JP5942455B2 - スイッチングレギュレータ - Google Patents

スイッチングレギュレータ Download PDF

Info

Publication number
JP5942455B2
JP5942455B2 JP2012025669A JP2012025669A JP5942455B2 JP 5942455 B2 JP5942455 B2 JP 5942455B2 JP 2012025669 A JP2012025669 A JP 2012025669A JP 2012025669 A JP2012025669 A JP 2012025669A JP 5942455 B2 JP5942455 B2 JP 5942455B2
Authority
JP
Japan
Prior art keywords
pulse
voltage
current
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012025669A
Other languages
English (en)
Other versions
JP2013162733A (ja
Inventor
一好 二村
一好 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Socionext Inc
Original Assignee
Socionext Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Socionext Inc filed Critical Socionext Inc
Priority to JP2012025669A priority Critical patent/JP5942455B2/ja
Priority to US13/692,761 priority patent/US20130207625A1/en
Priority to CN201210592937.3A priority patent/CN103248230B/zh
Publication of JP2013162733A publication Critical patent/JP2013162733A/ja
Application granted granted Critical
Publication of JP5942455B2 publication Critical patent/JP5942455B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は,スイッチングレギュレータに関する。
スイッチングレギュレータは,入力される第1の電源電圧から負荷回路が要求する第2の電源電圧を生成し,負荷回路に供給する。スイッチングレギュレータは,負荷回路がより多くの電流を消費する重負荷の場合と,より少ない電流しか消費しない軽負荷の場合とで,第2の電源電圧を規定された電圧に維持することが求められる。
一方で,例えばモバイル機器等に搭載されるスイッチングレギュレータは,低消費電力化の要請から,スイッチングレギュレータの内部回路による電力消費を抑制して,電力変換効率を向上させることが求められる。
スイッチングレギュレータの電力損失には様々の損失が含まれ,例えば,インダクタ電流ロス,インダクタヒステリシスロス,出力駆動トランジスタのスイッチングロス,導通ロス及びゲート電荷ロスなどがある。電力変換効率を向上させるためには,これらのロスをできるだけ小さくすることが必要になる。
スイッチングレギュレータについては,以下の特許文献に開示されている。これらの特許文献では,負荷回路が軽負荷の時にゲート幅が小さい予備のFETによる駆動に切り換えて消費電力を削減したり,負荷回路の負荷の程度に応じて出力駆動トランジスタの数を制御,例えば負荷が軽くなると出力駆動トランジスタの数を減らしてゲート電荷ロスを抑制するなどの制御を行う。
米国特許第5731731号 米国特許第5969514号
しかしながら,従来のスイッチングレギュレータでは,出力電流等を監視して負荷回路の軽負荷状態を検出して,出力駆動トランジスタを切り換えたり数を減らしたりするものの,負荷回路の負荷状態が急変することに備えて,内蔵する制御回路の大部分を動作状態にしておかなければならない。そのため,従来のスイッチングレギュレータは十分に効率を改善することができない。
そこで,本発明の目的は,電力効率を改善したスイッチングレギュレータを提供することにある。
スイッチングレギュレータの第1の側面は,インダクタに電流を供給する第1の出力トランジスタを制御して,第1の電源電圧から第2の電源電圧を生成するスイッチングレギュレータであって,
前記第2の電源電圧と第1の基準電圧との差分を増幅するエラーアンプと,
前記インダクタを流れるインダクタ電流を電圧に変換するカレントセンスアンプと,
前記エラーアンプの出力電圧と前記カレントセンスアンプの出力電圧とを比較し,前記第2の電源電圧が低下する時にトリガー信号を出力するカレントコンパレータと,
前記トリガー信号に応答して前記第1の出力トランジスタを駆動するための制御パルスを生成するパルス生成回路と,
前記第2電源電圧が供給される負荷側から供給されるスリープ信号によるスリープ期間中に,前記カレントセンスアンプまたはパルス生成回路の動作を実質的に停止すると共に,前記トリガー信号の発生に応答して当該停止したカレントセンスアンプまたはパルス生成回路の動作を一時的に再開した後再度停止するスリープ制御回路とを有し,
前記スリープ期間中において,前記トリガー信号の発生から所定時間経過後に前記パルス生成回路が制御パルスを生成する。
第1の側面によれば,スイッチングレギュレータの電力効率が向上する。
スイッチングレギュレータの構成を示す図である。 図1のスイッチングレギュレータの動作を示す波形図である。 図1のスイッチングレギュレータの動作を示す波形図である。 第1の実施の形態におけるスイッチングレギュレータの構成図である。 スリープ制御回路30の構成図である。 タイミング回路32の構成図である。 スイッチングレギュレータの動作を示すタイミングチャート図である。 第2の実施の形態におけるスイッチングレギュレータの構成図である。 図8のスイッチングレギュレータの動作を示すタイミングチャート図である。 第3の実施の形態におけるスイッチングレギュレータの構成図である。 カレントコンパレータ14−1,14−2の回路図である。 図10のスイッチングレギュレータの動作のタイミングチャート図である。 第4の実施の形態におけるスイッチングレギュレータの構成図である。 第5の実施の形態におけるスイッチングレギュレータの構成図である。
図1は,スイッチングレギュレータの構成を示す図である。スイッチングレギュレータは,入力される第1の電源電圧VINから負荷回路2に供給する第2の電源電圧VOUTを生成する回路である。その構成は,第1の電源電圧VINと基準電圧であるグランドVSSとの間に設けられた第1の出力トランジスタQHと第2の出力トランジスタQLとを有し,それらの出力トランジスタの接続ノードVLと出力端子(第2の電源電圧VOUTのノード)との間に設けられたインダクタ(コイル)LOUTと,出力端子に設けられたキャパシタ(コンデンサ)COUTと,出力トランジスタQH,QLを駆動制御する制御ユニット1とを有する。
図1の破線で囲まれた制御ユニット1は,1個の集積回路チップ内に形成され,外付けの第1,第2の出力トランジスタQH,QLと,その駆動信号DRVH,DRVLを生成するドライバ回路20,22と,インダクタLOUTと共にスイッチングレギュレータを構成する。または,制御ユニット1は,第1,第2の出力トランジスタQH,QLと,その駆動信号DRVH,DRVLを生成するドライバ回路20,22と,インダクタLOUTとを全てまたは一部を同じ集積回路チップ内に内蔵して,チップ単独でスイッチングレギュレータを構成する場合もある。
したがって,本実施の形態では,スイッチングレギュレータは,図1の破線で囲まれた制御ユニット1だけを意味する場合もあれば,制御ユニット1と,第1,第2の出力トランジスタQH,QLと,その駆動信号DRVH,DRVLを生成するドライバ回路20,22と,インダクタLOUTとを含めた構成を意味する場合もある。前者の場合は,制御ユニット1をスイッチングレギュレータ1と称することになる。
スイッチングレギュレータ1は,負帰還される第2の電源電圧VOUTと基準電圧VREFとの差分を増幅するエラーアンプ10と,インダクタ電流ILを,その電流による抵抗素子R1の電圧降下を増幅することで電圧に変換するカレントセンスアンプ12と,エラーアンプ10の出力電圧EOUTとカレントセンスアンプ12の出力電圧CSとを比較し,第2の電源電圧VOUTの電位が低下して出力電圧EOUTが出力電圧CSを超える時にトリガー信号SETを出力するカレントコンパレータ14とを有する。
