JP5941495B2 - 電源切替回路 - Google Patents

電源切替回路 Download PDF

Info

Publication number
JP5941495B2
JP5941495B2 JP2014111364A JP2014111364A JP5941495B2 JP 5941495 B2 JP5941495 B2 JP 5941495B2 JP 2014111364 A JP2014111364 A JP 2014111364A JP 2014111364 A JP2014111364 A JP 2014111364A JP 5941495 B2 JP5941495 B2 JP 5941495B2
Authority
JP
Japan
Prior art keywords
power
load
power supply
voltage
conversion circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014111364A
Other languages
English (en)
Other versions
JP2015226428A (ja
Inventor
金井 康通
康通 金井
佐江 竹中
佐江 竹中
忠利 馬場崎
忠利 馬場崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014111364A priority Critical patent/JP5941495B2/ja
Publication of JP2015226428A publication Critical patent/JP2015226428A/ja
Application granted granted Critical
Publication of JP5941495B2 publication Critical patent/JP5941495B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、電源切替回路に関し、より詳細には、電源の停電時に、負荷に供給する電源をバックアップ用の電源に切り替える電源切替回路に関する。
商用電源が停電を起こした場合、負荷に電力を供給する電源を、商用電源から蓄電池等のバックアップ電源に切り替える、商用電源とバックアップ電源との切替回路が知られている。図1は、特許文献1に記載の従来の電源切替回路100を示すブロック図である。電源切替回路100は、交流電源である商用電源101と、負荷102と、商用電源101からの交流の電力を直流の電力に変換して負荷102に供給するAC/DC変換回路103とを備える。また、電源切替回路100は、商用電源101の停電時の電圧低下を検出する電圧低下検出回路104と、電圧低下検出回路104が商用電源101の電圧低下を検出した場合に、負荷102に電力を供給する蓄電池等の電源105と、負荷102に供給する電力を、商用電源101と電源105との間で切り替える切替回路107と、切替回路107の商用電源101と電源105との切替時間を制御するタイマ切替制限回路108とを備える。
図2は、図1の電源切替回路100の商用電源101停電時における、商用電源101、AC/DC変換回路103及び電源105の出力電圧、及び負荷102への供給電圧の電圧波形を示す図で、図2(a)は商用電源101及びAC/DC変換回路103の電圧波形、図2(b)は電源105の出力電圧の電圧波形、図2(c)は負荷102への供給電圧の電圧波形を示している。
商用電源101に停電が発生すると(t)、AC/DC変換回路103に入力される交流電圧(V)が低下する。電圧低下検出回路104は、AC/DC変換回路103に入力される交流電圧(V)の低下を検知して電圧低下検出信号をタイマ切替制御回路108に送信する。タイマ切替制御回路108は、電圧低下検出回路104から電圧低下検出信号を受信すると、速やかに切替回路107に対し負荷102(使用電圧V)に供給する電力を商用電源101側から電源105(電圧V)側に切り替える制御信号を送信する。切替回路107は、制御信号の受信により、AC/DC変換回路103の出力電圧(V)の低下時(t)前に負荷102に電力を供給する電源を電源105に切り替える。電源105は、電源101の停電中に負荷102に電力を供給し、負荷102に対する電源のバックアップを行う。
