JP5920523B2 - 抵抗スポット溶接方法 - Google Patents

抵抗スポット溶接方法 Download PDF

Info

Publication number
JP5920523B2
JP5920523B2 JP2015504203A JP2015504203A JP5920523B2 JP 5920523 B2 JP5920523 B2 JP 5920523B2 JP 2015504203 A JP2015504203 A JP 2015504203A JP 2015504203 A JP2015504203 A JP 2015504203A JP 5920523 B2 JP5920523 B2 JP 5920523B2
Authority
JP
Japan
Prior art keywords
welding
energization
time
calorific value
heat generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015504203A
Other languages
English (en)
Other versions
JPWO2014136507A1 (ja
Inventor
泰明 沖田
泰明 沖田
央海 澤西
央海 澤西
池田 倫正
倫正 池田
大井 健次
健次 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP5920523B2 publication Critical patent/JP5920523B2/ja
Publication of JPWO2014136507A1 publication Critical patent/JPWO2014136507A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor

Description

本発明は、通電パターンが2段以上の多段ステップ通電による抵抗スポット溶接方法に関し、特に各ステップにおいて適応制御溶接を活用することにより適正なナゲットの形成を可能ならしめようとするものである。
重ね合わせた鋼板同士の接合には、一般的に重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。
この溶接法は、重ね合わせた2枚以上の鋼板を挟んでその上下から一対の電極で加圧しつつ、上下電極間に高電流の溶接電流を短時間通電して接合する方法であり、高電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部はナゲットと呼ばれ、重ね合わせた鋼板に電流を流した際に鋼板の接触箇所で両鋼板が溶融し、凝固した部分であり、これにより鋼板同士が点状に接合される。
良好な溶接部品質を得るためには、ナゲット径が適正な範囲で形成されることが重要である。ナゲット径は、溶接電流、通電時間、電極形状および加圧力等の溶接条件によって定まる。従って、適切なナゲット径を形成するためには、被溶接材の材質、板厚および重ね枚数等の被溶接材条件に応じて、上記の溶接条件を適正に設定する必要がある。
例えば、自動車の製造に際しては、一台当たり数千点ものスポット溶接が施されており、また次々と流れてくる被処理材(ワーク)を溶接する必要がある。この時、各溶接箇所における被溶接材の材質、板厚および重ね枚数等の被溶接材の状態が同一であれば、溶接電流、通電時間および加圧力等の溶接条件も同一の条件で同一のナゲット径を得ることができる。しかしながら、連続した溶接では、電極の被溶接材接触面が次第に摩耗して接触面積が初期状態よりも次第に広くなる。このように接触面積が広くなった状態で、初期状態と同じ値の溶接電流を流すと、被溶接材中の電流密度が低下し、溶接部の温度上昇が低くなるため、ナゲット径は小さくなる。このため、数百〜数千点の溶接毎に、電極の研磨または交換を行い、電極の先端径が拡大しすぎないようにしている。
その他、予め定めた回数の溶接を行うと溶接電流値を増加させて、電極の摩耗に伴う電流密度の低下を補償する機能(ステッパー機能)を備えた抵抗溶接装置が、従来から使用されている。このステッパー機能を使用するには、上述した溶接電流変化パターンを予め適正に設定しておく必要がある。しかしながら、このために、数多くの溶接条件および被溶接材条件に対応した溶接電流変化パターンを、試験等によって導き出すには、多くの時間とコストが必要になる。
また、実際の施工においては、電極摩耗の進行状態にはバラツキがあるため、予め定めた溶接電流変化パターンが常に適正であるとはいえない。
