JP5895644B2 - 非水二次電池電極用バインダー樹脂組成物 - Google Patents

非水二次電池電極用バインダー樹脂組成物 Download PDF

Info

Publication number
JP5895644B2
JP5895644B2 JP2012066840A JP2012066840A JP5895644B2 JP 5895644 B2 JP5895644 B2 JP 5895644B2 JP 2012066840 A JP2012066840 A JP 2012066840A JP 2012066840 A JP2012066840 A JP 2012066840A JP 5895644 B2 JP5895644 B2 JP 5895644B2
Authority
JP
Japan
Prior art keywords
meth
ethylenically unsaturated
group
secondary battery
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012066840A
Other languages
English (en)
Other versions
JP2012216518A (ja
Inventor
安紀子 仁科
安紀子 仁科
一成 春田
一成 春田
幸子 木下
幸子 木下
隆明 小池
隆明 小池
隆明 大竹
隆明 大竹
大 稲垣
大 稲垣
浩一郎 宮嶋
浩一郎 宮嶋
真吾 池田
真吾 池田
順幸 諸石
順幸 諸石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2012066840A priority Critical patent/JP5895644B2/ja
Publication of JP2012216518A publication Critical patent/JP2012216518A/ja
Application granted granted Critical
Publication of JP5895644B2 publication Critical patent/JP5895644B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン伝導性が高く、耐電解液性、結着性、可とう性に優れた非水二次電池電極用バインダー樹脂組成物に関する。更には充放電サイクル特性、高容量化に優れた非水系二次電池、更にはリチウムイオン二次電池に好適に使用することができる非水二次電池電極用バインダー樹脂組成物に関する。
近年、電子技術の進歩により、電子機器の性能が向上して小型化、ポータブル化が進み、その電源としてエネルギ密度の高い二次電池の需要が高まっている。二次電池としては例えば、ニッケル水素二次電池、リチウムイオン二次電池などが挙げられ、これら二次電池も機器の小型化、軽量化から、高容量かつ高寿命品の開発が進められている。
二次電池の電極は、電極活物質、導電助剤、更にはこれらを集電体に結着するバインダーより構成される。二次電池用バインダー樹脂には従来、正極、負極共にポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素樹脂が多く用いられてきた(非特許文献1、2)。しかし、二次電池は充放電時に正極又は負極が体積膨張や収縮を繰り返すため、活物質や導電剤の脱落が起こることで充放電サイクル寿命を短くする場合がある。そのため電極用バインダーには電極の膨潤、収縮に耐え得るクッション性・密着性が要求される。しかしフッ素樹脂では電極に追随し得るクッション性、集電体への密着性共に不十分であった。又、フッ素樹脂はN−メチルピロリドン等の特定の溶剤にしか溶解しないという特徴もあり、電極作製時の異臭等、人体や環境に対する悪影響が問題であった。
環境面への関心の高まりに伴い、水系のバインダーが注目されている。水系のバインダーを用いることで人体や環境への負荷が低減され、更にフッ素系樹脂の課題であったクッション性・密着性が改善されたとある(特許文献1)。しかし、これらの樹脂は絶縁体であるため、電池内部でのイオンの移動を妨げイオン伝導性が低下し、内部抵抗が大きくなることによる電池性能の低下、容量の低下という欠点がある。
これらの欠点を補う方法として、ニトリルやアルキルエーテルといった孤立電子対を有する構造を組み込み、電解液の保持性やイオン伝導性を付与する方法が開示されている(特許文献2、3)。しかし、ニトリルの組み込みだけではイオン伝導性の向上に十分な効果が得られない。アルキルエーテル構造の組み込みにより、イオン伝導度が向上し内部抵抗が小さくなるとあるが、アルキルエーテルは耐酸化性・耐熱性が低いため、電池内部で分解し、分解物が電池の充放電サイクル特性などを悪化させるという課題を残している。
特許第4281118号公報 WO2007/122947 WO00/56700
「電池ハンドブック」 電気書院刊 1980年 「工業材料」 2008年9月号(Vol.56、No.9)
本発明は、耐熱性・耐酸化性を悪化することなく、高いイオン伝導性を付与し、充放電の繰り返しや、発熱による高温環境下にあっても高放電容量を保持した非水系二次電池を提供することが可能な非水二次電池電極用バインダー樹脂組成物の提供を目的とする。更に、電極活物質に対する影響が少なくかつ、集電性を確保し、その利用効率を向上させ、電池の充放電サイクル特性、高容量化を達成することが可能な非水系二次電池電極、及び該電極を用いた非水系二次電池の提供を目的とする。
第1の発明は、エチレン性不飽和単量体を重合してなり、下記一般式(1)で示される構造単位を有する重合体(A)を含む非水二次電池電極用バインダー樹脂組成物に関する。
一般式(1)
〔一般式(1)において、Rは炭素数1〜12の二価の炭化水素基、Rは炭素数3〜12の二価の炭化水素基、RはHまたはCH、n=1〜20の整数である。〕
又、第2の発明は、重合体(A)の製造に用いられるエチレン性不飽和単量体の合計100重量%中、アルコキシシリル基含有エチレン性不飽和単量体(b)、N−メチロール基含有エチレン性不飽和単量体(c)、及び1分子中に2つ以上のエチレン性不飽和基を有する単量体(d)からなる群より選ばれる少なくとも1種類の単量体を当該群から選ばれる単量体の合計で0.1〜5重量%含有することを特徴とする第1の発明の非水二次電池電極用バインダー樹脂組成物に関する。
又、第3の発明は、重合体(A)の製造に用いられるエチレン性不飽和単量体の合計100重量%中、カルボキシル基含有エチレン性不飽和単量体(e)、スルホン酸基含有エチレン性不飽和単量体(f)、リン酸基含有エチレン性不飽和単量体(g)、エポキシ基含有エチレン性不飽和単量体(h)、アミド基含有エチレン性不飽和単量体(i)及びアミノ基含有エチレン性不飽和単量体(j)からなる群より選ばれる少なくとも1種類の単量体を当該群から選ばれる単量体の合計で0.1〜50重量%含むことを特徴とする第1または第2の発明の非水二次電池電極用バインダー樹脂組成物に関する。
又、第4の発明は、第1〜3いずれかの発明の非水二次電池電極用バインダー樹脂組成物を用いてなる非水系二次電池電極に関する。
又、第5の発明は、第4の発明の非水系二次電池電極を用いてなる非水系二次電池に関する。
又、第6の発明は、リチウムイオン二次電池であることを特徴とする第5の発明の非水系二次電池に関する。
本発明の非水二次電池電極用バインダー樹脂組成物は、従来の耐電解液性、集電体との密着性、可とう性に加え、リチウムイオン伝導性に優れており、本発明の非水二次電池電極用バインダー樹脂組成物を用いることにより、発熱による高温環境下にあっても充放電サイクルにおける放電容量低下の低減が可能となる高容量で長寿命の非水系二次電池を提供できる。
本発明の非水二次電池電極用バインダー樹脂組成物は、エチレン性不飽和単量体を重合してなり、下記一般式(1)で示される構造単位を有する重合体(A)を含むことを特徴とする。
一般式(1)
〔一般式(1)において、Rは炭素数1〜12の二価の炭化水素基、Rは炭素数3〜12の二価の炭化水素基、RはHまたはCH、n=1〜20の整数である。〕
一般式(1)で表される構造を有することにより、バインダー樹脂組成物のイオン伝導性を高めることができる。この特長により本発明のバインダー樹脂組成物は、電池内部でイオンの移動を妨げることなく、内部抵抗が小さく高容量で長寿命の非水系二次電池を提供できる。本発明における一般式(1)の構造単位は、多いほどイオン伝導性は高くなるが、密着性や耐電解液性などの向上に必要な共重合成分も必要であるため、当該構造単位の割合は重合体(A)100重量%において1〜95重量%が好ましい。より好ましくは10重量%〜70重量%である。一般式(1)の構造単位が1重量%未満であると、イオン伝導に寄与する構造が少ないために、イオン伝導性の向上効果が現れない恐れがある。
一般式(1)においてRは炭素数1〜12の二価の炭化水素基であれば、直鎖構造、分岐構造、脂環あるいは芳香族構造を有していたとしても優れた効果を発揮できるが、Rの炭素数が12よりも大きいとイオン伝導性に寄与するカルボニル基の比率が相対的に減少するため、イオン伝導性が低下し、内部抵抗の減少効果が現れにくく、電池性能の向上が確認できない。そのためRの炭素数は好ましくは1〜8、より好ましくは1〜6である。Rは炭素数3〜12の二価の炭化水素基であれば、直鎖構造、分岐構造、脂環あるいは芳香族構造を有していたとしても優れた効果を発揮できるが、Rと同様に炭素数が大きすぎるとイオン伝導効果が得られにくいことから好ましくは3〜7の二価の炭化水素基である。nは1〜20の範囲であれば十分なイオン伝導性を示すが、高いイオン伝導性を示すnには最適値があり、好ましくは1〜12、より好ましくは1〜8である。nが20よりも大きいと、電極用のスラリーとした時のスラリー粘度が高くなり、集電体に塗布しにくくなる。
次に重合体(A)の合成方法について説明する。
一般式(1)の構造単位を有する重合体(A)は、一般式(1)で示される構造を有する、市販の単量体を重合しても良いし、水酸基含有の(メタ)アクリル酸エステル類の水酸基にラクトン類を開環付加させることによって得られた一般式(1)の構造単位を有する単量体を重合してもよい。また、下記に述べる水酸基含有の(メタ)アクリル酸エステル類を共重合させた重合体(AP)を合成し、その水酸基にラクトン類を開環付加させることによって得ても良い。
