JP5917133B2 - 防振制御装置、防振制御方法、光学機器、撮像装置 - Google Patents

防振制御装置、防振制御方法、光学機器、撮像装置 Download PDF

Info

Publication number
JP5917133B2
JP5917133B2 JP2011282266A JP2011282266A JP5917133B2 JP 5917133 B2 JP5917133 B2 JP 5917133B2 JP 2011282266 A JP2011282266 A JP 2011282266A JP 2011282266 A JP2011282266 A JP 2011282266A JP 5917133 B2 JP5917133 B2 JP 5917133B2
Authority
JP
Japan
Prior art keywords
shake
output
correction
posture
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011282266A
Other languages
English (en)
Other versions
JP2013130836A5 (ja
JP2013130836A (ja
Inventor
仁志 宮澤
仁志 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011282266A priority Critical patent/JP5917133B2/ja
Priority to US13/686,121 priority patent/US9568742B2/en
Publication of JP2013130836A publication Critical patent/JP2013130836A/ja
Publication of JP2013130836A5 publication Critical patent/JP2013130836A5/ja
Application granted granted Critical
Publication of JP5917133B2 publication Critical patent/JP5917133B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/005Blur detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明は、手振れ等の機器の振れによる画像ブレを補正(画像の劣化を防止)する防振制御技術に関するものである。
現在、手振れ等による画像ブレを防ぐ防振制御装置(振れ補正部、駆動部及び振動検出部等から成る)を備えたカメラが製品化されており、撮影者の撮影ミスを誘発する要因は殆どなくなってきている。
ここで、画像ブレを防ぐ防振制御装置について簡単に説明する。撮影者によるカメラの手振れは、周波数として通常1Hzないし10Hzの振動である。
そして、手振れを起こしていても画像ブレの無い写真を撮影可能とするためには、手振れによるカメラの振動を検出し、その検出値に応じて画像ブレ補正用のレンズ(以下、補正レンズ)を変位させなければならない。
しかし、至近距離での撮影(撮影倍率の高い撮影条件)では、角速度計のみでは検出できない、カメラの光軸に対して平行あるいは垂直な方向に加わる、いわゆる平行振れによる像劣化も無視できない。例えば、マクロ撮影のように被写体に20cm程度まで接近して撮影する条件や、被写体は1m程度に位置していても、撮影光学系の焦点距離が非常に大きい(例えば400mm)条件下では積極的に平行振れを検出して補正を行う必要が出てくる。
特許文献1に開示されている技術では、加速度計の出力は外乱ノイズや温度変化などの環境の変化の影響を受けやすく、二階積分することでそれらの不安定要因はさらに拡大され、平行振れの高精度な補正が難しい問題がある。
特許文献2では、外乱影響を受けにくい周波数帯域に限定して回転中心を求めることで上記のような加速度計の不安定要因を軽減することができる。特許文献3では、防振対象の撮影動作が開始されるまでに、補正値を演算し、撮影中は前記補正値により、平行振れ補正を行う技術が開示されている。
特開平7−225405号公報 特開2010−25962号公報 特開2010−25961号公報
しかしながら、角度振れの回転半径を用いて平行振れ補正を行う方法においては、回転半径を正確に求める必要があり、次のような課題がある。
すなわち、加速度計と角速度計を用いて回転半径を算出する場合、各種センサの検出精度が重要となるが、センサノイズの影響が大きい場合、回転半径の算出が正確に求められず、適切な平行振れ補正効果が得られない。特に加速度計の出力に対する上記ノイズ量の割合が大きい場合、回転半径を誤推定し、平行振れ補正量が大きくなり、過補正により防振性能が悪化してしまう懸念がある。
一般的に上記ノイズの量は加速度の大きさによらず一定の大きさであるので、平行振れが大きい場合、即ち加速度出力値が大きい場合は、上記ノイズが回転半径推定に与える影響は少なく、平行振れ補正量を正確に求めることができる。