さらに、溶接に際して外乱が存在する場合、例えば、溶接する点の近くにすでに溶接した点(既溶接点)があるとか、被溶接材の表面凹凸が大きく溶接する点の近くに被溶接材の接触点が存在する場合には、溶接時に既溶接点や接触点に電流が分流する。このような状態では、所定の条件で溶接しても、電極直下の溶接したい位置における電流密度は低下するため、やはり必要な径のナゲットは得られなくなる。
この発熱量不足を補償し、必要な径のナゲットを得るには、予め高い溶接電流を設定することが必要となる。
上記の問題を解決するものとして、以下に述べるような技術が提案されている。
例えば、特許文献1には、推算した溶接部の温度分布と目標ナゲットを比較して溶接機の出力を制御することによって、設定されたナゲットが得られるようにした抵抗溶接機の制御装置が記載されている。
また、特許文献2には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーションを行い、ナゲットの形成状態を推定することによって、良好な溶接を行うようにした抵抗溶接機の溶接条件制御方法が記載されている。
さらに、特許文献3には、被溶接物の板厚と通電時間とから、その被溶接物を良好に溶接することができる単位体積当たりの累積発熱量を計算し、計算された単位体積・単位時間当たりの発熱量を発生させる溶接電流または電圧に調整する処理を行う溶接システムを用いることにより、被溶接物の種類や電極の摩耗状態によらず良好な溶接ができることが記載されている。
特開平9−216071号公報 特開平10−94883号公報 特開平11−33743号公報
しかしながら、特許文献1および2に記載の抵抗スポット溶接方法では、熱伝導モデル(熱伝導シミュレーション)等に基づいてナゲットの温度を推定するため、複雑な計算処理が必要であり、溶接制御装置の構成が複雑になるだけでなく、溶接制御装置自体が高価になるという問題があった。
また、特許文献3に記載の抵抗スポット溶接方法では、累積発熱量を目標値に制御することで、電極の摩耗具合の如何にかかわらず常に良好な溶接が可能となる。しかしながら、設定した被溶接材条件と実際の被溶接材条件が大きく異なる場合、例えば近くに前述した既溶接点などの外乱が存在する場合や、発熱量の時間変化パターンが短時間で大きく変化する場合、さらには目付量の多い溶融亜鉛めっき鋼板の溶接の場合などには、適応制御が追随できず、必要とするナゲット径が得られなかったり、過剰な入熱により散りが発生したりする場合があった。
さらに、特許文献1〜3の技術は全て、電極先端が摩耗した場合の変化に対しては有効ではあるが、既溶接点との距離が短い場合など、分流の影響が大きい場合には何ら検討がなされておらず、実際に適応制御が働かない場合がある。
本発明は、上記の現状に鑑み開発されたもので、多段通電の抵抗スポット溶接に適用でき、しかも電極先端の摩耗や外乱の存在にも有効に対応して、良好なナゲットを得ることができる抵抗スポット溶接方法を提案することを目的とする。
すなわち、本発明の要旨構成は次のとおりである。
1.複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
通電パターンを2段以上の多段ステップに分割して、溶接を実施するものとし、
まず、本溶接に先立ち、各ステップ毎に、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させるテスト溶接を行い、
ついで、本溶接として、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、いずれかのステップにおいて、瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償すべく、本溶接の累積発熱量がテスト溶接で予め求めた累積発熱量と一致するように通電量を制御する適応制御溶接を行う抵抗スポット溶接方法。
2.前記通電パターンを2段以上の多段ステップに分割する場合のステップ分けのタイミングの少なくとも一つが、前記被溶接材間に溶融部が形成される時点である前記1に記載の抵抗スポット溶接方法。
本発明によれば、本溶接に先立ち、定電流制御による溶接電流を通電して適正なナゲットを形成するテスト溶接を行うに当たり、通電パターンを2段以上の多段ステップに分割し、それぞれのステップにおいて、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させることで、本溶接において、各ステップ毎の適応制御溶接を可能としたため、電極先端の摩耗や外乱の存在にも有効に対応して、良好なナゲットを得ることができ、また多段通電が必要となる多段抵抗スポット溶接への適応制御溶接の適用が可能となる。