タイマ切替制御回路108は、設定された時間ごとに、商用電源101の復電を電圧低下検出回路104からの電圧低下検出信号により確認し、商用電源101が復電したことを検知すると(t)、負荷102に供給する電力を商用電源101側から電源105側に切り替える制御信号を停止する。切替回路107は、タイマ切替制御回路108からの制御信号の停止により、負荷102に供給する電力を電源105側から商用電源101側に切り替える。
タイマ切替制御回路108は、バックアップコンデンサ回路109を有し、商用電源101の停電時においてもタイマ切替制御回路108の動作電力を確保して、タイマによる切替回路107の切替タイミングのカウントを行う。
特開2006−033441号公報
AC/DC変換回路103は、商用電源101が復電すると起動されるが、起動のタイムラグがあるため(t〜t)、商用電源101から電力が入力されてから一定期間は商用電源101からの電力を負荷102に供給することができない。一方で、タイマ切替制御回路108は、設定された時間間隔で商用電源101の復電の検知を行うが、設定された時間において復電を検知すると(t)、速やかに負荷102への供給を電源105側から商用電源101側に切り替える。したがって商用電源101の復電直後にタイマ切替制御回路108が商用電源101の復電を検知した場合、AC/DC変換回路103の起動タイムラグを考慮することなく、AC/DC変換回路103の起動時間中に負荷102への電力供給が電源105側から商用電源101側に切り替わってしまうため、一時的(t〜t)に負荷102に電力が供給されないという問題があった。
また、特許文献1には記載がないが、復電時にもタイマ切替制御回路108を活用することで、AC/DC変換回路103の立ち上がりによる一時的な停電を防ぐことは期待される。ここで、図1に記載の電源切替回路100のタイマ切替制御回路108にはバックアップコンデンサ回路109が内蔵されている(特許文献1)。しかし、バックアップコンデンサ回路109は、商用電源101停電中にタイマ切替制御回路108を動作させるためだけに使用されるコンデンサである。したがって、商用電源101が復電した直後は、バックアップコンデンサ回路109はすでに電力を蓄積していない場合が考えられるため、タイマ切替制御回路108は、商用電源101の復電検知後さらなる時間のカウントをせず、復電と同時に切替回路107に対して制御信号の送信を停止し、負荷102に供給する電源を、電源105側から商用電力101側に切替てしまう。
更に、商用電源101復電時に、AC/DC変換回路103の起動時間(t〜t)より長い遅延時間をとって、電源を電源105側から商用電源101側に切り替えたとしても、AC/DC変換回路は機種毎に起動時間が異なるため、AC/DC変換回路毎に起動時間を測定した上で、切替の遅延時間を設定する作業が必要となる。設定した遅延時間がAC/DC変換回路103の起動時間より短いと、負荷102への電力供給が一時的に途絶えて負荷102にシステム障害を引き起こす課題があった。また設定した遅延時間がAC/DC変換回路103の起動時間より長すぎると、電源105の消耗を早めてしまうという問題があった。
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、停電時に負荷への電力を供給する電源を負荷供給用の電源からバックアップ用の電源に切り替える電源切替回路において、負荷への電力供給を停止させることなく電源を切り替える電源切替装置を提供することにある。
具体的には、本発明の第1の態様は、第1の電源と負荷との間に接続され、前記第1の電源からの電力を前記負荷が動作できる電圧に変換する第1の電力変換回路と、前記第1の電力変換回路と前記負荷との間に接続され、前記第1の電力変換回路から前記負荷に電流を流す第1のダイオードと、前記負荷にスイッチを介して接続された第2の電源と、前記スイッチと前記負荷との間に接続され、前記第2の電源から前記負荷に電流を流す第2のダイオードと、前記第1の電源と前記第1の電力変換回路との間の電圧値、及び前記第1の電力変換回路と前記第1のダイオードとの間の電圧値を検知し、前記スイッチに前記スイッチを開閉する制御信号を出力する制御回路とを備える電源切替回路であって、前記第1の電源と前記第1の電力変換回路との間の電圧値が第1のしきい値より低下したときに、前記スイッチをONにする制御信号を前記スイッチに送信して前記スイッチをONにさせ、前記第1の電力変換回路と前記第1のダイオードとの間の電圧値が第2のしきい値より上昇したときに、前記スイッチをOFFにする制御信号を前記スイッチに送信して前記スイッチをOFFにさせ、前記第2の電源は、鉛蓄電池であり、前記第2の電源の出力電圧の上限が、前記負荷の動作電圧の上限よりも高く、前記第2のダイオードの順方向下降電圧が第2の電源の出力電圧の上限と負荷の動作電圧の上限の差であることを特徴とする。