そして,カレントコンパレータ14が出力するトリガー信号SETに応答して,ワンパルス生成回路16が出力するパルスに基づいて,駆動制御回路18がドライバ回路20,22を介して出力トランジスタQH,QLを制御する駆動パルスDRVH,DRVLを出力する。つまり,ワンパルス生成回路16と駆動制御回路18により出力トランジスタを駆動するための制御パルスを生成するパルス生成回路を構成する。
2つの出力トランジスタQH,QLは,この駆動パルスDRVH,DRVLに応答して導通と非導通を繰り返し,インダクタLOUTとコンデンサCOUTによるLC回路の平滑化機能を利用して,略一定の出力電流IOUTを負荷回路2に供給する。また,負荷回路2に供給される第2の電源電圧VOUTは,負荷回路2が求める所望の電圧レベルに維持される。
図2は,図1のスイッチングレギュレータの動作を示す波形図である。図2は,負荷回路2が軽負荷状態にあり,負荷回路の内部抵抗が高く消費する電流IOUTが少ない状態での動作波形を示す。まず,エラーアンプ10には第2の電源電圧VOUTが負帰還され,第2の電源電圧VOUTが基準電圧VREFに対して低下すると出力電圧EOUTが上昇し,逆に,第2の電源電圧VOUTが上昇して基準電圧VREFに近づくと出力電圧EOUTが下降する。一方,第1の出力トランジスタQHからの電流供給がない状態ではインダクタ電流ILはゼロであり,カレントセンスアンプ12の出力電圧CSはゼロ電流に対応する電圧である。その状態で,負荷回路2による電流消費により出力コンデンサCOUTの電荷が減少して第2の電源電圧VOUTが低下すると,エラーアンプ10の出力電圧EOUTが上昇する。
出力電圧EOUTが上昇して出力電圧CSに達すると,カレントコンパレータ14がトリガー信号SETを出力する。このトリガー信号SETに応答して,ワンパルス生成回路16が所定のパルス幅(例えば一定パルス幅)の制御パルスを生成する。そして,駆動制御回路18がその制御パルスに応じたパルス幅の第1の駆動パルスDRVH(Hレベルのパルス)を出力して,第1のトランジスタQHを導通する。第1のトランジスタQHの導通により,接続ノードVLが第1の電源電圧VINに上昇し,インダクタLOUTのインダクタ電流ILが上昇する。
駆動制御回路18は,第1の駆動パルスDRVHに代えて,第2の駆動パルスDRVL(Hレベルのパルス)を出力し,第1の出力トランジスタQHを非導通にし,第2の出力トランジスタQLを導通させる。これにより,インダクタLOUTへの第1の電源電圧VINから第1の出力トランジスタQHを介しての電流供給は停止するが,第2の出力トランジスタQLが導通するので,インダクタLOUTは蓄積した電磁エネルギーにより図1中の矢印方向の順方向電流を流し続ける。ただし,そのインダクタ電流ILは徐々に低下する。
ゼロクロスコンパレータ24がインダクタ電流ILがゼロになったことを検出しゼロクロス検出信号ZCを出力する。それに応答して,駆動制御回路18は,第2の駆動パルスDRVLをLレベルにする。これにより,インダクタ電流ILが逆方向に流れて出力トランジスタQLを介してグランドVSSに出力コンデンサCOUTの電荷が廃棄されることが防止される。
図2において,トリガー信号SETからゼロクロス検出信号ZCまでの期間で,第2の電源VOUTへの電流供給動作が行われる(ドライブ期間DRIVE)。この電流供給により出力電圧VOUTが上昇し,エラーアンプ10の出力電圧EOUTは下降し,電流供給がおこなわれないアイドル期間IDLEになる。
このように,軽負荷時は,ドライブ期間DRIVEとアイドル期間IDLEとが繰り返され,比較的少ない電流IOUTが負荷回路2に供給され,第2の電源電圧VOUTの電圧が所望の電圧レベルに維持される。
図3は,図1のスイッチングレギュレータの動作を示す波形図である。図3は,図2よりも負荷回路2が重負荷状態にあり,負荷回路の内部抵抗が低く消費する出力電流IOUTが多い状態での動作波形を示す。図3中,カレントセンスアンプの出力CSについて,重負荷状態の実線と,軽負荷状態の破線とが示されている。
重負荷状態では,負荷回路2による電流消費が大きく,第2の電源電圧VOUTの電圧は電流駆動されてもすぐに低下し,エラーアンプ10の出力電圧EOUTはすぐ高い電圧になる。そのため,図2に示したドライブ期間DRIVEの電流供給動作がアイドル期間IDLEを介することなく繰り返される。重負荷状態では負荷回路2による消費電流が大きいため,重負荷状態でのインダクタ電流IL2は,軽負荷状態(破線)でのインダクタ電流IL1より高いレベルに維持される。
図1のスイッチングレギュレータでは,インダクタLOUTとキャパシタCOUTからなるLC共振回路により伝達関数にはダブルポールが含まれ,位相が360°進んでしまう。このダブルポールによる位相を補償する位相補償回路は複雑で実現が容易ではない。そこで,カレントセンスアンプ12を設けてインダクタ電流ILを制御ユニット1の入力側にフィードバックすることで,LC共振回路の共振点が見えないようにしている。その結果,伝達関数は,キャパシタCOUTと負荷回路2の内部抵抗によるCR回路のユニポールだけとなり,位相補償回路を簡単化することができる。
上記のスイッチングレギュレータは,軽負荷状態での電力効率が悪いという問題を有している。すなわち,負荷回路2が軽負荷状態であっても急激な負荷の変動,特に負荷の急上昇,に備えて,スイッチングレギュレータでは,エラーアンプ10,カレントセンスアンプ12,カレントコンパレータ14に通常のバイアス電流を供給して負荷の急変に高速応答できるようにしている。同様に,ワンパルス生成回路16内の一部の回路にも通常のバイアス電流を供給している。したがって,軽負荷状態では,ドライブ期間DRIVEの頻度が低下してはいるものの,負荷の急変に備えて上記の回路内にバイアス電流を供給し続けるため,重負荷状態と同様のバイアス電流が消費され,全体の電力効率が低下する。
[第1の実施の形態]
図4は,第1の実施の形態におけるスイッチングレギュレータの構成図である。このスイッチングレギュレータは,第2の電源電圧VOUTが供給されている負荷回路2または負荷回路2を制御している制御部(両者あわせて負荷システム)から,負荷電流が小さく負荷電流の急変がないことを約束するスリープ信号SLP#(#は信号がLレベルの時アクティブ状態になることを意味する)を受信した場合に,カレントセンスアンプ12と,パルスCPを生成するワンパルス生成回路16の動作を停止(またはバイアス電流を微小化)させる。但し,エラーアンプ10とカレントコンパレータ14は動作状態を維持し,負荷回路2に供給している第2の電源電圧VOUTが低下したことを検出した場合は,動作を停止させていたカレントセンスアンプ12とワンパルス生成回路16とを起動してその動作を再開し,出力トランジスタQH,QLの駆動を行って第2の電源電圧VOUT側に電流供給を行う。そしてドライブ期間終了後,再度カレントセンスアンプ12とワンパルス生成回路16の動作を停止する。これらの動作の停止は,例えばバイアス電流を遮断することで行われる。
カレントセンスアンプ12やワンパルス生成回路16が起動して動作を再開するためには所定時間を必要とするので,上記のように動作を停止すると,急な負荷変動に高速応答することはできない。しかし,負荷システム側から負荷の急変がないことを保証するスリープ信号SLP#を受信したときは,負荷変動に対する高速応答が不要になるので,上記のようにカレントセンスアンプ12やワンパルス生成回路16の動作を停止しても問題ない。
図4のスイッチングレギュレータは,図1の構成に加えて,負荷システムから供給されるスリープ信号SLP#に応答して,スリープイネーブル信号SLP_EN#_A,SLP_EN#_Bを生成するスリープ制御回路30と,トリガー信号SETを所定時間遅延させて遅延トリガー信号SET'をワンパルス生成回路16に供給するタイミング回路32とを有する。このタイミング回路32は,スリープイネーブル信号SLP_EN#_Aに基づき,通常動作状態ではトリガー信号SETを遅延させないでワンパルス生成回路16に供給し,スリープ信号SLP#を受信してスリープ期間になるとトリガー信号SETを遅延させる。
スリープ制御回路30は,スリープ信号SLP#を受信すると,ゼロクロス検出信号ZCに応答して両方のスリープイネーブル信号SLP_EN#_A,SLP_EN#_Bをアクティブ状態(Lレベル)にする。その結果,SLP_EN#_A=Lレベルによりタイミング回路32に遅延動作を行わせ,SLP_EN#_B=Lレベルによりカレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24の動作を停止(またはバイアス電流を抑制)させる。具体的には,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流を遮断して動作不能にする。
