JP5860463B2 - 樹脂組成物及びその製造方法 - Google Patents

樹脂組成物及びその製造方法 Download PDF

Info

Publication number
JP5860463B2
JP5860463B2 JP2013523053A JP2013523053A JP5860463B2 JP 5860463 B2 JP5860463 B2 JP 5860463B2 JP 2013523053 A JP2013523053 A JP 2013523053A JP 2013523053 A JP2013523053 A JP 2013523053A JP 5860463 B2 JP5860463 B2 JP 5860463B2
Authority
JP
Japan
Prior art keywords
component
resin composition
molecular weight
total amount
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013523053A
Other languages
English (en)
Other versions
JPWO2013005806A1 (ja
Inventor
俊一朗 井
俊一朗 井
浩一郎 吉田
浩一郎 吉田
三好 貴章
貴章 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2013523053A priority Critical patent/JP5860463B2/ja
Publication of JPWO2013005806A1 publication Critical patent/JPWO2013005806A1/ja
Application granted granted Critical
Publication of JP5860463B2 publication Critical patent/JP5860463B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2453/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2471/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2471/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、樹脂組成物及びその製造方法に関するものである。
ポリフェニレンエーテル樹脂は、耐熱性、機械的性質、難燃性及び電気的性質に優れた樹脂として広く知られている。このような特性を有するポリフェニレンエーテル樹脂は、自動車部品、電気・電子部品、事務機器、工業製品、建材等の用途に広範囲に用いられており、近年、密閉型二次電池電槽を形成する樹脂材料として、注目されている。密閉型二次電池電槽は、ニッケル−水素電池等として知られており、自動車等の車両を筆頭に、各種電気製品、産業機器の動力源として幅広く使われ、その需要が大きくなってきている。この需要とともに、電池本体の性能が向上し、電池電槽自体の小型軽量化と電気容量の増加が進んでいる。
従来、二次電池電槽を形成する樹脂(二次電池電槽用樹脂)としては、例えば、ABS樹脂や変性ポリフェニレンエーテル樹脂が成形性及び耐熱性の観点から用いられている。しかし、これらの樹脂は耐水素透過性に劣るため、電池性能の低下を引き起こすという問題がある。また、ABS樹脂や変性ポリフェニレンエーテル樹脂は、耐薬品性に劣る。そのため、これらの樹脂は、自動車オイル等の薬品に対する耐性が十分でないため、自動車用途の二次電池電槽等として長期使用できないという問題がある。
これらの問題を解消しようとするものとして、例えば、特許文献1には、結晶性ポリオレフィン樹脂とポリフェニレンエーテル系樹脂とを含む樹脂組成物からなる密閉型二次電池電槽が開示されている。特許文献2には、ポリフェニレンエーテル樹脂とポリオレフィン樹脂とからなるポリマーアロイを用いた密閉型二次電池電槽が開示されている。特許文献3には、ポリフェニレンエーテル樹脂が結晶性ポリプロピレン樹脂中に特定の形態で分散した樹脂組成物が開示されている。特許文献4〜6には、ポリフェニレンエーテル系樹脂と特定の構造の結晶性ポリプロピレンとからなる樹脂組成物が密閉型二次電池用電槽として利用できることが開示されている。特許文献7には、フローマークを改良しようとした組成物が開示されている。特許文献8には、成形流動性を改良しようとした組成物が開示されている。
特開平08−195188号公報 特開平09−120801号公報 国際公開第97/001600号公報 特開2000−058007号公報 特開2002−060562号公報 特開2002−063873号公報 特開平09−241451号公報 特開平11−140245号公報
二次電池電槽は、例えば、自動車のエンジンルームのような高温環境下といった過酷な環境で使用されることも増えてきた。そのため、二次電池電槽の材料等として使用される樹脂組成物には、例えば、高温環境下で長期に使用された場合の機械的強度の維持や、耐熱クリープ性等について、高いレベルの特性等が求められている。一方、二次電池電槽は、大型化・薄肉化等といった形状面での要求も増えてきた。
このような二次電池電槽を良好に製造するためには、原料である樹脂組成物の成形流動性が優れていること等が必要となる。しかし、一般に、機械的強度と成形流動性は相反する特性であり、これらを高いレベルで両立させることは困難である。また、二次電池電槽の量産時に成形条件が変動すると金型充填率がバラつくことがあり、量産安定性の更なる改良も求められている。