また、本発明の第2の態様は、第1の態様の電源切替回路であって、前記第1のしきい値は、前記第1の電源が動作して電力を出力する電圧であり、前記第2のしきい値は、前記負荷が動作する電圧であることを特徴とする。
また、本発明の第の態様は、第1又は第2の態様の電源切替回路であって、第3の電源と前記負荷との間に接続され、前記第3の電源からの電力を前記負荷が動作できる電圧に変換する第2の電力変換回路と、前記第2の電力変換回路と前記負荷との間に接続され、前記第2の電力変換回路から前記負荷に電流を流す第3のダイオードとをさらに備え、前記制御回路は、前記第3の電源と前記第2の電力変換回路との間の電圧値及び前記第2の電力変換回路と前記第3のダイオードとの間の電圧値とをさらに検知し、前記第1の電源と前記第1の電力変換回路との間の電圧値が第1のしきい値より低下し、かつ前記第の電源と前記第2の電力変換回路との間の電圧値が第3のしきい値より低下したときに、前記スイッチをONにする制御信号を前記スイッチに送信して前記スイッチをONにさせ、前記第1の電力変換回路と前記第1のダイオードとの間の電圧値及び前記第2の電力変換回路と前記第3のダイオードとの間の電圧値のいずれか1つ以上が前記第2のしきい値より上昇したときに、前記スイッチをOFFにする制御信号を前記スイッチに送信して前記スイッチをOFFにさせることを特徴とする。
また、本発明の第の態様は、第の態様の電源切替回路であって、前記第のしきい値は、前記第3の電源が動作して電力をする電圧であることを特徴とする。
本発明によれば、電源切替回路において負荷への電力供給を停止させることなく、かつ、バックアップ用の電源に無駄な電力消費を発生させない最適なタイミングで電源を切り替えることができる。
特許文献1に記載の従来の電源切替回路を示すブロック図である。 図1の電源切替回路の商用電源停電時における、商用電源、AC/DC変換回路及び電源の出力電圧、及び負荷への供給電圧の電圧波形を示す図である。 本発明の第1の実施形態を示す電源切替回路を示すブロック図である。 本発明の第2の実施形態を示す電源切替回路を示すブロック図である。
以下、図面を参照して、本発明の各実施形態について説明する。
[第1の実施形態]
図3は、本発明の第1の実施形態を示す電源切替回路300を示すブロック図である。電源切替回路300は、電源301と、負荷302と、電源301に接続され、電源301から出力される電力を変換して負荷302に電力を供給する電力変換回路303と、電力変換回路303と負荷302との間に接続され、電力変換回路303から負荷302へ電流を流すダイオード304とを備える。また、電源切替回路300は、バックアップ電源供給用の電源305と、電源305に接続され、負荷302に電源305からの電力を供給または遮断するロードスイッチ306と、ロードスイッチ306と負荷302との間に接続され、電源305から負荷302に電流を流すダイオード307とを備える。また、電源切替回路300は、電源301と電力変換回路303との間の電圧値を電圧信号Aとして受信し、電力変換回路303とダイオード304との間の電圧値を電圧信号Bとして受信し、ロードスイッチ306にスイッチ開閉信号である制御信号Cを送信する制御回路308を備える。
ここで、電源切替回路300の一例として、電源301は商用電源(16V)又は太陽電池(18V)を使用し、電力変換回路303は、電源301の種類に合わせてDC/DC変換回路又はAC/DC変換回路を使用し、電源305は12V系バックアップ用鉛蓄電池(12.8V)を使用し、負荷302は12Vの電圧により動作するものとして説明する。電力変換回路303は16V以上の電源301からの電圧を、負荷302の動作に必要な12Vの電圧に変換する。電源305は、バックアップ電源供給用の鉛蓄電池なので電力供給時間が限定されるため優先順位は電源301よりも低くなる。つまり、電源301(商用電源や太陽電池)が負荷302に対して正常に電力を供給できる場合は電源301から負荷302に電力が供給され、電源301が停電になった場合にのみ電源305から負荷302に電力が供給される。また、制御回路308は、負荷302の入力線から電力を一部受電し、動作する。