上記の状態で,出力電圧VOUTの低下に伴いエラーアンプ10とカレントコンパレータ14とによりトリガー信号SETが生成されると,スリープ制御回路30は,スリープイネーブル信号SLP_EN#_Bを非アクティブ状態(Hレベル)にして,動作停止していたカレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24を起動する。これらの回路の起動には所定の時間を要するので,この時間に対応してタイミング回路32がトリガー信号SETを遅延させて遅延トリガー信号SET'をワンパルス生成回路16に出力する。遅延トリガー信号SET'が供給されるまでにワンパルス生成回路16,カレントセンスアンプ12,ゼロクロスコンパレータ24の起動は完了して動作状態になっており,インダクタンスLOUTからの電流供給動作が実行される。
図5は,スリープ制御回路30の構成図である。スリープ制御回路30は,フリップフロップ301,303と,ORゲート302とを有する。
図6は,タイミング回路32の構成図である。タイミング回路32は,スリープイネーブル信号SLP_EN#_Aがアクティブ(Lレベル)の時にトリガー信号SETを遅延させて遅延トリガー信号SETを出力し,非アクティブ(Hレベル)の時は遅延させない。
図7は,スイッチングレギュレータの動作を示すタイミングチャート図である。図7を参照して,図5のスリープ制御回路の動作と共にスイッチングレギュレータの動作を説明する。
まず,スリープ信号SLP#が非アクティブ(Hレベル)のときは,SET=L,ZC=Lであるので,フリップフロップ301がリセットされて反転出力XQがHレベル,フリップフロップ303がクリアされて反転出力XQがHレベルになり,両スリープイネーブル信号SLP_EN#_A,SLP_EN#_Bは非アクティブ(Hレベル)になっている。そして,時間t1で,スリープ信号SLP#がアクティブ(Lレベル)になると,フリップフロップ301のリセットが解除され,フリップフロップ303のクリアも解除される。ただし,両方のスリープイネーブル信号の状態は変化しない。
したがって,スリープ信号SLP#がアクティブ(Lレベル)になっても,直ぐにはカレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流は遮断されず通常動作を継続する。
図7では,時間t1後のトリガー信号SETに応答して,遅延無しでトリガー信号SET'が出力され,ワンパルス生成回路16がパルスCPを生成し,駆動制御回路が駆動パルスDRVHとDRVLとを順番に生成し,出力トランジスタQH,QLを順番に導通させ,インダクタLOUTを介して電流供給動作が行われ,さらに,ゼロクロスコンパレータ24がインダクタ電流ILが順方向から逆方向になったことを検出してゼロクロス検出信号ZCを出力する。このように,図1,2で説明したドライブ動作DRIVEが行われる。
次に,時間t2でインダクタ電流ILがゼロになり,ゼロクロス検出信号ZCがZC=Hレベルになると,スリープ信号SLP#に対応するスリープ期間に入る。すなわち,図5のスリープ制御回路30内のフリップフロップ301がセットされて出力がQ=H,XQ=Lになり,そのQ=Hに同期して,フリップフロップ303がHレベルのデータDを取り込みその出力がXQ=Lとなる。これにより,両スリープイネーブル信号SLP_EN#_A,SLP_EN#_Bがアクティブ(Lレベル)になり,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流が遮断されて動作停止し,タイミング回路32が遅延動作状態になる。これで,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流による電力消費がなくなり,アイドル期間IDLEになる。カレントセンスアンプ12が動作停止中は,その出力電圧CSはゼロになっている。
アイドル期間IDLEの間に,時間t3で,負荷回路2による電流消費により第2の電源電圧VOUTの電位が低下すると,エラーアンプ10の出力電圧EOUTが上昇してカレントセンスアンプ12の出力電圧CSを超えて,カレントコンパレータ10がトリガー信号SETを出力する。このトリガー信号SET(=Hレベル)に応答して,スリープ制御回路30内のフリップフロップ301がリセットされ,出力はXQ=H,Q=Lとなり,スリープイネーブル信号SLP_EN#_Bが非アクティブ(Hレベル)になる。ただし,もう一方のスリープイネーブル信号SLP_EN#_Aはアクティブ(Lレベル)を維持する。
時間t3でのスリープイネーブル信号SLP_EN#_Bの非アクティブ(Hレベル)に応答して,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流が再開され起動動作を行い,その動作を再開する。ただし,この起動動作には所定の時間を要する。一方,タイミング回路32が,トリガー信号SETを遅延させて,時間t4で遅延トリガー信号SET'をワンパルス生成回路16に出力する。この時点で,既にワンパルス生成回路16などの起動動作が完了している。したがって,時間t4以降がドライブ期間DRIVEとなり,出力トランジスタQH,QLが順番に導通して,第2の電源VOUTに電流供給が行われる。その結果,第2の電源電圧VOUTの電位が上昇し,エラーアンプ10の出力電圧EOUTが低下する。
そして,時間t5でゼロクロス検出信号ZCがZC=Hレベルになると,時間t2と同様に,スリープ制御回路30内のフリップフロップ301がセットされて,出力がXQ=Lとなり,スリープイネーブル信号SLP_EN#_Bがアクティブ(Lレベル)になる。これに応答して,再び,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流が遮断されて動作を停止し,アイドル期間IDLEになる。
以上のようにして,スリープ信号SLP#がアクティブ状態(Lレベル)のスリープ期間の間は,ドライブ期間DRIVEとアイドル期間IDELが交互に繰り返される。特に,アイドル期間IDELでカレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流が遮断されているので,電力ロスを抑制することができる。
その後,時間t6で,スリープ信号SLP#が非アクティブ(Hレベル)になると,スリープ制御回路30内のフリップフロップがリセットまたはクリアされて,両スリープイネーブル信号SLP_EN#A,Bが非アクティブ(Hレベル)になり,スイッチングコントローラは通常動作になる。この通常動作状態では,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24が動作状態になっているので,スイッチングコントローラは負荷変動に対して高速応答可能になり,負荷の急変に対応することができる。
図4において,スイッチングレギュレータのLSIチップ1は,ドライブ回路20,22,出力トランジスタQH,QL,インダクタLOUTを内蔵していないが,それらを全てまたは一部を内蔵してもよい。
[第2の実施の形態]
図8は,第2の実施の形態におけるスイッチングレギュレータの構成図である。図9は,図8のスイッチングレギュレータの動作を示すタイミングチャート図である。図8において,図4の第1の実施の形態と異なる構成は,ワンパルス生成回路16として,フリップフロップ161とタイマー回路162を有するオン時間タイマー回路を有し,さらに,オーバーカレント保護回路26と,オーバーボルテージ及びアンダーボルテージ保護回路28とを有することである。それ以外の構成は,図4と同じである。なお,図8には,スイッチングレギュレータのLSIチップ1は省略されている。
ワンパルス生成回路16では,トリガー信号SETまたはSET'に応答してフリップフロップ161がセットされ,出力QがHレベルになる。そして,タイマー回路162が出力Qの立ち上がりエッジから一定時間W後に出力をHレベルにし,それに応答してフリップフロップ161がリセットされ,出力QがLレベルになる。したがって,フリップフロップ161の出力QのパルスCPのパルス幅Wは一定になる。そして,駆動制御回路18は,このパルスCPと同じパルス幅の駆動パルス信号DRVHを生成し,第1の出力トランジスタQHをパルス幅Wの時間だけ導通状態にする。さらに,駆動制御回路18は,駆動パルス信号DRVHをLレベルにした後,もう一つの駆動パルス信号DRVL (Hレベル)を出力して第2の出力トランジスタQLを導通状態にする。そして,グランドVSSから第2の出力トランジスタQLを介してインダクタLOUTに流れる順方向のインダクタ電流ILがゼロになる時にゼロクロスコンパレータ24が出力するゼロクロス検出信号ZCのHレベルへの立ち上がりに応答して,駆動制御回路18は駆動パルス信号DRVLをLレベルにする。
