、前記少なくとも1組の金属系電極と接触する前に、前記少なくとも1つのプラズマ形成電極と接触する、
少なくとも1種の流動液体を連続的に改質する装置。
《態様33》
前記少なくとも1つのトラフ部材が、直線形状、「Y字形」、及び「Ψ字形」のうちの少なくとも1つを含む、態様32に記載の装置。
《態様34》
さらに、前記少なくとも1つのプラズマ形成金属系電極の周りに設けられた少なくとも1つの雰囲気制御装置を含む、態様32に記載の装置。
《態様35》
さらに、前記少なくとも1つのプラズマ形成電極及び前記少なくとも1組の金属系電極から成る群から選択された少なくとも1つの部材の高さを調節するための少なくとも1つの制御装置を含む、態様32に記載の装置。
《態様36》
前記少なくとも1つの制御装置が、前記少なくとも1つの部材を横切るほぼ一定の電圧を維持することにより、前記高さを調節する、態様33に記載の装置。
《態様37》
複数組の金属系電極から上流側に、第1のプラズマ形成電極が配置されている、態様32に記載の装置。
《態様38》
複数組の金属系電極から上流側に、少なくとも2つのプラズマ形成電極が配置されている、態様32に記載の装置。
《態様39》
少なくとも1つの雰囲気制御装置が、前記第1のプラズマ形成電極を取り囲んでいる、態様37に記載の装置。
《態様40》
前記少なくとも1種の液体が水を含み、前記少なくとも1つのプラズマ形成電極が、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の材料を含み、そして前記少なくとも1組の金属系電極が、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の材料を含む、態様32に記載の装置。

Claims (14)