(a)はテスト溶接を行ったときの溶接部断面であり、(b)はその時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (a)は本発明に従う2段適応制御溶接を行ったときの溶接部断面であり、(b)はその時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (a)は従来の定電流制御溶接を行ったときの溶接部断面であり、(b)はその時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。 (a)は従来の1段適応制御溶接を行ったときの溶接部断面であり、(b)はその時の溶接電流値、電気抵抗値および累積発熱量の推移を示した図である。
以下、本発明を具体的に説明する。
本発明は、抵抗スポット溶接を、通電パターンを2段以上の多段ステップに分割した多段通電により行うこと、および本溶接に先立ち、テスト溶接を実施して、各ステップ毎に、適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させておき、いずれかのステップにおいて、瞬時発熱量の時間変化量が基準である時間変化曲線から外れたとしても、適応制御溶接を活用して、その差を当該ステップの残りの通電時間内で補償し、本溶接の累積発熱量をテスト溶接で予め求めた累積発熱量と一致させるところに特徴がある。
そこで、まず、本発明に従うテスト溶接について説明する。なお、この例では、溶接電流の通電を2段ステップで行う場合について説明する。
被溶接材と同じ鋼種、厚みの試験を、ギャップや既溶接点への分流のない状態で、定電流制御にて種々の条件で溶接を行い、必要とするナゲット径が得られる溶接条件、すなわち適正な加圧力F、通電時間Tおよび溶接電流Iを見つける。
なお、溶接機としてはインバータ直流抵抗スポット溶接機が好適であり、また電極としてはDR形先端のクロム銅電極が有利に適合する。さらに、ナゲット径は、ピール試験やナゲット中央の断面観察(ピクリン酸飽和水溶液にてエッチング)により求めることができる。
ついで、通電パターンを2段ステップに分割する場合のステップ分けを行うタイミングとして、被溶接材である鋼板間に溶融部が形成された時点を採用した場合には、このタイミングを決定するために、上記と同じ加圧力Fおよび溶接電流Iの下で通電時間を変化させながら溶接し、溶融部が形成される時点を見つける。
なお、溶融部の形成はピール試験により確認することができる。
そして、通電時間T1で溶融部が形成されたとする。
以上の実験結果から、テスト溶接の条件を次のように決定する。
・1段目溶接条件 加圧力F、通電時間T、溶接電流I
・2段目溶接条件 加圧力F、通電時間T(=T−T)、溶接電流I
そして、上記の条件で溶接を行ったときの溶接中における、電極間の電気特性から算出される単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として各ステップ毎に記憶させて、テスト溶接とする。
なお、本発明において電極間の電気特性とは、電極間抵抗あるいは電極間電圧を意味する。
また、1段目溶接条件と2段目溶接条件の間に冷却時間は入れてもいいし、入れなくてもよい。
ついで、本溶接を行う。
本溶接は、上記のテスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、いずれのステップにおいても、瞬時発熱量の時間変化量が基準である時間変化曲線に沿っている場合には、そのまま溶接を行って溶接を終了する。
ただし、いずれかのステップにおいて、瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合には、その差に応じて通電量を制御する適応制御溶接を行って、本溶接における累積発熱量がテスト溶接で予め求めた累積発熱量と一致するように、当該ステップの残りの通電時間内で補償するのである。
これにより、電極先端が摩耗したり、外乱の存在下においても必要な累積発熱量を確保して、適正なナゲット径を得ることができる。
本発明において、単位体積当たりの発熱量の算出方法については特に制限はないが、特許文献3にその一例が開示されており、本発明でもこの方法を採用することができる。
この方法による単位体積当たりの累積発熱量Qの算出要領は次のとおりである。
2枚の被溶接材の合計厚みをt、被溶接材の電気抵抗率をr、電極間電圧をV、溶接電流をIとし、電極と被溶接材が接触する面積をSとする。この場合、溶接電流は横断面積がSで、厚みtの柱状部分を通過して抵抗発熱を発生させる。この柱状部分における単位体積・単位時間当たりの発熱量qは次式(1)で求められる。