一般式(1)で示される構造を有する単量体は、水酸基含有の(メタ)アクリル酸エステル類にラクトン類を開環付加させることにより得られるが、市販品を用いることもできる。市販品としては、例えばダイセル化学工業株式会社のプラクセルFシリーズ等がある。
水酸基含有の(メタ)アクリル酸エステル類としては、
例えば、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル等の直鎖(メタ)アクリル酸エステル類;
例えば、
(メタ)アクリル酸1−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸1−ヒドロキシブチル、(メタ)アクリル酸2−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシブチル、アクリル酸エチル−α−(ヒドロキシメチル)等の分岐(メタ)アクリル酸エステル類
例えば、(メタ)アクリル酸1,2−シクロヘキサンジメタノール、(メタ)アクリル酸1,3−シクロヘキサンジメタノール、(メタ)アクリル酸1,4−シクロヘキサンジメタノール、(メタ)アクリル酸シクロヘキシルグリシジルエーテル、(メタ)アクリル酸フェニルグリシジルエーテル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシメチル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシエチル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシプロピル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシブチル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシデシル、(メタ)アクリル酸2−ヒドロキシ−3−フェノキシオクタデシル、(メタ)アクリル酸モノヒドロキシエチルフタレート、(メタ)アクリル酸2−(4−ベンゾイル−3−ヒドロキシフェノキシ)エチル、ジ(メタ)アクリル酸1,4−ビス(2−ヒドロキシプロピル)ベンゼン、ジ(メタ)アクリル酸1,3−ビス(2−ヒドロキシプロピル)ベンゼン等の水酸基含有の脂環あるいは芳香族(メタ)アクリル酸エステル類;
が挙げられるが、特にこれらに限定されるものではない。これらは、1種だけを用いてもよいし、あるいは、複数種を併用してもよい。
水酸基含有の(メタ)アクリル酸エステル類や、水酸基含有の重合体(AP)に開環付加させるラクトン類としては、
例えば、β−プロピオラクトン、β−ブチロラクトン、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、ε−カプロラクトン、γ−カプロラクトン、δ−カプロラクトン、γ−ヘプタノラクトン、γ−オクタノラクトン、δ−オクタノラクトン、ε−オクタノラクトン、δ−ノナラクトン、ε−カプロラクトングリコリド、ピバロラクトン、7−ヘプタノリド、8−オクトノリド、11−ウンデカノリド、12−ドデカノリド等の直鎖ラクトン類;
例えば、2−ノネン−4−オリド、7−デセン−4−オリド、9−デセン−5−オリド、2−デセン−5−オリド、7−デセン−5−オリド、6−デセン−4−オリド、8−デセン−5−オリド、8−ウンデセン−5−オリド、4−メチル−cis−7−デセン−4−オリド、2−ブテン−4−オリド、2−メチル−4−ブタノリド、3−メチル−4−オクタノリド、3−メチル−4−ノナノリド、4−メチル−4−デカノリド、2,4−デカジエン−5−オリド、4−メチル−5−ヘキセン−4−オリド、ペンタノ−4−ラクトン、4−エテニル−γ−バレロラクトン、ジャスモラクトン、メントンラクトン、9−デセン−5−オリド、2,3−ジメチル−2,4−ノナジエン−4−オリド、α−メチル−β−プロピオラクトン、β−メチル−α−プロピオラクトン、α,α−ジメチル−β−プロピオラクトン、7−デセン−1,4−ラクトン、マソイアラクトン、α−アンゲリカラクトン、β−アンゲリカラクトン等の分岐ラクトン類;
例えば、シクロペンタデカリド、ミントラクトン、ワインラクトン等の脂環あるいは芳香族ラクトン類;
が挙げられるが、特にこれらに限定されるものではない。これらは、1種だけを用いてもよいし、あるいは、複数種を併用してもよい。
水酸基とラクトン類との反応において、触媒を適宜使用することもできる。触媒としては、アンモニア、アミン類、4級アンモニウム塩類、4級ホスホニウム塩類、アルカリ金属水酸化物類、アルカリ土類金属水酸化物類、トシル酸類、ルイス酸類、錫,鉛,チタン,鉄,亜鉛,ジルコニウム,コバルト等を含有した有機金属化合物類、金属ハロゲン化物類等が挙げられる。
アミン類としては、例えば、トリエチルアミン、ピリジン、フェニルアミン、モルホリン、N−メチルモルホリン、ピロリジン、ピペリジン、N−メチルピペリジン、シクロヘキシルアミン、n−ブチルアミン、ジメチルオキサゾリン、イミダゾール、N−メチルイミダゾール、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジメチルイソプロパノールアミン、N−メチルジエタノールアミン等が挙げられる。
4級アンモニウム塩類としては、例えば、テトラメチルアンモニウムブロマイド、テトラメチルアンモニウムクロライド、テトラメチルアンモニウムフルオライドトリヒドレート、テトラメチルアンモニウムヘキサフルオロホスフェート、テトラメチルアンモニウムヒドロゲンフタレート、テトラメチルアンモニウムヒドロキサイドペンタヒドレート、テトラメチルアンモニウムヒドロキサイド、テトラメチルアンモニウムアイオダイド、テトラメチルアンモニウムニトレート、テトラメチルアンモニウムパークロレート、テトラメチルアンモニウムテトラフルオロボレート、テトラメチルアンモニウムトリブロマイド、フェニルトリメチルアンモニウムブロマイド、テトラエチルアンモニウムブロマイド、テトラエチルアンモニウムクロライド、テトラエチルアンモニウムフルオライドトリヒドレート、テトラエチルアンモニウムヒドロキサイド、テトラエチルアンモニウムアイオダイド、テトラエチルアンモニウムパークロレート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウム−p−トルエンスルホネート、テトラプロピルアンモニウムブロマイド、テトラプロピルアンモニウムクロライド、テトラプロピルアンモニウムアイオダイド、テトラプロピルアンモニウムヒドロキサイド、テトラプロピルアンモニウムパークロレート、テトラ−n−プロピルアンモニウムヒドロゲンスルフェート、テトラ−n−プロピルアンモニウムパールテネート(VII)、テトラブチルアンモニウムブロマイド、テトラブチルアンモニウムトリブロマイド、テトラブチルアンモニウムクロライド、テトラブチルアンモニウムアイオダイド、テトラブチルアンモニウムヒドロキサイド、テトラブチルアンモニウムヘキサフルオロホスフェート、テトラブチルアンモニウムヒドロゲンサルフェート、テトラブチルアンモニウムニトレート、テトラブチルアンモニウムテトラヒドロボレート、テトラブチルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムシアノトリヒドロボレート、テトラブチルアンモニウムジフルオロトリフェニルスタンネート、テトラブチルアンモニウムフルオライドトリヒドレート、テトラブチルアンモニウムテトラチオフェネート(IV)、テトラブチルアンモニウムフルオライドヒドレイト、テトラ−n−ブチルアンモニウムジヒドロゲントリフルオライド、テトラ−n−ブチルアンモニウムトリフルオロメタンスルホネート、トリブチルアンモニウムビス(2,3−ジメルカプト−2−ブテンジニトリレート−S,S’)ニコレート、テトラ−n−ヘプチルアンモニウムブロマイド、テトラ−n−ヘプチルアンモニウムクロライド、テトラ−n−ヘプチルアンモニウムアイオダイド、テトラ−n−ヘキシルアンモニウムベンゾエート、テトラ−n−ヘキシルアンモニウムブロマイド、テトラ−n−ヘキシルアンモニウムクロライド、テトラ−n−ヘキシルアンモニウムアイオダイド、テトラ−n−ヘキシルアンモニウムパークロレート、テトラオクチルアンモニウムブロマイド、テトラオクタデシルアンモニウムブロマイド等が挙げられる。
4級ホスホニウム塩類としては、例えば、ベンジルトリフェニルホスホニウムクロライド、テトラフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムアイオダイド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、テトラブチルホスホニウムテトラフルオロボレート、テトラブチルホスホニウムヘキサフルオロホスフェート、テトラブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムベンゾトリアゾレート、テトラブチルホスホニウムビス(1,2−ベンゼンジチオレート)ニコレート(III)、テトラブチルホスホニウムビス(4−メチル−1,2−ベンゼンジチオレート)ニコレート(III)、テトラブチルホスホニウムビス(4,5−メルカプト−1,3−ジチオール−2−チオネート−S4、S5)ニコレート(III)等が挙げられる。
アルカリ金属もしくはアルカリ土類金属の水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物類;
水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等のアルカリ土類金属水酸化物類;
が挙げられる。
有機錫化合物類としては、例えば、ジブチル錫ジクロライド、ジブチル錫オキサイド、ジブチル錫ジブロマイド、ジブチル錫ジマレエート、ジブチル錫ジラウレート(DBTDL)、ジブチル錫ジアセテート、ジブチル錫スルファイド、トリブチル錫スルファイド、トリブチル錫オキサイド、トリブチル錫アセテート、トリエチル錫エトキサイド、トリブチル錫エトキサイド、ジオクチル錫オキサイド、トリブチル錫クロライド、トリブチル錫トリクロロアセテート、2−エチルヘキサン酸錫等が挙げられる。
有機ジルコニウム化合物類としては、例えば、酢酸ジルコニウム、安息香酸ジルコニウム、ナフテン酸ジルコニウム等が挙げられる。
有機チタン化合物類としては、例えば、ジブチルチタニウムジクロライド、テトラブチルチタネート、テトラブトキシチタネート、テトラエチルチタネート、テトライソプロピルチタネート、ブトキシチタニウムトリクロライド等が挙げられる。
