JP5901340B2 - 固体酸化物形燃料電池及び複合発電システム - Google Patents

固体酸化物形燃料電池及び複合発電システム Download PDF

Info

Publication number
JP5901340B2
JP5901340B2 JP2012034327A JP2012034327A JP5901340B2 JP 5901340 B2 JP5901340 B2 JP 5901340B2 JP 2012034327 A JP2012034327 A JP 2012034327A JP 2012034327 A JP2012034327 A JP 2012034327A JP 5901340 B2 JP5901340 B2 JP 5901340B2
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
fuel
power generation
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012034327A
Other languages
English (en)
Other versions
JP2013171675A (ja
Inventor
晃志 宮本
晃志 宮本
昌弘 水原
昌弘 水原
眞竹 徳久
徳久 眞竹
松尾 毅
毅 松尾
正樹 安永
正樹 安永
智紀 惣田
智紀 惣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012034327A priority Critical patent/JP5901340B2/ja
Publication of JP2013171675A publication Critical patent/JP2013171675A/ja
Application granted granted Critical
Publication of JP5901340B2 publication Critical patent/JP5901340B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、固体酸化物形燃料電池及び固体酸化物形燃料電池から排出される排燃料ガスと排酸化剤とを燃焼させてガスタービンを駆動させる複合発電システムに関する。
燃料電池は、電気化学反応による発電方式を利用した発電装置であり、優れた発電効率及び環境対応等の特性を有している。このため、21世紀を担う都市型のエネルギー供給システムとして、実用化に向けた研究開発が進んでいる。
このような燃料電池は、燃料側の電極である燃料極と、空気(酸化剤)側の電極である空気極と、これらの間にありイオンのみを通す電解質とにより構成されており、電解質の種類によって様々な形式が開発されている。
このうち、固体酸化物形燃料電池(Solid Oxide Fuel Cell:以下「SOFC」と呼ぶ)は、電解質としてジルコニアセラミックスなどのセラミックスが用いられ、天然ガス、石油、メタノール、石炭ガス化ガスなどを燃料として運転される燃料電池である。このSOFCは、イオン伝導率を高めるために作動温度が約900〜1000℃程度と高く、用途の広い高効率な高温型燃料電池として知られている。
このようなSOFCにおいては、たとえば下記の特許文献1に開示されているように、SOFCモジュールを構成するケーシングの内部に、上下を断熱材で仕切られた発電室が設けられている。
そして、SOFCモジュールのケーシング内には、発電素子が形成されているセルチューブ(燃料電池セル)が多数配設されている。各セルチューブは、発電室を形成する上下の断熱材を貫通し、上下の両端部近傍を金属製の上管板及び下管板により支持された構成となっている。
特開2007−109598号公報
近年、SOFCモジュールは、よりコンパクトで高性能化を実現するために、セルチューブを複数本束ねるカートリッジにおいて、セルスタックを高密度化する傾向にある。
図5に示すように、断熱材1に設けたセルチューブ3の貫通孔2は、断熱材1とセルチューブ3間に空気の流通が可能な空隙を形成するため、セルチューブ3の外径(d)より大きな直径(D)を有している(d<D)。一方、図示しない上管板及び下管板は、セルチューブ3の上下両端部を支持する金属製の部材であるため、セルチューブ3を通す孔にはクリアランスがない状態となっている。
高密度化されたSOFCモジュールは、小型化等の目的からセルチューブ間のピッチを狭めると、発電時の高温によって素材の異なる断熱材と金属製管板との熱伸び差が大きくなる。
このため、たとえば図5に示す断熱材1では、発電時における管板の熱伸びで断熱材1とセルチューブ3とが接触し、断熱材1を損傷させることが懸念される。この場合、常温時には、図中に実線で示す貫通孔2と同心位置にある破線表示としたセルチューブ3の位置が、高温の発電時には、管板の熱膨張により二点鎖線で示す位置まで移動する。なお、発電時のセルチューブ3が断熱材1の貫通孔2を越えて移動することは、実際には断熱材1に対する押圧力が作用することを意味している。