しかし、平行振れが非常に小さい場合、即ち加速度出力値が小さい場合は、上記ノイズが回転半径推定に与える影響は大きく、平行振れ補正量を正確に求めることは難しい。つまり、撮影体勢などによる手振れ量の違いで平行振れの検出精度に差が生じる、即ち防振効果に差が生じることになる。
また、角速度計と加速度計を用いて回転半径を算出する際に、角速度信号と加速度信号の相関性が低い場合に回転半径を求め平行振れ補正を行おうとすると、次のような問題がある。すなわち、角速度計の出力と加速度計の出力間の相関性が低いため平行振れを誤検出しているので、防振性能に悪影響を与えてしまうことがある。
更に、カメラの姿勢によっては相関関係が大きく異なる場合がある。例えば、ピッチ、ヨーの2軸出力の角速度計を持つ場合、ロール角速度を検出できないため、ロール回転の影響が大きいときは、適切な平行振れ補正を行えないばかりか、過補正により制御性が悪化してしまう。
また、カメラの傾き位置(撮影姿勢)によって、ロール補正の影響を受け易い駆動軸が変化する(例えば、正位置の場合はヨー軸、縦位置の場合はピッチ軸がロール角速度の影響による平行振れが発生し易い)。
本発明は上述した課題に鑑みてなされたものであり、その目的は、小型で機動性が高く、平行振れも高精度に補正できる防振制御装置を提供することである。
本発明に係わる防振制御装置は、光学機器に搭載される防振制御装置であって、前記光学機器の振れによる画像ブレを、補正部材を移動させることにより補正する振れ補正手段と、前記振れの角速度を検出する第1振れ検出手段と、前記第1振れ検出手段とは異なる方法で振れを検出する第2振れ検出手段と、前記光学機器の傾き位置を検出する姿勢検出手段と、前記第1振れ検出手段の出力に基づく第1信号と前記第2振れ検出手段の出力に基づく第2信号と前記姿勢検出手段に基づく姿勢判定値とを用いて、前記補正部材の移動量である補正値を演算する演算手段と、前記補正値を用いて前記第1振れ検出手段の出力を補正する出力手段とを備え、前記演算手段は、各姿勢判定値により変化する、前記第1振れ検出手段の出力に基づく第1信号と第2振れ検出手段の出力に基づく第2信号の相関性に基づいて、前記振れ補正手段のピッチ軸方向の補正値及びヨー軸方向の補正値に対して重み付けを行い、前記演算手段は、前記姿勢検出手段にて水平正位置姿勢と判定された場合、前記ヨー軸方向の補正値のゲインを前記ピッチ軸方向の補正値のゲインよりも低くし、前記姿勢検出手段にて水平縦位置姿勢と判定された場合、前記ピッチ軸方向の補正値のゲインを前記ヨー軸方向の補正値のゲインよりも低くすることを特徴とする。
本発明によれば、小型で機動性が高く、平行振れも高精度に補正できる防振制御装置を提供することが可能となる。
本発明の実施形態における防振システムを搭載したカメラの上面図。 本発明に実施形態おける防振システムを搭載したカメラの側面図。 第1の実施形態に係る防振制御装置のブロック図。 第1の実施形態に係る防振制御装置の比較部を説明したブロック図。 ピッチ振れの回転中心の説明図。 カメラの傾き姿勢を説明するための図。 ロール振れの回転中心の説明図。 第2の実施形態に係る防振制御装置の比較部を説明したブロック図。 第2の実施形態に係る防振制御装置の波形を説明するための図。 第2の実施形態に係る重み付けゲインを説明するための図。
以下、本発明の実施形態について、添付図面を参照して詳細に説明する。
(第1の実施形態)
図1及び図2は本発明の第1の実施形態に係わる防振制御装置(補正機構)を備えた撮像装置としてのデジタルカメラを示す平面図及び側面図である。このカメラに搭載される防振システムは、光軸102に対して矢印103p、103yで示す振れ(以下、角度振れ)、及び矢印104p、104yで示す振れ(以下、平行振れ)に対して振れ補正を行う。
カメラ101の中にはレリーズボタン105、カメラCPU106、撮像素子107がある。角速度検出器(第1振れ検出手段、以下角速度計)108p、108yは各々矢印108pa、108ya回りの角度振れを検出する。また、加速度検出器(第2振れ検出手段、以下加速度計)109p、109yは各々矢印109pa、109yaで示す平行振れを検出する。
レンズ駆動部110は、振れ補正レンズ(補正部材)111を図1、図2の矢印110p、110yの方向に自在に駆動して、角度振れ、平行振れの両方を加味した振れ補正を行う。なお、110p、110yの方向は、それぞれが光軸に対して直交する方向であり、110p、110yのお互いも直交している。ここで、角速度計108p、108y、及び加速度計109p、109yの出力は、カメラCPU106に入力される。そして、それら出力の関連により駆動部112によって振れ補正を行う。
なお、補正量に基づいた補正の方法は、撮像素子107を光軸に垂直な面内で移動させることで振れ防振を行う方法でもよい。また、撮像素子が出力する各撮影フレームの切り出し位置を変更することで振れの影響を軽減させる電子防振を用いる方法でもよい。さらに、それらの組み合わせで補正を行ってもよい。
