JP5903017B2 - 定量方法、定量装置及び定量用キット - Google Patents

定量方法、定量装置及び定量用キット Download PDF

Info

Publication number
JP5903017B2
JP5903017B2 JP2012207268A JP2012207268A JP5903017B2 JP 5903017 B2 JP5903017 B2 JP 5903017B2 JP 2012207268 A JP2012207268 A JP 2012207268A JP 2012207268 A JP2012207268 A JP 2012207268A JP 5903017 B2 JP5903017 B2 JP 5903017B2
Authority
JP
Japan
Prior art keywords
sample
measured
calibration curve
sodium ion
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012207268A
Other languages
English (en)
Other versions
JP2014062785A (ja
Inventor
悟史 八幡
悟史 八幡
宏光 八谷
宏光 八谷
章夫 黒田
章夫 黒田
野田 健一
健一 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
DKK TOA Corp
Original Assignee
Hiroshima University NUC
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, DKK TOA Corp filed Critical Hiroshima University NUC
Priority to JP2012207268A priority Critical patent/JP5903017B2/ja
Priority to PCT/JP2013/075304 priority patent/WO2014046183A1/ja
Priority to US14/429,784 priority patent/US20150225768A1/en
Priority to CN201380048822.0A priority patent/CN104781673A/zh
Priority to EP13839625.4A priority patent/EP2899542A4/en
Priority to IN2992DEN2015 priority patent/IN2015DN02992A/en
Publication of JP2014062785A publication Critical patent/JP2014062785A/ja
Application granted granted Critical
Publication of JP5903017B2 publication Critical patent/JP5903017B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/66Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/008Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions for determining co-enzymes or co-factors, e.g. NAD, ATP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/579Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving limulus lysate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/12Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar
    • G01N2400/24Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar beta-D-Glucans, i.e. having beta 1,n (n=3,4,6) linkages between saccharide units, e.g. xanthan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/50Lipopolysaccharides; LPS