まず、電源301が停電した場合の動作について説明する。電源301が停電すると、電源301の出力電圧が低下する。制御回路308は、電源301からの出力電圧低下を電圧信号Aの電圧値がしきい値より下がったことにより検知する。ここで、しきい値は、電源301が動作して電力を出力する電圧に設定されている。制御回路308が出力電圧の低下を検知すると、制御回路308は、ロードスイッチ306にスイッチをONさせる制御信号Cを送信することにより、速やかに電源305に接続されたロードスイッチ306をONにして導通させ、電源305から負荷302に電力を供給するために、電力変換回路303に蓄積した電力により電圧が維持されている時間内に負荷302への電力供給を電源301側から電源305側に切り替える。
次に、電源301が復電した場合の動作について説明する。電源301が復電した場合、電源301からの出力電圧が上昇し、その後、電力変換回路303の起動タイムラグの期間を経て、電力変換回路303からの出力電圧が負荷302の動作電圧まで上昇する。制御回路308は、電力変換回路303からの出力電圧上昇を電圧信号Bの電圧値がしきい値より上昇したことにより検知する。ここで、しきい値は、負荷302を動作させるのに必要な電圧値に設定される。復電を検知すると、ロードスイッチ306をOFFさせる制御信号Cをロードスイッチ306に送信して、ロードスイッチ306をOFFにする。ロードスイッチ306がOFFになると、負荷302から電源305が遮断され、電源305から負荷302への電力供給が停止される。
制御回路308は、電源301が復電した場合は、電圧信号Aにより電源301の復電を検知するのではなく、電圧信号Bにより電力変換回路303とダイオード304との間の電圧上昇を検知する。電力変換回路303に起動タイムラグがあることから、電源301が復電し、電源305から電源301に切り替わる際に、制御回路308は、瞬停を避けるため、電圧信号Bの電圧値がしきい値である12Vに上昇したことを確認する。電圧信号Bの値の上昇を確認してから、ロードスイッチ306に制御信号Cを送信して、ロードスイッチ306をOFFする仕組みとしている。
電力変換回路303とダイオード304との間の電圧を監視することで、電力変換回路の機種ごとの起動時間に依存せずに、負荷302への電力供給を停止させることなく電源305から電源301に電源を切り替えることができる。
ダイオード304は、電源301の停電時に、電源305からの電流が電力変換回路303に逆流するのを防止するために設けられている。また、ダイオード307は、電力変換回路303からの電流が電源305及びロードスイッチ306に逆流するのを防止するために設けられている。
また、ダイオード307を設けることにより、負荷302が故障することを防止し、さらに電源305に使用される鉛蓄電池を有効に使用することができる。具体的に説明すると、一般的に負荷装置の動作電圧範囲は定格±10%であることが多い。本実施形態において負荷302の動作電圧は12Vであるため、動作電圧範囲は10.8V〜13.2Vである。一方、電源305に使用されるバックアップ用鉛蓄電池(12.8V)の出力電圧範囲は、10.8V〜13.8Vである。負荷装置の動作電圧範囲とバックアップ用鉛蓄電池の出力電圧範囲とを比較すると、下限電圧は一致するが、上限電圧は若干ずれている。ここで、負荷302に対し動作電圧範囲の上限である13.2V以上の電圧を印加すると、負荷302は故障してしまう可能性が生じる。したがってダイオード307および410を設けない状態では、電源305に使用される鉛蓄電池の出力電圧の上限を、負荷302に合わせて13.2Vに設定する必要がある。
しかし、鉛蓄電池の上限電圧を13.2Vにすると、本実施形態に電源305として使用される12V系バックアップ用鉛蓄電池の本来蓄電できる能力の40%程度しか充電できない。鉛蓄電池の出力電圧は、充電量に依存するものであるからである。したがってこのような場合、バックアップ時間を考えると、上限電圧を13.8Vとした場合の2.5倍分、鉛蓄電池を余計に積む必要が生じる。