このように,第2の実施の形態のスイッチングレギュレータでは,第1の出力トランジスタQHの駆動パルスDRVHのパルス幅が一定値Wであり,負荷回路の負荷状態に応じて,電流供給するドライブ期間の周波数が変動するPFM制御であることが理解できる。
オーバーカレント保護回路26は,カレントセンスアンプ12の出力電圧CSが許容値を超える場合に,駆動制御回路18に駆動パルス信号DRVH,DRVLを共にLレベルにさせ,出力トランジスタQH,QLの駆動動作を停止させる。これにより,インダクタLOUTに過大な電流が流れることを防止する。このように過大な電流が流れる例は,負荷回路2において第2の電源VOUTとグランドとが短絡する場合である。このような場合に,オーバーカレント保護回路26は,負荷回路2やインダクタLOUTに過大な電流が流れることを回避する。
オーバーボルテージ及びアンダーボルテージ保護回路28は,フィードバックループFBによりフィードバックされる第2の電源電圧VOUTの電圧レベルが,上限値を超えて過剰に高くなったり下限値を下回って過剰に低くなることを検出して,駆動制御回路18に駆動パルス信号DRVH,DRVLを共にLレベルにさせ,出力トランジスタQH,QLの駆動動作を停止させる。これにより,第2の電源電圧VOUTは上限値と下限値の間の電圧範囲に維持される。
本実施の形態では,オーバーカレント保護回路26とオーバーボルテージ及びアンダーボルテージ保護回路28とは,スリープ期間中はスリープイネーブル信号SLP_EN#_Aがアクティブ(Lレベル)になると,動作を停止して電流消費を行わない。これらの回路26,28は,想定外の状況で必要になる保護回路であるので,負荷システム側からのスリープ信号SLP#がアクティブ(Lレベル)になっているスリープ期間中は,特に動作する必要性が少ない。そこで,スリープ期間中は動作を停止して電流消費を抑制することで,電力効率改善に寄与する。また,これらの回路26,28は,スリープ期間中のスリープイネーブル信号SLP_EN#_Bがアクティブ(Lレベル)になるアイドル期間だけ動作を停止してもよい。
図9のタイミングチャート図には,スリープ信号SLP#がアクティブ(Lレベル)のスリープ期間での動作が示されている。前述と同様に,スリープ期間中に第2の電源電圧VOUTの低下によりトリガー信号SETが生成されると,図示しないスリープイネーブル信号SLP_EN#_Bの非アクティブ(Hレベル)により,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24のバイアス電流が再開され起動動作を行い,その動作を再開する。さらに,ワンパルス生成回路16は,所定遅延時間後に入力される遅延トリガー信号SET'に応答して一定パルス幅WのパルスCPを出力する。そして,駆動制御回路18は,パルスCPと同じパルス幅Wの駆動パルス信号DRVHを出力して第1の出力トランジスタQHを導通させ,その後,第1の出力トランジスタQHを非導通状態にしてから駆動パルス信号DRVLを出力して第2の出力トランジスタQLを導通させ,さらに,その後のゼロクロス検出信号ZCに応答して駆動パルス信号DRVLをLレベルにして第2の出力トランジスタQLを非導通状態にする。
図9に示される遅延時間Dは,カレントセンスアンプ12,ワンパルス生成回路16,ゼロクロスコンパレータ24の起動に要する時間以上であり,また,パルス幅WはパルスCPと駆動パルスDRVHのパルス幅であり一定幅である。
[第3の実施の形態]
図10は,第3の実施の形態におけるスイッチングレギュレータの構成図である。図10において,スイッチングレギュレータのLSIチップ1は省略されている。図10において図4と異なる構成は,カレントコンパレータが2つのカレントコンパレータ14−1,14−2を有することである。第1のカレントコンパレータ14−1は,入力の変化に対して高速応答可能な回路であり,一方,第2のカレントコンパレータ14−2は,それより応答速度が遅い回路である。
図11は,カレントコンパレータ14−1,14−2の回路図である。2つの回路構成は同等であり,出力電圧EOUTとCSを比較するPMOSトランジスタP1,P2と,その負荷であるPMOSトランジスタP3,P4と,PMOSトランジスタP2のドレイン端子がゲートに接続される出力用のPMOSトランジスタP5とを有する。さらに,カレントコンパレータは,バイアス電流源IREFと,そのバイアス電流を分配するカレントミラー回路を構成するPMOSトランジスタP6,P7,P8とを有し,出力側に2段のインバータINV1,INV2を有する。
高速応答の第1のカレントコンパレータ14−1のバイアス電流源IREF1の電流は,低速応答の第2のカレントコンパレータ14−2のバイアス電流源IREF2より大きな電流,例えば10倍の電流を流す。バイアス電流が大きいため,第1のカレントコンパレータ14−1は消費電流が大きいが,入力EOUT,CSの変化に高速に応答してトリガー信号SETを出力することができる。また,第1のカレントコンパレータ14−1を構成するPMOSトランジスタは,第2のカレントコンパレータのPMOSトランジスタよりもトランジスタサイズが小さく高速動作可能にされていてもよい。
図10に戻り,第1,第2のカレントコンパレータ14−1,14−2の出力がORゲート34を介してトリガー信号SETとしてタイミング回路32に出力される。そして,スリープ期間において,スリープイネーブル信号SLP_EN#_Aがアクティブ(Lレベル)になると,高速応答で電流消費が大きい第1のカレントコンパレータ14−1のバイアス電流源IREFが遮断されて,その動作が停止する。そのため,スリープ期間中は,低速応答の第2のカレントコンパレータ14−2のみによりエラーアンプ10の出力EOUTとカレントセンスアンプ12の出力CSの比較検出が行われる。
図12は,図10のスイッチングレギュレータの動作のタイミングチャート図である。図7と異なるところは,図7の時間t3ではエラーアンプ出力EOUTがカレントセンスアンプ出力CSを超えると,カレントコンパレータが高速応答してトリガー信号SETをほぼ同時に出力しているが,図12では,スリープ期間SLEEPで低速応答のカレントコンパレータ14−2が動作しているので,時間t3−1,T3−2とがずれている。すなわち,時間t3−1でエラーアンプ出力EOUTがカレントセンスアンプ出力CSを超えるが,低速応答のカレントコンパレータ14−2は,時間t3−2でトリガー信号SETを出力する。そして,トリガー信号SETが生成された以降の動作は,図7と同じである。したがって,時間t3−2から時間t4までが,動作停止していた回路の起動に要する時間に対応する。
上記の第3の実施の形態によれば,スリープ期間中に高速応答で電流消費が大きいカレントコンパレータ14−1の動作が停止するので,軽負荷時の電力効率が向上する。なお,低速応答の第2のカレントコンパレータ14−2をスリープ期間SLEEPだけ動作させて,それ以外の期間ではその動作を停止して高速応答の第1のカレントコンパレータ14−1を動作させるようにしても良い。
[第4の実施の形態]
図13は,第4の実施の形態におけるスイッチングレギュレータの構成図である。このスイッチングレギュレータにおいて図4の構成と異なるところは,出力トランジスタとして,ゲート幅が広く駆動能力が高い出力トランジスタQH,QLに加えて,それらと並列にそれらよりゲート幅が狭く駆動能力が低い出力トランジスタQHd,QLdをそれぞれ設け,そのゲート幅が狭い出力トランジスタQHd,QLdに駆動パルスDRVHD,DRVLDを出力するバッファ20d,22dを設けていることにある。それ以外は,図4と同じである。
そして,スリープ期間中は,スリープイネーブル信号SLP_EN#_Aのアクティブ(Lレベル)により,ドライバ回路20,22が動作を停止して駆動パルスDRVH,DRVLを出力せず,ゲート幅が広い出力トランジスタQH,QLの駆動動作が行われない。それに代わって,ゲート幅が狭い出力トランジスタQHd,QLdが駆動動作を行う。
ゲート幅が広い出力トランジスタQH,QLを駆動するためには,そのゲート電極に駆動パルスDRVH,DRVLを供給して高電圧にする必要があり,そのゲート電荷量が大きく電力消費が大きい。これはゲート電荷ロスと称される。そこで,第4の実施の形態では,スリープ期間中は負荷側の急変がないことが保証されているので,ゲート幅が狭い出力トランジスタQHd,QLdを駆動制御し,ゲート幅が広い出力トランジスタQH,QLの駆動動作を停止し,スリープ期間中の電力消費を抑制している。