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、リムルス試薬を活性化する反応及び/又はATPとルシフェリン若しくはルシフェリン誘導体(以下単に「ルシフェリン」という。)とルシフェラーゼ若しくはルシフェラーゼ変異体(以下単に「ルシフェラーゼ」という。)とによる生物化学発光反応を用いて被測定試料中の測定対象成分の量を測定する定量方法、定量装置及び定量キットに関するものである。
従来、食品衛生、医療、医薬品、臨床検査、環境など幅広い分野において、ATP(アデノシン三リン酸)量を測定することが行われている。ATPはすべての生物の細胞内に含まれ、ATP量は細胞数と相関があるため、ATP量を測定することで細胞数や生菌等の定量を行うことができる。
ATP量を測定する方法としては、ATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いて測定する生物化学発光法がある(特許文献1)。
この生物化学発光法により生菌等を定量するためには、その細胞中のATPをATP抽出試薬を用いて抽出した後、発光試薬としてルシフェラーゼとルシフェリンとを作用させて、生物化学発光反応による発光量を発光検出器により測定する。そして、この発光量がATP量と相関することを利用してATP量を測定し、そのATP量から生菌等を定量する。生化学研究の分野などにおいて、試料中のATP量自体を測定の目的とする場合にも、生物化学発光法によるATP量の測定が行われる。
また、従来、医療、医薬品、臨床検査などの分野において、生体試料(血液、尿、体液、組織、付着物その他の生体から採取した試料)、或いは医薬品(本明細書では医薬部外品を含む概念とする。)又はその原材料(本明細書では原材料そのものの他、溶媒、中間生成物等を含む概念とする。)に含まれるエンドトキシン量を測定することや医療用具(注射器、透析膜等)の製造においてエンドトキシンが混入していないことを確認することなどが行われている。エンドトキシンが体内に入ると、発熱、ショック、多臓器不全などを引き起こしたりする。そのため、生体試料中のエンドトキシン量を測定してこれらの診断をすること、又は上記医薬品やその原材料などに含まれるエンドトキシン量、或いはそれらの製造工程や医療用具の製造工程におけるエンドトキシン量を測定して、エンドトキシンが体内に注入されることを未然に防ぐことは重要である。
エンドトキシン量を測定する方法としては、カブトガニの血球抽出液(以下、「リムルス試薬」という。)の成分であるリムルス反応系がエンドトキシンにより活性化されるプロセスを利用したリムルステストがある(特許文献2)。そして、このリムルステストには、判定又は測定方法の違いから、ゲル化転倒法、比濁法、比色法、生物化学発光法がある。
ゲル化転倒法及び比濁法によるエンドトキシン量の測定は、エンドトキシンによりリムルス試薬が活性化されることで試料がゲル化する反応を利用することによりエンドトキシン量を判定又は測定する。
比色法によるエンドトキシン量の測定は、エンドトキシンによりリムルス試薬が活性化されることで発色基を遊離する発色合成基質を用い、遊離した発色基の量を吸光度又は透過光量の測定によって比色定量する。そして、この遊離した発色基の量がエンドトキシン量と相関することを利用して、エンドトキシン量を測定する。
生物化学発光法によるエンドトキシン量の測定は、エンドトキシンによりリムルス試薬が活性化されることでルシフェリンを遊離する発光合成基質を用い、遊離したルシフェリンを、前述の生物化学発光反応によるATP量の測定原理を利用して測定する。即ち、リムルス反応系により遊離させたルシフェリンに、ATPとルシフェラーゼを作用させて生物化学発光反応による発光量を測定する。そして、この発光量がエンドトキシン量と相関することを利用して、エンドトキシン量を測定する。
また、従来、医療、医薬品、臨床検査、食品産業などの分野において、βグルカンを測定することが行われている。例えば、深在性真菌症が疑われる患者に対する治療方法の選択や治療効果の判定などのために、βグルカン量を測定することは重要である。βグルカン量を測定する方法としては、上記エンドトキシン量の測定と同様、ゲル化転倒法、比濁法、比色法、生物化学発光法によるリムルステストがある(特許文献3)。それぞれの方法は、リムルス反応系がβグルカンにより活性化されるプロセスを利用している点が上記エンドトキシン量の測定の場合と異なるが、それぞれの測定原理は上記エンドトキシン量の測定の場合と概略同様である。
特開平7−110301号公報 国際公開第2009/063840号 特開2010−187634号公報
上述の各種方法は、従来から広く用いられているが、試料中の妨害成分により測定精度が低下することがある。例えば、試料が透析液や血液である場合、上述の各種方法によりATP、エンドトキシン又はβグルカンの量を測定すると、試料中の妨害成分であるナトリウムイオンによって測定に必要な反応が阻害される。このため、純水に既知量(濃度)の測定対象成分(ATP、エンドトキシン又はβグルカン)を添加して調製した標準液を用いて作成した検量線により、試料中の測定対象成分の定量を行うと、実際よりも低い測定結果となる(図7)。
本発明者の検討によると、ATPとルシフェリンとルシフェラーゼとによる生物化学発光反応がナトリウムイオンによって阻害される。従って、生物化学発光反応を用いたATP量、エンドトキシン量、βグルカン量の測定は、ナトリウムイオンにより妨害される。
また、エンドトキシン、βグルカンによるリムルス試薬の活性化がナトリウムイオンによって阻害される。従って、これによっても生物化学発光反応を用いたエンドトキシン量、βグルカン量の測定は妨害され、更にゲル化転倒法、比濁法、比色法によるリムルステストを用いたエンドトキシン量、βグルカン量の測定も妨害される。
この問題に対して、試料を十分に希釈して妨害成分の影響を抑制することが行われることがあるが、試料の希釈により感度が低下するという問題がある。
従って、本発明の目的は、生体試料や医薬品或いは食品などのナトリウムイオンを含有する試料について高感度、高精度の測定を行うことができる定量方法及び定量装置を提供することである。
また、本発明の他の目的は、ナトリウムイオンを含有する試料と水などのナトリウムイオンを実質的に含有しないか又は含有量がより少ない試料のいずれについても、同じ1つの検量線を用いて、高感度、高精度の測定を行うことのできる定量装置及び上記定量方法や定量装置に使用できる定量用キットを提供することである。
上記目的は本発明に係る定量方法、定量装置及び定量用キットにて達成される。要約すれば、第1の本発明は、水に異なる濃度の測定対象成分が添加された複数の標準液であって、それぞれにナトリウムイオン含有量が被測定試料のナトリウムイオン含有量と同等となるようにNaClを添加した複数の標準液を、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定し、その測定値と前記測定対象成分の量との関係を表す検量線を作成する検量線作成工程と、前記検量線作成工程で用いた方法と同一の方法により前記被測定試料を測定する試料測定工程と、前記検量線を用いて前記試料測定工程における測定値から前記被測定試料中の前記測定対象成分の量を求める定量工程と、を含む定量方法である。
第2の本発明は、水に異なる濃度の測定対象成分が添加された複数の標準液であって、それぞれにナトリウムイオン含有量が被測定試料のナトリウムイオン含有量と同等となるようにNaClを添加した前記複数の標準液を、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定し、その測定値と前記測定対象成分の量との関係を表す検量線を作成する検量線作成手段と、前記検量線作成手段が用いた方法と同一の方法により前記被測定試料を測定する試料測定手段と、前記検量線を用いて前記試料測定手段による測定値から前記被測定試料中の前記測定対象成分の量を求める定量手段と、を有する定量装置である。
第3の本発明は、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により、被測定試料中の測定対象成分の量を定量するため、又は、該定量に用いる検量線を作成するための定量用キットであって、記被測定試料又は前記検量線作成のための標準液に添加するNaClを有する定量用キットである。
本発明によれば、生体試料や医薬品或いは食品などのナトリウムイオンを含有する試料について高感度、高精度の測定を行うことができる。また、本発明によれば、ナトリウムイオンを含有する試料と水などのナトリウムイオンを実質的に含有しないか又は含有量がより少ない試料のいずれについても、同じ1つの検量線を用いて、高感度、高精度の測定を行うことができる。