しかし、特許文献7に開示されている組成物は、分子量の高いポリプロピレンを用いることで剛性やフローマークを改良しているが、成形流動性の改良が十分ではない。特許文献8に記載の組成物は、メルトフローレート(MFR)が異なるポリプロピレンを用いることでMFRを向上させているが、成形流動性及びフローマークの改良が十分ではない。さらに、近年は大型部品等を成形する際、跡が目立たないようにするため、ピンゲートを使用する場合が多くなっており、フローマークに関してより厳しい条件下での改良が求められている。このように、従来の樹脂組成物に関して、上記した物性等をバランス良く両立させることについては、未だ改良の余地が十分にある。
本発明の第一の課題は、成形流動性及び耐熱クリープ性を維持しつつ、熱エージング性に優れ、更には成形品量産時の成形安定性に優れる樹脂組成物を提供することを目的とする。また、本発明の第二の課題は、剛性及び耐衝撃性を維持しつつ、成形流動性がより一層優れ、フローマークが改良された樹脂組成物を提供することを目的とする。
本発明者らは、前記課題を解決するため鋭意検討した結果、少なくとも、特定のプロピレン樹脂、ポリフェニレンエーテル及び混和剤を、特定の割合で含む樹脂組成物とすることで、上記課題を解決できることを見出し、本発明を完成させるに至った。
すなわち、本発明は、以下の通りである。
〔1〕
(a)ポリプロピレン樹脂及び(b)ポリフェニレンエーテル樹脂の総量100質量部と、
(c)混和剤1〜20質量部と、を含む樹脂組成物であり、
前記(a)成分において、
ゲルパーミエーションクロマトグラフィー(GPC、移動相:o−ジクロロベンゼン、標準物質:ポリスチレン)から求められる、分子量30,000以下の成分の割合が、前記(a)成分全体の3.0〜5.1%であり、かつ、分子量10,000,000以上の成分の割合が、前記(a)成分全体の1.0〜1.6%である、樹脂組成物。
〔2〕
前記(a)成分と前記(b)成分の総量100質量部に対し、(d)フィラー5〜50質量部を、更に含む、〔1〕に記載の樹脂組成物。
〔3〕
前記(a)成分の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))が、8〜11である、〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕
前記(c)成分が、水素添加ブロック共重合体、ポリスチレン鎖−ポリオレフィン鎖を有する共重合体、及びポリフェニレンエーテル鎖−ポリオレフィン鎖を有する共重合体からなる群より選ばれる1種以上である、〔1〕〜〔3〕のいずれか一項に記載の樹脂組成物。
〔5〕
前記(c)成分が、ビニル芳香族化合物を主体とする重合体ブロックAと、重合体ブロックを構成する共役ジエン化合物に含まれるビニル結合量の総量に対する1,2−ビニル結合量及び3,4−ビニル結合量の総量が30〜90%である、共役ジエン化合物を主体とする重合体ブロックBと、を含むブロック共重合体の少なくとも一部が水素添加された水素添加ブロック共重合体である、〔1〕〜〔4〕のいずれか一項に記載の樹脂組成物。
〔6〕
前記重合体ブロックBにおける、前記重合体ブロックを構成する前記共役ジエン化合物に含まれる前記ビニル結合量の総量に対する前記1,2−ビニル結合量及び前記3,4−ビニル結合量の総量が、65〜90%である、〔5〕に記載の樹脂組成物。
〔7〕
前記(d)成分が、タルクである、〔2〕〜〔6〕のいずれか一項に記載の樹脂組成物。
〔8〕
前記(a)成分を含むマトリックス相と、前記(b)成分を含む分散相とを有する、〔1〕〜〔7〕のいずれか一項に記載の樹脂組成物。
〔9〕
(a)ポリプロピレン樹脂及び(b)ポリフェニレンエーテル樹脂の総量100質量部と、(c)混和剤1〜20質量部と、(d)フィラー5〜50質量部とを含む樹脂組成物であり、
前記(a)成分において、ゲルパーミエーションクロマトグラフィー(GPC、移動相:o−ジクロロベンゼン、標準物質:ポリスチレン)から求められる、分子量30,000以下の成分の割合が前記(a)成分全体の1.0〜5.1%であり、かつ、分子量10,000,000以上の成分の割合が前記(a)成分全体の0.5〜1.6%である、樹脂組成物。
〔10〕
前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂、及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
前記(a−2)成分に対する前記(a−1)成分の質量比((a−1)/(a−2))が、75/25〜90/10であり、
下記工程(1−1)及び(1−2)を含む、〔1〕〜〔9〕のいずれか一項に記載の樹脂組成物の製造方法;
工程(1−1):前記(a−2)成分、前記(b)成分及び前記(c)成分を溶融混練し、混練物を得る工程、
工程(1−2):前記工程(1−1)で得られた前記混練物に対して、前記(a−1)成分を添加し、溶融混練する工程。
〔11〕
前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂、及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
前記(a−2)成分に対する前記(a−1)成分の重量比((a−1)/(a−2))が、75/25〜90/10であり、