q=(V・I)/(S・t) −−− (1)
また、この柱状部分の電気抵抗Rは、次式(2)で求められる。
R=(r・t)/S −−− (2)
(2)式をSについて解いてこれを(1)式に代入すると、発熱量qは次式(3)
q=(V・I・R)/(r・t
=(V)/(r・t) −−− (3)
となる。
上掲式(3)から明らかなように、単位体積・単位時間当たりの発熱量qは、電極間電圧Vと被溶接物の合計厚みtと被溶接物の電気抵抗率rから算出でき、電極と被溶接物が接触する面積Sによる影響を受けない。
なお、(3)式は電極間電圧Vから発熱量を計算しているが、電極間電流Iから発熱量qを計算することもでき、このときにも電極と被溶接物が接触する面積Sを用いる必要がない。
そして、単位体積・単位時間当たりの発熱量qを通電期間にわたって累積すれば、溶接に加えられる単位体積当たりの累積発熱量Qが得られる。(3)式から明らかなように、この単位体積当たりの累積発熱量Qもまた電極と被溶接材が接触する面積Sを用いないで算出することができる。
以上、特許文献3に記載の方法によって、累積発熱量Qを算出する場合について説明したが、その他の算出式を用いても良いのは言うまでもない。
本発明では、通電パターンを2段以上の多段ステップに分割するが、ステップ分けのタイミングとしては、次の時点が考えられる。
・2段分割の場合
鋼板間に溶融部が形成され始めるまでと、それ以降のナゲット成長過程との分岐点である鋼板間に溶融部が形成される時点とするのが好適である。
というのは、既溶接点への分流は、電極直下に安定した通電経路(溶融部)が形成されるまでがその影響が大きいことから、溶融部が形成されるまで単位体積当たりの累積発熱量を保証するように適応制御溶接を行うことで、近くに既溶接点が存在しても安定して通電経路が形成され、その後の第2ステップで安定したナゲットの成長が可能になるからである。
なお、鋼板間に溶融部が形成され始めるタイミングは、通電時間を変化させた溶接を行い、そのピール試験による観察や溶融部の断面観察により判断することができる。
・3段分割の場合
また、被溶接材がめっき鋼板の場合、めっきの溶融を考慮した3段分割とすることが、より好適である。というのは、めっきが存在する場合、分流の影響が大きい電極直下に安定した通電経路が形成されるまでの現象が大きく変化するためである。めっきの融点は鋼板より低いため、通電を開始するとはじめに鋼板間のめっきが溶融に至り、溶融しためっきは加圧力により鋼板間から一部が吐き出される。このとき吐き出されためっきが通電面積を広げることとなるため、溶接中の電極間抵抗が大きく減少する。一方で、被溶接材の固有抵抗は温度上昇とともに増加するため、通電時間とともに固有抵抗値も上昇し、通電面積拡大による電極間抵抗の減少から、被溶接材の温度の上昇による電極間抵抗の上昇が生じるようになり、その後、溶融部が形成されることになる。よって、めっきが溶融して急激に通電面積が拡大する段階と、その後の通電により電極間に安定した通電経路(溶融部)が形成されるまでの段階、および、その後のナゲット成長過程の3段に溶接プロセスを分解して、それぞれの段階で、単位体積当たりの累積発熱量を保証するように適応制御溶接を行うことで、めっき鋼板の抵抗スポット溶接で近くに既溶接点が存在しても、安定して通電経路が形成され、その後の第3ステップで安定したナゲットの成長が可能になるからである。
なお、本発明において外乱とは、前述した溶接点の近くに既溶接点がある場合や被溶接材の接触点が存在する場合の他、電極の損耗などが挙げられる。
また、本発明におけるテスト溶接に関しては、既溶接点等の外乱のない状態で行う場合について説明したが、既溶接点のある状態で行っても、テスト溶接と本溶接の状態の差が小さくなり適応制御が効果的に働きやすくなるだけであり、なんら問題はない。
実施例1
被溶接材として、軟鋼(厚み:1.6mm)を準備した。また、溶接電流は2段通電方式で行うものとした。
この被溶接材を2枚重ねにし、ギャップや既溶接点への分流のない状態にて定電流制御にて溶接を行い、適切なナゲット径が得られる溶接条件を求めた。溶接機にはインバータ直流抵抗スポット溶接機を用い、電極にはDR形先端径6mmのクロム銅電極を用いた。なお、溶接条件は、加圧力は3.43kN(350kgf)、通電時間は16cyc(50Hz(以降,時間の単位はすべて50Hzにおけるcycle数とする))の一定とし、溶接電流を種々に変更して、ナゲット径:4√t(t:板厚)が得られる電流値を求めた。この例で、適正なナゲット径は4√t=5.1mmとなる。