図3は、本発明の第1の実施形態に係わる防振制御装置を示すブロック図である。図3では、カメラの鉛直方向に生じる振れ(ピッチ方向:図1及び図2の矢印103p、104p方向)の構成のみを示している。しかし、同様な構成はカメラの水平方向に生じる振れ(ヨー方向:図1及び図2の矢印103y、104y方向)にも設けられている。これらは基本的には同じ構成になっているので、以下ピッチ方向の構成のみを図示し、その説明を行う。なお、図4は、図3における比較部308の内部構成を示す図である。
図3を用いて、まず、角度振れの補正について説明する。角速度計108pからの角速度信号(第1信号)はCPU106に入力される。そして、その角速度信号はHPF積分フィルタ301に入力され、HPF(ハイパスフィルタ或いは高域透過フィルタ)でDC成分をカットされた後に積分され、角度信号に変換される。ここで、手振れの周波数帯域は1Hz〜10Hzの間である。そのため、HPFとしては例えば手振れの周波数帯域から十分離れた、例えば0.1Hz以下の周波数成分をカットする1次のHPF特性になっている。
HPF積分フィルタ301の出力は敏感度調整部303に入力される。敏感度調整部303は、ズーム、フォーカスの位置情報302およびそれらにより求まる撮影倍率に基づいてHPF積分フィルタ301の出力を増幅し、角度振れ補正目標値にする。これはレンズのフォーカスやズームなどの光学情報の変化により振れ補正部110の振れ補正ストローク(補正可動範囲)に対するカメラ像面での振れ補正敏感度が変化することを補正するためである。
CPU106は、求まった角度振れ補正目標値を駆動部112に出力し、振れ補正部110を駆動することで画像ブレ補正が実行される。以上が、角度振れ補正の概略構成である。
次に、平行振れ補正について説明する。角速度計108pの出力はCPU106に取り込まれる。そして、その出力はHPF積分フィルタ311に入力され、HPFでDC成分をカットされた後、積分されて角度信号に変換される。HPF積分フィルタ311の出力は利得調整フィルタ(以下、利得調整部)312に入力される。この利得調整部312とHPF積分フィルタ311により、平行振れ補正を行うべき周波数帯域におけるゲイン、位相特性を調整している。
利得調整部312の出力は後述する出力補正部313により補正され、平行振れ補正目標値とされて、前述した角度振れ補正目標値に加算器314にて加算される。
また、上記処理と同時に、角速度計108pの出力はHPF位相調整フィルタ(以下、位相調整部)304に入力され、角速度計108pの出力に重畳するDC成分がカットされると共にその信号の位相調整が行われる。ここでのカットオフ周波数は後述するHPF積分フィルタ305のHPFのカットオフ周波数と合わせており、周波数特性が一致するように調整してある。HPF位相調整部304の出力は帯域透過手段である角速度計BPF部(バンドパスフィルタ或いは帯域透過フィルタ)306で所定帯域の周波数成分のみ抽出される。
加速度計109pの出力信号(第2信号)はHPF積分フィルタ305に入力され、HPFでDC成分をカットされた後、積分されて速度信号に変換される。この時のHPFのカットオフ周波数は上述したように、HPF位相調整部304のHPFの周波数特性と合わせて設定してある。HPF積分フィルタ305の出力は帯域透過手段である加速度計BPF部(バンドパスフィルタ或いは帯域透過フィルタ)307で所定帯域の周波数成分のみ抽出される。
角速度計BPF部306及び加速度計BPF部307の出力は、比較部308に入力される。また、姿勢検出部309にて撮像装置の傾き位置である姿勢判定値を出力し、姿勢検出部309の出力は、角速度BPF部306及び加速度BPF部307の出力とともに、比較部308に入力され、利得調整部312の出力を補正する補正量(補正係数)が算出される。姿勢検出部309における撮像装置の傾き位置の判定方法は、加速度計を用いてその出力値から撮像装置の傾きを検知する方法としても良い。比較部308における補正量算出方法については後述する。
出力補正部313にはズーム、フォーカス情報302も入力されており、ズーム、フォーカス情報302より撮影倍率を演算し、求められた撮影倍率及び前述した補正量に基づいて利得調整部312の出力を補正して、平行振れ補正目標値にする。求められた平行振れ補正目標値は前述した角度振れ補正目標値に加算され、駆動部112に出力される。これにより、振れ補正部110が駆動部112により駆動され、角度振れと平行振れのそれぞれに起因する画像ブレが補正されることになる。
次に、比較部308から出力される補正値について説明する。図5はカメラに加わる角度振れ103pと平行振れ104pを示した図である。カメラ101の撮影レンズ内の撮像光学系の主点位置における平行振れY(104p)と角度振れθ(103p)と回転中心O(501p)を定めた場合の回転半径L(502p)の関係は、以下の(1)、(2)、(3)式にて表せる。
Y=Lθ …(1)
V=Lω …(2)
A=Lωa …(3)
尚、回転半径L(502p)は、回転中心501pから加速度計109pまでの距離である。