有機鉛化合物類としては、例えば、酢酸鉛、(Z)−オクタデカ−9−エン酸鉛、2−エチルヘキサン酸鉛、安息香酸鉛、ナフテン酸鉛などが挙げられる。
有機鉄化合物類としては、例えば、2−エチルヘキサン酸鉄、鉄アセチルアセトネートなどが挙げられる。
有機コバルト化合物類としては、例えば、酢酸コバルト、安息香酸コバルト、2−エチルヘキサン酸コバルト等が挙げられる。
有機亜鉛化合物類としては、例えば、酢酸亜鉛、シュウ酸亜鉛、ナフテン酸亜鉛、2−エチルヘキサン酸亜鉛等が挙げられる。
金属ハロゲン化物類としては、例えば、塩化第一錫、臭化第一錫、ヨウ化第一錫等が挙げられる。
トシル酸類としては、例えば、p−トルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸、エチルベンゼンスルホン酸、クロロベンゼンスルホン酸等が挙げられ、これらのアルカリ金属塩、アンモニウム塩、アミン塩、及び水和物も含まれる。
さらには、三フッ化ホウ素、酢酸マンガン、酸化ゲルマニウム、三酸化アンチモン、三塩化アルミニウム、塩化亜鉛、塩化チタン等のルイス酸類が挙げられる。これらの触媒は一種のみを用いても、又は二種以上を併用しても良い。
触媒の使用量としては、ラクトン類100重量部に対して0.0001〜20重量部用いることが好ましく、0.0001〜10重量部の範囲がより好ましい。20重量部を超える量を用いると、生成物が着色したり、失活していない触媒が接着物性に悪影響を与えるなどの恐れがある。
<<エチレン性不飽和単量体>>
本発明に用いられるラジカル重合可能なエチレン性不飽和単量体について説明する。
<架橋性基の説明>
本発明に用いられるラジカル重合可能なエチレン性不飽和単量体は、アルコキシシリル基含有エチレン性不飽和単量体(b)、N−メチロール基含有エチレン性不飽和単量体(c)、および1分子中に2つ以上のエチレン性不飽和基を持つ単量体(d)からなる群より選ばれる少なくとも1種類の単量体を使用した場合、これらの自己架橋型反応性官能基が、粒子内部架橋を形成させることで、電解液中でのバインダー樹脂の膨潤・溶解を抑制し、耐電解液性を向上させることができるため好ましい。
アルコキシシリル基含有エチレン性不飽和単量体(b)、N−メチロール基含有エチレン性不飽和単量体(c)、及び1分子中に2つ以上のエチレン性不飽和基を持つ単量体(d)からなる群より選ばれる少なくとも1種類の単量体は、乳化重合に使用するエチレン性不飽和単量体全体の合計100重量%中に0.1〜5重量%使用することが好ましい。より好ましくは0.5〜3重量%である。0.1重量%未満であると粒子の架橋が十分でなくなり、耐電解液性が低下する場合がある。又、5重量%を超えると、乳化重合する際の重合安定性が低下したり、重合後の保存安定性が低下する場合があり、バインダーとしての密着性や充放電サイクル特性が低下する場合もある。
単量体(b)、単量体(c)及び単量体(d)中のアルコキシシリル基、N−メチロール基、及びエチレン性不飽和基は、主に乳化重合をおこなう際にそれぞれが自己縮合、又は重合して、生成する樹脂粒子中に架橋構造を導入できるが、その一部が、乳化重合を終えた後にも粒子内部や表面に残存していても良い。残存したアルコキシシリル基、N−メチロール基、及びエチレン性不飽和基は、バインダー組成物の樹脂粒子の粒子間架橋に寄与する。特にアルコキシシリル基やN−メチロール基は集電体への密着性向上に寄与する効果があるため好ましい。
アルコキシシリル基含有エチレン性不飽和単量体(b)としては、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリブトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシメチルトリメトキシシラン、γ−アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシラン等が挙げられる。
N−メチロール基含有エチレン性不飽和単量体(c)としては、例えば、N−メチロール(メタ)アクリルアミド、N,N−ジ(メチロール)アクリルアミド、N−メチロール−N−メトキシメチル(メタ)アクリルアミド等のアルキロール(メタ)アクリルアミド類等が挙げられる。
1分子中に2つ以上のエチレン性不飽和基を有する単量体(d)としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸1−メチルアリル、(メタ)アクリル酸2−メチルアリル、(メタ)アクリル酸1−ブテニル、(メタ)アクリル酸2−ブテニル、(メタ)アクリル酸3−ブテニル、(メタ)アクリル酸1,3−メチル−3−ブテニル、(メタ)アクリル酸2−クロルアリル、(メタ)アクリル酸3−クロルアリル、(メタ)アクリル酸o−アリルフェニル、(メタ)アクリル酸2−(アリルオキシ)エチル、(メタ)アクリル酸アリルラクチル、(メタ)アクリル酸シトロネリル、(メタ)アクリル酸ゲラニル、(メタ)アクリル酸ロジニル、(メタ)アクリル酸シンナミル、ジアリルマレエート、ジアリルイタコン酸、(メタ)アクリル酸ビニル、クロトン酸ビニル、オレイン酸ビニル,リノレン酸ビニル、(メタ)アクリル酸2−(2’−ビニロキシエトキシ)エチル等の等価ではない複数のエチレン性不飽和基を有する不飽和カルボン酸エステル類;
ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、ジアクリル酸1,1,1−トリスヒドロキシメチルエタン、トリアクリル酸1,1,1−トリスヒドロキシメチルエタン、1,1,1−トリスヒドロキシメチルプロパントリアクリル酸等の多官能(メタ)アクリル酸エステル類;
ジビニルベンゼン、アジピン酸ジビニル等のジビニル類;
イソフタル酸ジアリル、フタル酸ジアリル等のジアリル類が挙げられる。
ラジカル重合可能なエチレン性不飽和単量体は、カルボキシル基含有エチレン性不飽和単量体(e)、スルホン酸基含有エチレン性不飽和単量体(f)、リン酸基含有エチレン性不飽和単量体(g)、エポキシ基含有エチレン性不飽和単量体(h)、アミド基含有エチレン性不飽和単量体(i)、及びアミノ基含有エチレン性不飽和単量体(j)からなる群より選ばれる少なくとも1種の単量体を含むことで、集電体の密着性などの物性を向上させることができる。単量体(e)〜(j)は、粒子合成後でもその官能基が粒子内部や表面に残存しやすく、少量でも集電体への密着性効果が大きい。また、その一部が架橋反応に使用されてもよく、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。これらの単量体の中でも、重合安定性や密着性のバランスからカルボキシル基含有エチレン性不飽和単量体(e)、スルホン酸基含有エチレン性不飽和単量体(f)、アミド基含有エチレン性不飽和単量体(i)、アミノ基含有エチレン性不飽和単量体(j)が特に好ましい。これらの単量体(e)〜(j)はエチレン性不飽和単量体全体の合計100重量%中に0.1〜50重量%含まれることが好ましい。より好ましくは0.3重量%〜30重量%である。単量体(e)〜(j)が50重量%より多いと極性成分が多すぎるため、重合中に重合溶液が増粘し重合安定性が低下したり、水溶性成分が生成することで電池の充放電サイクル特性が低下したりすることがある。0.1重量%より少ないと密着性や物性の向上効果が小さい。
<カルボキシル基含有エチレン性不飽和単量体(e)>
カルボキシル基含有エチレン性不飽和単量体(e)としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、又は、これらのアルキルもしくはアルケニルモノエステル、フタル酸β−(メタ)アクリロキシエチルモノエステル、イソフタル酸β−(メタ)アクリロキシエチルモノエステル、テレフタル酸β−(メタ)アクリロキシエチルモノエステル、コハク酸β−(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、けい皮酸等が挙げられる。
<スルホン酸基含有エチレン性不飽和単量体(f)>
スルホン酸基含有エチレン性不飽和単量体(f)としては、例えば、ビニルスルホン酸、スチレンスルホン酸、ターシャリーブチルアクリルアミドスルホン酸、アリルスルホン酸、メタアリルスルホン酸、(メタ)アクリル酸ブチル-4-スルホン酸、(メタ)アクリロオキシベンゼンスルホン酸等が挙げられる。
<リン酸基含有エチレン性不飽和単量体(g)>
リン酸基含有エチレン性不飽和単量体(g)としては、例えば、ジフェニル(2−アクリロイルオキシエチル)ホスフェート、ジフェニル(2−メタクリロイルオキシエチル)ホスフェート、フェニル(2−アクリロイルオキシエチル)ホスフェート、アシッド・ホスホオキシエチル(メタ)アクリレート、アシッド・ホスホオキシプロピル(メタ)アクリレート、(メタ)アクロイル・オキシエチルアシッドホスフェート・モノエタノールアミン塩、3−クロロ−2−アシッド・ホスホオキシプロピル(メタ)アクリレート、アシッド・ホスホオキシポリオキシエチレングリコールモノ(メタ)アクリレート、アシッド・ホスホオキシポリオキシプロピレングリコール(メタ)アクリレート、アリルアルコールアシッドホスフェート等が挙げられる。
<エポキシ基含有エチレン性不飽和単量体(h)>
エポキシ基含有エチレン性不飽和単量体(h)としては、例えば、グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、グリシジルアリルエーテル、2,3−エポキシ−2−メチルプロピル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、4−ビニル−1−シクロヘキセン−1,2−エポキシド、グリシジルシンナメート、1,3−ブタジエンモノエポキサイド、セロキサイド2000(ダイセル化学工業株式会社製)などのエポキシ基含有不飽和単量体等が挙げられる。
<アミド基含有エチレン性不飽和単量体(i)>
本発明におけるアミド基含有エチレン性不飽和単量体(i)にはN−メチロール基含有アクリルアミドは含まない。N−メチロール基含有アクリルアミドを除く、アミド基含有エチレン性不飽和単量体(i)としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有エチレン性不飽和単量体;
N−メトキシメチル−(メタ)アクリルアミド、N−エトキシメチル−(メタ)アクリルアミド、N−プロポキシメチル−(メタ)アクリルアミド、N−ブトキシメチル−(メタ)アクリルアミド、N−ペントキシメチル−(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド類;