本発明の一実施形態に係る定量装置の概略機能ブロック図である。 本発明に係る定量用キットの一例を説明するための模式図である。 生物化学発光法によるATP量の測定におけるナトリウムイオンの影響及びその影響を抑制する効果を表すグラフを示す図である。 生物化学発光法によるエンドトキシン量の測定におけるナトリウムイオンの影響及びその影響を抑制する効果を表すグラフを示す図である。 比濁法によるリムルステストを用いたエンドトキシン量の測定におけるナトリウムイオンの影響及びその影響を抑制する効果を表すグラフを示す図である。 標準溶液のNaCl濃度のずれとエンドトキシン量の測定結果との関係を表すグラフを示す図である。 従来の課題を説明するための説明図である。
以下、本発明に係る定量方法、定量装置及び定量キットを図面に則して更に詳しく説明する。
1.定量方法
本発明に係る定量方法は、次の各工程を含むものである。
(a)ナトリウムイオン含有量が被測定試料のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加した標準液を、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定し、その測定値と測定対象成分の量との関係を表す検量線を作成する検量線作成工程。
(b)検量線作成工程で用いた方法と同一の方法により被測定試料を測定する試料測定工程。
(c)検量線を用いて試料測定工程における測定値から被測定試料中の測定対象成分の量を求める定量工程。
測定対象成分は、上記(a)の検量線作成工程及び(b)の試料測定工程において用いる方法により異なり、リムルス試薬を活性化する反応を用いた方法により測定する場合は、エンドトキシン又はβグルカンを挙げることができる。また、ATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定する場合は、ATPを挙げることができる。更に、リムルス試薬を活性化する反応及びATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定する場合は、エンドトキシン又はβグルカンを挙げることができる。
また、ATPを測定対象成分とする場合には、被測定試料中の生菌等の定量を最終的な目的として、生菌等からATPを抽出して測定する場合を含むものとすることができる。この場合、上記工程によりATP量を測定した後、最終的な定量目的の生菌数とATP量との関係を表す検量線から、当該生菌数を求めることができる。或いは、(a)で求めた検量線、及び生菌数とATP量との関係を表す検量線から、発光量と生菌数との関係式を作成するなどして、生菌数を求めることもできる。なお、生菌等の細胞中のATPは、ATP抽出試薬を用いて抽出することができる。
これらの測定は以下の原理に基づくものであるが、周知の測定方法であるため詳細な説明は省略する。
(1)リムルス試薬を活性化する反応を用いた方法によるエンドトキシン量の測定(以下「リムルス試薬によるエンドトキシン量の測定」ともいう。)
リムルス試薬に含まれるカブトガニの血球抽出液(LAL:Limulus Amebocyte Lysate)には、エンドトキシンによって開始される連鎖反応系であるC因子リムルス反応系が存在する。エンドトキシンはC因子を活性化する。活性化されたC因子は、リムルス反応系のB因子を活性化する。活性化されたB因子は、リムルス反応系の凝固酵素前駆体を活性化し、凝固酵素を生成させる。この生成した凝固酵素の作用によりゲル化が生じる。
リムルス試薬によるエンドトキシン量の測定は、上述のようなプロセスを利用したものであり、ゲル化した試料の状態の測定(ゲル化転倒法)又は濁度の測定(比濁法)により行うことができる。或いは、発色合成基質を上記反応系に加えて発色基を遊離させ、その量を吸光度又は透過光量により測定すること(比色法)によりエンドトキシン量を測定することもできる。
(2)リムルス試薬を活性化する反応を用いた方法によるβグルカン量の測定(以下「リムルス試薬によるβグルカン量の測定」ともいう。)
リムルス試薬に含まれるカブトガニの血球抽出液には、βグルカンによって開始される連鎖反応系であるG因子リムルス反応系が存在する。βグルカンはG因子を活性化する。活性化されたG因子は、リムルス反応系の凝固酵素前駆体を活性化し、凝固酵素を生成させる。この生成した凝固酵素の作用によりゲル化が生じる。
リムルス試薬によるβグルカン量の測定は、上述のようなプロセスを利用したものであり、エンドトキシン量の測定と同様に、ゲル化転倒法又は比濁法、或いは比色法によりβグルカン量を測定することができる。
(3)ATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法によるATP量の測定(以下「生物化学発光法によるATP量の測定」ともいう。)
ATPは、Mg2+(2価金属イオン)の存在下で、ルシフェラーゼの作用でルシフェリンと反応して、AMPとオキシルシフェリンとピロリン酸を生成する。その際に発生する光の発光量がATP量と相関するので、これを利用してATP量を測定することができる。
(4)リムルス試薬を活性化する反応及びATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法によるエンドトキシン量の測定(以下「生物化学発光法によるエンドトキシン量の測定」ともいう。)
生物化学発光法によるエンドトキシン量の測定は、(1)で説明したのと同じリムルス反応系のプロセスに、(3)で説明した生物化学発光法によるATP量の測定を応用したものである。即ち、発光基質であるルシフェリンを含有する発光合成基質をリムルス反応系に加え、エンドトキシンによるリムルス反応系の活性化によりルシフェリンを遊離させる。この遊離したルシフェリンにATPとルシフェラーゼを作用させて生物化学発光反応による発光量を測定する。発光量は遊離されたルシフェリン量(リムルス反応系の活性化の程度)と相関するので、結果としてエンドトキシン量を測定することができる。
(5)リムルス試薬を活性化する反応及びATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法によるβグルカン量の測定(以下「生物化学発光法によるβグルカン量の測定」ともいう。)
生物化学発光法によるβグルカン量の測定は、(4)と同様に、リムルス反応系のプロセスに、生物化学発光法によるATP量の測定を応用したものである。即ち、ルシフェリンを含有する発光合成基質をリムルス反応系に加え、βグルカンによるリムルス反応系の活性化によりルシフェリンを遊離させ、生物化学発光反応による発光量を測定することによりβグルカン量を測定する。
前述のように、ATPとルシフェリンとルシフェラーゼによる生物化学発光反応は、ナトリウムイオンによって阻害される。従って、生物化学発光法によるATP量、エンドトキシン量、βグルカン量の測定は、ナトリウムイオンにより妨害される。
また、エンドトキシン、βグルカンによるリムルス反応系の活性化は、ナトリウムイオンによって阻害される。従って、リムルス試薬によるエンドトキシン量、βグルカン量の測定及び生物化学発光法によるエンドトキシン量、βグルカン量の測定は妨害される。
例えば、透析液や血液などの比較的高濃度でナトリウムイオンを含む試料について、生物化学発光法によるATP量、エンドトキシン量又はβグルカン量の測定を行う場合、ナトリウムイオンを含まない純水等の溶媒に既知量(濃度)の測定対象成分(ATP、エンドトキシン又はβグルカン)を添加して調製した標準液を用いて作成した検量線から、試料中の測定対象成分の量を定量すると、実際よりも低い測定結果となる(図7)。
そこで、本発明に係る定量方法は、(a)の検量線作成工程において、ナトリウムイオン含有量が被測定試料のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加した標準液の測定を行い、その測定値をもとに検量線を作成する。つまり、透析液や血液など妨害成分(ナトリウムイオン)を多く含む試料の定量に先立って、被測定試料に含まれる妨害成分の量と同等になるように妨害成分を添加した標準液を測定した結果に基づき検量線を作成し、この検量線を用いて試料中の測定対象成分の定量を行うことにより、妨害成分の影響をキャンセルしようとするものである。