一方で、ダイオード307を設けると、ダイオード307の順方向降下電圧(V)分だけ鉛蓄電池の動作電圧がレベルアップできる。例えばV=0.6Vのダイオードをダイオード307に使用すると、負荷302に10.8V〜13.2Vの電圧を供給するには、鉛電池は、11.4V〜13.8Vの動作電圧が必要となる。12V系バックアップ用鉛蓄電池を100%充電すると、動作電圧の上限は13.8Vとなるため、負荷302に供給される電圧上限電圧は、負荷の動作電圧と一致する。また、蓄電池の動作電圧が11.4Vまで低下した時、鉛蓄電池の残容量は20%程度であるため、蓄電池の約80%の電力量を使用したことになる。この場合、鉛蓄電池において使用できる電力量は、ダイオード307を設けない場合に対して、2倍となる。したがって、ダイオード307を設けない場合に対して蓄電池数を削減できるため、電源切替装置300の小型化やコストダウンに役立つこととなる。
ここで、ロードスイッチ306を排し、ダイオード304及び307によるダイオードのOR回路のみで負荷302に供給する電源を選択することも考えられる。しかし、ダイオードのOR回路では、電圧の高い方の電源からの電流が優先されることから、バックアップ用電源である電源305からの電力が優先的に負荷302に供給されてしまう。電源301から電力変換回路303を介して出力される電圧(12V)と電源305(12.8V)とでは、電源305の電圧値の方が高いからである。したがって、ロードスイッチ306を設けないと、電源305は、バックアップ用電源としてではなく、主要な電源として動作してしまう。よって、制御回路308により停電を検知してロードスイッチ306を開閉し、負荷302に対し、バックアップ用電源である電源305を接続又は遮断する方法を採用している。
[第2の実施形態]
図4は、本発明の第2の実施形態にかかる電源切替回路400を示すブロック図である。電源切替回路400は、電源401と、負荷402と、電源401に接続され、電源401からの電力を変換して負荷402に供給する電力変換回路403と、電力変換回路403と負荷402との間に接続され、電力変換回路403から負荷402へ電流を流すダイオード404とを備える。また、電源切替回路400は、電源405と、電源405に接続され、電源405からの電力を変換して負荷402に供給する電力変換回路406と、電力変換回路406と負荷402との間に接続され、電力変換回路406から負荷402へ電流を流すダイオード407とを備える。また、電源切替回路400は、バックアップ電源供給用の電源408と、電源408に接続され、負荷402に電源408からの電力を供給または遮断するロードスイッチ409と、ロードスイッチ409と負荷402との間に接続され、電源408から負荷402に電流を流すダイオード410とを備える。また、電源切替回路400は、電源401と電力変換回路403との間の電圧値を電圧信号Dとして受信し、電力変換回路403とダイオード404との間の電圧値を電圧信号Eとして受信し、電源405と電力変換回路406との間の電圧値を電圧信号Fとして受信し、電力変換回路406とダイオード407との間の電圧値を電圧信号Gとして受信し、ロードスイッチ409にスイッチ開閉信号である制御信号Hを送信する電圧制御回路411を備える。
本実施形態においては、商用電源又は外部電源等の負荷に接続される電源数が増えた場合の本発明の実施形態を説明するものであり、商用電源又は外部電源等の複数の電源がすべて停電し、蓄電池などの電源に切り替える場合における実施形態である。
ここで、電源切替回路400の一例として、電源401及び405は、商用電源(16V)又は太陽電池(18V)を使用し、電力変換回路403及び406は、それぞれ接続される電源401及び405の種類に合わせてDC/DC変換回路又はAC/DC変換回路を使用する。また、電源408は12V系バックアップ用鉛蓄電池又はフライホイールなどの蓄電デバイス(12.8V)を使用し、負荷402は12Vの電圧により動作するものとして説明する。電力変換回路403及び406は、それぞれ16V以上の電源401及び405からの電圧を、負荷402の動作に必要な12Vの電圧に変換する。電源408は、バックアップ電源供給用の鉛蓄電池なので優先順位は電源401及び405よりも低くなる。つまり、電源401又は405(商用電源や太陽電池)が負荷402に対して正常に電力を供給できる場合は電源401又は405から負荷402に電力が供給され、電源401及び405の双方が停電になった場合にのみ電源408から負荷402に電力が供給される。また、制御回路411は、負荷402の入力線から電力を一部受電し、動作する。