その結果、6.2kAの溶接電流で約5.1mmのナゲット径が得られることが判明した。
そこで、次に溶接プロセスを2段に分けるタイミングを決定するために、加圧力:3.43kN(350kgf)、溶接電流:6.2kAの条件で通電時間を変化させながら溶接を行い(2,3,4,5・・・cyc)、ピール試験にて2枚の鋼板の間に溶融部が形成されるタイミングを確認した。本条件下においては4cycで溶融部が形成されることを確認された。
以上の実験結果から、テスト溶接の条件を次のように決定した。
・1段目溶接条件 加圧力:3.43kN(350kgf)、通電時間:4cyc、
溶接電流:6.2kA
・2段目溶接条件 加圧力:3.43kN(350kgf)、通電時間:12cyc、
溶接電流:6.2kA
なお、1段目溶接条件と2段目溶接条件の間に冷却時間は入れていない。
そして、上記の条件で溶接を行い、溶接中における電圧の変化や電気抵抗から算出される単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として各ステップ毎に記憶させて、テスト溶接とした。
このテスト溶接を行ったときの溶接部断面を図1(a)に、その時の溶接電流値、電気抵抗値および累積発熱量の推移を図1(b)に示す。
図1(a)に示したとおり、このテスト溶接では、目標どおり径が5.1mmのナゲットが得られている。
また、このテスト溶接で得られた第1ステップでの目標累積発熱量は138J、第2ステップでの目標累積発熱量は167Jであった。従って、最終的な目標累積発熱量は305Jとなる。
ついで、以下の条件で本溶接を実施した。
溶接点の近傍に予め既溶接点(溶接点中央間隔:7.5mm)が存在し、分流の影響が大きい条件で、上記したテスト溶接を基準として本発明に従う多段適応制御抵抗スポット溶接を行った。すなわち、テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として抵抗スポット溶接を行った。
図2(a)にその時の溶接部断面を、また図2(b)に溶接電流値、電気抵抗値および累積発熱量の推移を示す。
また、比較のため、溶接点の近傍に予め既溶接点(溶接点中央間隔:7.5mm)が存在する同じ条件で、定電流制御の抵抗スポット溶接(比較例1)および従来の1段通電による適応制御溶接を行った。定電流制御溶接は、加圧力:3.43kN(350kgf)、通電時間:16cyc、溶接電流:6.2kAの条件で行い、また従来の1段通電による適応制御溶接は、加圧力:3.43kN(350kgf)、通電時間:16cyc、溶接電流:6.2kAの条件で既溶接点のない状態で行った1段通電によるテスト溶接を基準とし、既溶接点のある状態で、1段通電による適応制御溶接を行った。
図3(a)に定電流制御溶接を行った時の溶接部断面を、また図3(b)にその時の溶接電流値、電気抵抗値および累積発熱量の推移を示す。
また、図4(a)に従来の1段通電による適応制御溶接を行った時の溶接部断面を、また図4(b)にその時の溶接電流値、電気抵抗値および累積発熱量の推移を示す。
図2(a)から明らかなように、本発明例の場合は、累積発熱量がテスト溶接の場合と同等となるように電流が大きく変化しており、その結果、ナゲット径も5.0mmとほぼ目標どおりのナゲットを得ることができた。
本発明例では、特に第1ステップの前段において、既溶接点に起因した分流の影響を受けて発熱量の不足が見受けられたが、第1ステップの後段では、この不足分を補うべく溶接電流を増加させて目標とする発熱量を確保していることが分かる。
ここに、本溶接における第1ステップでの累積発熱量は135J、第2ステップでの累積発熱量は172Jであり、テスト溶接とほぼ同様な累積発熱量307Jが得られている。
一方、比較例1の定電流制御溶接では、分流により総入熱が不足し、4.0mmという径が小さなナゲットしか得られなかった。
また、従来の1段通電による適応制御溶接では、電流の制御が溶接現象の変化に対応できず、累積発熱量がテスト溶接よりも多くなり、5.6mmとナゲット径が過大になっており、散りが発生しやすい状態になっていた。
次に、表1に、テスト溶接、本発明に従う2段適応制御溶接、従来の定電流制御溶接および従来の1段適応制御溶接を実施したときの第1ステップ(4cyc目まで)の累積発熱量を、それぞれ比較して示す。
表1に示したとおり、本発明例では、4cyc目までにテスト溶接の累積発熱量と同等の累積発熱量が与えることができているが、比較例1の定電流制御溶接では、分流による発熱量の低下が見られた。また、従来の一段適応制御溶接では、適応制御をかけているにもかかわらず、定電流制御溶接と同等の発熱量しか与えられていないことが分かる。