ここで、(1)式は、加速度計109pの出力を2階積分して変位Yを求め、又角速度計108pを1階積分して角度θを求めた場合の回転半径Lである。(2)式は、加速度計109pの出力を1階積分して速度Vを求め、又角速度計108pの出力より角速度ωを求めた場合の回転半径Lである。(3)式は、加速度計109pの出力より加速度Aを求め、又角速度計108pの出力を1階微分することより角加速度ωaを求めた場合の回転半径Lである。これらいずれの方法でも回転半径Lを求めることができる。
撮像光学系の主点位置における平行振れYと撮像光学系の振れ角度θ及び撮像光学系の焦点距離fと撮影倍率βより撮像面に生ずる振れδは、以下の式(4)で求められる。
δ=(1+β)fθ+βY …(4)
ここで、右辺第1項のf、βは撮像光学系のズーム、フォーカス及びそれにより得られる撮影倍率βや焦点距離fより求まり、振れ角度θは角速度計108pの積分結果より求まる。よってその情報に応じて、図3を用いて説明したように、振れ補正レンズ111の移動量を算出し、角度振れ補正を行うことができる。
また、右辺第2項に関しては、加速度計109pの2階積分値Yとズーム、フォーカス、及びそれにより得られる撮影倍率βにより求まるので、その情報に応じて図3を用いて説明したように平行振れ補正を行うことが出来る。
しかし、本実施形態においては式(4)を、以下の式(5)の様に書き直した振れδに対して画像ブレ補正を行っている。
δ=(1+β)fθ+βLθ …(5)
即ち、平行振れに関しては、加速度計109pより直接求まる平行振れ変位Yを用いるのではない。一旦式(1)或いは式(2)或いは式(3)で求まる回転半径Lを求め、この回転半径Lと角速度計108pの出力の積分結果θとズーム、フォーカス及びそれにより得られる撮影倍率βにより補正している。
上記説明したように、角度振れの回転半径を用いて平行振れ補正を行う方法においては、回転半径を正確に求める必要がある。しかしながら、加速度計と角速度計を用いて回転半径を算出する場合、センサノイズの影響が大きい場合、回転半径を誤推定し、平行振れ補正量が大きくなり、過補正による防振性能が悪化してしまう懸念がある。
一般的に上記ノイズの量は加速度の大きさによらず一定の大きさであるので、平行振れが非常に小さい場合は上記ノイズの影響が大きくなり回転半径を正確に求めることは難しい。このように、撮影体勢などによる手振れ量の違いで平行振れの検出精度に差が生じる、即ち防振効果に差が生じることになる。
ここで比較部308内に図4に示すように上限値処理部402を設けている理由を説明する。比較部308内の回転半径算出部401は角速度計BPF部306の出力と加速度計BPF部307の出力に応じて回転半径を求めるが、回転中心が複数あり、それら回転中心からの合成振れを加速度計109yが検出している場合には、演算タイミングによっては回転半径を大きく誤推定してしまう可能性もある。これは、回転半径算出部401は角速度計BPF部306の出力と加速度計BPF部307で設定された周波数帯域における回転半径を算出するためのものであるためである。すなわち、角速度計BPF部306の出力と加速度計BPF部307で設定された周波数帯域以外の周波数帯域での影響が大きい場合、回転半径算出部401は設定された周波数帯域における回転半径を正しく求められないことがある。
また、ここで回転半径を大きく設定すると角速度計BPF部306の出力と加速度計BPF部307で設定された周波数帯域の平行振れはしっかり抑制することはできる。しかし、より高域の周波数帯域の手振れも同時にゲインを大きくすることとなり、手振れ高周波帯域での防振性能は過制御により悪化してしまう懸念がある。
静止画撮影の場合、手振れがおきないように注意して撮影者がしっかりカメラを持って撮影することがほとんどであり、そのときの回転半径は大きな距離にはならないことが多い。そのため、ここでは過制御による防振制御性能悪化を防ぐため、角速度計BPF部306の出力と加速度計BPF部307で設定された周波数帯域にあった上限値が設定されている。
ここで、図3の姿勢検出部309から出力される姿勢判定値について説明する。撮像装置の傾き検知の方法としては、例えば加速度計を用いて、加速度計で検知した重力加速度の向きと撮像装置の向きを比較して、撮像装置の向きを判定しても良い。
図6に加速度計出力による撮像装置の姿勢検知方法を示す。図6(a)は水平姿勢での加速度計出力を示した図であり、この場合は周知の通り、Y軸成分601に重力加速度が出力される。図6(b)は水平姿勢から角度θだけ傾いた姿勢を示しており、角度θの値によって撮像装置の正位置姿勢から縦位置姿勢までの姿勢判別が可能となり、角度θの算出は(6)式によって算出される。
θ=arctan(β/α)×180/π …(6)
また、近接撮影は水平方向に対してのみならず、例えば撮像装置を真下に向けて撮影するシーンのように、あおり方向の撮像装置の傾きも考えられる。あおり方向の傾き検知方法は、正位置姿勢の場合はY軸成分とZ軸成分に関して、縦位置姿勢の場合はZ軸成分とX軸成分に関して各々の加速度出力を用いれば角度θが求まる。