N,N−ジ(メトキシメチル)アクリルアミド、N−エトキシメチル−N−メトキシメチルメタアクリルアミド、N,N−ジ(エトキシメチル)アクリルアミド、N−エトキシメチル−N−プロポキシメチルメタアクリルアミド、N,N−ジ(プロポキシメチル)アクリルアミド、N−ブトキシメチル−N−(プロポキシメチル)メタアクリルアミド、N,N−ジ(ブトキシメチル)アクリルアミド、N−ブトキシメチル−N−(メトキシメチル)メタアクリルアミド、N,N−ジ(ペントキシメチル)アクリルアミド、N−メトキシメチル−N−(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド類;
N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド類;
ダイアセトン(メタ)アクリルアミドなどのカルボニル基含有(メタ)アクリルアミド類等が挙げられる。
<アミノ基含有エチレン性不飽和単量体(j)>
アミノ基含有エチレン性不飽和単量体(j)としては、例えば、
ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、メチルエチルアミノエチル(メタ)アクリレート、アクリロイルモルホリン、ジメチルアミノプロピル(メタ)アクリレート、ジメチルアミノスチレン、ジエチルアミノスチレン等のジアルキルアミノ基含有エチレン性不飽和単量体;
N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド類;
上記単量体と酸を反応させることにより生成する塩等が挙げられる。
ジアルキルアミノ(メタ)アクリルアミド類はアミノ基とアミド基の両方の効果が期待できるが、主にアミノ基の効果を期待して利用するためにアミノ基含有エチレン性不飽和単量体(j)に含める。
<その他のエチレン性不飽和単量体>
単量体(b)〜(j)には属さない、エチレン性不飽和単量体としては、特に限定はされないが、
例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ノナデシル(メタ)アクリレート、イコシル(メタ)アクリレート、ヘンイコシル(メタ)アクリレート、ドコシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレート等のアルキル(メタ)アクリレート;
ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチルアクリレート、アセトアセトキシプロピルアクリレート、アセトアセトキシブチルアクリレート、アセトアセトキシエチルメタクリレート、アセトアセトキシプロピルメタクリレート、アセトアセトキシブチルメタクリレート等のカルボニル基含有不飽和単量体;
パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2−パーフルオロブチルエチル(メタ)アクリレート、2−パーフルオロヘキシルエチル(メタ)アクリレート、2−パーフルオロオクチルエチル(メタ)アクリレート、2−パーフルオロイソノニルエチル(メタ)アクリレート、2−パーフルオロノニルエチル(メタ)アクリレート、2−パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、パーフルオロオクチルウンデシル(メタ)アクリレート等の炭素数1〜20のパーフルオロアルキル基を有するパーフルオロアルキル(メタ)アクリレート;
パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレン等のパーフルオロアルキルアルキレン類等のパーフルオロアルキル基含有エチレン性不飽和単量体;
メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n−ブトキシポリエチレングリコール(メタ)アクリレート、n−ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n−ブトキシポリプロピレングリコール(メタ)アクリレート、n−ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレート等のポリエーテル鎖を有するエチレン性不飽和単量体;
ラクトン変性(メタ)アクリレート等のポリエステル鎖を有するエチレン性不飽和単量体;
酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等の脂肪酸ビニル系単量体;
ブチルビニルエーテル、エチルビニルエーテル等のビニルエーテル系化合物;
1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン等のα−オレフィン系単量体;
酢酸アリル、アリルベンゼン、シアン化アリル等のアリル単量体;
シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトン、スチレン、α−メチルスチレン、2−メチルスチレン、クロロスチレン等のビニル単量体;
アセチレン、エチニルベンゼン、エチニルトルエン等のエチニル単量体が挙げられる。これらは1種類のみを使用してもよく、又は2種類以上を混合して使用することができる。
上記の単量体(b)〜(j)には属さない、エチレン性不飽和単量体は、正極材料用として用いられる場合は、酸化雰囲気下に晒されることから耐酸化性が低い芳香族骨格、エーテル結合を含まない単量体を用いることが好ましい。
本発明の非水二次電池電極用バインダー樹脂組成物を構成する樹脂微粒子は、従来既知の乳化重合方法により合成される。
本発明において乳化重合の際に用いられる乳化剤としては、エチレン性不飽和基を有する反応性乳化剤やエチレン性不飽和基を有しない非反応性乳化剤など、従来公知のものを任意に使用することができる。
エチレン性不飽和基を有する反応性乳化剤は更に大別して、アニオン系、非イオン系のノニオン系のものが例示できる。特にエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤を用いると、共重合体の分散粒子径が微細となるとともに粒度分布が狭くなるため、非水系二次電池電極用バインダーとして使用した際に耐電解液性を向上することができ好ましい。このエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤は、1種を単独で使用しても、複数種を混合して用いても良い。
エチレン性不飽和基を有するアニオン系反応性乳化剤の一例として、以下にその具体例を例示するが、本願発明において使用可能とする乳化剤は、以下に記載するもののみを限定するものではない。前記乳化剤としては、アルキルエーテル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンKH−05、KH−10、KH−20、株式会社ADEKA製アデカリアソープSR−10N、SR−20N、花王株式会社製ラテムルPD−104など);
スルフォコハク酸エステル系(市販品としては、例えば、花王株式会社製ラテムルS−120、S−120A、S−180P、S−180A、三洋化成株式会社製エレミノールJS−2など);
アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンH−2855A、H−3855B、H−3855C、H−3856、HS−05、HS−10、HS−20、HS−30、株式会社ADEKA製アデカリアソープSDX−222、SDX−223、SDX−232、SDX−233、SDX−259、SE−10N、SE−20N、など);
(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製アントックスMS−60、MS−2N、三洋化成工業株式会社製エレミノールRS−30など);
リン酸エステル系(市販品としては、例えば、第一工業製薬株式会社製H−3330PL、株式会社ADEKA製アデカリアソープPP−70など)が挙げられる。
本発明で用いることのできるノニオン系反応性乳化剤としては、例えばアルキルエーテル系(市販品としては、例えば、株式会社ADEKA製アデカリアソープER−10、ER−20、ER−30、ER−40、花王株式会社製ラテムルPD−420、PD−430、PD−450など);
アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンRN−10、RN−20、RN−30、RN−50、株式会社ADEKA製アデカリアソープNE−10、NE−20、NE−30、NE−40など);
(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製RMA−564、RMA−568、RMA−1114など)が挙げられる。
本発明の樹脂微粒子を乳化重合により得るに際しては、前記したエチレン性不飽和基を有する反応性乳化剤とともに、必要に応じエチレン性不飽和基を有しない非反応性乳化剤を併用することができる。非反応性乳化剤は、非反応性アニオン系乳化剤と非反応性カチオン系乳化剤と非反応性ノニオン系乳化剤とに大別することができる。
非反応性ノニオン系乳化剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル類;
ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル類;
ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエートなどのソルビタン高級脂肪酸エステル類;
ポリオキシエチレンソルビタンモノラウレートなどのポリオキシエチレンソルビタン高級脂肪酸エステル類;
ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレートなどのポリオキシエチレン高級脂肪酸エステル類;
オレイン酸モノグリセライド、ステアリン酸モノグリセライドなどのグリセリン高級脂肪酸エステル類;
ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー、ポリオキシエチレンジスチレン化フェニルエーテルなどを例示することができる。
又、非反応性アニオン系乳化剤の例としては、オレイン酸ナトリウムなどの高級脂肪酸塩類;
ドデシルベンゼンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩類;
ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩類;
ポリエキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸エステル塩類;
ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;
モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウムなどのアルキルスルホコハク酸エステル塩及びその誘導体類;
ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩類などを例示することができる。
非反応性カチオン系乳化剤の例としては、
例えばR−N(CH3X〔R=ステアリル・セチル・ラウリル・オレイル・ドデシル・ヤシ・大豆・牛脂等/X=ハロゲン・アミン等〕で表されるアルキルトリメチルアミン系4級アンモニウム塩類;
テトラメチルアミン系塩、テトラブチルアミン塩等の4級アンモニウム塩類。(RNH3)(CH3COO)〔R=ステアリル・セチル・ラウリル・オレイル・ドデシル・ヤシ・大豆・牛脂等〕で表される酢酸塩類;
ラウリルジメチルベンジルアンモニウム塩(ハロゲン・アミン塩等)、ステアリルジメチルベンジルアンモニウム塩(ハロゲン・アミン塩等)、ドデシルジメチルベンジルアンモニウム塩(ハロゲン・アミン塩等)等のベンジルアミン系4級アンモニウム塩類;
R(CH3)N(C24O)mH(C24O)n・X〔R=ステアリル・セチル・ラウリル・オレイル・ドデシル・ヤシ・大豆・牛脂等/X=ハロゲン・アミン等、mおよびnは、0以上の整数〕で表されるポリオキシアルキレン系4級アンモニウム塩類を使用することができる。
本発明において用いられる乳化剤の使用量は、必ずしも限定されるものではなく、樹脂微粒子が最終的に非水系二次電池電極用バインダーとして使用される際に求められる物性に従って適宜選択できる。例えば、エチレン性不飽和単量体の合計100重量部に対して、乳化剤は通常0.1〜30重量部であることが好ましく、0.3〜20重量部であることがより好ましく、0.5〜10重量部の範囲内であることが更に好ましい。
本発明の樹脂微粒子の乳化重合に際しては、水溶性保護コロイドを併用することもできる。水溶性保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコールなどのポリビニルアルコール類;
ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩などのセルロース誘導体;
グアガムなどの天然多糖類などが挙げられ、これらは、単独でも複数種併用の態様でも利用できる。水溶性保護コロイドの使用量としては、エチレン性不飽和単量体の合計100重量部当り0.1〜5重量部であり、更に好ましくは0.5〜2重量部である。
本発明の樹脂微粒子の乳化重合に際して用いられる水性媒体としては、水が挙げられ、親水性の有機溶剤も本発明の目的を損なわない範囲で使用することができる。
本発明の樹脂微粒子を得るに際して用いられる重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。油溶性重合開始剤としては特に限定されず、例えば、ベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート、tert−ブチルハイドロパーオキサイド、tert−ブチルパーオキシ(2−エチルヘキサノエート)、tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、ジ−tert−ブチルパーオキサイドなどの有機過酸化物;
2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、1,1’−アゾビス−シクロヘキサン−1−カルボニトリルなどのアゾビス化合物を挙げることができる。これらは1種類又は2種類以上を混合して使用することができる。これら重合開始剤は、エチレン性不飽和単量体100重量部に対して、0.1〜10.0重量部の量を用いるのが好ましい。
本発明においては水溶性重合開始剤を使用することが好ましく、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。又、乳化重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、乳化重合速度を促進したり、低温において乳化重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩等の還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウムなどの還元性無機化合物、塩化第一鉄、ロンガリット、二酸化チオ尿素などを例示できる。これら還元剤は、全エチレン性不飽和単量体100重量部に対して、0.05〜5.0重量部の量を用いるのが好ましい。なお、前記した重合開始剤によらずとも、光化学反応や、放射線照射等によっても重合を行うことができる。重合温度は各重合開始剤の重合開始温度以上とする。例えば、過酸化物系重合開始剤では、通常70℃程度とすればよい。重合時間は特に制限されないが、通常2〜24時間である。
更に必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウムなどが、又、連鎖移動剤としてのオクチルメルカプタン、チオグリコール酸2−エチルヘキシル、チオグリコール酸オクチル、ステアリルメルカプタン、ラウリルメルカプタン、t−ドデシルメルカプタンなどのメルカプタン類が適量使用できる。
樹脂微粒子の重合にカルボキシル基含有エチレン性不飽和単量体等の酸性官能基を有する単量体を使用した場合、重合前や重合後に塩基性化合物で中和することができる。中和する際、アンモニアもしくはトリメチルアミン、トリエチルアミン、ブチルアミンなどのアルキルアミン類;
2−ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、アミノメチルプロパノールなどのアルコールアミン類;
モルホリンなどの塩基で中和することができる。ただし、乾燥性に効果が高いのは揮発性の高い塩基であり、好ましい塩基はアミノメチルプロパノール、アンモニアである。
樹脂微粒子の平均粒子径は、電極活物質の結着性や粒子の安定性の点から、10〜500nmであることが好ましく、30〜250nmであることがより好ましい。又、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5重量%以下であることが好ましい。なお、本発明における平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。樹脂微粒子分散液は固形分に応じて200〜1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装製 マイクロトラック]のセルに注入し、サンプルに応じた溶剤(本発明では水)及び樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを本発明の平均粒子径とする。
本発明の非水二次電池電極用バインダー樹脂組成物には、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
成膜助剤は、塗膜の形成を助け、塗膜が形成された後においては比較的速やかに蒸発揮散して塗膜の強度を向上させる一時的な可塑化機能を担うものであり、沸点が110〜200℃の溶媒が好適に用いられる。具体的には、プロピレングリコールモノブチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノプロピルエーテル、カルビトール、ブチルカルビトール、ジブチルカルビトール、ベンジルアルコールなどが挙げられる。中でも、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテルは少量で高い成膜助剤効果を有するため特に好ましい。これら成膜助剤は、二次電池電極用組成物中に0.5〜15重量%含まれることが好ましい。
粘性調整剤は、樹脂微粒子100重量部に対して1〜100重量部用いてもよい。粘性調整剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(及びその塩)、酸化スターチ、リン酸化スターチ、カゼインなどが挙げられる。
本発明の非水二次電池電極用バインダー樹脂組成物は、二次電池の正極、及び負極に使用することができる。その他、エネルギーデバイス、即ち、キャパシタ、太陽電池等にも使用することができる。
本発明の非水二次電池電極用バインダー樹脂組成物は、電極活物質と必要に応じて架橋剤として化合物(a)とを配合することにより、二次電池電極用組成物が得られる。この二次電池電極用組成物を集電体に塗布し、乾燥することにより、非水系二次電池電極を製造することができる。
本発明において、樹脂微粒子は、固形分として、電極活物質100重量部に対して、通常0.1〜20重量部、好ましくは0.5〜10重量部用いられる。樹脂微粒子が0.1重量部未満であると、電極活物質を集電体に結着させる力が不十分であり、電極活物質が脱落し電池の容量が低下する場合がある。一方、樹脂微粒子が20重量部を超えると、電池内の抵抗が増して電池の容量が低下する場合がある。
電極活物質としては、以下のものが挙げられる。
正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性ポリマーを使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。
これら負極活物質は、1種または複数を組み合わせて使用することも出来る。
電極活物質と併用する導電性材料としては、例えば、ニッケル粉末、酸化コバルト、酸化チタン、カーボンなどを挙げることができる。カーボンとしては、アセチレンブラック、ファーネスブラック、黒鉛、炭素繊維、フラーレン類を挙げることができる。導電性材料の使用量は、電極活物質100重量部に対して0.5〜10重量部が好ましい。0.5重量部未満では導電性が低く、二次電池の高いレートで充放電した場合の容量が低下する場合がある。集電体としては、二次電池電極に通常用いられているものであれば特に限定されず、例えば、パンチングメタル、エキスパンドメタル、金網、発泡金属、網状金属繊維焼結体などを挙げることができる。