  1. 少なくとも1種の流動液体を連続的に改質して金属ナノ粒子及び/又は金属イオンを含む液体を製造する方法であって:
    少なくとも1種の流動液体を、少なくとも1つのトラフ部材を通して流し;
    少なくとも1組のプラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極を提供し、前記プラズマ形成電極は、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の金属を含み、かつ前記少なくとも1種の流動液体の上表面の間に少なくとも1種のプラズマのための空間が形成されるように配置されており、前記少なくとも1組の前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極には第1の電源が接続されており;
    前記少なくとも1組の前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極により、前記少なくとも1種の流動液体の上表面の少なくとも一部と接触する前記少なくとも1種のプラズマを発生させ、前記プラズマ形成電極の少なくとも1種の成分が前記少なくとも1種の流動液体中に移行し
    前記少なくとも1種の流動液体と接触し、かつ前記少なくとも1種の流動液体の流れ方向において前記少なくとも1組前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極の下流に位置する、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の金属を含む少なくとも1組の追加の金属系電極を提供し、前記少なくとも1組の追加の金属系電極には第2の電源が接続されており;そして
    前記少なくとも1組の追加の金属系電極で少なくとも1つの電気化学反応を発生させて、前記金属ナノ粒子及び/又は金属イオンを含む流動液体を得る
    ことを含む、少なくとも1種の流動液体を連続的に改質して金属ナノ粒子及び/又は金属イオンを含む液体を製造する方法。
  2. 前記少なくとも1つのトラフ部材が、前記少なくとも1種の流動液体がその中を流れるのを可能にする流路を含む、請求項1に記載の方法。
  3. 少なくとも1種の流動液体を流すための、少なくとも1つのトラフ部材と;
    少なくとも1種のプラズマを生成するための、少なくとも1組のプラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極と、前記プラズマ形成電極は、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の金属を含み、前記少なくとも1種の流動液体の上表面の間に前記少なくとも1種のプラズマのための空間が形成され、かつ前記少なくとも1種のプラズマが前記少なくとも1種の流動液体の上表面の少なくとも一部と接触するように、配置されており;
    前記少なくとも1種の流動液体において少なくとも1つの電気化学反応を行うための、白金、チタン、亜鉛、銀、銅、金、並びにこれらの合金及び混合物から成る群から選択された少なくとも1種の金属を含む少なくとも1組の追加の金属系電極であって、前記少なくとも1種の流動液体の流れ方向において前記少なくとも1組前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極の下流に位置する少なくとも1組の追加の金属系電極と;
    前記少なくとも1組前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極に接続された少なくとも1つの第1電源と;
    前記少なくとも1組の追加の金属系電極に接続された少なくとも1つの第2電源と
    を具備する、請求項1又は2に記載された製造方法を実施するための装置。
  4. さらに:
    前記少なくとも1つのトラフ部材に前記少なくとも1種の流動液体を供給するための少なくとも1つの液体輸送手段
    を含む、請求項に記載の装置。
  5. 前記少なくとも1種の流動液体が水を含む、請求項3又は4に記載の装置。
  6. 前記少なくとも1つのプラズマ形成電極、及び前記少なくとも1組の追加の金属系電極は、異なる材料からなる、請求項3〜5のいずれか1項に記載の装置。
  7. 前記少なくとも1つのプラズマ形成電極、及び前記少なくとも1組の追加の金属系電極は、同じ材料からなる、請求項3〜6のいずれか1項に記載の装置。
  8. 少なくとも2組の前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極が設けられている、請求項3〜7のいずれか1項に記載の装置。
  9. 少なくとも2組前記追加の金属系電極が設けられている、請求項3〜8のいずれか1項に記載の装置。
  10. 前記少なくとも2組の前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極が、前記少なくとも1つのトラフ部材の出口部分よりも前記少なくとも1つのトラフ部材の入口部分の近くに配置されており、そして前記少なくとも2組の追加の金属系電極、前記入口部分よりも前記出口部分の近くに配置されている、請求項に記載の装置。
  11. 前記少なくとも2組の追加の金属系電極が、前記少なくとも1つのトラフ部材の出口部分よりも前記少なくとも1つのトラフ部材の入口部分の近くに配置されており、そして前記少なくとも1種の流動液体が、前記少なくとも2組の追加の金属系電極と接触する前に、前記少なくとも2組の前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極により発生された少なくとも2種のプラズマと接触する、請求項に記載の装置。
  12. 前記少なくとも1つのトラフ部材が、直線形状、「Y字形」、及び「Ψ字形」のうちの少なくとも1つを含む、請求項3〜11のいずれか1項に記載の装置。
  13. さらに、少なくとも1つの前記プラズマ形成電極の周りに設けられた少なくとも1つの雰囲気制御装置を含む、請求項3〜12のいずれか1項に記載の装置。
  14. 少なくとも2組の前記追加の金属系電極より上流側に、少なくとも2組の前記プラズマ形成電極及び前記少なくとも1種の流動液体と接触する電極が配置されている、請求項3〜13のいずれか1項に記載の装置。
JP2010516070A 2007-07-11 2008-07-11 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液 Active JP5946989B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US94917507P 2007-07-11 2007-07-11
US60/949,175 2007-07-11
US94931207P 2007-07-12 2007-07-12
US60/949,312 2007-07-12
PCT/US2008/008558 WO2009009143A1 (en) 2007-07-11 2008-07-11 Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013261861A Division JP2014097496A (ja) 2007-07-11 2013-12-18 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液

Publications (3)

Publication Number Publication Date
JP2010540208A JP2010540208A (ja) 2010-12-24
JP2010540208A5 JP2010540208A5 (ja) 2016-05-12
JP5946989B2 true JP5946989B2 (ja) 2016-07-06

Family

ID=40228949

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010516070A Active JP5946989B2 (ja) 2007-07-11 2008-07-11 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液
JP2013261861A Pending JP2014097496A (ja) 2007-07-11 2013-12-18 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液
JP2015116851A Active JP6339528B2 (ja) 2007-07-11 2015-06-09 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013261861A Pending JP2014097496A (ja) 2007-07-11 2013-12-18 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液
JP2015116851A Active JP6339528B2 (ja) 2007-07-11 2015-06-09 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液

Country Status (15)