下記工程(2−1)及び(2−2)を含む、〔1〕〜〔9〕のいずれか一項に記載の樹脂組成物の製造方法;
工程(2−1):前記(a−2)成分の一部、前記(b)成分及び前記(c)成分を溶融混練し、混練物を得る工程、
工程(2−2):前記工程(2−1)で得られた前記混練物に対して、前記(a−2)成分の残部及び前記(a−1)成分を添加し、溶融混練する工程。
〔12〕
前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂、及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
前記(a−2)成分に対する前記(a−1)成分の重量比((a−1)/(a−2))が、70/30〜90/10であり、
下記工程(3−1)、(3−2)及び(3−3)を含む、〔2〕〜〔9〕のいずれか一項に記載の樹脂組成物の製造方法;
工程(3−1):前記(a−2)成分の全量、前記(b)成分の全量、及び前記(c)成分の一部又は全量を溶融混練し、混練物を得る工程、
工程(3−2):前記工程(3−1)で得られた前記混練物に対して、前記(a−1)成分の全量、前記(d)成分の一部又は全量、及び前記(c)成分の残部(但し、前記工程(3−1)で前記(c)成分を全量用いた場合を除く。)を添加し、溶融混練し、混練物を得る工程、
工程(3−3):前記工程(3−2)で得られた前記混練物に対して、前記(d)成分の残部(但し、前記工程(3−2)で前記(d)成分を全量用いた場合を除く。)を添加し、溶融混練する工程。
〔13〕
前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
前記(a−2)成分に対する前記(a−1)成分の重量比((a−1)/(a−2))が、70/30〜90/10であり、
下記工程(4−1)、(4−2)及び(4−3)を含む、〔2〕〜〔9〕のいずれか一項に記載の樹脂組成物の製造方法;
工程(4−1):前記(a−2)成分の一部、前記(b)成分の全量、及び前記(c)成分の一部又は全量を溶融混練し、混練物を得る工程、
工程(4−2):前記工程(4−1)で得られた前記混練物に対して、前記(a−2)成分の残部、前記(c)成分の残部(但し、前記工程(4−1)で前記(c)成分を全量用いた場合を除く。)、前記(a−1)成分の全量、及び前記(d)成分の一部又は全量を添加し、溶融混練し、混練物を得る工程、
工程(4−3):前記工程(4−2)で得られた混練物に対して、前記(d)成分の残部(但し、前記工程(4−2)で前記(d)成分を全量用いた場合を除く。)を添加し、溶融混練する工程。
〔14〕
〔10〕〜〔13〕のいずれか一項に記載の製造方法で得られる樹脂組成物。
〔15〕
〔1〕〜〔9〕のいずれか一項に記載の樹脂組成物を含む成形品。
本発明によれば、成形流動性及び耐熱クリープ性を維持しつつ、熱エージング性に優れ、更には量産時の成形安定性に優れる樹脂組成物を提供することができる。また、本発明によれば、剛性及び耐衝撃性を維持しつつ、成形流動性がより一層優れ、フローマークが改良された樹脂組成物を提供することができる。
GPC溶出曲線におけるエリア面積を説明するための概念図を示す。 GPC溶出曲線における分子量30,000以下の成分及び分子量10,000,000以上の成分のエリア面積を説明するための概念図を示す。 実施例で用いたテストピースの簡略正面図を示す。
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の実施形態に制限されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施形態の樹脂組成物の第一の形態は、(a)ポリプロピレン樹脂及び(b)ポリフェニレンエーテル樹脂の総量100質量部と、(c)混和剤1〜20質量部と、を含む樹脂組成物であり、(a)成分において、ゲルパーミエーションクロマトグラフィーから求められる分子量30,000以下の成分の割合が、(a)成分全体の3.0〜5.1%であり、かつ、分子量10,000,000以上の成分の割合が、(a)成分全体の1.0〜1.6%である、樹脂組成物である。この第一の形態の樹脂組成物は、成形流動性及び耐熱クリープ性を維持しつつ、熱エージング性に優れ、更には成形品量産時の成形安定性に優れる。
(a)成分及び(b)成分の総量100質量部に対する(a)成分の含有量は、好ましくは25〜98質量部であり、より好ましくは30〜98質量部であり、更に好ましくは50〜95質量部であり、より更に好ましくは70〜95質量部である。(a)成分及び(b)成分の総量100質量部に対する(c)成分の含有量は、好ましくは1〜15質量部であり、より好ましくは1〜10質量部である。(a)成分〜(c)成分の含有量が上記範囲であると、成形流動性及び耐熱クリープ性に一層優れる樹脂組成物が得られる。
<(a)成分>
(a)ポリプロピレン樹脂について詳細に説明する。
(a)ポリプロピレン樹脂(以下、「PP」とも略す。)は、プロピレンホモポリマー、プロピレンと他のモノマーとの共重合体、あるいはこれらの変性物であってもよい。(a)成分は、結晶性であることが好ましく、結晶性プロピレンホモポリマー又は結晶性プロピレン−エチレンブロック共重合体であることがより好ましい。
プロピレンと共重合可能な他のモノマーとしては、例えば、ブテン−1、ヘキセン−1等のα−オレフィン等が挙げられる。その重合形態は、特に限定されず、ランダム共重合体、ブロック共重合体等であってもよい。