Claims (2)

  1. 複数枚の金属板を重ね合わせた被溶接材を、一対の電極によって挟み、加圧しながら通電して接合する抵抗スポット溶接方法において、
    通電パターンを2段以上の多段ステップに分割して、溶接を実施するものとし、
    まず、本溶接に先立ち、各ステップ毎に、定電流制御により通電して適正なナゲットを形成する場合の電極間の電気特性から算出される、単位体積当たりの瞬時発熱量の時間変化および単位体積当たりの累積発熱量を目標値として記憶させるテスト溶接を行い、
    ついで、本溶接として、該テスト溶接で得られた単位体積当たりの瞬時発熱量の時間変化曲線を基準として溶接を開始し、いずれかのステップにおいて、瞬時発熱量の時間変化量が基準である時間変化曲線から外れた場合に、その差を当該ステップの残りの通電時間内で補償すべく、本溶接の累積発熱量がテスト溶接で予め求めた累積発熱量と一致するように通電量を制御する適応制御溶接を行う抵抗スポット溶接方法。
  2. 前記通電パターンを2段以上の多段ステップに分割する場合のステップ分けのタイミングの少なくとも一つが、前記被溶接材間に溶融部が形成される時点である請求項1に記載の抵抗スポット溶接方法。
JP2015504203A 2013-03-08 2014-01-24 抵抗スポット溶接方法 Active JP5920523B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013047180 2013-03-08
JP2013047180 2013-03-08
PCT/JP2014/052180 WO2014136507A1 (ja) 2013-03-08 2014-01-24 抵抗スポット溶接方法