また、断熱材1とセルチューブ3との間には、空気の流通を可能にする空隙を形成するため、外径(d)及び直径(D)の差によるクリアランスを設けている。このクリアランスは、常温において周方向に一定幅のリング状となる。しかし、セルチューブ3が管板とともに移動すると、クリアランスの幅が周方向において不均一になる。このようなクリアランスの不均一は、空隙を流れる空気を偏流させる原因になるので、セルチューブ3の内外を流れるガスがセルチューブ3のリード部で十分に熱交換できない領域が生じることも懸念される。
このような背景から、固体酸化物形燃料電池に適用される燃料電池カートリッジにおいては、発電中に断熱材とセルチューブとが接触する可能性を低減できるとともに、リード部における酸化剤の偏流を防止または抑制して、発電中の十分な熱交換を継続できるようにすることが望まれる。なお、断熱材に穿設する貫通孔を単純に大きくすれば、セルチューブとの干渉は回避できるようになるが、セルチューブのピッチ幅を狭めることの障害となるだけでなく、リード部における熱交換の不均一さや製造上の問題も生じてくる。
本発明は、上記の課題を解決するためになされたもので、その目的とするところは、断熱材と燃料電池セル(セルチューブ)とが接触する可能性を低減でき、しかも、リード部での十分な熱交換を期待できる固体酸化物形燃料電池及び複合発電システムを提供することにある。
本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る固体酸化物形燃料電池は、燃料電池セルの内側に燃料供給室から燃料ガスを導入して燃料排出室へ排出するとともに、酸化剤供給室から発電室内に酸化剤を導入して前記燃料電池セルの外側を酸化剤排出室へ向けて下方から上方へ流し、前記燃料ガスと前記酸化剤とを電気化学的に反応させて発電する固体酸化物形燃料電池であって、容器の内部を上下方向に区画して上から順に形成された前記燃料供給室、前記酸化剤排出室、前記発電室、前記酸化剤供給室及び前記燃料排出室を備え、前記燃料電池セルは、上下両端部付近を管板により支持されて複数本設置され、前記容器内で前記発電室の上下面を区画する断熱材に穿設された貫通孔を通って上下方向に貫通して上端を前記燃料供給室に開口するとともに下端を前記燃料排出室に開口し、前記断熱材は、長手方向を複数に分割され、かつ、分割位置における貫通孔を長穴としたことを特徴とするものである。
このような固体酸化物形燃料電池によれば、容器の内部を上下方向に区画して上から順に形成された燃料供給室、酸化剤排出室、発電室、酸化剤供給室及び燃料排出室を備え、燃料電池セル筒は、上下両端部付近を管板により支持されて複数本設置され、容器内で発電室の上下面を区画する断熱材に穿設された貫通孔を通って上下方向に貫通して上端を燃料供給室に開口するとともに下端を燃料排出室に開口し、断熱材は、長手方向を複数に分割され、かつ、分割位置における貫通孔を長穴としたので、発電時の高温になっても、加工しやすい分割位置の長穴が燃料電池セル筒の移動を吸収する。このため、断熱材と燃料電池セル筒とが接触する可能性を低減し、リード部を通過して流れる酸化剤の偏流を防止または抑制することができる。
上記の発明において、前記断熱材の前記貫通孔は、長手方向両端部側の少なくとも1列を長手方向または長手方向から傾斜した方向の長穴とすることが好ましく、これにより、燃料電池セル筒の移動量が最も大きくなって断熱材と接触しやすい両端部においても、長穴により燃料電池セル筒の移動を吸収することができる。この場合、両端部側の長穴については、端から1〜3列程度設ければよい。
また、上記の発明において、前記断熱材は、上下の複数層で分割位置をずらすことが好ましく、これにより、分割部が酸化剤のバイパス流路となることを防止できる。
また、上記の発明において、前記断熱材は、長手方向の中央部を最も幅広に分割することが好ましく、これにより、燃料電池セル筒の移動量が最も大きくなって断熱材と接触しやすい両端部側に効率よく長穴を配置できる。
本発明に係る複合発電システムは、酸化剤と燃料ガスとを電気化学的に反応させて発電する固体酸化物形燃料電池から排出される排燃料ガスと排酸化剤を燃焼させてガスタービンを駆動させる複合発電システムであって、前記固体酸化物形燃料電池は、燃料電池セルと、発電室と、燃料供給室と、燃料排出室と、酸化剤供給室と、酸化剤排出室とを有し、前記発電室は、断熱材を介して前記酸化剤供給室及び前記酸化剤排出室と隣接して配置され、前記燃料電池セルは、複数の前記断熱材の貫通孔を貫通して設置され、前記断熱材は、長手方向で複数に分割され、かつ、前記断熱材の分割位置に設けられる貫通孔を長手方向の長穴を有し、前記酸化剤供給室は、前記ガスタービンと同軸に設置された圧縮機により圧縮された前記酸化剤を前記発電室に供給することを特徴とするものである。