例えば、結晶性プロピレン−エチレンブロック共重合体は、重合の第一工程で結晶性プロピレンホモポリマー部分を準備した上で、重合の第二工程以降でプロピレン、エチレン及び、必要に応じて併用される他のα−オレフィンを、結晶性プロピレンホモポリマー部分と共重合させて得ることができる。さらに(a)成分は、結晶性プロピレンホモポリマーと結晶性プロピレン−エチレンブロック共重合体との混合物であってもよい。
(a)成分の製造方法は、特に限定されず、公知の方法を用いることができる。例えば、触媒として、三塩化チタン触媒や、塩化マグネシウム等の担体に担持したハロゲン化チタン触媒等を用いることができる。これらの触媒とアルキルアルミニウム化合物との存在下、重合温度0〜100℃の範囲で、重合圧力3〜100気圧の範囲で、プロピレンやその他のモノマーを重合させる方法等が挙げられる。この際、重合体の分子量を調整するために水素等の連鎖移動剤を添加してもよい。重合の運転方式としては、バッチ式、連続式いずれの方式も選択できる。重合方法としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の溶媒下での溶液重合、スラリー重合等の方法も選択でき、さらには無溶媒下モノマー中での塊状重合、ガス状モノマー中での気相重合方法等も選択できる。
上記した重合触媒の他に、ポリプロピレンのアイソタクティシティや重合活性を高めるため、第三成分として、電子供与性化合物を内部ドナー成分又は外部ドナー成分として用いることができる。これらの電子供与性化合物としては、公知のものが使用でき、例えば、ε−カプロラクトン、メタクリル酸メチル、安息香酸エチル、トルイル酸メチル等のエステル化合物;亜リン酸トリフェニル、亜リン酸トリブチル等の亜リン酸エステル;ヘキサメチルホスホリックトリアミド等のリン酸誘導体等;アルコキシエステル化合物;芳香族モノカルボン酸エステル;芳香族アルキルアルコキシシラン、脂肪族炭化水素アルコキシシラン等のアルコキシシラン;各種エーテル類、各種アルコール類;各種フェノール類等が挙げられる。
(a)成分は、非変性のポリプロピレン樹脂をα,β−不飽和カルボン酸又はその誘導体(酸無水物やエステルも含む)等の変性剤により変性したものであってもよい。この場合、例えば、非変性のポリプロピレン樹脂をα,β−不飽和カルボン酸又はその誘導体でグラフト化・付加させたもの等が挙げられる。具体例としては、α,β−不飽和カルボン酸又はその誘導体が、ポリプロピレン樹脂全体の0.01〜10質量%程度の割合で、ポリプロピレン樹脂にグラフト又は付加しているもの等が挙げられる。変性ポリプロピレン樹脂は、例えば、ラジカル発生剤の存在下又は非存在下、溶融状態、溶液状態又はスラリー状態で、30〜350℃の範囲で、上記した非変性のポリプロピレン樹脂と変性剤とを反応させることによって、得られる。本実施形態では、非変性のポリプロピレン樹脂と変性ポリプロピレン樹脂との任意の割合の混合物であってもよい。
(a)成分において、分子量30,000以下の成分の割合は、(a)成分全体の3.0〜5.1%であり、好ましくは4.0〜5.1%であり、より好ましくは4.1〜4.8%である。分子量30,000以下の成分の割合が上記範囲にあると、高いレベルの成形流動性を維持しつつ、熱エージング性に優れた樹脂組成物を得ることができる。
(a)成分において、分子量10,000,000以上の成分の割合は、(a)成分全体の1.0〜1.6%であり、好ましくは1.2〜1.5%である。本実施形態の樹脂組成物では、クリープ性は(a)成分の高分子領域が特に寄与すると推測される。そのため、分子量10,000,000以上の成分の割合が上記範囲にあると、高レベルの耐熱クリープ性を維持しつつ、成形安定性に優れた樹脂組成物を得ることができる。
上記した、分子量30,000以下の成分の割合及び分子量10,000,000以上の成分の割合は、樹脂組成物から(a)成分を抽出し、ゲルパーミエーションクロマトグラフィー(GPC)測定を行うことによって求めることができる。以下、説明する。
((a)成分の抽出方法、抽出条件)
樹脂組成物ペレット5gを濾過フィルターに入れて、この濾過フィルターを沸騰キシレン(和光純薬工業社製)中に入れ、樹脂組成物中の(a)成分をキシレン中に溶かす。(a)成分が溶けたキシレンの温度を室温まで下げることで(a)成分を析出させる。析出した(a)成分を濾過した後、120℃で真空乾燥することで、樹脂組成物から(a)成分を抽出することができる。
抽出した(a)成分をGPC測定することで、(a)成分における、分子量30,000以下の成分の割合及び分子量10,000,000以上の成分の割合を求めることができる。なお、単分散の重量平均分子量が既知で分子量の異なるスチレン樹脂(重量平均分子量500〜20,600,000)を検量線用標準サンプルとして用いることができる。
ここで、(a)成分中の分子量30,000以下の成分の割合及び分子量10,000,000以上の成分の割合を求める方法を、図面を参照しつつ説明する。図1は、GPC溶出曲線におけるエリア面積を説明するための概念図を示す。図2は、GPC溶出曲線における分子量30,000以下の成分及び分子量10,000,000以上の成分のエリア面積を説明するための概念図を示す。
まず、(a)成分のGPC溶出曲線のエリア面積を求める。ここでいうエリア面積とは、図1に示す斜線領域の面積をいう。具体的には、以下のようにして求める。GPC測定で得られた溶出時間を横軸とし、R.I.(示差屈折検出器)による検出強度(R.I.検出強度)を縦軸としたGPC溶出曲線をプロットする。そして、GPC溶出曲線とベースラインの交点A(低分子側)及び交点B(高分子側)を定める。