[第5の実施の形態]
図14は,第5の実施の形態におけるスイッチングレギュレータの構成図である。このスイッチングレギュレータにおいて,図4と異なる構成は,ワンパルス生成回路16が設けられていないことと,発振器36が設けられその発振器の出力が駆動制御回路18に入力されていることである。図8では,スイッチングレギュレータは固定パルス幅の駆動パルス信号DRVHによるパルス周波数モジュレーション(PFM)により第2の電源VOUTに電流供給を行っていたのに対して,図14の例は,駆動制御回路18がパルス幅モジュレーション(PWM)によるパルス幅に駆動パルス信号DRVHが生成されている。駆動制御回路18は,発振器36の発振クロックを利用するPWM回路を内蔵する。
このように,PWM制御を行うスイッチングレギュレータにおいても,スリープ期間は,スリープイネーブル信号SLP_EN#_Bのアクティブ(Lレベル)により,カレントセンスアンプ12とゼロクロスコンパレータ24のバイアス電流を遮断してその動作を停止する。さらに,駆動制御回路18内のPWM制御に必要なアンプ(図示せず)の動作も停止する。したがって,軽負荷時の電力効率を向上させることができる。
図14のスイッチングレギュレータには,ワンパルス生成回路16が設けられていないが,駆動制御回路18がパルス生成回路の機能を有し,駆動パルス信号DRVH,DRVLが制御パルスに対応する。
以上のとおり,本実施の形態のスイッチングレギュレータは,負荷システム側から負荷の急変が生じないことを保証するスリープ信号が供給されたことに応答して,負荷回路側が電流供給を必要とするとき以外は主な制御回路の動作を停止し,最小限の回路(エラーアンプ10とカレントコンパレータ14)だけの動作状態を維持し,負荷回路が電流供給を必要としたことを検知した時に,停止中の回路を起動して必要な電流供給を実行する。したがって,軽負荷状態での電力効率を向上させることができる。
以上の実施の形態をまとめると,次の付記のとおりである。
(付記1)
インダクタに電流を供給する第1の出力トランジスタを制御して,第1の電源電圧から第2の電源電圧を生成するスイッチングレギュレータであって,
前記第2の電源電圧と第1の基準電圧との差分を増幅するエラーアンプと,
前記インダクタを流れるインダクタ電流を電圧に変換するカレントセンスアンプと,
前記エラーアンプの出力電圧と前記カレントセンスアンプの出力電圧とを比較し,前記第2の電源電圧が低下する時にトリガー信号を出力するカレントコンパレータと,
前記トリガー信号に応答して前記第1の出力トランジスタを駆動するための制御パルスを生成するパルス生成回路と,
前記第2電源電圧が供給される負荷側から供給されるスリープ信号によるスリープ期間中に,前記カレントセンスアンプまたはパルス生成回路の動作を実質的に停止すると共に,前記トリガー信号の発生に応答して当該停止したカレントセンスアンプまたはパルス生成回路の動作を一時的に再開した後再度停止するスリープ制御回路とを有し,
前記スリープ期間中において,前記トリガー信号の発生から所定時間経過後に前記パルス生成回路が制御パルスを生成するスイッチングレギュレータ。
(付記2)
付記1において,
前記パルス生成回路は,前記トリガー信号に応答して前記制御パルスとしてワンショットの一定パルス幅のパルスを生成するワンパルス生成回路を有するスイッチングレギュレータ。
(付記3)
付記2において,
前記ワンパルス生成回路は,前記トリガー信号に応答して第1の状態になり前記制御パルスのフォワードエッジを出力するフリップフロップと,前記ファワードエッジを遅延するタイマー回路とを有し,当該遅延したフォワードエッジで前記フリップフロップが第2の状態になり,前記フリップフロップが前記制御パルスのバックエッジを出力し,
前記スリープ期間中,前記パルス生成回路が動作を停止および再開する時に,前記タイマー回路が動作を停止および再開するスイッチングレギュレータ。
(付記4)
付記1乃至3のいずれかにおいて,
前記カレントセンスアンプは,バイアス電流が供給されるときに動作状態になり,前記バイアス電流が遮断または抑制されたときに実質的停止状態になるスイッチングレギュレータ。
(付記5)
付記1において,
前記パルス制御回路は,前記第1の電源電圧と第2の基準電圧との間に設けられ,互いの接続ノードと前記出力端子との間に前記インダクタが設けられた前記第1の出力トランジスタと,第2の出力トランジスタとを,前記第1の出力トランジスタが導通して前記インダクタに順方向のインダクタ電流を流しその後前記第1の出力トランジスタが非導通になる共に前記第2の出力トランジスタが導通して前記インダクタに前記順方向のインダクタ電流を継続して流す様に制御する駆動制御回路を有し,
さらに,前記前記インダクタ電流が順方向から逆方向に切り替わるのを検出するゼロクロスコンパレータを有し,
前記駆動制御回路は,前記ゼロクロスコンパレータの検出出力に応答して前記第2の出力トランジスタを導通から非導通に切り換え,
前記スリープ制御回路は,前記ゼロクロスコンパレータの検出出力に応答して,前記カレントセンスアンプまたはパルス生成回路の動作を一時的再開状態から実質的停止するスイッチングレギュレータ。
(付記6)
付記1乃至3のいずれかにおいて,
前記スリープ制御回路は,前記カレントコンパレータを,前記スリープ期間外では第1の応答速度で動作し,前記スリープ期間中は前記第1の応答速度より低速の第2の応答速度で動作するよう制御するスイッチングレギュレータ。
(付記7)
付記1乃至3のいずれかにおいて,
前記第1の出力トランジスタに並列に当該第1の出力トランジスタよりトランジスタサイズが小さい第1の小出力トランジスタが設けられ,
前記スリープ期間以外では,前記制御パルスに応答して前記第1の出力トランジスタを駆動し,前記スリープ期間中は,前記制御パルスに応答して前記第1の出力トランジスタの駆動を停止し前記第1の小出力トランジスタを駆動する駆動制御回路を有するスイッチングレギュレータ。
(付記8)
付記1乃至3のいずれかにおいて,
前記カレントセンスアンプの出力電圧が第1の保護電圧を超えるときに前記第1の出力トランジスタを非導通にして当該インダクタ電流が前記第1の保護電圧に対応する電流を超えないようにするオーバーカレント保護回路を有し,
前記オーバーカレント保護回路は,前記スリープ期間中動作を停止するスイッチングレギュレータ。
(付記9)
付記1乃至3のいずれかにおいて,
前記第2の電源電圧が第2の保護電圧とそれより高い第3の保護電圧との間の動作電圧範囲からはずれるときに,前記第1の出力トランジスタを非導通にして,前記第2の電源電圧が前記動作電圧範囲からはずれないようにするオーバーアンダー電圧保護回路を有し,
前記オーバーアンダー電圧保護回路は,前記スリープ期間中動作を停止するスイッチングレギュレータ。
(付記10)
付記1乃至3のいずれかにおいて,
さらに,前記スリープ期間中に前記トリガー信号を前記所定時間遅延させて遅延トリガー信号を前記パルス生成回路に供給し,前記スリープ期間以外では前記トリガー信号を遅延させないタイミング回路を有するスイッチングレギュレータ。
(付記11)
第1の電源電圧と基準電圧との間に設けられ,互いの接続ノードにインダクタが設けられた第1,第2の出力トランジスタを制御して,前記第1の電源電圧から第2の電源電圧を生成するスイッチングレギュレータであって,
前記第2電源電圧と第1の基準電圧との差分を増幅するエラーアンプと,
前記インダクタを流れるインダクタ電流を電圧に変換するカレントセンスアンプと,
前記エラーアンプの出力電圧と前記カレントセンスアンプの出力電圧とを比較し,前記第2の電源電圧が低下する時にトリガー信号を出力するカレントコンパレータと,
前記トリガー信号に応答して,前記第1の出力トランジスタを駆動する第1の駆動パルスと,前記第1の出力トランジスタを駆動した後に前記第2の出力トランジスタを駆動する第2の駆動パルスとを生成する駆動制御ユニットと,
前記第2電源電圧が供給される負荷側から供給されるスリープ信号によるスリープ期間中に,前記カレントセンスアンプまたは駆動制御ユニットの動作を停止すると共に,前記トリガー信号の発生に応答して当該停止したカレントセンスアンプまたは駆動制御ユニットの動作を一時的に再開した後再度停止するスリープ制御回路とを有し,
前記スリープ期間中において,前記トリガー信号の発生から所定時間経過後に前記駆動制御ユニットが前記第1の駆動パルスを生成するスイッチングレギュレータ。
(付記12)