Country Link
US (5) US8617360B2 (ja)
EP (2) EP3889102A3 (ja)
JP (3) JP5946989B2 (ja)
KR (1) KR101424652B1 (ja)
CN (2) CN103757663A (ja)
AU (1) AU2008275616B2 (ja)
CA (2) CA3016689C (ja)
DE (1) DE08780145T1 (ja)
DK (1) DK2178796T3 (ja)
ES (1) ES2858624T3 (ja)
HU (1) HUE053226T2 (ja)
PL (1) PL2178796T3 (ja)
PT (1) PT2178796T (ja)
SI (1) SI2178796T1 (ja)
WO (1) WO2009009143A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016403A (ja) * 2007-07-11 2016-02-01 ジーアール インテレクチュアル リザーブ リミティド ライアビリティカンパニー 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9387452B2 (en) 2009-01-14 2016-07-12 Gr Intellectual Reserve, Llc. Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
JP5788808B2 (ja) 2009-01-15 2015-10-07 ジーアール インテレクチュアル リザーブ リミティド ライアビリティカンパニー 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、半連続法、及びバッチ法、装置、並びにこれから生じるナノ粒子、及びナノ粒子/液体溶液及びコロイド
KR102051248B1 (ko) * 2009-07-08 2019-12-02 클레네 나노메디슨, 인크. 의학적 치료를 위한 신규한 금계 나노결정 및 이를 위한 전기화학 제조 방법
BR112013025112A2 (pt) 2011-03-30 2020-09-29 Gr Intellectual Reserve, Llc novas suspensões de nanocristais bimetálicos ouro platina, processo de manufatura eletroquímica dos mesmos e uso
JP2014010931A (ja) * 2012-06-28 2014-01-20 Nippon Menaade Keshohin Kk プラズマ処理方法及び処理装置
JP6093518B2 (ja) * 2012-07-18 2017-03-08 日本メナード化粧品株式会社 金属酸化物の等電点を変化させる方法、及びこの方法で処理された金属酸化物
CN103073094A (zh) * 2013-01-29 2013-05-01 浙江大学 液层电阻阻挡放电装置及其水处理的方法
FR3021407B1 (fr) * 2014-05-23 2016-07-01 Commissariat Energie Atomique Dispositif d'analyse d'un metal en fusion oxydable par technique libs
US10343132B2 (en) 2014-05-30 2019-07-09 Fuji Corporation Plasma emitting method and plasma emitting device
JP6643324B2 (ja) 2014-09-02 2020-02-12 アメリカン シルヴァー リミテッド ライアビリティ カンパニー ボツリヌス毒素及びコロイド状銀粒子
EP3233338B1 (en) 2014-12-17 2021-01-27 Universite Laval Dielectric barrier discharge plasma method and apparatus for synthesizing metal particles
CN105611711B (zh) * 2015-12-24 2017-10-20 河南理工大学 一种聚合物表面改性用气液两相等离子体产生装置
US10300551B2 (en) * 2016-11-14 2019-05-28 Matthew Fagan Metal analyzing plasma CNC cutting machine and associated methods
US10195683B2 (en) * 2016-11-14 2019-02-05 Matthew Fagan Metal analyzing plasma CNC cutting machine and associated methods
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
US10900907B2 (en) * 2017-02-17 2021-01-26 Radom Corporation Portable plasma source for optical spectroscopy
JP7127127B2 (ja) * 2018-07-31 2022-08-29 株式会社Fuji 大気圧プラズマ処理装置
CN109655447B (zh) * 2019-01-28 2022-04-08 广东海天创新技术有限公司 用于微生物计数的检测系统和方法
CN111215636B (zh) * 2020-01-17 2022-07-12 西北师范大学 一种Ag纳米粒子的制备方法
US20220020481A1 (en) 2020-07-20 2022-01-20 Abbott Laboratories Digital pass verification systems and methods
CN115582551A (zh) * 2021-07-05 2023-01-10 无锡金鹏环保科技有限公司 一种液相环境连续制备纳米金属粉末的工艺
CN114001685B (zh) * 2021-11-16 2023-11-21 北京千河空间科技有限公司 基于超声波的分层厚度及表面烧蚀后退量的无损测量方法
ES2916847A1 (es) * 2021-12-30 2022-07-06 Ecosystem Ag Inc Reactor para dispositivo de eliminación de residuos
WO2024044361A2 (en) * 2022-08-26 2024-02-29 Plazer Ip, Llc Improved plasma products and methods for producing same by using multiple simultaneous electrical discharges
CN115672225A (zh) * 2023-01-04 2023-02-03 烟台伊莱文医药科技有限公司 一种制备高价银基化合物水溶液的方法