Publications (2)

Publication Number Publication Date
JP5920523B2 true JP5920523B2 (ja) 2016-05-18
JPWO2014136507A1 JPWO2014136507A1 (ja) 2017-02-09

Family

ID=51491033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504203A Active JP5920523B2 (ja) 2013-03-08 2014-01-24 抵抗スポット溶接方法

Country Status (7)

Country Link
US (1) US10328518B2 (ja)
EP (1) EP2965848B1 (ja)
JP (1) JP5920523B2 (ja)
KR (1) KR101714293B1 (ja)
CN (1) CN105189014B (ja)
MX (1) MX351054B (ja)
WO (1) WO2014136507A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584495B1 (ko) * 2013-03-29 2016-01-13 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 시스템
JP5825454B1 (ja) * 2013-12-27 2015-12-02 Jfeスチール株式会社 抵抗スポット溶接方法
KR101880380B1 (ko) 2014-06-12 2018-07-19 제이에프이 스틸 가부시키가이샤 저항 스폿 용접 장치 및 저항 스폿 용접 방법
MX2017007020A (es) * 2014-12-01 2017-08-14 Jfe Steel Corp Metodo de soldadura por puntos de resistencia.
WO2016147551A1 (ja) * 2015-03-16 2016-09-22 Jfeスチール株式会社 抵抗スポット溶接方法および抵抗スポット溶接継手の製造方法
US10350701B2 (en) 2015-03-30 2019-07-16 Nippon Steel Corporation Method of spot welding
JP5988015B1 (ja) * 2015-04-27 2016-09-07 Jfeスチール株式会社 抵抗スポット溶接方法
EP3290146B1 (en) * 2015-04-27 2021-08-18 JFE Steel Corporation Resistance spot welding method
CN107921572B (zh) * 2015-08-27 2021-03-05 杰富意钢铁株式会社 电阻点焊方法及焊接构件的制造方法
CN109195737B (zh) 2016-06-09 2021-02-09 杰富意钢铁株式会社 电阻点焊方法
JP6913062B2 (ja) * 2017-08-18 2021-08-04 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
EP3646980B1 (en) 2017-08-18 2021-10-13 JFE Steel Corporation Resistance spot welding method and weld member production method
US11911837B2 (en) 2018-02-19 2024-02-27 Jfe Steel Corporation Resistance spot welding method and weld member production method
JP7006388B2 (ja) 2018-03-09 2022-01-24 トヨタ自動車株式会社 抵抗スポット溶接方法および抵抗スポット溶接装置
CN112368101B (zh) * 2018-06-29 2022-03-11 杰富意钢铁株式会社 电阻点焊方法和焊接构件的制造方法
MX2020013762A (es) * 2018-06-29 2021-03-02 Jfe Steel Corp Metodo de soldadura por puntos de resistencia y metodo de produccion de miembro de soldadura.
JP6658992B1 (ja) * 2018-06-29 2020-03-04 Jfeスチール株式会社 抵抗スポット溶接方法および溶接部材の製造方法
CN109317799A (zh) * 2018-11-21 2019-02-12 广州市精源电子设备有限公司 点焊电源输出调节方法、装置、系统和存储介质
DE102019200199A1 (de) * 2019-01-10 2020-07-16 Robert Bosch Gmbh Verfahren zum Überprüfen einer Schweißzange zum Widerstandsschweißen von Werkstücken
JP6897914B1 (ja) * 2020-02-21 2021-07-07 株式会社オリジン 接合装置及び接合済部材の製造方法
CN111390366A (zh) * 2020-04-15 2020-07-10 深圳市欧帝克科技有限公司 一种电阻焊电极温度补偿方法
CN113134671B (zh) * 2021-03-22 2022-11-18 首钢集团有限公司 一种焊接板组的电阻点焊方法
CN116810117B (zh) * 2023-08-28 2023-11-17 苏州同泰新能源科技股份有限公司 一种温度补偿输出能量的电阻焊接机焊接方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133743A (ja) * 1997-07-14 1999-02-09 Na Detsukusu:Kk 単位体積当たりの累積発熱量を指標とする抵抗溶接システム
JP2010221284A (ja) * 2009-03-25 2010-10-07 Daihen Corp 抵抗溶接制御方法
JP2010240740A (ja) * 2009-03-17 2010-10-28 Jfe Steel Corp 抵抗スポット溶接継手の製造方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433967A (en) * 1944-02-28 1948-01-06 Budd Co Method of and apparatus for weld control
US5042126A (en) 1988-08-16 1991-08-27 Tornos-Bechler Sa, Fabrique De Machines Moutier Drive apparatus for multi-spindle processing machines
JP3536081B2 (ja) 1995-06-15 2004-06-07 株式会社竹中工務店 空気調和システム
JP3379323B2 (ja) 1996-02-07 2003-02-24 松下電器産業株式会社 抵抗溶接機の制御装置
JP3161339B2 (ja) 1996-09-24 2001-04-25 松下電器産業株式会社 抵抗溶接機の溶接条件制御方法
JP3760434B2 (ja) 1999-08-27 2006-03-29 矢崎総業株式会社 抵抗溶接の品質管理方法、抵抗溶接方法及び抵抗溶接装置
JP2001276980A (ja) 2000-03-30 2001-10-09 Matsushita Electric Ind Co Ltd 接合装置
US20100221284A1 (en) * 2001-05-30 2010-09-02 Saech-Sisches Serumwerk Dresden Novel vaccine composition
US9085044B2 (en) * 2008-04-17 2015-07-21 Soudronic Ag Method and welding apparatus for the determination of the strength of the welding current to be used in the welding of container bodies
JP5584026B2 (ja) * 2010-07-02 2014-09-03 株式会社ダイヘン 抵抗溶接制御方法
JP2012061487A (ja) * 2010-09-15 2012-03-29 Daihen Corp 抵抗溶接制御方法
JPWO2012050108A1 (ja) * 2010-10-14 2014-02-24 新日鐵住金株式会社 溶接品質判別装置
US9015173B2 (en) * 2011-02-01 2015-04-21 Honda Motor Co., Ltd. Spot weld data management and monitoring system
JP5209749B2 (ja) * 2011-03-04 2013-06-12 株式会社豊田中央研究所 抵抗溶接方法、抵抗溶接部材、抵抗溶接機とその制御装置、抵抗溶接機の制御方法とその制御プログラムおよび抵抗溶接の評価方法とその評価プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133743A (ja) * 1997-07-14 1999-02-09 Na Detsukusu:Kk 単位体積当たりの累積発熱量を指標とする抵抗溶接システム
JP2010240740A (ja) * 2009-03-17 2010-10-28 Jfe Steel Corp 抵抗スポット溶接継手の製造方法
JP2010221284A (ja) * 2009-03-25 2010-10-07 Daihen Corp 抵抗溶接制御方法
JP2010247215A (ja) * 2009-04-20 2010-11-04 Sumitomo Metal Ind Ltd 高張力鋼板の抵抗溶接方法