まず、各電源401及び405が停電した場合の動作について説明する。電源401と電源405との双方が停電した場合は、電源401と電源405とからの出力電圧が低下する。制御回路411は、電源401からの出力電圧の低下を電圧信号Dがしきい値より下がったことにより、電源405からの出力電圧の低下を電圧信号Fがしきい値より下がったことにより検知する。制御回路411が電源401と電源405とからの出力電圧の低下を検知すると、制御回路411は、ロードスイッチ409にスイッチをONさせる制御信号Hを送信することにより、速やかに電源408に接続されたロードスイッチ409をONにして導通させ、電源408から負荷402に電流を供給するために、電力変換回路403または406に蓄積した電力により電圧が維持されている時間内に負荷402への電力供給を電源401側及び電源405側から電源408側に切り替える。
次に、電源401と電源405とのいずれか1つ以上が復電した場合は、制御回路411は、復電した側の電源に接続された電力変換回路とダイオードとの間の電圧上昇を検知して、ロードスイッチ409をOFFさせる。具体的には、電源401が復電した場合は、電力変換回路403からの出力電圧上昇を、電圧信号Eから検知する。また、電源405が復電した場合は、電力変換回路406からの出力電圧上昇を、電圧信号Gから検知する。電源401と電源405とのいずれか1つ以上の復電を検知すると、スイッチをOFFさせる制御信号Hをロードスイッチ411に送信して、ロードスイッチ409をOFFにする。ロードスイッチ409がOFFになると、負荷402から電源408が遮断され、電源408から負荷402への電力供給が停止される。電圧信号Eにより電力変換回路403とダイオード404との間の電圧を監視し、電圧信号Gにより電力変換回路406とダイオード407との間の電圧を監視することで、電力変換回路の機種ごとの起動時間に依存せずに、負荷402への電力供給を停止させることなく電源408から電源401と電源405との少なくとも1つ以上に電源を切り替えることができる。ここで、電源401と電源405との少なくとも1つ以上が復電し、電源408から電源401と電源405との少なくとも1つ以上に電源が切り替わる際に、電力変換回路403及び電力変換回路406に起動タイムラグがあることから、制御回路411は、瞬停を避けるため、電圧信号Eと電圧信号Gとのいずれか1つ以上が12Vになったことを確認してから、ロードスイッチ409に制御信号Hを送信して、ロードスイッチ409をOFFする仕組みとしている。
ダイオード404は、電源401の停電時に、電力変換回路406又は電源408からの電流が電力変換回路403に逆流するのを防止するために設けられている。また、ダイオード407は、電源405の停電時に、電力変換回路403又は電源408からの電流が電力変換回路406に逆流するのを防止するために設けられている。また、ダイオード410は、電力変換回路403又は電力変換回路406からの電流が電源408及びロードスイッチ409に逆流するのを防止するために設けられている。さらに、ダイオード410を設けることにより、負荷402が故障することを防止し、さらに電源408に使用される鉛蓄電池を有効に使用することができる。
ここで、ロードスイッチ409を排し、ダイオード404、407及び410によるダイオードのOR回路のみで負荷402に供給する電源を選択することも考えられる。しかし、ダイオードのOR回路では、電圧の高い方の電源からの電流が優先されることから、バックアップ用電源である電源408からの電力が優先的に負荷402に供給されてしまう。電源401から電力変換回路403を介して出力される電圧(12V)及び電源405から電力変換回路406を介して出力される電圧(12V)と、電源408(12.8V)とでは、電源408の電圧値の方が高いからである。したがって、ロードスイッチ409を設けないと、電源408は、バックアップ用電源としてではなく、主要な電源として動作してしまう。よって、制御回路411により停電を検知してロードスイッチ409を開閉し、負荷402に対し、バックアップ用電源である電源408を接続又は遮断する方法を採用している。
100、300、400 電源切替回路
101 商用電源
102、302、402 負荷
103 AC/DC変換回路
104 電圧低下検出回路
105、301、305、401、405、408 電源
107 切替回路
108 タイマ切替制御回路
109 バックアップコンデンサ回路
303、403、406 電力変換回路
304、307、404、407、410 ダイオード
306、409 ロードスイッチ
308、411 制御回路