非水系二次電池電極を形成するには、前記二次電池電極用組成物を、スラリー状にして集電体に塗布、加熱し、乾燥する。二次電池電極用組成物の塗布方法としては、リバースロール法、コンマバー法、グラビヤ法、エアーナイフ法など任意のコーターヘッドを用いることができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できる。
本発明の非水系二次電池は、前記非水二次電池電極用バインダー樹脂組成物を用いて製作された二次電池用電極を具えている。上記のようにして得られた非水系二次電池電極を用いて、非水系二次電池を作製する場合、例えば、電解液にエチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶剤を用い、電解質としてLiPF6などのリチウムイオン化合物を用いるリチウムイオン二次電池として使用するのが好ましい。更に、セパレーター、集電体、端子、絶縁板などの部品を用いて電池が構成される。セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられる。
以下に、実施例により本発明を更に具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における「部」は「重量部」、「%」は「重量%」を表す。
[製造例1]
<一般式(1)の構造単位を有する単量体の製造>
反応槽、攪拌機、温度計、還流冷却器、空気導入管を備えた重合反応装置の反応槽に、下記、水酸基含有の(メタ)アクリル酸エステル類、ラクトン類、触媒及び有機溶剤をそれぞれ下記の比率で仕込んだ。
[反応槽]
4−ヒドロキシブチルアクリレート 45.6部
γ−ブチロラクトン 54.4部
ハイドロキノンモノメチルエーテル(重合禁止剤) 0.02部
p−トルエンスルホン酸一水塩(触媒) 9部
反応槽内の空気を窒素ガスで置換した後、攪拌しながら空気雰囲気下中、80℃まで昇温し、攪拌しながら6時間反応した後、トルエン100部を加えて室温まで冷却し、50部の水を加え2回水洗した。その後、トルエンを80℃で減圧下に留去して一般式(1)の構造単位を有する単量体を得た。
[製造例2〜9]
表1に示す配合組成で、製造例1と同様の方法で合成し、製造例2〜9の一般式(1)の構造単位を有する単量体を得た。
[製造例10]
攪拌器、温度計、滴下ロート、還流器を備えた反応容器に、イオン交換水40部と界面活性剤としてアデカリアソープSR−10(株式会社ADEKA製)0.2部とを仕込み、別途、スチレン17部、2−エチルヘキシルアクリレート22.5部、メチルメタクリレート27部、アクリル酸1部、アクリルアミド2部、プラクセルFM2D(ダイセル化学工業株式会社製)30部、3−メタクリロキシプロピルトリメトキシシラン0.5部、イオン交換水53部及び界面活性剤としてアデカリアソープSR−10(株式会社ADEKA製)1.8部をあらかじめ混合しておいたプレエマルジョンのうちの1%を更に加えた。内温を70℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液10部の10%を添加し重合を開始した。反応系内を70℃で5分間保持した後、内温を70℃に保ちながらプレエマルジョンの残りと過硫酸カリウムの5%水溶液の残りを3時間かけて滴下し、更に2時間攪拌を継続した。固形分測定にて転化率が98%超えたことを確認後、温度を30℃まで冷却した。25%アンモニア水を添加して、pHを8.5とし、更にイオン交換水で固形分を48%に調整して樹脂微粒子水分散体を得た。
[製造例11〜42]
表2、表3に示す配合組成で、製造例10と同様の方法で合成し、製造例11〜42の樹脂微粒子水分散体を得た。
(重合安定性)
製造例10〜42で得られた各樹脂微粒子分散体を100メッシュ濾過布でろ過し、濾過布上に残った残滓の乾燥重量を下記の基準で評価した。
○=樹脂微粒子分散体1Kgあたり0.1g未満
△=樹脂微粒子分散体1Kgあたり0.1g以上〜1.0g未満
×=樹脂微粒子分散体1Kgあたり1.0g以上
<二次電池電極用組成物及び非水系二次電池電極の作成>
[実施例1]
(正極の作製)
正極活物質であるリン酸鉄リチウム(LiFePO)90部、導電性材料としてアセチレンブラック5部、増粘剤としてカルボキシメチルセルロース2部、製造例10で得られた樹脂微粒子水分散体を固形分として3部に、イオン交換水を固形分50%となるように加えた後、混練して二次電池電極用組成物を調整した。この二次電池電極用組成物を集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレスによる圧延処理を行い、厚さ50μmの正極合剤層を有する正極を作製した。
(負極の作製)
負極活物質としてメソフェーズカーボン97部、増粘剤としてカルボキシメチルセルロース1部、製造例10で得られた樹脂微粒子水分散体を固形分として2部に、イオン交換水を固形分50%となるように加えた後、混練して二次電池電極用組成物を調整した。この二次電池電極用組成物を集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレスによる圧延処理を行い、厚さ50μmの負極合剤層を有する負極を作製した。
[実施例2〜28、比較例1〜5]
表4に示す樹脂微粒子分散体を用い、実施例1と同様の方法で調製し、二次電池電極用組成物(正極用及び負極用)及び、正・負極電池電極を得た。
[比較例6]
(正極の作製)
正極活物質であるリン酸鉄リチウム(LiFePO)を90部、導電性材料としてアセチレンブラック5部、KFポリマーW#1100(株式会社クレハ製 ポリフッ化ビニリデン)を固形分として5部に、N−メチル−2−ピロリドンを固形分50%となるように加えた後、混練して二次電池電極用組成物を調整した。この二次電池電極用組成物を集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレスによる圧延処理を行い、厚さ50μmの正極合剤層を有する正極を作製した。
(負極の作製)
負極活物質としてメソフェーズカーボン97部、ポリフッ化ビニリデン(KFポリマーW#1100、株式会社クレハ製)を固形分として3部に、N−メチル−2−ピロリドンを固形分50%となるように加えた後、混練して二次電池電極用組成物を調整した。この二次電池電極用組成物を集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥し、ロールプレスによる圧延処理を行い、厚さ50μmの負極合剤層を有する負極を作製した。
<リチウム二次電池正極評価用セルの組み立て>
実施例1〜28及び比較例1〜6で得られた正極を、直径16mmに打ち抜き作用極とし、金属リチウム箔を対極として、作用極及び対極の間に多孔質ポリプロピレンフィルムからなるセパレーターを挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPF6を1Mの濃度で溶解させた非水電解液)を満たしてコインセルを組み立てた。コインセルの組み立てはアルゴンガス置換したグロ−ブボックス内で行い、セル組み立て後、所定の電池特性評価を行った。
<リチウム二次電池負極評価用セルの組み立て>
実施例1〜28及び比較例1〜6で得られた負極を、直径16mmに打ち抜き作用極とし、金属リチウム箔を対極として、作用極及び対極の間に多孔質ポリプロピレンフィルムからなるセパレーターを挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPF6を1Mの濃度で溶解させた非水電解液)を満たしてコインセルを組み立てた。コインセルの組み立てはアルゴンガス置換したグロ−ブボックス内で行い、セル組み立て後、所定の電池特性評価を行った。
上記の方法で得られたリチウムイオン二次電池電極及びリチウムイオン二次電池電極評価用セルを用いて、結着性、耐電解液性、電池特性を評価した。
(結着性)
電極表面にナイフを用いて、合剤層から集電体に達する深さまでの切込みを2mm間隔で縦横それぞれ6本入れて碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で判定した。評価基準を下記に示す。評価結果を表4に示す。
◎:「剥離なし」
○:「わずかに剥離(実用上問題のないレベル)」
△:「ほとんどの部分で剥離」
×:「完全に剥離」
(耐電解液性)
作成した電極をエチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒に60℃、24時間浸漬し、浸漬前後での膜の膨潤状態、樹脂の溶出状態を下記の通り算出し、比較評価した。
膨潤率 (%)=〔(浸漬後重量)/(浸漬前重量)〕×100
溶出率 (%)=〔1−(浸漬乾燥後重量)/(浸漬前重量)〕×100
膨潤率はその値が100%に近いほど、溶出率は0%に近いほど耐電解液性が高いことを示す。評価結果を表4に示す。
○:「膨潤率が110%未満。全く問題なし。」
△:「膨潤率が110%以上、120%未満。実用上使用可。」
×:「膨潤率が120%以上。実用上問題あり。」
○:「溶出率が1.0%未満。全く問題なし。」
△:「溶出率が1.0%以上、3.0%未満。実用上使用可。」
×:「溶出率が3.0%以上。実用上問題あり。」
(電池特性評価)
上記で作製したリチウム二次電池電極評価用セルの充放電サイクル試験を行った。1回目の放電容量を100%として60℃、100時間後の放電容量を測定し変化率とした(100%に近いほど良好)。評価結果を表2に示す。
◎:「変化率が99%以上。特に優れている。」
○:「変化率が95%以上、99%未満。全く問題なし。」
○△:「変化率が90%以上、95%未満。実用上問題なし。」
△:「変化率が80%以上、90%未満。実用上問題はあるが使用可。」
×:「変化率が80%未満。実用上問題あり、使用不可。」
表4に示すように、製造例10〜37で合成した樹脂微粒子を含む二次電池電極用組成物(実施例1〜28)を用いた場合、耐電解液性、結着性のバランスが取れ、電池特性においても、70℃、100時間後も放電容量の低下が抑制されている。一方、比較例1〜5では、耐電解液性、結着性の低下がみられ電池特性の悪化も起きてしまう。