ここで、水平方向の傾き角度をθ1、おあり方向正位置の傾き角度をθ2、あおり方向縦位置の傾き角度をθ3とする。以上より、3軸成分の加速度情報を用いれば現在の撮像装置の傾き姿勢が分かる。
図7はロール回転により生じる水平方向の平行振れを示した図である。カメラ101がロール回転によりロール角度702rで回転すると、ロール回転による平行振れ703が生じる。例えば、ピッチ、ヨー2軸出力の角速度計を用いた場合、ロール振れを検出することができないため、ロール振れの影響が大きい場合は、ロール回転による平行振れ703が加わるので平行振れの誤検出となり精確な平行振れ補正が行えないばかりか制御性が悪化してしまう。また、このロール振れの影響は、カメラの姿勢差によって影響を受ける軸が変化する。
また、カメラ101の傾き位置(撮影姿勢)によって各軸における角速度計の出力信号と加速度計の出力信号の相関関係が大きく異なることがある。この原因は、回転中心が複数ある場合、前述したロール振れの影響を受けている場合など様々な要因が考えられる。
カメラ101が正位置姿勢の場合、この姿勢ではピッチ軸に関して角速度計の出力信号と加速度計の出力信号の相関性は高いが、ヨー軸方向に関して角速度計の出力信号と加速度計の出力信号の相関性が低い。相関性が低いと、角速度計の出力信号と加速度計の出力信号の位相が大きくずれている可能性があり、この場合に回転半径を算出すると誤推定してしまうので、結果、制御が悪化する。
また、カメラ101が縦位置姿勢の場合は、ヨー軸に関して角速度計の出力信号と加速度計の出力信号の相関性は高いが、ピッチ軸方向に関して角速度計の出力信号と加速度計の出力信号の相関性が低い。そのため、ピッチ軸の回転半径が正確に算出できないので、正位置姿勢の場合と同様にピッチ軸の制御が悪化する。
そこで第1の実施形態では、姿勢検出部309から出力される姿勢判定値によって、カメラの姿勢を判定し、姿勢差に応じて相関性が低い駆動軸に重み付けゲイン310を乗算する事で平行振れ補正量を弱めて過補正のないようにする。
ここでの重み付けゲイン310を乗算方法について説明する。姿勢判定によって、水平正位置姿勢と判定されれば、ピッチ側の平行振れ補正は積極的に行いヨー側平行振れ補正は相関性が低いので制御量を弱める。即ち、ヨー側補正ゲインをピッチ側補正ゲインよりも低くすることで、平行振れ補正量を弱めて過補正のないようにする。例えばピッチ側補正ゲインは1倍程度を設定し、ヨー側補正ゲインは0.5倍程度の補正ゲインを設定する。
一方で、水平縦位置姿勢と判定されれば、ヨー側の平行振れ補正は積極的に行いピッチ側平行振れ補正は相関性が低いので制御量を弱める。即ち、ピッチ側補正ゲインをヨー側補正ゲインよりも低くすることで、平行振れ補正量を弱めて過補正のないようにする。例えばピッチ側補正ゲインは0.5倍程度を設定し、ヨー側補正ゲインは1倍程度の補正ゲインを設定する
本実施形態では、比較部308の出力に重み付けゲインを乗算しているが、角速度計BPF部306の出力、加速度計BPF部307の出力に重み付けゲインを乗算しても良い。また、各々に重み付けゲインを乗算しても良い。
このように第1の実施形態で説明したとおり、姿勢判定値によりカメラの傾き位置に応じて、相関性が低い駆動軸には小さい重み付けゲインを乗算することで、回転半径誤検出による制御性悪化を防止できる。
(第2の実施形態)
本実施形態は、以下の点で第1の実施形態と異なる。本実施形態では、サンプリング毎に角速度計の出力信号と加速度計の出力信号の相関性の判定を行い、相関性が高い場合は1倍程度の補正ゲインを設定し積極的に平行振れ補正を行う。また、相関性が低い場合は0.5倍程度の補正ゲインを設定し平行振れ補正を弱めるようにする。
図8を用いて、第2の実施形態における防振制御システムの比較部を示す。角速度計BPF部306の出力と加速度計BPF部307の出力は、回転半径算出部801に入力され、(7)式で回転半径が算出される。
L=V/ω …(7)
回転半径算出部801の出力は上限処理部802に入力され、上限値にクランプされた信号を出力する。
ここで、角速度計の出力信号と加速度計の出力信号の相関性の判定方法について説明する。図9は第2の実施形態に係わる図8における相関性判定部804の相関性判定(判定結果)を示した図である。
図9の波形901は加速度計BPF部307の出力、波形908は乗算器803にて、角速度計BPF部306の出力に回転半径算出部801で求めた回転半径Lを乗じた信号波形である。即ち、波形908は角速度計108yより求めた速度であり、波形901と次元が揃っている。ここで、上式(7)により回転半径Lが求まるので波形908はその逆算値となり、波形901と振幅は等しくなる。但し、波形901と波形908は、その位相関係は、ずれている可能性もある。
相関性判定部804は、姿勢検出部309の姿勢判定値を受け、姿勢差毎に相関性が低い可能性がある駆動軸に対して行っても良い(例えば、正位置姿勢と判定されたら、ヨー軸のみ判定を行う)し、両軸とも判定を行っても良い。