このような本発明の複合発電システムによれば、燃料電池セルが貫通する固体酸化物形燃料電池の断熱材は、長手方向で複数に分割され、かつ、断熱材の分割位置に設けられる貫通孔を長手方向の長穴を有し、酸化剤供給室は、ガスタービンと同軸に設置された圧縮機により圧縮された酸化剤を前記発電室に供給するので、発電時の高温になっても、加工しやすい分割位置の長穴が燃料電池セル筒の移動を吸収する。このため、断熱材と燃料電池セル筒とが接触する可能性を低減し、リード部を通過して流れる酸化剤の偏流を防止または抑制することができる。すなわち、運転時でもリード部におけるガスの熱交換面積を確保し、固体酸化物形燃料電池からの排出ガス温度及び発電室内の温度を安定させることが可能となる。
上述した本発明によれば、高温となる発電時に管板の熱伸びに伴う燃料電池セルの移動が生じても、断熱材の貫通孔を長穴とすることで、断熱材と燃料電池セルとが接触する可能性を低減し、断熱材と燃料電池セルとの間の空隙を通過して流れる酸化剤の偏流を防止または抑制することができる。この結果、燃料電池セルの移動によって断熱材を損傷させることを防止でき、しかも、リード貫通孔部においては、酸化剤の偏流が抑制されて設計時に期待した良好な熱交換を継続できる。
本発明に係る固体酸化物形燃料電池の一実施形態を示す図で、(a)は上段に配置した断熱材の平面図、(b)は二段重ねとした断熱材の側面図、(c)は下段に配置した断熱材の平面図である。 断熱材の分割例を示す縦断面図である。 断熱材に設けたセルチューブの貫通孔に対し、常温及び運転時(600℃)のセルチューブ位置変化を示す図である。 本発明に係る固体酸化物形燃料電池の構成を示す断面図である。 従来の断熱材に設けたセルチューブの貫通孔に対し、常温及び運転時(600℃)のセルチューブ位置変化を示す図である。 本発明に係る複合発電システムの概略構成図である。
以下、本発明に係る固体酸化物形燃料電池及び複合発電システムの一実施形態を図面に基づいて説明する。
酸化剤とは酸素を略15%〜21%含むガスであり、代表的には空気が好適であるが、空気以外にも燃焼排ガスと空気の混合ガスや、酸素と空気の混合ガスなど、空気に限定されるものではない。なお、以下の説明においては、酸化剤の一例として空気が使用されている。
また、以下の説明においては、説明の便宜上、紙面を基準として「上」及び「下」の表現を用いて各構成要素の位置関係を特定するが、鉛直方向に対して必ずしもこの限りである必要はなく、たとえば上下が逆転したもの、鉛直方向に直交する水平方向や、水平方向から傾斜したものでもよい。
図4に示す燃料電池カートリッジ10は、固体酸化物形燃料電池(以下、「SOFC」と呼ぶ)に適用されるものである。一般的なSOFCは、発電を行なう複数のセルチューブ12を束ねるセルスタックにより構成される燃料電池カートリッジ10と、複数のカートリッジ10を組み合わせたサブモジュール、複数のサブモジュールを組み合わせたモジュールにより構成されている。
また、本実施形態におけるSOFCは、適用先として限定されるものではない。たとえば、SOFCとガスタービンまたはマイクロガスタービンなどと組み合わせて複合的に発電する複合発電システムに利用してもよいし、あるいは、SOFC単体による発電システムに利用してもよい。
燃料電池カートリッジ10は、たとえば図4に示すように、断熱材のケーシング(容器)11と、複数のセルチューブ(燃料電池セル)12と、セルチューブ12の両端を支持する上下の管板13,14と、これら上下の管板13,14の間に配置された上下の断熱体15,16と、ケーシング11の下部に設けられ、燃料排出ヘッダ20を収納して空気流路40を形成する二重容器構造の支持架台30と、から概略構成されている。
また、上断熱体15は、後述する空気排出ヘッダ23を形成するため、第1上断熱体15Aと第2上断熱体15Bとに二分割されている。すなわち、空気排出ヘッダ23は、第1上断熱体15Aと第2上断熱体15Bとの間に形成されている。
空気排出ヘッダ23は、上断熱材15Aを介して発電室に隣接して配置され、上断熱材15Aに形成された燃料電池セル12の貫通孔15aを通して発電室17の酸化剤を燃料電池カートリッジ10の外部に排出している。
ケーシング11と上下の断熱体15,16との間には、具体的には第1断熱体15Aと下断熱体16との間には、発電室17が形成されている。ケーシング11と上管板13との間には、燃料供給ヘッダ(燃料供給室)18が形成され、上面に燃料供給管19が接続されている。下管板14の下側には、燃料排出ヘッダ20の空間が形成されている。
そして、下管板14と下断熱体16との間には、空気供給ヘッダ22が形成され、上管板13と上断熱体15との間には、空気排出ヘッダ23が形成されている。なお、図中の符号24は、空気排出ヘッダ23に接続された空気排出管(排出配管)である。
上管板13は、長方形の水平断面形状を有する角柱状のケーシング11において、長手方向の上側(図4の上方)に配置された板状の部材であり、燃料供給ヘッダ18の下面部材でとなる。
また、下管板14は、同じく長手方向の下側(図4の下方)に配置された板状の部材であり、燃料排出ヘッダ20の上面部材とともに空気供給ヘッダ22の下面部材となる。この下管板14は、空気流路40の上端部を封止する部材でもあり、空気供給ヘッダ22と空気流路40との間は、図示しない連通孔により空気の流通が可能となっている。