前記駆動制御ユニットは,前記スリープ期間外では前記トリガー信号に応答して制御パルスを生成し,前記スリープ期間では前記トリガー信号の発生から所定時間経過後に前記制御パルスを生成するパルス生成回路と,前記制御パルスに応じて前記第1,第2の駆動パルスを生成する駆動制御回路とを有し,
前記駆動制御ユニット内の前記パルス生成回路が,前記スリープ期間中に動作を停止及び再開するスイッチングレギュレータ。
(付記13)
前記駆動制御ユニットは,前記スリープ期間では前記トリガー信号の発生から所定時間経過後にパルス幅変調された前記第1の駆動パルスを生成し,前記スリープ期間外では前記トリガー信号に応答して前記所定時間経過することなくパルス幅変調された前記第1の駆動パルスを生成し,スイッチングレギュレータ。
VIN:第1の電源電圧
VOUT:第2の電源電圧
LOUT:インダクタ
QH,QL:第1,第2の出力トランジスタ
10:エラーアンプ
12:カレントセンスアンプ
14:カレントコンパレータ
16:ワンパルス生成回路
18:駆動制御回路
24:ゼロクロスコンパレータ

Claims (10)

  1. インダクタに電流を供給する第1の出力トランジスタを制御して,第1の電源電圧から第2の電源電圧を生成するスイッチングレギュレータであって,
    前記第2の電源電圧と第1の基準電圧との差分を増幅するエラーアンプと,
    前記インダクタを流れるインダクタ電流を電圧に変換するカレントセンスアンプと,
    前記エラーアンプの出力電圧と前記カレントセンスアンプの出力電圧とを比較し,前記第2の電源電圧が低下する時にトリガー信号を出力するカレントコンパレータと,
    前記トリガー信号に応答して前記第1の出力トランジスタを駆動するための制御パルスを生成するパルス生成回路と,
    前記第2電源電圧が供給される負荷側から供給されるスリープ信号によるスリープ期間中に,前記カレントセンスアンプ及びパルス生成回路の動作を停止すると共に,前記トリガー信号の発生に応答して当該停止したカレントセンスアンプ及びパルス生成回路の動作を一時的に再開し,前記再開の後再度停止するスリープ制御回路とを有し,
    前記スリープ期間中において,前記パルス生成回路が前記トリガー信号の発生から所定時間経過後に動作を再開して前記制御パルスを生成し,前記スリープ期間以外の通常動作期間中において,前記パルス生成回路が動作状態であり前記トリガー信号の発生に応答して前記制御パルスを生成するスイッチングレギュレータ。
  2. 請求項1において,
    前記パルス生成回路は,前記トリガー信号に応答して前記制御パルスとしてワンショットの一定パルス幅のパルスを生成するワンパルス生成回路を有するスイッチングレギュレータ。
  3. 請求項2において,
    前記ワンパルス生成回路は,前記トリガー信号に応答して第1の状態になり前記制御パルスのフォワードエッジを出力するフリップフロップと,前記フォワードエッジを遅延するタイマー回路とを有し,当該遅延したフォワードエッジで前記フリップフロップが第2の状態になり,前記フリップフロップが前記制御パルスのバックエッジを出力し,
    前記スリープ期間中,前記パルス生成回路が動作を停止および再開する時に,前記タイマー回路が動作を停止および再開するスイッチングレギュレータ。
  4. 請求項1において,
    前記パルス生成回路は,前記第1の電源電圧と第2の基準電圧との間に設けられ,互いの接続ノードと前記第2の電源電圧が出力される出力端子との間に前記インダクタが設けられた前記第1の出力トランジスタと,第2の出力トランジスタとを,前記第1の出力トランジスタが導通して前記インダクタに順方向のインダクタ電流を流しその後前記第1の出力トランジスタが非導通になる共に前記第2の出力トランジスタが導通して前記インダクタに前記順方向のインダクタ電流を継続して流す様に制御する駆動制御回路を有し,
    さらに,前記インダクタ電流が順方向から逆方向に切り替わるのを検出するゼロクロスコンパレータを有し,
    前記駆動制御回路は,前記ゼロクロスコンパレータの検出出力に応答して前記第2の出力トランジスタを導通から非導通に切り換え,
    前記スリープ制御回路は,前記ゼロクロスコンパレータの検出出力に応答して,前記カレントセンスアンプ及びパルス生成回路の動作を一時的再開状態から停止するスイッチングレギュレータ。
  5. 請求項1乃至3のいずれかにおいて,
    前記スリープ制御回路は,前記カレントコンパレータを,前記スリープ期間外では第1の応答速度で動作し,前記スリープ期間中は前記第1の応答速度より低速の第2の応答速度で動作するよう制御するスイッチングレギュレータ。
  6. 請求項1乃至3のいずれかにおいて,
    前記第1の出力トランジスタに並列に当該第1の出力トランジスタよりトランジスタサイズが小さい第1の小出力トランジスタが設けられ,
    前記スリープ期間以外では,前記制御パルスに応答して前記第1の出力トランジスタを駆動し,前記スリープ期間中は,前記制御パルスに応答して前記第1の出力トランジスタの駆動を停止し前記第1の小出力トランジスタを駆動する駆動制御回路を有するスイッチングレギュレータ。
  7. 請求項1乃至3のいずれかにおいて,
    前記カレントセンスアンプの出力電圧が第1の保護電圧を超えるときに前記第1の出力トランジスタを非導通にして当該インダクタ電流が前記第1の保護電圧に対応する電流を超えないようにするオーバーカレント保護回路を有し,
    前記オーバーカレント保護回路は,前記スリープ期間中動作を停止するスイッチングレギュレータ。
  8. 請求項1乃至3のいずれかにおいて,
    前記第2の電源電圧が第2の保護電圧とそれより高い第3の保護電圧との間の動作電圧範囲からはずれるときに,前記第1の出力トランジスタを非導通にして,前記第2の電源電圧が前記動作電圧範囲からはずれないようにするオーバーアンダー電圧保護回路を有し,
    前記オーバーアンダー電圧保護回路は,前記スリープ期間中動作を停止するスイッチングレギュレータ。
  9. 請求項1乃至3のいずれかにおいて,
    さらに,前記スリープ期間中に前記トリガー信号を前記所定時間遅延させて遅延トリガー信号を前記パルス生成回路に供給し,前記スリープ期間以外では前記トリガー信号を遅延させないタイミング回路を有するスイッチングレギュレータ。
  10. 第1の電源電圧と基準電圧との間に設けられ,互いの接続ノードにインダクタが設けられた第1,第2の出力トランジスタを制御して,前記第1の電源電圧から第2の電源電圧を生成するスイッチングレギュレータであって,
    前記第2電源電圧と第1の基準電圧との差分を増幅するエラーアンプと,
    前記インダクタを流れるインダクタ電流を電圧に変換するカレントセンスアンプと,
    前記エラーアンプの出力電圧と前記カレントセンスアンプの出力電圧とを比較し,前記第2の電源電圧が低下する時にトリガー信号を出力するカレントコンパレータと,
    前記トリガー信号に応答して,前記第1の出力トランジスタを駆動する第1の駆動パルスと,前記第1の出力トランジスタを駆動した後に前記第2の出力トランジスタを駆動する第2の駆動パルスとを生成する駆動制御ユニットと,
    前記第2電源電圧が供給される負荷側から供給されるスリープ信号によるスリープ期間中に,前記カレントセンスアンプ及び駆動制御ユニットの動作を停止すると共に,前記トリガー信号の発生に応答して当該停止したカレントセンスアンプ及び駆動制御ユニットの動作を一時的に再開し,前記再開の後再度停止するスリープ制御回路とを有し,
    前記スリープ期間中において,前記駆動制御ユニットが前記トリガー信号の発生から所定時間経過後に動作を再開して前記第1の駆動パルスを生成し,前記スリープ期間以外の通常動作期間中において,前記駆動制御ユニットが動作状態であり前記トリガー信号の発生に応答して前記第1の駆動パルスを生成するスイッチングレギュレータ。
JP2012025669A 2012-02-09 2012-02-09 スイッチングレギュレータ Active JP5942455B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012025669A JP5942455B2 (ja) 2012-02-09 2012-02-09 スイッチングレギュレータ
US13/692,761 US20130207625A1 (en) 2012-02-09 2012-12-03 Switching regulator
CN201210592937.3A CN103248230B (zh) 2012-02-09 2012-12-31 开关稳压器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025669A JP5942455B2 (ja) 2012-02-09 2012-02-09 スイッチングレギュレータ