波形901と波形908の波形の一致度を判定するために相関判定部804は、波形901と波形908の差である波形909を誤差として求めている。そして、波形901、波形909に対して一定周期毎にサンプリングし、その結果を比較している。矢印902、903、904は夫々サンプリング周期であり、この周期間の波形901、909の最大振幅(最大値と最小値との差)を矢印905、906、907および910、911、912で示す。
サンプリング周期としては抽出周波数の周期を設定しており、例えば2Hzとした場合には0.5秒となる。この様にして求めた周期毎の波形901、909の最大振幅を各々平均する。ここで平均するのは、突発的な最大振幅の変化により判定精度が低くなることを避けるためである。
回転半径Lの検出開始と同期して相関判定部804は、波形901、909の最大振幅を求めはじめ、各々撮影直前までの平均を行っている。さらにその平均値の比を求めることで、どの程度波形901、908が一致しているかを判定する一致度判定値を算出する。この一致度判定値は小さいほど波形901と波形908がよく一致していると判定する。
尚、波形901、909の最大振幅の平均は回転半径検出から撮影開始までの平均ではなく、所定期間毎の移動平均を更新していく方法でもよい。その場合には撮影直前の更新値を用いて一致度判定値を求める。
前述した判定方法を用いて、波形901と908の相関性が低いと判定された場合は平行振れを誤検出しているので、相関性の一致度判定値に応じた重み付けゲインを乗算することで平行振れ補正を弱める。
次に、重み付けゲイン判定について説明する。図10は相関性の一致度判定値に対する重み付けゲイン特性を示した図である。一致度判定値が小さければ相関性が高いので1倍程度の重み付けゲインを乗算して平行振れ補正を積極的に行う。一致度判定値が大きい場合は相関性が低いので例えば0.3倍程度の小さいゲインを乗算して平行振れ制御量を弱める。
このように第2の実施形態で説明したとおり、カメラの姿勢差に応じて相関性の一致度判定値を算出し重み付けゲインを設定し平行振れ防振量を制御する。これにより、姿勢差毎に相関性を判定し、相関性が低い駆動軸は平行振れ制御量を弱めて防振制御することで、回転半径の誤検知による防振制御悪化に伴う画像のみだれを防止できる。
本発明は、デジタル一眼レフやデジタルコンパクトカメラの防振制御装置に限らずデジタルビデオカメラの撮影や、監視カメラ、Webカメラ、携帯電話などの撮影装置にも搭載できる。また、一眼レフ用の交換レンズのような光学機器にも搭載できる。

Claims (4)

  1. 光学機器に搭載される防振制御装置であって、
    前記光学機器の振れによる画像ブレを、補正部材を移動させることにより補正する振れ補正手段と、
    前記振れの角速度を検出する第1振れ検出手段と、
    前記第1振れ検出手段とは異なる方法で振れを検出する第2振れ検出手段と、
    前記光学機器の傾き位置を検出する姿勢検出手段と、
    前記第1振れ検出手段の出力に基づく第1信号と前記第2振れ検出手段の出力に基づく第2信号と前記姿勢検出手段に基づく姿勢判定値とを用いて、前記補正部材の移動量である補正値を演算する演算手段と、
    前記補正値を用いて前記第1振れ検出手段の出力を補正する出力手段とを備え、
    前記演算手段は、各姿勢判定値により変化する、前記第1振れ検出手段の出力に基づく第1信号と第2振れ検出手段の出力に基づく第2信号の相関性に基づいて、前記振れ補正手段のピッチ軸方向の補正値及びヨー軸方向の補正値に対して重み付けを行い、
    前記演算手段は、前記姿勢検出手段にて水平正位置姿勢と判定された場合、前記ヨー軸方向の補正値のゲインを前記ピッチ軸方向の補正値のゲインよりも低くし、前記姿勢検出手段にて水平縦位置姿勢と判定された場合、前記ピッチ軸方向の補正値のゲインを前記ヨー軸方向の補正値のゲインよりも低くすることを特徴とする防振制御装置。
  2. 請求項に記載の防振制御装置を備えた光学機器。
  3. 請求項に記載の防振制御装置を備えた撮像装置。
  4. 光学機器に搭載される防振制御装置の防振制御方法であって、
    前記光学機器の振れによる画像ブレを補正部材を移動させることにより補正する振れ補正工程と、
    前記振れの角速度を検出する第1振れ検出工程と、
    前記第1振れ検出工程とは異なる方法で振れを検出する第2振れ検出工程と、
    前記光学機器の傾き位置を検出する姿勢検出工程と、
    前記第1振れ検出工程の出力に基づく第1信号と前記第2振れ検出工程の出力に基づく第2信号と前記姿勢検出工程に基づく姿勢判定値とを用いて、前記補正部材の移動量である補正値を演算する演算工程と、
    前記補正値を用いて前記第1振れ検出工程の出力を補正する出力工程とを備え、
    前記演算工程においては、各姿勢判定値により変化する、前記第1振れ検出工程の出力に基づく第1信号と第2振れ検出工程の出力に基づく第2信号の相関性に基づいて、前記振れ補正工程でのピッチ軸方向の補正値及びヨー軸方向の補正値に対して重み付けを行い、