なお、この場合の長手方向については、角柱形状となるケーシング11の上下方向と読み替えることも可能である。
セルチューブ12は、多孔質セラミックスから形成された円筒状の管であり、長手方向における中央部には発電を行なう複数の発電素子(不図示)が設けられている。
セルチューブ12は、一方の開口端が燃料供給ヘッダ18に開口するとともに、他方の開口端が燃料排出ヘッダ20内に開口するように、上下の管板13,14に穿設した貫通孔よって支持されている。また、セルチューブ12は、発電素子が発電室17内にのみ位置するように配置されている。
セルチューブ12は、発電素子部が設けられた中央部の両端部側であって、長手方向における両端部に設けられたリード部(不図示)を備えている。このリード部は、発電素子部で発電した電気をセルチューブの端部に設けた集電部(不図示)まで導通させる機能を有するとともに、セルチューブ12が断熱体15及び16を貫通するリード貫通孔部(15c及び16d)で、セルチューブ12を介して、燃料ガスと酸化剤とを熱交換させる機能を有している。
上断熱体15は、ケーシング11の長手方向の上側(図4の上方)に配置され、断熱材料を用いてブランケット状あるいはボード状などに形成された部材である。下断熱材16は、ケーシング11の長手方向の下側(図4の下方)に配置され、断熱材料を用いてブランケット状あるいはボード状などに形成された部材であり、空気供給ヘッダ22の上面部材ともなる。
空気供給ヘッダ22は、下断熱材15により発電室に隣接して配置され、下断熱材に形成された燃料電池セルの貫通孔を通して発電室に酸化剤を供給している。
上断熱体15及び下断熱体16には、セルチューブ12を挿通させる貫通孔15a,16aが形成され、貫通孔15a,16aの直径は、空気の流通を可能にするためセルチューブ12の直径よりも大きく形成されている。
また、貫通孔15a,16aの内周面は、円筒状に形成されていてもよいし、あるいは、螺旋状または、直線状の凹部(溝)または凸部(畝状突起)が形成されてもよく、特に限定されることはない。
このような構成にすることで、セルチューブ12と貫通孔15a,16aとの間を通って発電室17を流れる空気と、セルチューブ12の内側を流れる燃料との熱交換が効率よく行われるので、発電室17の温度を高温に保ちやすくなる。
ケーシング11の下端部側(下部構造)は、支持架台30の内部に燃料排出ヘッダ20を収納して空気流路を形成する二重箱(二重壁)構造となっている。
燃料排出ヘッダ20は、上面に下管板14を備えた中空箱形(略直方体形状)の部材であり、略同形状にして上面を開口させた支持架台30の内部空間(略直方体形状)に収納設置されている。
また、支持架台30の底面には空気供給口31が設けられ、下方へ向けた空気供給ノズル32が接続されている。空気供給ノズル32の側面には、空気供給管33が接続されている。さらに、上述した燃料排出ヘッダ20の燃料排出管21は、空気供給口31及び空気供給ノズル32の内部を通り、空気供給ノズル32の底部32aを下方へ貫通して図示しない外部機器に接続されている。
空気供給口31及び空気供給ノズル32は、燃料排出管21より大径とされる。このため、燃料排出管21の外周面と空気供給ノズル32の内周面との間には、空気供給管33から供給された空気を空気供給ヘッダ22へ導くリング状断面形状の空気導入空間部34が形成されている。この空気導入空間部34は、支持架台30の内周面と燃料排出ヘッダ20の外周面との間に形成された空気流路40の間隙部と空気供給口31を介して連通している。従って、空気供給管33から供給された空気は、空気導入空間部34から、燃料排出ヘッダ20の外周(底面及び側面)に形成された空気流路40へ流入し、さらに、図示しない連通孔を通って空気供給ヘッダ22に供給される。
以下では、上述した上断熱材15及び下断熱材16に採用する断熱材構造ついて、図1から図3を参照して説明する。
図示の断熱材50は、上層断熱材50A及び下層断熱材50Bの上下2段重ね(二層構造)とされ、上層断熱材50A及び下層断熱材50Bは、常温時におけるセルチューブ12の軸線と一致する位置で長手方向(長方形の長辺方向)を複数に分割されている。この場合の分割数は、運転時の温度等を考慮して増加させる方向で決定される。
また、上層断熱材50A及び下層断熱材50Bには、セルチューブ12を通すための貫通孔15a,16aとして、円形穴60と長手方向の長穴70とが穿設されている。この長穴70は、少なくとも分割位置に設けられていればよいが、たとえば運転温度等の諸条件によっては、熱影響を受けてセルチューブ12の移動量が大きくなる長手方向両端部側の1列または複数列(両端からそれぞれ3列程度)についても、同様の長穴70とすることが好ましい。図示の構成例では、長辺方向の一列に合計30個の円形穴60及び長穴70を設けるとともに、この列を短辺方向に7列並べているので、合計210本のセルチューブ12を配列可能となるが、このセルチューブ数に限定されることはない。