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191012908A (en) 1910-05-27 1910-12-31 Franz Reitberger Improved Corn-mill.
FR432101A (fr) 1910-10-26 1911-11-29 I S Petzholdt Maschinen Fabrik Procédé et machine destinés au traitement du cacao fluide
JPS529615B1 (ja) * 1970-03-31 1977-03-17
DE2854946A1 (de) 1978-12-20 1980-07-10 Agfa Gevaert Ag Fotografisches farbdiffusionsuebertragungsverfahren
CH681655A5 (ja) 1989-12-06 1993-04-30 Baumer Electric Ag
CA2104355C (en) 1993-08-18 1997-06-17 Ion I. Inculet Method and apparatus for ozone generation and treatment of water
DE4422858C1 (de) 1994-06-30 1995-07-27 Henkel Kgaa Ungesättigte Fettalkohole mit verbessertem Kälteverhalten
EP0718061A1 (en) * 1994-12-23 1996-06-26 Institute of Petroleum Chemistry, Russian Academy of Sciences Active metal powders
US5876663A (en) * 1995-11-14 1999-03-02 The University Of Tennessee Research Corporation Sterilization of liquids using plasma glow discharge
ZA9610018B (en) 1995-11-28 1997-05-28 Austech Pty Ltd Liquid sterilisation apparatus
KR100203050B1 (ko) 1997-02-05 1999-06-15 조연제; 홍보성 하수처리 시스템 및 그 하수처리 시스템을 이용한 하수처리 방법
AUPO502297A0 (en) 1997-02-10 1997-03-06 Austech Pty Ltd Liquid purification apparatus
US5965994A (en) 1997-06-20 1999-10-12 Seo; Dong Il Automatic vertical moving systems and control methods therefor
US5878683A (en) 1997-09-10 1999-03-09 Pompanette, Inc. Drive member and line guide for a roller furler
US6558638B2 (en) * 1998-03-14 2003-05-06 Splits Technologies Limited Treatment of liquids
JP2000288547A (ja) * 1999-04-05 2000-10-17 Taiyo Kagaku Kogyo Kk 廃水の浄化処理方法及びその装置
CA2272596A1 (en) * 1999-05-21 2000-11-21 Lawrence A. Lambert Waste water treatment method and apparatus
US7135195B2 (en) 1999-06-01 2006-11-14 American Silver, Llc Treatment of humans with colloidal silver composition
US6214299B1 (en) 1999-06-01 2001-04-10 Robert J. Holladay Apparatus and method for producing antimicrobial silver solution
US7014881B2 (en) * 1999-11-01 2006-03-21 Alcoa Inc. Synthesis of multi-element oxides useful for inert anode applications
US7238472B2 (en) 2001-05-25 2007-07-03 Nanosphere, Inc. Non-alloying core shell nanoparticles
FR2826825B1 (fr) * 2001-06-28 2003-09-26 Cit Alcatel Procede de basculement d'un premier mode de radiocommunication vers un second mode de radiocommunication et terminal mobile multi-mode associe
US6962679B2 (en) * 2001-07-11 2005-11-08 Battelle Memorial Institute Processes and apparatuses for treating halogen-containing gases
JP3630122B2 (ja) * 2001-07-25 2005-03-16 日本電気株式会社 移動体トラヒック予想方法および予想方式
US7135054B2 (en) 2001-09-26 2006-11-14 Northwestern University Nanoprisms and method of making them
TWI291458B (en) * 2001-10-12 2007-12-21 Phild Co Ltd Method and device for producing titanium-containing high performance water
AU2003251288A1 (en) 2002-03-21 2003-11-03 Berkshire Laboratories, Inc. Methods for controlling crystal growth, crystallization, structures and phases in materials and systems
US7972390B2 (en) 2002-03-21 2011-07-05 Gr Intellectual Reserve, Llc Methods for controlling crystal growth, crystallization, structures and phases in materials and systems
GB0208263D0 (en) 2002-04-10 2002-05-22 Dow Corning Protective coating composition
US7118852B2 (en) 2002-04-11 2006-10-10 Throwleigh Technologies, L.L.C. Methods and apparatus for decontaminating fluids
AUPS220302A0 (en) * 2002-05-08 2002-06-06 Chang, Chak Man Thomas A plasma formed within bubbles in an aqueous medium and uses therefore