そして、交点A及び交点B間のGPC溶出曲線とベースラインとで囲まれた斜線部分をGPC溶出曲線におけるエリア面積とする(図1の斜線領域参照)。このエリア面積を、(a)成分のGPC溶出曲線におけるエリア面積とする。但し、交点Aにおける分子量が1,000未満の場合は、エリア面積の計算においては分子量1,000未満のエリア面積を除いて計算する。具体的には、交点A及び交点B間のGPC溶出曲線とベースラインとで囲まれた斜線部分から、分子量1,000以下の成分に対応するGPC溶出曲線におけるエリア面積を除いた面積を、(a)成分のGPC溶出曲線におけるエリア面積とする。
高分子量成分から溶出されるカラムを用いた場合、溶出時間初期(交点B側)に高分子量成分が観測され、溶出時間終期(交点A側)に低分子量成分が観測される。
このようにして求められた上記のエリア面積のうち、分子量30,000以下の成分に対応するGPC溶出曲線におけるエリア面積と、(a)成分のGPC溶出曲線における全体のエリア面積との比から、分子量30,000以下の成分の割合を求めることができる。但し、交点Aにおける分子量が1,000未満の場合は、上記した、(a)成分のGPC溶出曲線におけるエリア面積の考え方と同様に、分子量30,000以下の成分に対応するGPC溶出曲線におけるエリア面積は、分子量1,000以下の成分に対応するGPC溶出曲線におけるエリア面積を除いた面積とする。
同様にして、分子量10,000,000以上の成分に対応するGPC溶出曲線におけるエリア面積を求め、当該エリア面積と、(a)成分のGPC溶出曲線におけるエリア面積との比から、分子量10,000,000以上の成分の割合も求めることができる。
図2は、GPC溶出曲線における分子量30,000以下の成分のエリア面積及び分子量10,000,000以上の成分のエリア面積の一例を示したものである。
(a)成分において、分子量30,000以下の成分の割合や、分子量10,000,000以上の成分の割合は、例えば、(a)成分を製造する際に、高分子量のポリプロピレン樹脂と低分子量のポリプロピレン樹脂とを混合すること等によって制御することができる。さらには、後述する製造方法を採用することにより、より高い精度で(a)成分の分子量特性を制御することもできる。
(a)成分の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、好ましくは8〜11であり、より好ましくは8〜10であり、更に好ましくは8.5〜10であり、より更に好ましくは8.5〜9.5である。(a)成分の分子量分布を上記範囲とすることで、成形流動性と耐熱クリープ性とのバランス、熱エージング性、量産時の成形安定性、フローマーク等の物性バランスが一層向上する。フローマークが優れるようになるメカニズムの詳細は明らかになっていないが、(a)成分の分子量分布が上記範囲に制御されることで、射出成形等の成形時に金型内での樹脂組成物の固化速度がより均一になるためであると推測される(但し、本実施形態の作用効果はこれに限定されない。)。分子量分布は、GPCで測定した重量平均分子量(Mw)と数平均分子量(Mn)から求められる。
(a)成分としては、高分子量のポリプロピレン樹脂と低分子量のポリプロピレン樹脂とを含む混合物であることが好ましい。具体的には、(a)ポリプロピレン樹脂は、(a−1)メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分の高分子量のポリプロピレン樹脂と、(a−2)メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分の低分子量のポリプロピレン樹脂とを含むことが好ましい。(a)成分として、このような異なる流動特性を有するポリプロピレン樹脂を併用することにより、成形流動性と耐熱クリープ性とのバランスが一層向上する傾向にある。(a)成分のメルトフローレートは、ISO 1133に準拠して測定することができる。
(a−2)成分に対する(a−1)成分の重量比((a−1)/(a−2))は、好ましくは75/25〜90/10であり、より好ましくは76/24〜90/10であり、更に好ましくは77/23〜90/10である。
後述する(d)成分としてフィラーを用いる場合は、(a−2)成分に対する(a−1)成分の重量比((a−1)/(a−2))は、好ましくは65/35〜90/10であり、より好ましくは70/30〜90/10であり、更に好ましくは75/25〜90/10であり、より更に好ましくは80/20〜90/10である。(d)成分としてフィラーを用いる場合、上記数値範囲であると、本実施形態の効果が一層優れたものになる。
(a)成分の融点は、好ましくは163℃以上であり、より好ましくは165℃以上であり、更に好ましくは167℃以上である。(a)成分の融点を上記数値範囲とすることにより、熱履歴後の剛性及びフローマークを一層向上させることができる。
(a)成分の融点は、示差走査熱量計(DSC)(パーキンエルマー社製、商品名「DSC−2型」)にて昇温速度20℃/分及び降温速度20℃/分の条件で測定することにより求めることができる。具体的には、まず、試料約5mgを20℃で2分間保持した後、昇温速度20℃/分で230℃まで昇温させて、230℃で2分間保持する。そして、降温速度20℃/分で20℃まで降温させて、20℃で2分間保持する。この場合における、昇温速度20℃/分で昇温させたときに現れる吸熱ピークのトップピークの温度を、融点として求めることができる。