Claims (4)

  1. 第1の電源と負荷との間に接続され、前記第1の電源からの電力を前記負荷が動作できる電圧に変換する第1の電力変換回路と、
    前記第1の電力変換回路と前記負荷との間に接続され、前記第1の電力変換回路から前記負荷に電流を流す第1のダイオードと、
    前記負荷にスイッチを介して接続された第2の電源と、
    前記スイッチと前記負荷との間に接続され、前記第2の電源から前記負荷に電流を流す第2のダイオードと、
    前記第1の電源と前記第1の電力変換回路との間の電圧値、及び前記第1の電力変換回路と前記第1のダイオードとの間の電圧値を検知し、前記スイッチに前記スイッチを開閉する制御信号を出力する制御回路と
    を備え、
    前記第1の電源と前記第1の電力変換回路との間の電圧値が第1のしきい値より低下したときに、前記スイッチをONにする制御信号を前記スイッチに送信して前記スイッチをONにさせ、
    前記第1の電力変換回路と前記第1のダイオードとの間の電圧値が第2のしきい値より上昇したときに、前記スイッチをOFFにする制御信号を前記スイッチに送信して前記スイッチをOFFにさせ、
    前記第2の電源は、鉛蓄電池であり、前記第2の電源の出力電圧の上限が、前記負荷の動作電圧の上限よりも高く、
    前記第2のダイオードの順方向下降電圧が第2の電源の出力電圧の上限と負荷の動作電圧の上限の差であ
    ことを特徴とする電源切替回路。
  2. 前記第1のしきい値は、前記第1の電源が動作して電力を出力する電圧であり、前記第2のしきい値は、前記負荷が動作する電圧であることを特徴とする請求項1に記載の電源切替回路。
  3. 第3の電源と前記負荷との間に接続され、前記第3の電源からの電力を前記負荷が動作できる電圧に変換する第2の電力変換回路と、
    前記第2の電力変換回路と前記負荷との間に接続され、前記第2の電力変換回路から前記負荷に電流を流す第3のダイオードと、
    をさらに備え、
    前記制御回路は、前記第3の電源と前記第2の電力変換回路との間の電圧値及び前記第2の電力変換回路と前記第3のダイオードとの間の電圧値をさらに検知し、
    前記第1の電源と前記第1の電力変換回路との間の電圧値が第1のしきい値より低下し、かつ前記第の電源と前記第2の電力変換回路との間の電圧値が第3のしきい値より低下したときに、前記スイッチをONにする制御信号を前記スイッチに送信して前記スイッチをONにさせ、
    前記第1の電力変換回路と前記第1のダイオードとの間の電圧値及び前記第2の電力変換回路と前記第3のダイオードとの間の電圧値のいずれか1つ以上が前記第2のしきい値より上昇したときに、前記スイッチをOFFにする制御信号を前記スイッチに送信して前記スイッチをOFFにさせる
    ことを特徴とする請求項1又は2に記載の電源切替回路。
  4. 前記第のしきい値は、前記第3の電源が動作して電力を出力する電圧であることを特徴とする請求項に記載の電源切替回路。
JP2014111364A 2014-05-29 2014-05-29 電源切替回路 Active JP5941495B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111364A JP5941495B2 (ja) 2014-05-29 2014-05-29 電源切替回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111364A JP5941495B2 (ja) 2014-05-29 2014-05-29 電源切替回路