    前記演算工程においては、前記姿勢検出工程にて水平正位置姿勢と判定された場合、前記ヨー軸方向の補正値のゲインを前記ピッチ軸方向の補正値のゲインよりも低くし、前記姿勢検出工程にて水平縦位置姿勢と判定された場合、前記ピッチ軸方向の補正値のゲインを前記ヨー軸方向の補正値のゲインよりも低くすることを特徴とする防振制御方法。
JP2011282266A 2011-12-22 2011-12-22 防振制御装置、防振制御方法、光学機器、撮像装置 Active JP5917133B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011282266A JP5917133B2 (ja) 2011-12-22 2011-12-22 防振制御装置、防振制御方法、光学機器、撮像装置
US13/686,121 US9568742B2 (en) 2011-12-22 2012-11-27 Image stabilization apparatus, control method thereof, optical apparatus and image capturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282266A JP5917133B2 (ja) 2011-12-22 2011-12-22 防振制御装置、防振制御方法、光学機器、撮像装置

Publications (3)

Publication Number Publication Date
JP2013130836A JP2013130836A (ja) 2013-07-04
JP2013130836A5 JP2013130836A5 (ja) 2015-01-15
JP5917133B2 true JP5917133B2 (ja) 2016-05-11

Family

ID=48654283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282266A Active JP5917133B2 (ja) 2011-12-22 2011-12-22 防振制御装置、防振制御方法、光学機器、撮像装置

Country Status (2)

Country Link
US (1) US9568742B2 (ja)
JP (1) JP5917133B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5913960B2 (ja) * 2011-12-21 2016-05-11 キヤノン株式会社 防振制御装置及びその制御方法、及び撮像装置
JP6071545B2 (ja) * 2012-12-27 2017-02-01 キヤノン株式会社 撮像装置、画像処理装置及びその制御方法、プログラム、記憶媒体
JP2014126861A (ja) 2012-12-27 2014-07-07 Canon Inc 撮像装置及びその制御方法、プログラム、記憶媒体
JP2015034879A (ja) 2013-08-08 2015-02-19 キヤノン株式会社 像振れ補正装置およびその制御方法、レンズ鏡筒、光学機器、並びに撮像装置
JP2015179247A (ja) * 2013-10-22 2015-10-08 株式会社半導体エネルギー研究所 表示装置
JP6468707B2 (ja) * 2014-02-17 2019-02-13 キヤノン株式会社 撮像装置及びその制御方法
JP2016035543A (ja) * 2014-08-04 2016-03-17 オリンパス株式会社 撮像装置及びその像ブレ補正方法
JP6362556B2 (ja) 2015-02-26 2018-07-25 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
JP6614810B2 (ja) * 2015-05-29 2019-12-04 キヤノン株式会社 ブレ補正装置、撮像装置、ブレ補正方法
US10277821B2 (en) 2016-04-19 2019-04-30 Semiconductor Components Industries, Llc Methods and apparatus for optical image stabilization
JP6661493B2 (ja) * 2016-08-30 2020-03-11 キヤノン株式会社 像ブレ制御装置、撮像装置および制御方法
CN109844632B (zh) * 2016-10-13 2021-03-12 富士胶片株式会社 抖动校正装置、摄像装置及抖动校正方法
JP6823469B2 (ja) * 2017-01-20 2021-02-03 キヤノン株式会社 像ブレ補正装置及びその制御方法、撮像装置、プログラム、記憶媒体
JP6990985B2 (ja) * 2017-04-25 2022-01-12 キヤノン株式会社 像振れ補正装置及び方法、撮像装置及び撮像システム
JP6448709B2 (ja) * 2017-05-19 2019-01-09 キヤノン株式会社 像振れ補正装置および像振れ補正方法、撮像装置、並びに光学機器