(a)ポリプロピレン樹脂が、上述のような高分子量のポリプロピレン樹脂と低分子量のポリプロピレン樹脂とを含む混合物である場合の樹脂組成物の製造方法としては、後述する樹脂組成物の製造方法が好適である。
<(b)成分>
(b)ポリフェニレンエーテル樹脂について詳細に説明する。
(b)ポリフェニレンエーテル樹脂(以下、「PPE」とも略す。)は、下記式(1)で表される繰り返し単位構造を有するホモ重合体及び/若しくは共重合体;又はそれらの変性体であることが好ましい。
Figure 0005860463
式(1)中、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜7の第1級又は第2級のアルキル基、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、又は少なくとも2個の炭素原子がハロゲン原子と酸素原子とを隔てているハロ炭化水素オキシ基を表す。
(b)成分の還元粘度(0.5g/dLのクロロホルム溶液、30℃測定)は、特に限定されないが、好ましくは0.15〜0.7g/dLであり、より好ましくは0.2〜0.6g/dLである。還元粘度は、後述する実施例に記載の方法により測定できる。
(b)成分としては、特に限定されず、公知のものを用いてもよい。例えば、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−エチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−フェニル−1,4−フェニレンエーテル)、ポリ(2,6−ジクロロ−1,4−フェニレンエーテル)等が挙げられる。さらに、2,6−ジメチルフェノールと他のフェノール類(例えば、2,3,6−トリメチルフェノールや2−メチル−6−ブチルフェノール)等とのポリフェニレンエーテル共重合体も挙げられる。
これらの中で、好ましい具体例としては、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体であり、より好ましくはポリ(2,6−ジメチル−1,4−フェニレンエーテル)である。
(b)成分の製造方法は、特に限定されず、従来公知のものを用いることができる。例えば、米国特許第3306874号明細書に記載の第一銅塩とアミンのコンプレックスを触媒として用い、例えば、2,6−キシレノールを酸化重合する方法が挙げられる。あるいは、米国特許第3306875号明細書、米国特許第3257357号明細書、米国特許第3257358号明細書、特公昭52−17880号公報、特開昭50−51197号公報、特開昭63−152628号公報等に記載された方法等によっても製造できる。
さらに、(b)成分としては、上記の非変性のポリフェニレンエーテル樹脂を、スチレン系モノマー又はその誘導体等の変性剤により変性したものであってもよい。この場合、例えば、非変性のポリフェニレンエーテル樹脂をスチレン系モノマー又はその誘導体でグラフト化又は付加させたもの等が挙げられる。変性ポリフェニレンエーテル樹脂は、例えば、ラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で、80〜350℃で、上記のポリフェニレンエーテル樹脂とスチレン系モノマー又はその誘導体とを反応させることによって得られる。
ポリフェニレンエーテル樹脂の変性剤としては、例えば、スチレン系モノマー、α,β−不飽和カルボン酸、及びそれらの誘導体(例えば、エステル化合物、酸無水化合物等)が挙げられる。
スチレン系モノマーとしては、例えば、スチレン、α−メチルスチレン、スチレンスルホン酸等が挙げられる。
変性ポリフェニレンエーテル樹脂の具体例としては、例えば、スチレン系モノマー又はその誘導体が0.01〜10質量%の割合でグラフト化又は付加した、変性ポリフェニレンエーテル樹脂等が挙げられる。
(b)成分は、非変性ポリフェニレンエーテルと変性ポリフェニレンエーテル樹脂とを併用してもよい。非変性のポリフェニレンエーテル樹脂と変性ポリフェニレンエーテル樹脂の混合割合は、特に限定されず、任意の割合で混合できる。
さらに、本実施形態の樹脂組成物としては、ポリフェニレンエーテル樹脂に、ポリスチレン、シンジオタクチックポリスチレン及びハイインパクトポリスチレンからなる群より選ばれるいずれか1種以上を混合したものも好適に用いることができる。特に、上記したポリフェニレンエーテル樹脂100質量部に対して、ポリスチレン、シンジオタクチックポリスチレン及びハイインパクトポリスチレンからなる群より選ばれるいずれか1種以上を、それらの総量で、400質量部を超えない範囲で混合したものが、より好適である。
本実施形態の樹脂組成物は、(a)成分を含むマトリックス相と、(b)成分を含む分散相とを有することが好ましい。これにより樹脂組成物は耐熱クリープ性を一層発現させることができる。このようなモルホロジーは、透過型電子顕微鏡によって確認することができる。
マトリックス相は、(a)成分単独から構成されていてもよい。分散相は、(b)成分単独でもよいし、例えば、(b)成分と(c)成分とから構成されていてもよい。この場合、樹脂組成物は、マトリックス相((a)成分)と、分散相((b)成分単独、又は(b)成分と(c)成分等)を構成する分散粒子を有する。(c)成分の大部分は、分散相に包含されているだけでなく、本実施形態の効果が損なわれない程度に、マトリックス相中にも(c)成分の一部が包含されていてもよい。本実施形態の樹脂組成物において、このようなモルホロジーをとることで、分散相に含まれる(b)成分が、熱的に一層安定な分散状態をとることができ、それによって本実施形態の効果が一層向上するものと推測される(但し、本実施形態の作用はこれに限定されない。)。