Claims (6)

  1. エチレン性不飽和単量体を重合してなり、下記一般式(1)で示される構造単位を有する重合体(A)を含む非水二次電池電極用バインダー樹脂組成物。
    一般式(1)


    〔一般式(1)において、Rは炭素数1〜12の二価の炭化水素基、Rは炭素数3〜12の二価の炭化水素基、RはHまたはCH、n=1〜20の整数である。〕
  2. 重合体(A)の製造に用いられるエチレン性不飽和単量体の合計100重量%中、アルコキシシリル基含有エチレン性不飽和単量体(b)、N−メチロール基含有エチレン性不飽和単量体(c)、及び1分子中に2つ以上のエチレン性不飽和基を有する単量体(d)からなる群より選ばれる少なくとも1種類の単量体を当該群から選ばれる単量体の合計で0.1〜5重量%含有することを特徴とする請求項1記載の非水二次電池電極用バインダー樹脂組成物。
  3. 重合体(A)の製造に用いられるエチレン性不飽和単量体の合計100重量%中、カルボキシル基含有エチレン性不飽和単量体(e)、スルホン酸基含有エチレン性不飽和単量体(f)、リン酸基含有エチレン性不飽和単量体(g)、エポキシ基含有エチレン性不飽和単量体(h)、アミド基含有エチレン性不飽和単量体(i)、アミノ基含有エチレン性不飽和単量体(j)からなる群より選ばれる少なくとも1種類の単量体を当該群から選ばれる単量体の合計で0.1〜50重量%含むことを特徴とする請求項1または2記載の非水二次電池電極用バインダー樹脂組成物。
  4. 請求項1〜3いずれか記載の非水二次電池電極用バインダー樹脂組成物を用いてなる非水系二次電池電極。
  5. 請求項4記載の非水系二次電池電極を用いてなる非水系二次電池。
  6. リチウムイオン二次電池であることを特徴とする請求項5記載の非水系二次電池。
JP2012066840A 2011-03-28 2012-03-23 非水二次電池電極用バインダー樹脂組成物 Active JP5895644B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066840A JP5895644B2 (ja) 2011-03-28 2012-03-23 非水二次電池電極用バインダー樹脂組成物