JP7071204B2 (ja) * 2018-04-27 2022-05-18 キヤノン株式会社 撮像システム、レンズ装置、撮像装置、及びその制御方法
JP7208822B2 (ja) * 2019-02-22 2023-01-19 キヤノン株式会社 撮像装置及びその制御方法、プログラム、記憶媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513950B2 (ja) 1993-12-14 2004-03-31 株式会社ニコン 像振れ補正カメラ
JP4014970B2 (ja) * 2002-08-20 2007-11-28 株式会社リコー 振れ補正機能を有する撮影装置
JP4994756B2 (ja) * 2006-09-14 2012-08-08 キヤノン株式会社 防振制御装置およびそれを備えた光学機器、撮像装置、また防振制御装置の制御方法
JP5274130B2 (ja) 2008-07-15 2013-08-28 キヤノン株式会社 像振れ補正装置及び光学機器、撮像装置並びに像振れ補正装置の制御方法
JP5031690B2 (ja) * 2008-07-15 2012-09-19 キヤノン株式会社 防振制御装置及び撮像装置並びに防振制御装置の制御方法
JP5094606B2 (ja) * 2008-07-15 2012-12-12 キヤノン株式会社 像振れ補正装置およびそれを備えた光学機器、撮像装置、像振れ補正装置の制御方法
JP5111306B2 (ja) * 2008-08-29 2013-01-09 キヤノン株式会社 像ブレ補正機能を有する光学機器及びその制御方法
JP2010054883A (ja) * 2008-08-29 2010-03-11 Canon Inc 防振制御装置および撮像装置
JP5956749B2 (ja) * 2011-12-21 2016-07-27 キヤノン株式会社 防振制御装置及びその制御方法、及び撮像装置

Also Published As

Publication number Publication date
US20130163084A1 (en) 2013-06-27
JP2013130836A (ja) 2013-07-04
US9568742B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
JP5917133B2 (ja) 防振制御装置、防振制御方法、光学機器、撮像装置
JP4789614B2 (ja) 防振制御装置およびその制御方法
JP5121911B2 (ja) 防振制御装置、撮像装置、及び防振制御方法
JP6614810B2 (ja) ブレ補正装置、撮像装置、ブレ補正方法
JP5181001B2 (ja) 像振れ補正装置及びその制御方法、及び、像振れ補正装置を搭載した撮像装置及び光学機器
US7634181B2 (en) Image stabilizing system and optical apparatus
JP5094606B2 (ja) 像振れ補正装置およびそれを備えた光学機器、撮像装置、像振れ補正装置の制御方法
US8144203B2 (en) Image pickup apparatus including image shake correction
JP6105880B2 (ja) 撮像装置およびその制御方法
JP2010025961A (ja) 防振制御装置及び撮像装置
JP2006003439A5 (ja)
JP2010054986A (ja) 像ブレ補正機能を有する光学機器及びその制御方法
JP2010025963A (ja) 防振制御装置及び撮像装置
JP2010054883A (ja) 防振制御装置および撮像装置
JP2012128356A (ja) ブレ補正装置及び光学機器
JP5631063B2 (ja) 傾き検出装置、振れ補正装置、撮像装置およびその傾き検出方法
JP2014016451A (ja) 撮像装置、手振れ補正量算出方法、手振れ補正量算出プログラム
JP2012163824A (ja) ブレ補正装置及び光学機器
JPH09218435A (ja) 像ブレ補正カメラ
JP5957796B2 (ja) ブレ補正装置及び光学機器
JP2014041230A (ja) 像ブレ補正機能を有する光学機器及びその制御方法
JP2018146992A (ja) ブレ補正装置、撮影装置及びブレ補正システム
JP2012173302A (ja) ブレ補正装置及び光学機器
JP2016181000A (ja) ブレ補正装置及び光学機器
JP2021060525A (ja) 防振装置及び方法、及び撮像システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R151 Written notification of patent or utility model registration

Ref document number: 5917133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151