<(c)成分>
本実施形態の樹脂組成物は、(a)成分と(b)成分との相溶性改善のために、(c)混和剤を更に含む。(c)成分としては、(a)成分に対する相溶性が高いセグメント鎖と、(b)成分に対する相溶性が高いセグメント鎖と、を有する共重合体であることが好ましい。
(a)成分に対する相溶性が高いセグメント鎖としては、例えば、ポリスチレン鎖、ポリフェニレンエーテル鎖等が挙げられる。(b)成分に対する相溶性が高いセグメント鎖としては、例えば、ポリオレフィン鎖、エチレンとα−オレフィンとの共重合体エラストマー分子鎖等が挙げられる。
このような共重合体の好ましい具体例としては、例えば、水素添加ブロック共重合体、ポリスチレン鎖−ポリオレフィン鎖を有する共重合体、及びポリフェニレンエーテル鎖−ポリオレフィン鎖を有する共重合体からなる群より選ばれるいずれか1種が挙げられる。これらの中でも、熱安定性の観点から、水素添加ブロック共重合体がより好ましい。これらは、1種単独で用いてもよいし、2種以上を併用してもよい。
水素添加ブロック共重合体としては、ビニル芳香族化合物を主体とする重合体ブロックA1と、共役ジエン化合物を主体とする少なくとも1個の重合体ブロックB1と、を含むブロック共重合体の少なくとも一部が水素添加された水素添加ブロック共重合体が挙げられる。
水素添加ブロック共重合体の好ましい具体例としては、ビニル芳香族化合物を主体とする重合体ブロックAと、1,2−ビニル結合量及び3,4−ビニル結合量の総量が30〜90%である共役ジエン化合物を主体とする重合体ブロックBと、を含むブロック共重合体の少なくとも一部が水素添加された水素添加ブロック共重合体であることが好ましい。重合体ブロックBにおける共役ジエン化合物の1,2−ビニル結合量及び3,4−ビニル結合量の総量は、PPとの相溶性の観点から30〜90%であることが好ましい。
重合体ブロックAは、ビニル芳香族化合物のホモ重合体ブロック、又はビニル芳香族化合物と共役ジエン化合物との共重合体ブロックであることが好ましい。
重合体ブロックAにおいて「ビニル芳香族化合物を主体とする」とは、重合体ブロックA中に、ビニル芳香族化合物を、50質量%を超えて含有することをいう。そして、成形流動性、耐衝撃性、ウェルド及び外観の観点から、重合体ブロックA中にビニル芳香族化合物を70質量%以上含有することが好ましい。
重合体ブロックAを構成するビニル芳香族化合物としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、p−tert−ブチルスチレン、ジフェニルエチレン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を用いてもよい。これらの中ではスチレンが好ましい。
重合体ブロックAの数平均分子量は、特に限定されないが、その下限は15,000以上であることが好ましい。上限は、50,000以下であることが好ましい。重合体ブロックAの数平均分子量を上記範囲とすることにより、本実施形態の樹脂組成物の耐熱クリープ性をより優れたものとできる。重合体ブロックAの数平均分子量の測定は、GPC(移動相:クロロホルム、標準物質:ポリスチレン)によって行うことができる。
共役ジエン化合物を主体とする重合体ブロックBは、共役ジエン化合物のホモ重合体ブロック、又は共役ジエン化合物とビニル芳香族化合物とのランダム共重合体ブロックであることが好ましい。
重合体ブロックBにおいて「共役ジエン化合物を主体とする」とは、重合体ブロックB中に共役ジエン化合物を、50質量%を超えて含有することをいう。そして、成形流動性、耐衝撃性、ウェルド及び外観の観点から、重合体ブロックB中に共役ジエン化合物を70質量%以上含有することが好ましい。
重合体ブロックBを構成する共役ジエン化合物としては、例えば、ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。これらの中でもブタジエン、イソプレン及びこれらの組み合わせが好ましい。
そして、重合体ブロックBのミクロ構造(共役ジエン化合物の結合形態)については、重合体ブロックを構成する共役ジエン化合物に含まれるビニル結合量の総量に対する、1,2−ビニル結合量及び3,4−ビニル結合量の総量(以下、「全ビニル結合量」という場合がある。)は、好ましくは30〜90%であり、より好ましくは45〜90%であり、更に好ましくは65〜90%である。重合体ブロックBにおける共役ジエン化合物の全ビニル結合量を上記範囲とすることで、PPとの相溶性が一層優れる。特に、重合体ブロックBがブタジエンを主体とする重合体ブロックである場合には、重合体ブロックBにおけるブタジエンの全ビニル結合量が65〜90%であることが好ましい。
全ビニル結合量を30%以上とすることで、樹脂組成物中の(b)成分の分散性を一層優れたものにできる。全ビニル結合量を90%以下とすることで、(b)成分の優れた分散性を維持しながら、経済性にも優れる。
全ビニル結合量は、赤外分光光度計によって測定することができる。算出方法は、Analytical Chemistry,Volume21,No.8,August 1949に記載の方法に準じて行うことができる。
(c)成分は、少なくとも重合体ブロックAと、少なくとも重合体ブロックBとを含むブロック共重合体の水素添加ブロック共重合体であることが好ましい。