上記(a)の検量線作成工程において、標準液は、被測定試料中の測定対象成分の量に応じて、所望の測定精度が得られるように、所望の含有量(濃度)刻み幅で、所望の含有量(濃度)範囲にわたり用意する。そして、上記(a)の検量線作成工程における測定は、上記(b)の試料測定工程における測定と実質的に同一の条件(測定対象成分を除く反応系の各成分の含有量(濃度)、反応温度、反応時間など)で行うことが好ましい。条件を揃えることによって、より高感度、高精度な測定を行うことができる。 被測定試料は、注射剤、輸液又は透析液など医療現場で使用される薬剤、目薬等の外用薬、各種の内服薬等の医薬品、水(常水、RO水、精製水、滅菌精製水、滅菌水、注射用水(注射用蒸留水)、純水、超純水、逆浸透水等)、医療用具や医療機器からの採取物、クリーンルームからの採取物、血液(全血、血清、血漿)又は尿などの生体試料(臨床試料)などである。また、食品加工や食品衛生、環境分野での各種試料を被測定試料とすることもできる。
また、被測定試料のナトリウムイオン含有量と同等であるとは、所望の測定精度に応じて、ナトリウムイオンが測定結果に与える影響を抑制し得る程度に等しい量である。詳しくは後述するように、本発明者の検討によれば、被測定試料に対する標準液のナトリウム含有量が−50%〜+75%の範囲内にあれば、ナトリウムイオンが測定結果に与える影響を抑制することができる。好ましくは−15%〜+25%、より好ましくは−5%〜+10%の範囲内とする。
なお、同じ検量線で高感度、高精度な測定を行うためには、透析液や血液などのナトリウムイオンを含有する試料のそれぞれは、ナトリウムイオン含有量が同等であることが必要である。この場合も、ナトリウムイオン含有量が同等であることの意義は、上述と同様である。ただし、例えば、透析液と血液など、ナトリウムイオン含有量が同等であれば、種類の異なる試料であっても、同じ検量線で高感度、高精度な測定を行うことができる。
また、上記(a)の検量線作成工程において、ナトリウムイオンは、好ましくは塩化ナトリウム(NaCl)を添加することによって標準液又は被測定試料に添加する。また、標準液又は被測定試料にナトリウムイオンを添加するとは、標準液又は試料にNaClなどのナトリウムイオン源を乾燥薬剤又は溶液として投入又は注入することに限定されない。例えば、NaClなどのナトリウムイオン源が乾燥薬剤又は溶液として収容された容器に標準液又は被測定試料を注入する方法でもよい。また、標準液又は被測定試料自体(又はこれらが希釈された希釈液)に投入又は注入される他の試薬(例えば、緩衝液、ルシフェリン、ルシフェラーゼ、ATP、2価金属イオン、発光合成基質又は発色合成基質など)にNaClなどのナトリウムイオン源が含有されており、当該試薬が投入又は注入されることで実質的に標準液又は被測定試料に所定のナトリウムイオン量となるようにナトリウムイオンが添加される方法でもよい。
2.定量装置
本発明に係る定量装置は、前述の(a)、(b)、(c)の工程を含む。図1は、本発明に係る定量装置の一実施形態の概略機能ブロックを示す。
図1に示すように、定量装置100は、測定を実行する測定部101、測定動作の制御を行う制御部102、情報を記憶する記憶部103、制御部102に情報を入力するための入力部104、制御部102からの情報を出力する出力部105などを有する。
測定部101は、前述の(a)の検量線作成工程及び(b)の試料測定工程において用いる方法に応じて構成される。例えば、生物化学発光法によるATP量、エンドトキシン量又はβグルカン量の測定方法を用いる場合には、測定部101は、反応容器、発光検出器、被検液(被測定試料、標準液)供給手段、試薬供給手段などで構成することができる。また、リムルス試薬によるエンドトキシン量又はβグルカン量の測定方法を用いる場合、例えば比濁法又は比色法を採用するときには、測定部101は、反応容器、吸光光度計(透過光測定器)、被検液供給手段、試薬供給手段などで構成することができる。
制御部102は、定量装置100の動作を統括的に制御するものであってよく、入力部104からの指示情報に応じて、記憶部103に記憶されたプログラムや各種設定情報に従って測定部101をシーケンス制御すると共に、測定部101による測定結果の処理を行い、出力部105に測定結果情報を出力するように、マイクロコンピュータなどで構成することができる。
記憶部103は、制御部102が用いる制御プログラムや各種設定情報、制御部102が求めた測定結果情報などの各種情報を記憶するように、電子的なメモリなどで構成することができる。
入力部104は、制御部102に各種設定情報や測定の開始・停止の指示情報などの各種情報を入力するための、定量装置100に設けられた入力キーなどを有する操作部などで構成することができる。或いは、入力部104は、定量装置100の外部の機器からの上記同様の情報を受信して制御部102に送信するインターフェース部であってもよい。
出力部105は、各種設定情報や測定結果情報を表示する液晶ディスプレイなどの表示部、又は同様の情報をプリントアウトするプリンター部などで構成することができる。或いは、出力部105は、制御部102からの上記同様の情報を受信して定量装置100の外部の機器に送信するインターフェース部であってもよい。
次に、本発明の一実施形態に係る定量装置を用いて、透析液及び透析液を調製するための溶液(原液希釈用のRO水)に含まれるエンドトキシン量を定量する場合について説明する。
(検量線作成工程)
この定量装置では、透析液及びRO水(被測定試料)中のエンドトキシン(測定対象成分)の定量に先立ち、以下の要領で検量線の作成を行う。
エンドトキシン量が異なる2以上の標準液のそれぞれに、標準液のナトリウムイオン含有量が、透析液のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加する。具体的には、透析液に含まれるナトリウムイオンは約140mmol/Lであるため、それぞれの標準液のナトリウムイオン濃度が140mmol/Lとなるようにナトリウムイオンを添加する。
次に、前述のリムルス試薬によるエンドトキシン量の測定又は生物化学発光法によるエンドトキシン量の測定により、それぞれの標準液を測定して、検量線を作成する。
この際、制御部102は、記憶部103に記憶された制御プログラムや各種設定情報に従って、標準液について上記測定を測定部101に実行させ、取得した測定結果から検量線を作成して記憶部103に記憶させる。この検量線は、被測定試料中の測定対象成分の定量に用いられる。
(試料測定工程)
測定方法及び条件を前述の検量線作成工程と同一として、透析液及びRO水をそれぞれ測定する。
ここで、検量線作成工程において標準液のナトリウムイオン含有量の基準とした透析液を測定するときは、ナトリウムイオンを添加しない。一方、ナトリウムイオン含有量が透析液のナトリウムイオン含有量よりも少ないRO水を測定するときには、検量線作成工程と同様に、ナトリウムイオン濃度が140mmol/Lとなるようにナトリウムイオンを添加してから測定を行う。
この際、制御部102は、記憶部103に記憶された制御プログラムや各種設定情報に従って、被測定試料について上記測定を実行させる。測定部101によって取得された測定結果の情報は、記憶部103に記憶され、被測定試料中の測定対象成分の定量に用いられる。
(定量工程)
試料測定工程で測定した透析液の測定値及びRO水の測定値は、いずれも、前述の検量線作成工程で作成した1つの検量線を用いてエンドトキシン量に換算される。
このような工程によって定量を行うことにより、透析液については妨害成分であるナトリウムイオンの影響を受けることなく高感度、高精度な測定を行うことができる。また、同じ1つの検量線を用いて、ナトリウムイオンをほとんど含まないRO水についても、正確な測定を行うことができる。
例えば、オペレーターの入力によって、ナトリウムイオンを添加してから被測定試料を測定すべきか否かの情報を装置に与えることができる。また、あらかじめ、複数の被測定試料の導入順序とナトリウムイオン添加の有無とを、動作シーケンスとして設定しておくようにすることもできる。さらには、定量装置内にナトリウムイオン測定手段(例えば、イオン電極や導電率計)を備え、その測定値に応じて、ナトリウムイオンの添加の必要性や添加するナトリウムイオン量を自動的に判断させるようにすることや、外部からの信号(例えば、定量装置とは別に設けたイオン濃度計や導電率計からの信号)に応じて自動的に判断させるようにすることもできる。