なお、図1においては、円形穴60が白抜きで図示され、長穴70が黒塗りで図示されている。
図1に示す構成例では、上層断熱材50A及び下層断熱材50Bがいずれも長手方向を5分割された断熱材要素51a〜51e,52a〜52eの組み合わせとなっている。この場合、上層断熱材50A及び下層断熱材50Bの分割位置をずらし、2段重ねの状態で分割線Lが上下に連続しないようになっている。さらに、図2に示すような3層構造の断熱材50′においても、各層の分割位置をずらすことで分割線Lが上下に連続しないようになっている。
上層断熱材50A及び下層断熱材50Bは、長穴70を効率よく配置できるように、いずれも長手方向の中央部(断熱材要素51c,52c)が最も幅広となるように分割されている。
また、常温において、貫通孔15a,16aがセルチューブ12の軸中心位置と一致するように穿設されているので、常温(停止時)における円形穴60及び長穴70の中心はセルチューブ12の軸中心と大方一致するように設けられている。このため、図示の長穴70は、いずれも分割線Lにより長手方向が二分割されたものとなる。
そして、長穴70の形状は、図3に示すように、短辺方向(縦方向)の寸法が円形穴60の直径Dと同様のDとされ、長辺方向の寸法が直径Dより大きい値のDa(Da>D)に設定されている。
このように、本実施形態の上層断熱材50A及び下層断熱材50Bは、常温時におけるセルチューブ12の軸線(複数の軸中心を短辺方向に結んだ線)と一致する位置において長手方向が分割線Lで複数に分割され、かつ、セルチューブ12を通すための貫通孔15a,16aを分割位置で長手方向の長穴70としたので、燃料電池カートリッジ10が発電時の高温になっても、長穴70でセルチューブ12の移動量を吸収することができる。
具体的に説明すると、図3に示すように、常温において、円形穴60や長穴70の中心位置にある破線表示のセルチューブ12は、運転時の高温(たとえば600℃)になることで金属製の管板13,14が断熱材50より大きく熱膨張するので、管板13,14とともに長手方向の左右両端側へ向けて移動する。このとき、分割部や両端部に長穴70が設けられており、しかも、熱膨張に伴う移動量等を考慮して分割数を増しているので、熱膨張によるセルチューブ12の移動は、図中に二点鎖線で示すように、長穴70の範囲内で吸収することが可能になる。
このため、断熱材50とセルチューブ12とが接触する可能性を低減し、さらに、リード貫通孔部となる円形穴60及び長穴70の内周面とセルチューブ12の外周面とのクリアランスを通過して流れ空気の偏流を防止または抑制することができる。
なお、管板13,14の熱膨張が大きいと、断熱材50の長手方向両端部側におけるセルチューブ12の移動量が大きくなるので、断熱材50の両端部に長穴70を設けることは、セルチューブ12の高密度化や高温運転対策として有効である。
ところで、上述した長穴70を分割部に設けるのは、他の部分より加工が容易になるためである。
また、上述した断熱材50は、上下の複数層で分割位置をずらしているので、分割部の分割線Lが空気のバイパス流路となることを防止できる。
また、上述した断熱材50は、長手方向の中央部を最も幅広に分割しているので、セルチューブ12の移動量が最も大きくなって断熱材50と接触しやすい両端部側に効率よく長穴70を配置できる。換言すれば、長手方向の中央部を最も幅広に分割することで、断熱材50の分割線Lが、同じ分割数でも長手方向の両端部側に多く配置されるので、長穴70による移動吸収の効率が向上する。
上述したように、本実施形態の燃料電池カートリッジ10は、常温におけるセルチューブの軸線と一致させた位置で断熱材50の長手方向を複数に分割するとともに、分割位置にある貫通孔を長手方向の長穴70とするように設計される。
また、分割位置を工夫することにより、たとえば図示の構成例における断熱材要素51b,51d,52b,52dについては部品の共用化が可能になる。
このような断熱材設計方法は、発電時の高温になっても、加工しやすい分割位置の長穴70にセルチューブ12の移動を吸収させるので、断熱材50とセルチューブ12とが接触する可能性を低減した設計や、リード貫通孔部を通過して流れる空気の偏流を防止または抑制した設計が可能になる。また、断熱材50の分割数を適宜増すことにより、加工しやすい分割部50の長穴70を増し、セルチューブ12の移動を効率よく吸収できる。
このように、上述した本実施形態によれば、高温となる発電時においても、管板13,14の熱伸びに伴うセルチューブ12の移動を長穴70が吸収するので、断熱材50とセルチューブ12とが接触する可能性を低減し、リード貫通孔部を通過して流れる酸化剤の偏流を防止または抑制することができる。この結果、運転中にセルチューブ12が移動して断熱材50を損傷させることを防止でき、しかも、リード貫通孔部においては、空気の偏流が抑制されて設計時に期待した良好な熱交換を継続できる。