Also Published As

Publication number Publication date
US20160008913A1 (en) 2016-01-14
WO2014136507A1 (ja) 2014-09-12
CN105189014B (zh) 2017-06-30
EP2965848B1 (en) 2019-08-14
KR101714293B1 (ko) 2017-03-08
EP2965848A4 (en) 2016-06-08
MX2015011798A (es) 2016-01-08
KR20150119945A (ko) 2015-10-26
WO2014136507A8 (ja) 2015-07-30
CN105189014A (zh) 2015-12-23
JPWO2014136507A1 (ja) 2017-02-09
EP2965848A1 (en) 2016-01-13
US10328518B2 (en) 2019-06-25
MX351054B (es) 2017-09-29

Similar Documents

Publication Publication Date Title
JP5920523B2 (ja) 抵抗スポット溶接方法
JP5900699B2 (ja) 抵抗スポット溶接方法
JP5825454B1 (ja) 抵抗スポット溶接方法
WO2014156290A1 (ja) 抵抗スポット溶接システム
KR101974298B1 (ko) 저항 스폿 용접 방법
JP5907317B1 (ja) 抵抗スポット溶接装置および抵抗スポット溶接方法
KR101953054B1 (ko) 저항 스폿 용접 방법 및 저항 스폿 용접 조인트의 제조 방법
KR20190014073A (ko) 저항 스폿 용접 방법
JPWO2019035367A1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP6590121B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP5582277B1 (ja) 抵抗スポット溶接システム
JP6652228B1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JP5988015B1 (ja) 抵抗スポット溶接方法
JP2019034341A (ja) 抵抗スポット溶接方法および溶接部材の製造方法
JPWO2017212916A1 (ja) 抵抗スポット溶接方法
JPWO2020004116A1 (ja) 抵抗スポット溶接方法および溶接部材の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent or registration of utility model

Ref document number: 5920523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250