US6749759B2 (en) * 2002-07-12 2004-06-15 Wisconsin Alumni Research Foundation Method for disinfecting a dense fluid medium in a dense medium plasma reactor
US20040022702A1 (en) 2002-07-30 2004-02-05 Christensen Herbert E. Apparatus and method for automatically feeding the silver electrode into the solutiion
JP2004124155A (ja) * 2002-10-01 2004-04-22 Sumitomo Electric Ind Ltd 微小金属粉末の製造方法および微小金属粉末の製造装置
US6802981B2 (en) 2002-11-05 2004-10-12 Aquapure Technologies Ltd. Method for purification and disinfection of water
KR100493972B1 (ko) * 2003-03-21 2005-06-10 엘지전자 주식회사 플라즈마 디스플레이 패널의 서스테인 펄스 발생장치
KR20060080865A (ko) 2003-04-02 2006-07-11 노스웨스턴 유니버시티 나노입자의 성장을 제어하는 방법
US20060249705A1 (en) 2003-04-08 2006-11-09 Xingwu Wang Novel composition
JP4329460B2 (ja) * 2003-09-03 2009-09-09 パナソニック株式会社 プラズマディスプレイパネル
WO2005023406A2 (en) * 2003-09-10 2005-03-17 Ramot At Tel-Aviv University Ltd. Production of nanoparticles and microparticles
JP2007510836A (ja) 2003-11-12 2007-04-26 松下電器産業株式会社 圧縮機
US7276283B2 (en) * 2004-03-24 2007-10-02 Wisconsin Alumni Research Foundation Plasma-enhanced functionalization of carbon-containing substrates
US20060068026A1 (en) 2004-08-11 2006-03-30 Hu Michael Z Thermal electrochemical synthesis method for production of stable colloids of "naked" metal nanocrystals
KR100726713B1 (ko) 2005-08-26 2007-06-12 한국전기연구원 액중 전기폭발에 의한 나노분말 제조 방법 및 장치
WO2007044609A1 (en) 2005-10-06 2007-04-19 Pionetics Corporation Electrochemical ion exchange treatment of fluids
US20080277272A1 (en) 2006-01-03 2008-11-13 David Kyle Pierce Methods and Apparatuses for Making Liquids More Reactive
US20070267289A1 (en) * 2006-04-06 2007-11-22 Harry Jabs Hydrogen production using plasma- based reformation
WO2008008557A1 (en) 2006-07-11 2008-01-17 Infotonics Technology Center, Inc. Allergy testing cartridge with coated allergens
JP2008126107A (ja) * 2006-11-17 2008-06-05 Bco:Kk 浄化装置
US8088193B2 (en) * 2006-12-16 2012-01-03 Taofang Zeng Method for making nanoparticles
US7862782B2 (en) * 2007-01-12 2011-01-04 Wisconsin Alumni Research Foundation Apparatus and methods for producing nanoparticles in a dense fluid medium
US8617360B2 (en) 2007-07-11 2013-12-31 Gr Intellectual Reserve, Llc Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
US20090178933A1 (en) * 2008-01-14 2009-07-16 Taofang Zeng Method for Making Nanoparticles or Fine Particles
EP2310773A4 (en) 2008-06-30 2014-01-01 Carrier Corp REMOTE COOLING SYSTEM SHOWCASE
US8985139B2 (en) 2008-10-07 2015-03-24 Plasteco Corporation Carbon dioxide supply system
US9387452B2 (en) 2009-01-14 2016-07-12 Gr Intellectual Reserve, Llc. Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
US8540942B2 (en) 2009-01-14 2013-09-24 David Kyle Pierce Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) therefrom
JP5788808B2 (ja) 2009-01-15 2015-10-07 ジーアール インテレクチュアル リザーブ リミティド ライアビリティカンパニー 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、半連続法、及びバッチ法、装置、並びにこれから生じるナノ粒子、及びナノ粒子/液体溶液及びコロイド
KR102051248B1 (ko) * 2009-07-08 2019-12-02 클레네 나노메디슨, 인크. 의학적 치료를 위한 신규한 금계 나노결정 및 이를 위한 전기화학 제조 방법
BR112013025112A2 (pt) * 2011-03-30 2020-09-29 Gr Intellectual Reserve, Llc novas suspensões de nanocristais bimetálicos ouro platina, processo de manufatura eletroquímica dos mesmos e uso
US9600768B1 (en) 2013-04-16 2017-03-21 Google Inc. Using behavior of objects to infer changes in a driving environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016016403A (ja) * 2007-07-11 2016-02-01 ジーアール インテレクチュアル リザーブ リミティド ライアビリティカンパニー 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液