また、被測定試料は2種類に限られず、3以上の試料について、ナトリウムイオンの添加をコントロールして測定することができる。例えば、医薬品製造工程において、完成品、中間生成物、原材料の3種を被測定試料とする場合に、ナトリウムイオン含有量が、中間生成物>完成品>原材料であれば、中間生成物のナトリウムイオン含有量を基準として検量線作成工程の検量線を作成し、完成品及び原材料の測定の際には中間生成物のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加して測定すればよい。また、完成品のナトリウムイオン含有量を基準として検量線作成工程の検量線を作成し、完成品及び中間生成物の測定の際にはナトリウムイオンを添加せずに測定し、原材料の測定の際には完成品のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加して測定することもできる。
このように、被測定試料は、ナトリウムイオン含有量の異なる複数の試料であってよい。この場合、検量線作成工程では、複数の試料のうち任意の試料のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加した標準液を測定して検量線を作成することができる。そして、試料測定工程では、上記任意の試料及びナトリウムイオン含有量が上記任意の試料と同等以上の試料にはナトリウムイオンを添加せずに該試料を測定する。一方、ナトリウムイオン含有量が上記任意の試料と同等未満の試料には上記任意の試料のナトリウムイオン含有量と同等となるようにナトリウムイオンを添加してから該試料を測定する。
3.定量用キット
本発明に係る定量用キットについて説明する。
本発明に係る定量用キットは、上述の定量方法又は定量装置に好適に使用することができる。即ち、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により被測定試料中の測定対象成分の量を定量する際、又は、その定量に用いる検量線を作成する際に、所定量のナトリウムイオンを被測定試料又は検量線作成のための標準液に供給するナトリウムイオン源を有する。
例えば、前述のように透析液中のエンドトキシン量を測定することに加えて、原液希釈用のRO水中のエンドトキシン量を測定する場合、定量用キットは、透析液とRO水について同じ1つの検量線を用いて測定することができるように、標準液とRO水とに、これらのナトリウムイオン含有量が透析液のナトリウムイオン含有量と同等となるようにナトリウムイオンを供給するための、ナトリウムイオン源を有する構成とする。
透析液のナトリウムイオン濃度は、約140mmol/Lであり、標準液やRO水はナトリウムイオンをほとんど含まない。したがって、定量用キットを用いた測定に供する標準液やRO水の量を常に一定量とすることにすれば、定量用キットが供給すべき所定量のナトリウムイオン量も常に一定量でよいこととなり、その量は簡単に算出することができる。つまり、被測定試料のナトリウムイオン濃度と定量用キットを用いた測定に供する液体量に応じて、定量用キットのナトリウムイオン供給量を適宜決定することができる。
本発明に係る定量用キットは、被測定試料を、血液などの生体試料とする場合や、注射剤、輸液、透析液、目薬、生理食塩水等とする場合に特に好適に用いることができる。これらのナトリウムイオン濃度はほぼ一定であり、その濃度から求めたナトリウムイオン量を供給することができる定量用キットを量産して使用することができるからである。
具体的には、血液のナトリウムイオン濃度は約135〜145mmol/Lであり、透析液のナトリウムイオン濃度は約140mmol/Lであり、生理食塩水のナトリウムイオン濃度は約155mmol/Lであることから、これらを基準として算出したナトリウムイオン量を供給することができる定量用キットとすることができる。そのため、定量用キットのナトリウムイオン源は、被測定試料又は検量線作成のための標準液のナトリウムイオン濃度が135〜155m mol/Lとなるようにナトリウムイオンを供給することが好ましい。
更に説明すると、例えば、図2に示すように、定量用キット10は、ナトリウムイオン源としてNaClが乾燥薬剤又は溶液として収容された第1の容器1を有していてよい。第1の容器1には更に、pH緩衝作用物が乾燥薬剤又は溶液(緩衝液)として収容されていてよい。そして、この第1の容器1に、標準液、或いはナトリウムイオンを含有しないか又は含有量がより少ない水などの試料が注入されるようにすることができる。
また、定量用キット10は更に、ナトリウムイオン源が収容されていない第2の容器2を有していてよい。第2の容器2には更に、pH緩衝作用物が乾燥薬剤又は溶液(緩衝液)として収容されていてよい。そして、この第2の容器2に、ナトリウムイオンを含有する透析液などの試料が注入されるようにすることができる。
試料や標準液が注入された第1の容器1と第2の容器2の内容物のナトリウムイオン濃度は同等となるように設定される。そして、この第1の容器1、第2の容器2内の試料や標準液を用いて測定する。
4.実施例
次に、本発明をより具体的な実施例に則して更に説明する。
(実施例1)
生物化学発光法によるATP量の測定におけるナトリウムイオンの影響及びその影響を抑制する効果について確認した。
本実施例では、異なる濃度に希釈したATPを含むATP含有液を、溶媒として水、透析液、NaCl水溶液を用いてそれぞれ調製し、各ATP含有液についてATP濃度と生物化学発光反応による発光量との関係を求めた。
・試薬
ATP標準液として、東亜ディーケーケー社製AF−2A1を用いた。このATP標準液は、概略、0.025MのHEPES緩衝液に1×10-7MのATPが溶解されたものである。また、水として、注射用水(大塚製薬社製大塚蒸留水)を用いた。ルシフェリン、ルシフェラーゼ変異体として、これらを含有する発光試薬(バイオエネックス社製のルシフェラーゼFM+)を用いた。透析用剤として、キンダリー3D(扶桑薬品工業社製)を用いた。キンダリー3Dは、透析液のA剤が電解質分であるA−1剤と、グルコース(非電解質)分であるA−2とで構成されるものである。
・方法
透析液は、キンダリー3DのA剤とB剤とを、処方に従って注射用水を用いて溶解して調製した。このキンダリー3Dのナトリウムイオン濃度は、140mmol/L(140mEq/L)である。
NaCl水溶液は、NaClを注射用水で溶解して、140mmol/L(140mEq/L)の濃度に調製した。即ち、このNaCl水溶液のナトリウムイオン濃度は、上記透析液のナトリウムイオン濃度と等しい。
ATP含有液は、上記ATP標準液を注射用水、透析液、NaCl水溶液で希釈することにより、1×10-14、1×10-13、1×10-12、1×10-11、1×10-10、1×10-9、1×10-8の濃度に調製した。
次に、各ATP含有液の100μLを反応容器に移し、各反応容器に100μLの発光試薬を添加し、混合する。その後、その反応液について、発光検出器(浜松ホトニクス社製微弱発光計数装置)を用いて発光量を測定した。
・結果
結果を図3に示す。図3の横軸はATP含有液のATP濃度(mol/L)、縦軸は発光量(発光強度:RLU)である。
溶媒として水を用いた場合、ATP濃度と発光量との関係は、溶媒として透析液を用いた場合とは大きく異なる。特に、図3に示すように、各ATP濃度における発光量は、溶媒として水を用いた場合よりも透析液を用いた場合の方が低い。従って、単に水に既知濃度のATPを添加して調製した標準液を用いて作成した検量線を用いて、透析液中のATP量を定量すると、実際よりも低濃度の測定結果となる。
これに対して、溶媒としてNaCl水溶液を用いた場合、ATP濃度と発光量との関係は、溶媒として透析液を用いた場合とほぼ一致する。従って、透析液と等しい濃度でナトリウムイオンを含有するNaCl水溶液に既知濃度のATPを添加して調製した標準液を用いて作成した検量線を用いることで、透析液中のATP量を高精度に測定し得ることがわかる。また、ナトリウムイオンの影響を抑制するために試料を希釈しなくてよいため、高感度に測定し得ることがわかる。また、試料が例えばナトリウムイオンを含有しない水などである場合には、標準液と等しい(即ち、透析液と等しい)濃度でナトリウムイオンを含有するようにNaClを添加することで、その試料中のATPについても、透析液の場合と同じ検量線を用いて高感度、高精度に測定し得ることがわかる。
(実施例2)
生物化学発光法によるエンドトキシン量の測定におけるナトリウムイオンの影響及びその影響を抑制する効果について確認した。
本実施例では、異なる含有量に希釈したエンドトキシンを含むエンドトキシン含有液を、溶媒として水、透析液、NaCl水溶液を用いてそれぞれ調製し、各エンドトキシン含有液についてエンドトキシン量と生物化学発光反応による発光量との関係を求めた。
・試薬
リムルス試薬(LAL)として、エンドトキシン測定試薬である和光純薬社製リムルスES−IIを用いた。また、エンドトキシン標準物質として、和光純薬社製コントロールス