Publications (2)

Publication Number Publication Date
JP2015226428A JP2015226428A (ja) 2015-12-14
JP5941495B2 true JP5941495B2 (ja) 2016-06-29

Family

ID=54842862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111364A Active JP5941495B2 (ja) 2014-05-29 2014-05-29 電源切替回路

Country Status (1)

Country Link
JP (1) JP5941495B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509832A (zh) * 2020-03-12 2020-08-07 深圳市海洋王照明工程有限公司 双电池管理电路及灯具

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264285B2 (ja) * 1992-01-30 2002-03-11 株式会社三陽電機製作所 無停電電源装置
JPH09130995A (ja) * 1995-10-31 1997-05-16 Toshiba Corp 無停電電源装置
JP4560657B2 (ja) * 2000-12-08 2010-10-13 レシップ株式会社 無停電電源装置
JP2003009424A (ja) * 2001-06-18 2003-01-10 Nippon Telegr & Teleph Corp <Ntt> 電力供給システム
JP2003070183A (ja) * 2001-08-27 2003-03-07 Matsushita Electric Works Ltd 停電バックアップ電源装置
JP2003309937A (ja) * 2002-04-16 2003-10-31 Hitachi Ltd 電源装置
JP2005269754A (ja) * 2004-03-18 2005-09-29 Densei Lambda Kk 電圧低下保護装置
JP5313810B2 (ja) * 2009-08-19 2013-10-09 三菱電機株式会社 無停電電源装置
JP2013099204A (ja) * 2011-11-04 2013-05-20 Maspro Denkoh Corp 無停電電源装置

Also Published As

Publication number Publication date
JP2015226428A (ja) 2015-12-14

Similar Documents

Publication Publication Date Title
JP6725647B2 (ja) 無停電電源装置
JP6058233B1 (ja) 電力変換装置
JP6450403B2 (ja) 電力制御装置、電力制御システム、および電力制御方法
JP5882884B2 (ja) 無停電電源装置
JP6468593B2 (ja) 蓄電システム
WO2015190421A1 (ja) 電子制御装置
JP2014117083A (ja) 蓄電装置の入力電源切り替え方法
JP5941495B2 (ja) 電源切替回路
JP2013038871A (ja) スイッチング装置
JP5819783B2 (ja) 無停電電源システム
JP2011091978A (ja) 直流配電システム
WO2013136655A1 (ja) 充放電制御装置
JP2009095107A (ja) 無瞬断バックアップ電源
JP6145777B2 (ja) 電力変換装置
US9653947B2 (en) Electric power converter having the function of switching power supply systems in the event of power failure
JP2019068662A (ja) 電源供給システム
JP6385207B2 (ja) 蓄電池システム
JP2005354781A (ja) 無停電電源装置
JP5868282B2 (ja) 電力供給システム
JP2013038957A (ja) 無停電電源システム
JP2010193590A (ja) 電源瞬断対策回路、スイッチング電源装置、及び、コンデンサ充電制御方法
JP2017041919A (ja) 電力変換システム
JP6058096B1 (ja) 電力供給システム
JP2013031322A (ja) 出力保護回路及び電子機器
JP6387498B2 (ja) 二次電池の充電制御回路

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160520

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5941495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150