図6には、複合発電システム101の概略図を示す。複合発電システム101は、固体酸化物形燃料電池(SOFC)102と、ガスタービン発電装置103から構成され、SOFC102による発電とガスタービン発電設備103による発電を組み合わせ、高い効率を得ることができる発電システムである。複合発電システム101に利用される燃料ガス、空気ガス及び不活性ガスの配管系統として、燃料ガス供給流路L1、燃料極側の不活性ガス供給流路L2、排燃料ガス流路L3、再循環ガス流路L4、燃焼器用の燃料ガス供給流路L5、酸化ガス供給流路L6、排気流路L7、空気極側の不活性ガス供給流路L8、排酸化ガス流路L9、酸化ガスバイパス流路L10が設けられている。
燃料ガス供給流路L1は、燃料ガスの流量を調整する流量調整弁105を介して、燃料ガス供給源104とSOFC102を接続している。また、燃料ガス供給流路L1には、起動または停止時に不活性ガスを供給する不活性ガス供給流路L2が接続されている。燃料極側の不活性ガス供給流路L2は、不活性ガスの流量を調整する流量調整弁107を介して、燃料極側の不活性ガス供給源106が接続されている。
SOFC102の発電に利用された燃料ガスは、排燃料ガス流路L3に排出される。排燃料ガス流路L3は、燃料ガスと排燃料ガスの熱交換器108、排燃料ガス再循環ブロワ109及び流量調整弁110を介して、ガスタービン発電装置103の燃焼器111に接続されている。
熱交換器108は、燃料ガス供給流路L1から供給される燃料ガスと、SOFC102から排燃料ガス流路L3に排出される発電に利用された高温の排燃料ガスとの熱交換を行い、SOFC102に供給される燃料ガスを予熱している。排燃料ガス再循環ブロワ109は、SOFC102より排燃料ガス流路に排出される排燃料ガスに含まれる未利用燃料を再循環ガス流路L4により燃料ガス供給流路L1に再循環させている。流量調整弁110は、ガスタービン発電設備103の燃焼器111に供給される排燃料ガス流路L3を流れる排燃料ガスのガス流量を制御している。
酸化ガス供給流路L6は、熱交換器112と、流量調整弁113を介して、ガスタービン発電設備103の圧縮機114とSOFC102を接続している。また、酸化ガス供給流路L6には、起動または停止時に不活性ガスを供給する空気極側の不活性ガス供給流路L8が接続されている。空気極側の不活性ガス供給流路L8は、不活性ガス源117から供給される不活性ガスの流量を調整する流量調整弁118を介して、空気極側の不活性ガス供給源117が接続されている。熱交換器112は、圧縮機114により加圧された酸化剤ガスと、タービン115から排燃焼ガス流路L7に排出される排燃焼ガスとで熱交換を行い、SOFC102に供給される酸化ガスを昇温している。流量調整弁113は圧縮器114から供給される酸化ガスの流量を制御している。
SOFC102の発電に利用された酸化ガスは、排酸化ガス流路L9に排出される。排酸化ガス流路L9は、ガスタービン発電装置103の燃焼器111に接続されおり、排酸化ガスが燃焼器111に供給される。また、排酸化ガス流路L9には、酸化ガスバイパス流路L10が接続されている。酸化ガスバイパス流路L10は、複合発電システム101の起動停止時やガスタービン発電設備103の単独運転時において、酸化ガスがSOFC102をバイパスして、燃焼器111に供給するための配管系統である。
ガスタービン発電設備103には、酸化ガスを圧縮する圧縮機114と、ガスタービンを駆動させるための燃焼ガスを生成する燃焼器111と、燃焼ガスを膨張させて回転するタービン115と、が備えられている。圧縮機114は、タービン115と同軸に連結されている。また、発電機116は、タービン115と同軸に連結されている。
燃焼器111は、SOFCが排出される燃料ガスと酸化ガスとを燃焼させて高温高圧の燃焼ガスをタービン115に供給している。また、燃焼器51には、排燃料ガス流路L3とは別に、直接燃料ガスを供給するための燃焼器用の燃料ガス供給流路L5が接続されている。燃焼器用の燃料ガス供給流路L5は、流量調整弁120を介して燃焼器111と燃料ガス源119とを接続している。
このような複合発電システム101に上述した断熱材構造を適用することにより、運転時でもリード部におけるガスの熱交換面積を確保し、SOFCからの排出ガス温度及び発電室内の温度を安定させることが可能となる。これにより、複合発電システム101における制御性を向上させることができる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
10 燃料電池カートリッジ
11 ケーシング(容器)
12 セルチューブ(燃料電池セル)
13 上管板(仕切部材)
14 下管板(仕切部材)
15 上断熱体
16 下断熱体
17 発電室
18 燃料供給ヘッダ(燃料供給室)
20 燃料排出ヘッダ(燃料排出室)
21 燃料排出管
22 空気供給ヘッダ(空気供給室)
23 空気排出ヘッダ(空気排出室)
24 空気排出管(排出配管)
30 支持架台
40 空気流路
50 断熱材
51 内壁面
60 円形穴
70 長穴