タンダードエンドトキシン(CSE)を用いた。また、水として、注射用水(大塚製薬社製注射用水)を用いた。また、発光合成基質として、ベンゾイル−Leu−Gly−Arg−ルシフェリンを用いた。ルシフェラーゼとしては、変異型ルシフェラーゼ(バイオエネックス社製ルシフェラーゼFM)を用いた。透析用剤として、キンダリー3D(扶桑薬品工業社製)と、カーボスターP(味の素製薬社製)とを用いた。カーボスターPは、透析液のA剤が1剤化されたものである。
・方法
透析液は、キンダリー3D、カーボスターPのそれぞれを、処方に従って注射用水を用いて溶解して調製した。このキンダリー3D、カーボスターPの溶液のナトリウムイオン濃度は、それぞれ140mmol/L(140mEq/L)である。
NaCl水溶液は、NaClを注射用水で溶解して、140mmol/L(140mEq/L)の濃度に調製した。即ち、このNaCl水溶液のナトリウムイオン濃度は、上記透析液のナトリウムイオン濃度と等しい。
エンドトキシン含有液は、エンドトキシン標準物質を注射用水で溶解して、1000EU/mLの含有量に調製したものを原液として、この原液を注射用水、透析液、NaCl水溶液で希釈することにより、0.001、0.01、0.1、1EU/mLの含有量に調製した。
リムルス試薬は、200μLの注射用水を用いて調製した。
次に、各エンドトキシン含有液の50μLを反応容器に移し、各反応容器に25μLのリムルス試薬を添加し、混合した後、37℃で20分間加温した。
次に、各反応容器に、0.001M酢酸マグネシウムと5%トレハロースを含む0.04Mトリシン緩衝液(pH8.5)に溶解した6.7×10-5Mの発光合成基質を50μL添加し、37℃で5分間加温した。
次に、各反応容器に、0.025MのHEPES緩衝液(pH7)に溶解した10-6MのATPを50μL、0.001Mの酢酸マグネシウムと0.15Mトレハロースを含む0.04Mトリシン緩衝液(pH8.5)に溶解したルシフェラーゼ(FM1gを4mLに溶解)を50μL添加し、その反応液について、発光検出器(東亜ディーケーケー社製AF−100)を用いて発光量を測定した。
・結果
結果を図4に示す。図4の横軸はエンドトキシン含有液のエンドトキシン量(EU/mL)、縦軸は発光量(発光強度:RLU)である。
溶媒として水を用いた場合、エンドトキシン量と発光量との関係は、溶媒として透析液を用いた場合とは大きく異なる。特に、図4に示すように、各エンドトキシン量における発光量は、溶媒として水を用いた場合よりも透析液を用いた場合の方が低い。従って、単に水に既知量のエンドトキシンを添加して調製した標準液を用いて作成した検量線を用いて、透析液中のエンドトキシン量を定量すると、実際よりも低い測定結果となる。
これに対して、溶媒としてNaCl水溶液を用いた場合、エンドトキシン濃度と発光量との関係は、溶媒として透析液を用いた場合とほぼ一致する。従って、透析液と等しい濃度でナトリウムイオンを含有するNaCl水溶液に既知量のエンドトキシンを添加して調製した標準液を用いて作成した検量線を用いることで、透析液中のエンドトキシン量を高精度に測定し得ることがわかる。また、ナトリウムイオンの影響を抑制するために試料を希釈しなくてよいため、高感度に測定し得ることがわかる。また、試料が例えばナトリウムイオンを含有しない水などである場合には、標準液と等しい(即ち、透析液と等しい)濃度でナトリウムイオンを含有するようにNaClを添加することで、その試料中のエンドトキシンについても、透析液の場合と同じ検量線を用いて高感度、高精度に測定し得ることがわかる。
(実施例3)
比濁法によるリムルステストを用いたエンドトキシン量の測定におけるナトリウムイオンの影響及びその影響を抑制する効果について確認した。
本実施例では、異なる含有量に希釈したエンドトキシンを含むエンドトキシン含有液を、溶媒として水、透析液、NaCl水溶液を用いてそれぞれ調製し、各エンドトキシン含有液についてエンドトキシン量と比濁法による反応時間の測定値との関係を求めた。
・試薬
リムルス試薬(LAL)、エンドトキシン標準物質としては、実施例2と同じものを用いた。また、水としては実施例2と同じものを用いた。また、透析用剤としては、実施例1と同じキンダリー3Dを用いた。
・方法
透析液、NaCl水溶液は、実施例1、2と同様にして調製した。
エンドトキシン含有液は、エンドトキシン標準物質を注射用水で溶解して、1000EU/mLの含有量に調製したものを原液として、この原液を注射用水、透析液、NaCl水溶液で希釈することにより、0.00125、0.0025、0.005、0.01EU/mLの含有量に調製した。
次に、各エンドトキシン含有液の200μLをリムルス試薬を含む反応容器に移し、その反応液について、測定装置(和光純薬社製ET−6000)を用いて透過光量が所定の閾値(約90%)に減少するまでの反応時間を測定した。
・結果
結果を図5に示す。図5の横軸はエンドトキシン含有液のエンドトキシン量(log(EU/mL))、縦軸は反応時間(log(分))である。
溶媒として水を用いた場合、エンドトキシン量と反応時間との関係は、溶媒として透析液を用いた場合とは大きく異なる。特に、図5に示すように、各エンドトキシン量における反応時間は、溶媒として水を用いた場合よりも透析液を用いた場合の方が長い。従って、単に水に既知量のエンドトキシンを添加して調製した標準液を用いて作成した検量線を用いて、透析液中のエンドトキシン量を定量すると、実際よりも低い測定結果となる。
これに対して、溶媒としてNaCl水溶液を用いた場合、エンドトキシン量と反応時間との関係は、溶媒として透析液を用いた場合に近づく。従って、透析液と等しい濃度でナトリウムイオンを含有するNaCl水溶液に既知量のエンドトキシンを添加して調製した標準液を用いて作成した検量線を用いることで、透析液中のエンドトキシン量をより高精度に測定し得ることがわかる。また、ナトリウムイオンの影響を抑制するために試料を希釈しなくてよいため、高感度に測定し得ることがわかる。また、試料が例えばナトリウムイオンを含有しない水などである場合には、標準液と等しい(即ち、透析液と等しい)濃度でナトリウムイオンを含有するようにNaClを添加することで、その試料中のエンドトキシンについても、透析液の場合と同じ検量線を用いて高感度、高精度に測定し得ることがわかる。
表1は、透析液に既知量のエンドトキシンを添加した試料について、上記手順に従って比濁法による反応時間を測定し、検量線として図5に示す溶媒として水を用いた場合の関係(水検量線)、溶媒としてNaCl水溶液を用いた場合の関係(NaCl)を用いた場合の回収率を算出した結果を示す。
Figure 0005903017
水検量線からエンドトキシン量を算出した場合、−20%〜−30%の回収率となり、ナトリウムイオンがリムルス反応系の活性化を阻害していることがわかる。一方、NaCl検量線から算出すると、回収率は±10%の範囲となり、高精度な測定が可能であることがわかる。
(実施例4)
標準液のナトリウム含有量と被測定試料のナトリウムイオン含有量とのずれの影響を確認した。
ここでは、生物化学発光法によるエンドトキシン量の測定に用いる検量線を、ナトリウムイオン濃度が140mmol/LのNaCl水溶液を用いて調製し、生物化学発光法により測定して作成した。
次に、ナトリウムイオン濃度を140mmol/Lを基準として、−75%〜+100%の範囲で変化させたNaCl水溶液を用いて、0.01EU/mLのエンドトキシン含有液を調製した。そして、これらナトリウムイオン濃度の異なる0.01EU/mLのエンドトキシン含有液のそれぞれを生物化学発光法により測定して、上記検量線を用いて、エンドトキシン含有量を計算した。図6に結果を示す。図6は、横軸に計算に使用した検量線を作成する際の、標準液のナトリウムイオン濃度の基準値に対するずれ(%)、縦軸に各検量線を用いて計算したエンドトキシン含有量を示す。
図6の結果から、NaCl水溶液のナトリウムイオン濃度が−15%〜+25%の範囲内であれば、±30%の回収率を達成でき、−5%〜+10%の範囲内であれば、±15%の回収率を達成できることがわかった。
以上説明したように、本発明によれば、生体試料(血液など)や医薬品(透析液など)或いは食品などのナトリウムイオンを含有する試料について高感度、高精度の測定を行うことができる。また、本発明によれば、ナトリウムを含有する試料(透析液など)と水(医薬品の原料水など)などのナトリウムイオンを実質的に含有しないか又は含有量がより少ない試料のいずれについても、同じ1つの検量線を用いて、高感度、高精度の測定を行うことができる。
1 第1の容器
2 第2の容器
10 定量用キット
100 定量装置