Publications (2)

Publication Number Publication Date
JP2013162733A JP2013162733A (ja) 2013-08-19
JP5942455B2 true JP5942455B2 (ja) 2016-06-29

Family

ID=48927500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025669A Active JP5942455B2 (ja) 2012-02-09 2012-02-09 スイッチングレギュレータ

Country Status (3)

Country Link
US (1) US20130207625A1 (ja)
JP (1) JP5942455B2 (ja)
CN (1) CN103248230B (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823343B2 (en) * 2009-12-22 2014-09-02 Yamaha Corporation Power amplifying circuit, DC-DC converter, peak holding circuit, and output voltage control circuit including the peak holding circuit
TWI482409B (zh) * 2012-03-28 2015-04-21 Anpec Electronics Corp 恆定開啟時間產生電路及降壓型電源轉換器
CN102801288B (zh) * 2012-08-29 2015-05-13 成都芯源系统有限公司 控制电路、开关模式变换器及控制方法
CN102957303B (zh) * 2012-12-10 2015-01-07 成都芯源系统有限公司 一种控制电路、开关变换器及其控制方法
US9998008B2 (en) * 2013-01-09 2018-06-12 Infineon Technologies Austria Ag Active transient response for DC-DC converters
US9048734B2 (en) * 2013-03-01 2015-06-02 Analog Devices Global Negative current protection system for low side switching converter FET
US11159009B2 (en) * 2013-04-01 2021-10-26 Qualcomm Incorporated Voltage regulator over-current protection
TWI652885B (zh) * 2014-08-20 2019-03-01 力智電子股份有限公司 電源管理裝置、直流對直流控制電路及其晶片致能方法
JP2016048988A (ja) * 2014-08-27 2016-04-07 株式会社東芝 電源回路とその制御方法
US9627971B2 (en) * 2014-12-17 2017-04-18 Infineon Technologies Austria Ag Gate driver initiated zero voltage switch turn on
US9300210B1 (en) * 2015-03-02 2016-03-29 Empower Semiconductor Resonant rectified discontinuous switching regulator
US9780663B2 (en) 2015-03-02 2017-10-03 Empower Semiconductor, Inc. Resonant rectified discontinuous switching regulator with inductor preflux
US10312805B2 (en) * 2015-04-02 2019-06-04 Virginia Tech Intellectual Properties, Inc. Current mode control DC-DC converter with single step load transient response
US10439539B2 (en) * 2015-05-21 2019-10-08 Analog Devices Global Unlimited Company Feedback control system and method
CN106169898B (zh) * 2015-05-21 2020-10-27 亚德诺半导体集团 反馈控制系统和方法
US10833584B2 (en) 2015-11-12 2020-11-10 Empower Semiconductor, Inc. Boot-strapping systems and techniques for circuits
JP6656956B2 (ja) * 2016-03-07 2020-03-04 エイブリック株式会社 スイッチングレギュレータ
JP6718308B2 (ja) * 2016-05-24 2020-07-08 ローム株式会社 同期整流型のdc/dcコンバータおよびそのコントローラ、制御方法ならびに電子機器
US10447027B1 (en) 2016-12-23 2019-10-15 Intersil Americas LLC Method and apparatus for reverse over current protection
JP2018153079A (ja) * 2017-03-10 2018-09-27 ローム株式会社 Dc/dcコンバータ
KR102548467B1 (ko) 2017-12-04 2023-06-29 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함하는 표시 장치
US10634735B2 (en) * 2017-12-04 2020-04-28 Allegro Microsystems, Llc Circuits and methods for regulator diagnostics
JP6978952B2 (ja) * 2018-01-25 2021-12-08 ルネサスエレクトロニクス株式会社 半導体装置、負荷駆動システムおよびインダクタ電流の検出方法
US11112810B2 (en) 2018-03-19 2021-09-07 Hoerbiger Wien Gmbh Analog control loop with digital feedback
TWI674740B (zh) * 2018-06-08 2019-10-11 茂達電子股份有限公司 功率轉換裝置及方法
JP7058186B2 (ja) * 2018-06-22 2022-04-21 ローム株式会社 スイッチング電源装置及び半導体装置
TWI675538B (zh) * 2018-08-23 2019-10-21 大陸商明緯(廣州)電子有限公司 電源控制電路
US10468961B1 (en) 2018-08-23 2019-11-05 Meanwell (Guangzhou) Electronics Co., Ltd. Power source control circuit
CN111146768B (zh) * 2018-11-05 2022-08-02 瑞昱半导体股份有限公司 稳压装置及其控制方法
JP7256008B2 (ja) * 2018-12-27 2023-04-11 日清紡マイクロデバイス株式会社 スイッチング電源
TWI686045B (zh) * 2019-02-13 2020-02-21 新唐科技股份有限公司 零電流偵測系統
CN112018724B (zh) * 2019-05-29 2022-09-16 江阴圣邦微电子制造有限公司 一种过压保护电路
US10938304B2 (en) * 2019-06-20 2021-03-02 Intel Corporation Voltage- and current-based control of direct current (DC)-DC converter
WO2022155079A1 (en) 2021-01-12 2022-07-21 Texas Instruments Incorporated Power converter control with snooze mode