Claims (5)

  1. 燃料電池セルの内側に燃料供給室から燃料ガスを導入して燃料排出室へ排出するとともに、酸化剤供給室から発電室内に酸化剤を導入して前記燃料電池セルの外側を酸化剤排出室へ向けて下方から上方へ流し、前記燃料ガスと前記酸化剤とを電気化学的に反応させて発電する固体酸化物形燃料電池であって、
    容器の内部を上下方向に区画して上から順に形成された前記燃料供給室、前記酸化剤排出室、前記発電室、前記酸化剤供給室及び前記燃料排出室を備え、
    前記燃料電池セルは、上下両端部付近を管板により支持されて複数本設置され、前記容器内で前記発電室の上下面を区画する断熱材に穿設された貫通孔を通って上下方向に貫通して上端を前記燃料供給室に開口するとともに下端を前記燃料排出室に開口し、
    前記断熱材は、長手方向を複数に分割され、かつ、分割位置における貫通孔を長穴としたことを特徴とする固体酸化物形燃料電池。
  2. 前記断熱材の前記貫通孔は、長手方向両端部側の少なくとも1列を長手方向または長手方向から傾斜した方向の長穴としたことを特徴とする請求項1に記載の固体酸化物形燃料電池。
  3. 前記断熱材は、上下の複数層で分割位置をずらしたことを特徴とする請求項1または2に記載の固体酸化物形燃料電池。
  4. 前記断熱材は、長手方向の中央部を最も幅広に分割したことを特徴とする請求項1から3のいずれか1項に記載の固体酸化物形燃料電池。
  5. 酸化剤と燃料ガスとを電気化学的に反応させて発電する固体酸化物形燃料電池から排出される排燃料ガスと排酸化剤を燃焼させてガスタービンを駆動させる複合発電システムであって、
    前記固体酸化物形燃料電池は、燃料電池セルと、発電室と、燃料供給室と、燃料排出室と、酸化剤供給室と、酸化剤排出室とを有し、
    前記発電室は、断熱材を介して前記酸化剤供給室及び前記酸化剤排出室と隣接して配置され、
    前記燃料電池セルは、複数の前記断熱材の貫通孔を貫通して設置され、
    前記断熱材は、長手方向で複数に分割され、かつ、前記断熱材の分割位置に設けられる貫通孔を長手方向の長穴を有し、
    前記酸化剤供給室は、前記ガスタービンと同軸に設置された圧縮機により圧縮された前記酸化剤を前記発電室に供給することを特徴とする複合発電システム。
JP2012034327A 2012-02-20 2012-02-20 固体酸化物形燃料電池及び複合発電システム Active JP5901340B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012034327A JP5901340B2 (ja) 2012-02-20 2012-02-20 固体酸化物形燃料電池及び複合発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034327A JP5901340B2 (ja) 2012-02-20 2012-02-20 固体酸化物形燃料電池及び複合発電システム