Claims (9)

  1. 水に異なる濃度の測定対象成分が添加された複数の標準液であって、それぞれにナトリウムイオン含有量が被測定試料のナトリウムイオン含有量と同等となるようにNaClを添加した複数の標準液を、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定し、その測定値と前記測定対象成分の量との関係を表す検量線を作成する検量線作成工程と、
    前記検量線作成工程で用いた方法と同一の方法により前記被測定試料を測定する試料測定工程と、
    前記検量線を用いて前記試料測定工程における測定値から前記被測定試料中の前記測定対象成分の量を求める定量工程と、
    を含む定量方法。
  2. 前記被測定試料は、ナトリウムイオン含有量の異なる複数の試料であり、
    前記検量線作成工程は、前記複数の試料のうち任意の試料のナトリウムイオン含有量と同等となるようにNaClを添加した前記複数の標準液を測定して前記検量線を作成し、
    前記試料測定工程は、前記任意の試料及びナトリウムイオン含有量が前記任意の試料と同等以上の試料にはNaClを添加せずに該試料を測定し、ナトリウムイオン含有量が前記任意の試料と同等未満の試料には前記任意の試料のナトリウムイオン含有量と同等となるようにNaClを添加してから該試料を測定する請求項1に記載の定量方法。
  3. 前記測定対象成分が、エンドトキシン、βグルカン又はATPである請求項1又は2に記載の定量方法。
  4. 水に異なる濃度の測定対象成分が添加された複数の標準液であって、それぞれにナトリウムイオン含有量が被測定試料のナトリウムイオン含有量と同等となるようにNaClを添加した前記複数の標準液を、リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により測定し、その測定値と前記測定対象成分の量との関係を表す検量線を作成する検量線作成手段と、
    前記検量線作成手段が用いた方法と同一の方法により前記被測定試料を測定する試料測定手段と、
    前記検量線を用いて前記試料測定手段による測定値から前記被測定試料中の前記測定対象成分の量を求める定量手段と、
    有する定量装置。
  5. 前記被測定試料は、ナトリウムイオン含有量の異なる複数の試料であり、
    前記検量線作成手段は、前記複数の試料のうち任意の試料のナトリウムイオン含有量と同等となるようにNaClを添加した前記複数の標準液を測定して前記検量線を作成する手段であり
    前記試料測定手段は、前記任意の試料及びナトリウムイオン含有量が前記任意の試料と同等以上の試料にはNaClを添加せずに該試料を測定し、ナトリウムイオン含有量が前記任意の試料と同等未満の試料には前記任意の試料のナトリウムイオン含有量と同等となるようにNaClを添加してから該試料を測定する手段である請求項4に記載の定量装置。
  6. 前記複数の試料が、医薬品及び該医薬品を調製するための溶液である請求項5に記載の定量装置。
  7. 前記測定対象成分が、エンドトキシン、βグルカン又はATPである請求項4〜6のいずれかの項に記載の定量装置。
  8. リムルス試薬を活性化する反応及び/又はATPとルシフェリンとルシフェラーゼとによる生物化学発光反応を用いた方法により、被測定試料中の測定対象成分の量を定量するため、又は、該定量に用いる検量線を作成するための定量用キットであって、
    前記被測定試料又は前記検量線作成のための標準液に添加するNaClを有する定量用キット。
  9. 前記被測定試料又は前記検量線作成のための標準液のナトリウムイオン濃度が135〜155mmol/Lとなるように前記被測定試料又は前記検量線作成のための標準液に添加するNaClを有する請求項8に記載の定量用キット。
JP2012207268A 2012-09-20 2012-09-20 定量方法、定量装置及び定量用キット Active JP5903017B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012207268A JP5903017B2 (ja) 2012-09-20 2012-09-20 定量方法、定量装置及び定量用キット
PCT/JP2013/075304 WO2014046183A1 (ja) 2012-09-20 2013-09-19 定量方法、定量装置及び定量用キット
US14/429,784 US20150225768A1 (en) 2012-09-20 2013-09-19 Quantification method, quantification device, and quantification kit
CN201380048822.0A CN104781673A (zh) 2012-09-20 2013-09-19 定量方法、定量装置及定量用套件
EP13839625.4A EP2899542A4 (en) 2012-09-20 2013-09-19 QUANTIFICATION METHOD, QUANTIFICATION DEVICE AND QUANTIFICATION KIT
IN2992DEN2015 IN2015DN02992A (ja) 2012-09-20 2013-09-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012207268A JP5903017B2 (ja) 2012-09-20 2012-09-20 定量方法、定量装置及び定量用キット