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011069467 2011-03-28
JP2011069467 2011-03-28
JP2012066840A JP5895644B2 (ja) 2011-03-28 2012-03-23 非水二次電池電極用バインダー樹脂組成物

Publications (2)

Publication Number Publication Date
JP2012216518A JP2012216518A (ja) 2012-11-08
JP5895644B2 true JP5895644B2 (ja) 2016-03-30

Family

ID=47269089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066840A Active JP5895644B2 (ja) 2011-03-28 2012-03-23 非水二次電池電極用バインダー樹脂組成物

Country Status (1)

Country Link
JP (1) JP5895644B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036260B2 (ja) * 2012-12-19 2016-11-30 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池電極、及び二次電池
WO2014188724A1 (ja) * 2013-05-23 2014-11-27 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用負極、および、二次電池
WO2016199653A1 (ja) * 2015-06-12 2016-12-15 昭和電工株式会社 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池
WO2017038628A1 (ja) * 2015-08-28 2017-03-09 日立マクセル株式会社 非水二次電池およびその製造方法
JP6709134B2 (ja) * 2016-09-16 2020-06-10 富士フイルム株式会社 ポリマー、固体電解質、固体電解質組成物、無機固体電解質組成物、固体電解質含有シート、二次電池、全固体二次電池、固体電解質含有シートの製造方法、無機固体電解質含有シートの製造方法、二次電池の製造方法および全固体二次電池の製造方法
CN109957361B (zh) * 2017-12-22 2021-02-09 宁德时代新能源科技股份有限公司 一种水性粘结剂及二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123254A (ja) * 2005-09-29 2007-05-17 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれを用いた電池の製造方法

Also Published As

Publication number Publication date
JP2012216518A (ja) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5476980B2 (ja) 非水系二次電池電極用バインダー組成物
JP5449327B2 (ja) 非水系二次電池電極用バインダー組成物
JP5895644B2 (ja) 非水二次電池電極用バインダー樹脂組成物
JP2011134649A (ja) 非水系二次電池電極用樹脂微粒子
JP6365011B2 (ja) 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
CN111033833B (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
US11038158B2 (en) Method for manufacturing a binder composition for lithium-ion secondary battery electrode
JPWO2017110901A1 (ja) 電池電極用バインダー、電極、及び電池
JP2014160638A (ja) 電池電極用バインダー、およびそれを用いた電極ならびに電池
JP5857420B2 (ja) 非水系二次電池電極用バインダー組成物
JP2013168323A (ja) 非水二次電池電極用バインダー樹脂組成物
WO2014129313A1 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、および蓄電デバイス
KR20180041091A (ko) 전고체 전지용 바인더 조성물
JP5626063B2 (ja) 非水二次電池電極用バインダー樹脂組成物
KR20180050603A (ko) 전고체 전지용 바인더 조성물
JP6874682B2 (ja) 非水電解質二次電池用の正極材料
KR20190022523A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
US20240105948A1 (en) Secondary battery electrode binder, secondary battery electrode mixture layer composition, secondary battery electrode and secondary battery
JP5703891B2 (ja) 非水二次電池電極用バインダー樹脂組成物
JP6244783B2 (ja) キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
JP2012204245A (ja) 非水二次電池電極用バインダー樹脂組成物
JP2017168213A (ja) 蓄電デバイス用樹脂微粒子、蓄電デバイス電極、蓄電デバイス。
JP6003517B2 (ja) 非水二次電池電極用バインダー樹脂組成物
JP5962108B2 (ja) 非水二次電池電極用バインダー樹脂組成物
JP2014216432A (ja) キャパシタ用電極形成用組成物、キャパシタ用電極、及びキャパシタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R151 Written notification of patent or utility model registration

Ref document number: 5895644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250