Publications (2)

Publication Number Publication Date
JP2013171675A JP2013171675A (ja) 2013-09-02
JP5901340B2 true JP5901340B2 (ja) 2016-04-06

Family

ID=49265506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034327A Active JP5901340B2 (ja) 2012-02-20 2012-02-20 固体酸化物形燃料電池及び複合発電システム

Country Status (1)

Country Link
JP (1) JP5901340B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6111998B2 (ja) * 2013-11-29 2017-04-12 株式会社デンソー 燃焼装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160395U (ja) * 1982-04-20 1983-10-25 石川島播磨重工業株式会社 高速増殖炉用空気冷却器の伝熱管支持構造
JPS60170584U (ja) * 1984-04-14 1985-11-12 北芝電機株式会社 向流形熱交換器
JP3649708B2 (ja) * 2002-07-01 2005-05-18 三菱重工業株式会社 燃料電池モジュール
JP5244292B2 (ja) * 2005-10-17 2013-07-24 三菱重工業株式会社 燃料電池モジュールおよび燃料電池システム
JP5922433B2 (ja) * 2012-02-20 2016-05-24 三菱日立パワーシステムズ株式会社 燃料電池及びその酸化剤供給方法

Also Published As

Publication number Publication date
JP2013171675A (ja) 2013-09-02

Similar Documents

Publication Publication Date Title
JP6263638B2 (ja) セルシステムに関する組立方法及び配置
JP5744349B2 (ja) 燃料電池モジュールおよび燃料電池装置
JP2008084683A (ja) 燃料電池
JP2004319462A (ja) 燃料電池組立体
JP5133551B2 (ja) 燃料電池発電システム
JP2017076609A (ja) 熱交換器を含む燃料電池モジュール及びそのようなモジュールを作動させる方法
JP2006054175A (ja) 燃料電池
JP2010114092A (ja) 燃料電池組立体
JP2014067669A (ja) 燃料電池モジュール
JP4942335B2 (ja) 燃料電池セルスタック並びに燃料電池
JP5901340B2 (ja) 固体酸化物形燃料電池及び複合発電システム
US20110039187A1 (en) Manufacturing Method of Solid Oxide Fuel Cell
JP6932515B2 (ja) 燃料電池および複合発電システムならびにその運転方法
JP2005158524A (ja) 燃料電池組立体
JP2009245627A (ja) 固体酸化物形燃料電池
KR101091979B1 (ko) 디스크형 고체산화물 연료전지
JP7064678B2 (ja) 燃料電池スタックにおける熱管理のための選択的に回転される流れ場
KR20190026180A (ko) 연료전지 스택
JP6203627B2 (ja) 燃料電池の酸化剤供給ヘッダ、燃料電池及び燃料電池への酸化剤供給方法
JP7386057B2 (ja) 燃料電池モジュール
KR101944152B1 (ko) 선정된 냉각 용량 분배를 갖는 연료 전지 컴포넌트
JP5922432B2 (ja) 燃料電池及びその酸化剤排出方法
JP6867209B2 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6489886B2 (ja) 燃料電池モジュール
JP6331970B2 (ja) 燃料電池装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160308

R150 Certificate of patent or registration of utility model

Ref document number: 5901340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350