JP2024502641A (ja) * 2021-01-12 2024-01-22 テキサス インスツルメンツ インコーポレイテッド スヌーズモードを備える電力コンバータ制御
CN114152870B (zh) * 2021-06-11 2022-07-08 河南紫联物联网技术有限公司 一种负载模拟检测系统及单火开关的唤醒时间分配方法
CN114336874B (zh) * 2022-01-04 2024-02-23 上海南芯半导体科技股份有限公司 一种低电压充电电路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481178A (en) * 1993-03-23 1996-01-02 Linear Technology Corporation Control circuit and method for maintaining high efficiency over broad current ranges in a switching regulator circuit
US5912552A (en) * 1997-02-12 1999-06-15 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho DC to DC converter with high efficiency for light loads
JP3636321B2 (ja) * 2002-04-24 2005-04-06 ローム株式会社 スイッチング電源装置
TW200608708A (en) * 2004-08-26 2006-03-01 Richtek Techohnology Corp Current-mode control converter with fixed frequency, and method thereof
US7466112B2 (en) * 2005-02-08 2008-12-16 Linear Technology Corporation Variable frequency current-mode control for switched step up-step down regulators
US7728567B1 (en) * 2007-01-26 2010-06-01 Atheros Communications, Inc. Current mode pulse frequency modulation switching regulator
CN101330257B (zh) * 2007-06-19 2011-12-28 财团法人工业技术研究院 直流电压转换器
JP2009303317A (ja) * 2008-06-11 2009-12-24 Ricoh Co Ltd 基準電圧発生回路及びその基準電圧発生回路を備えたdc−dcコンバータ
JP5280114B2 (ja) * 2008-06-13 2013-09-04 ローム株式会社 降圧型スイッチングレギュレータ
JP5211959B2 (ja) * 2008-09-12 2013-06-12 株式会社リコー Dc−dcコンバータ
JP2010088218A (ja) * 2008-09-30 2010-04-15 Ricoh Co Ltd Dc/dcコンバータ
US7872456B2 (en) * 2008-12-16 2011-01-18 Texas Instruments Incorporated Discontinuous conduction mode pulse-width modulation
US8169205B2 (en) * 2009-05-26 2012-05-01 Silergy Technology Control for regulator fast transient response and low EMI noise
GB0912745D0 (en) * 2009-07-22 2009-08-26 Wolfson Microelectronics Plc Improvements relating to DC-DC converters
JP2011035948A (ja) * 2009-07-29 2011-02-17 Fujitsu Semiconductor Ltd Dc−dcコンバータ、制御回路及び電源電圧制御方法
US8912779B2 (en) * 2010-04-19 2014-12-16 Linear Technology Corporation Switching scheme for step up-step down converters using fixed frequency current-mode control
JP2012039710A (ja) * 2010-08-05 2012-02-23 Sanken Electric Co Ltd スイッチング電源装置
CN102291000B (zh) * 2011-08-29 2014-09-10 上海新进半导体制造有限公司 开关电源集成电路

Also Published As

Publication number Publication date
US20130207625A1 (en) 2013-08-15
CN103248230A (zh) 2013-08-14
JP2013162733A (ja) 2013-08-19
CN103248230B (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5942455B2 (ja) スイッチングレギュレータ
JP5739832B2 (ja) 昇降圧型dc−dcコンバータの制御回路、昇降圧型dc−dcコンバータの制御方法、および昇降圧型dc−dcコンバータ
JP4689377B2 (ja) 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器
JP5240983B2 (ja) スイッチングレギュレータおよびそれを作動させるための方法
EP2528213B1 (en) Current mode synchronous rectification DC/DC converter
US7538526B2 (en) Switching regulator, and a circuit and method for controlling the switching regulator
US7876076B2 (en) Circuit for preventing through current in DC-DC converter
JP2004062331A (ja) 直流電源装置
JP2008206239A (ja) 半導体装置
US20170364107A1 (en) Switching regulator control circuit
JP2006204090A (ja) デュアルモード電圧調整器
US8638082B2 (en) Control circuit for step-down and boost type switching supply circuit and method for switching supply circuit
KR20080025298A (ko) 스위칭 레귤레이터
JP6097237B2 (ja) Dc−dcコンバータおよび半導体集積回路
JP2012231574A (ja) Dc−dcコンバータの制御方法およびdc−dcコンバータの制御回路
JP4673350B2 (ja) 直流電源装置
JP5023819B2 (ja) 昇降圧型dc−dcコンバータの制御方法、昇降圧型dc−dcコンバータの制御回路、および昇降圧型dc−dcコンバータ
US20140070779A1 (en) Switching regulator
JP3892333B2 (ja) Pfm制御スイッチングレギュレータ制御回路
JP4908019B2 (ja) スイッチングレギュレータ
JP4762723B2 (ja) 電源装置及びこれを備えた電子機器
JP4325413B2 (ja) 同期整流式dc/dcコンバータ
JP5103157B2 (ja) スイッチングレギュレータおよびその制御回路、制御方法
JP7489300B2 (ja) 電源ic、及び、スイッチングレギュレータ
JP4717508B2 (ja) 降圧型スイッチングレギュレータおよびその制御回路ならびにそれを用いた電子機器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5942455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150