Publications (2)

Publication Number Publication Date
JP2014062785A JP2014062785A (ja) 2014-04-10
JP5903017B2 true JP5903017B2 (ja) 2016-04-13

Family

ID=50341487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207268A Active JP5903017B2 (ja) 2012-09-20 2012-09-20 定量方法、定量装置及び定量用キット

Country Status (6)

Country Link
US (1) US20150225768A1 (ja)
EP (1) EP2899542A4 (ja)
JP (1) JP5903017B2 (ja)
CN (1) CN104781673A (ja)
IN (1) IN2015DN02992A (ja)
WO (1) WO2014046183A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6493316B2 (ja) * 2016-06-21 2019-04-03 東亜ディーケーケー株式会社 変異型甲虫ルシフェラーゼ、遺伝子、組換えベクター、形質転換体、及び変異型甲虫ルシフェラーゼの製造方法
JP6789109B2 (ja) 2016-12-28 2020-11-25 富士フイルム株式会社 血液分析方法及び血液検査キット
JP7397343B2 (ja) * 2021-06-02 2023-12-13 東亜ディーケーケー株式会社 エンドトキシンの測定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944391A (en) * 1974-12-27 1976-03-16 Preventive Systems, Inc. In vitro process for detecting endotoxin in a biological fluid
JPS59151899A (ja) * 1983-02-16 1984-08-30 Unitika Ltd 測定用組成物
JPH07110301A (ja) * 1993-10-12 1995-04-25 Toa Denpa Kogyo Kk 細胞のatp量測定方法及び装置
JPH1128099A (ja) * 1997-05-12 1999-02-02 Kikkoman Corp 黄色ブドウ球菌の検出法
EP0924220A3 (en) * 1997-12-16 2000-04-26 Wako Pure Chemical Industries, Ltd. Inhibitor of the activation of beta-glucan recognition protein
JP2000131323A (ja) * 1998-10-28 2000-05-12 Fuji Photo Film Co Ltd 調整管理血清
EP1860440B1 (en) * 2005-01-27 2013-07-10 Seikagaku Corporation Pretreatment agent for limulus test
JP2007064895A (ja) * 2005-09-01 2007-03-15 Wako Pure Chem Ind Ltd 生体適用材料のエンドトキシン測定のための前処理方法及びエンドトキシンの測定方法
US8492168B2 (en) * 2006-04-18 2013-07-23 Advanced Liquid Logic Inc. Droplet-based affinity assays
EP2495321A1 (en) * 2006-07-07 2012-09-05 Seikagaku Corporation Pro-clotting enzyme, and method for detection of endotoxin using the same
WO2009063840A1 (ja) * 2007-11-12 2009-05-22 Hiroshima University エンドトキシンの濃度測定方法および濃度測定用キット
JP5686308B2 (ja) * 2009-02-20 2015-03-18 国立大学法人広島大学 βグルカンの濃度測定方法および濃度測定用キット
WO2012029171A1 (ja) * 2010-09-03 2012-03-08 興和株式会社 生物由来の生理活性物質の測定方法

Also Published As

Publication number Publication date
US20150225768A1 (en) 2015-08-13
CN104781673A (zh) 2015-07-15
IN2015DN02992A (ja) 2015-09-25
EP2899542A1 (en) 2015-07-29
WO2014046183A1 (ja) 2014-03-27
EP2899542A4 (en) 2016-04-13
JP2014062785A (ja) 2014-04-10

Similar Documents

Publication Publication Date Title
ES2700774T3 (es) Método para la investigación bacteriológica de una muestra biológica y dispositivo relacionado
EP3194373A2 (en) Diagnostic system and process for rapid bacterial infection diagnosis
KR20150124980A (ko) 샘플의 균수를 평가하는 진단 장치
JP5903017B2 (ja) 定量方法、定量装置及び定量用キット
Dyszkiewicz‐Korpanty et al. The effect of a pneumatic tube transport system on PFA‐100™ closure time and whole blood platelet aggregation
Freitas et al. A multicommuted flow analysis method for the photometric determination of amoxicillin in pharmaceutical formulations using a diazo coupling reaction
Diener et al. MicroRNA profiling from dried blood samples
US20200054254A1 (en) Sensor calibration
Calabria et al. Smartphone-based chemiluminescence glucose biosensor employing a peroxidase-mimicking, guanosine-based self-assembled hydrogel
CN104515768A (zh) 一种肿瘤特异性生长因子检测试剂盒
CN101718709A (zh) 一种检测木糖醇注射液细菌内毒素的方法
CN105445467B (zh) 焦亚硫酸钠细菌内毒素的检测方法
Nie et al. Pharmacokinetic study of ofloxacin enantiomers in Pagrosomus major by chiral HPLC
Klimenko et al. Determining accuracy in validation of UV-spectrophotometric methods of quantitative measurement in forensic toxicological analysis
CN109307769B (zh) 一种用于12mmol/L的血糖溶液配置方法
CN102703575B (zh) 一种气泡上升法检测纤溶酶效价的方法
CN103940870A (zh) 一种基于酶催化的细胞内嘌呤电化学检测方法
US9017622B2 (en) Calibrator for a sensor
CN109307770B (zh) 一种血糖校准液配置方法
EP2255313A1 (en) Systems and methods for determining an amount of blood in a blood culture
Billa et al. Evaluation of micro-colorimetric lipid determination method with samples prepared using sonication and accelerated solvent extraction methods
CN104666334A (zh) 葡萄糖氯化钠钾注射液组合物
CN105136703A (zh) 一种红细胞脆性测定试剂盒及其使用方法
CN115452813A (zh) 一种含有喹啉环结构的药物细菌内毒素的检测方法
Ferrão et al. Quantification of Ions in Human Urine—A Review for Clinical Laboratories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160311

R150 Certificate of patent or registration of utility model

Ref document number: 5903017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250