Also Published As

Publication number Publication date
SI2178796T1 (sl) 2021-04-30
CA3016689A1 (en) 2009-01-15
KR20100040871A (ko) 2010-04-21
US20150093453A1 (en) 2015-04-02
HUE053226T2 (hu) 2021-06-28
US20110005940A1 (en) 2011-01-13
PT2178796T (pt) 2021-03-29
WO2009009143A1 (en) 2009-01-15
EP2178796A1 (en) 2010-04-28
CA2693686A1 (en) 2009-01-15
JP2016016403A (ja) 2016-02-01
PL2178796T3 (pl) 2021-06-28
US9743672B2 (en) 2017-08-29
US20170367345A1 (en) 2017-12-28
US20190059386A1 (en) 2019-02-28
CA3016689C (en) 2019-10-15
JP2010540208A (ja) 2010-12-24
EP3889102A2 (en) 2021-10-06
CN101743199B (zh) 2013-12-25
JP2014097496A (ja) 2014-05-29
US20210392899A1 (en) 2021-12-23
US10092007B2 (en) 2018-10-09
CN103757663A (zh) 2014-04-30
EP2178796B1 (en) 2021-01-27
EP3889102A3 (en) 2022-01-05
KR101424652B1 (ko) 2014-08-01
EP2178796B8 (en) 2021-03-17
DK2178796T3 (da) 2021-03-01
DE08780145T1 (de) 2011-04-28
US11000042B2 (en) 2021-05-11
JP6339528B2 (ja) 2018-06-06
AU2008275616B2 (en) 2014-07-10
EP2178796A4 (en) 2011-05-04
CN101743199A (zh) 2010-06-16
AU2008275616A1 (en) 2009-01-15
US8617360B2 (en) 2013-12-31
ES2858624T3 (es) 2021-09-30
CA2693686C (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6339528B2 (ja) 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、装置、並びにこれから生じるナノ粒子及びナノ粒子/液体溶液
US8540942B2 (en) Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) therefrom
JP5788808B2 (ja) 液体を処理して液体中に或る成分(例えばナノ粒子)を製造する連続法、半連続法、及びバッチ法、装置、並びにこれから生じるナノ粒子、及びナノ粒子/液体溶液及びコロイド
US10441608B2 (en) Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
AU2017200072B2 (en) Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120612

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130917

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150219

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150424

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160602

R150 Certificate of patent or registration of utility model

Ref document number: 5946989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250