ブロック重合体Aを「A」、ブロック重合体Bを「B」と表すと、(c)成分としては、例えば、A−B、A−B−A、B−A−B−A、(A−B−)Si、A−B−A−B−A等の構造を有するビニル芳香族化合物−共役ジエン化合物ブロック共重合体の水素添加物が挙げられる。(A−B−)Siは、四塩化ケイ素、四塩化スズ等といった多官能カップリング剤の反応残基、又は多官能性有機リチウム化合物等の開始剤の残基等である。
ブロック重合体Aとブロック重合体Bとを含むブロック共重合体の分子構造は、特に限定されず、例えば、直鎖状、分岐状、放射状、及びこれらの任意の組み合わせのいずれであってもよい。
重合体ブロックA及び重合体ブロックBは、それぞれの重合体ブロックにおける分子鎖中のビニル芳香族化合物又は共役ジエン化合物の分布が、ランダム状、テーパード状(分子鎖に沿ってモノマー成分が増加又は減少するもの)、一部ブロック状、及びこれらの任意の組み合わせのいずれであってもよい。
重合体ブロックA又は重合体ブロックBのいずれかが繰り返し単位中に2個以上ある場合は、それら2個以上の重合体ブロックは、それぞれ同一構造であってもよいし、異なる構造であってもよい。
(c)成分の水素添加ブロック共重合体は、成形流動性、耐衝撃性、ウェルド及び外観の観点から、水素添加前のブロック共重合体が結合したビニル芳香族化合物を20〜95質量%含むことが好ましく、30〜80質量%含むことがより好ましい。ビニル芳香族化合物の含有量は、紫外線分光光度計によって測定することができる。
水素添加前のブロック共重合体の数平均分子量は、好ましくは5,000〜1,000,000であり、より好ましくは10,000〜800,000であり、更に好ましくは30,000〜500,000である。数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC、移動相:クロロホルム、標準物質:ポリスチレン)によって測定できる。
水素添加前のブロック共重合体の分子量分布は、10以下であることが好ましい。分子量分布は、GPC(GPC、移動相:クロロホルム、標準物質:ポリスチレン)によって測定した、数平均分子量(Mn)に対する重量平均分子量(Mw)の比(Mw/Mn)の比を求めることによって算出できる。
(c)成分中の共役ジエン化合物に対する水素添加率は、特に限定されないが、耐熱性の観点から、共役ジエン化合物に由来する二重結合の50%以上が水素添加されていることが好ましく、より好ましくは80%以上であり、更に好ましくは90%以上である。水素添加率は、NMRによって測定できる。
(c)成分の水素添加ブロック共重合体の製造方法は、特に限定されず、公知の製造方法を採用してもよい。例えば、特開昭47−011486号公報、特開昭49−066743号公報、特開昭50−075651号公報、特開昭54−126255号公報、特開昭56−010542号公報、特開昭56−062847号公報、特開昭56−100840号公報、特開平02−300218号公報、英国特許第1130770号明細書、米国特許第3281383号明細書、米国特許第3639517号明細書、英国特許第1020720号明細書、米国特許第3333024号明細書及び米国特許第4501857号明細書等に記載の製造方法が挙げられる。
(c)成分の水素添加ブロック共重合体は、上記した水素添加ブロック共重合体を、α,β−不飽和カルボン酸又はその誘導体(エステル化合物や酸無水物化合物)でグラフト化又は付加させた、変性水素添加ブロック共重合体であってもよい。
変性水素添加ブロック共重合体は、ラジカル発生剤の存在下又は非存在下に、溶融状態、溶液状態又はスラリー状態で、80〜350℃の範囲で、上記した水素添加ブロック共重合体とα,β−不飽和カルボン酸又はその誘導体とを反応させることによって得られる。この場合、α,β−不飽和カルボン酸又はその誘導体が0.01〜10質量%の割合で水素添加ブロック共重合体にグラフト化又は付加していることが好ましい。さらに、上記の水素添加ブロック共重合体と変性水素添加ブロック共重合体との任意の割合の混合物であってもよい。
<(d)成分>
(d)成分のフィラーの成分や形状等は特に限定されない。フィラーとしては、例えば、無機充填材、無機強化材、有機強化材等が挙げられる。フィラーの形状としては、例えば、ファイバー状、フレーク状、ウィスカー状、プレート状、ブロック状、ビーズ状、バルーン状等が挙げられる。
(d)フィラーの具体例としては、例えば、周期律表第I族〜第VIII族中の金属元素(Fe,Na,K,Cu,Mg,Ca,Zn,Ba,Al,Ti等);ケイ素元素の単体、酸化物、水酸化物、炭素塩、硫酸塩、ケイ酸塩、亜硫酸塩、これらの化合物よりなる各種粘度鉱物、炭素系フィラー、有機繊維等が挙げられる。具体的には、例えば、硫酸バリウム、硫酸カルシウム、硫酸マグネシウム、硫酸ナトリウム、亜硫酸カルシウム、酸化亜鉛、シリカ、炭酸カルシウム、ホウ酸アルミニウム、アルミナ、酸化鉄、チタン酸カルシウム、チタン酸カリウム、酸化チタン、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、炭酸マグネシウム、ケイ酸カルシウム、クレーワラストナイト、マイカ、タルク、ガラスビーズ、ガラスファイバー、ガラス繊維、ガラスフレーク、ガラスパウダー、ケイ砂、ケイ石、石英粉、けいそう土、ホワイトカーボン、カーボンブラック、導電性カーボンブラック、カーボン繊維、導電性金属繊維、ポリアクリロニトリル繊維、アラミド繊維等が挙げられる。(d)成分は、上記したものを1種単独で用いてもよいし、2種以上を併用してもよい。
特に、樹脂組成物に外観が要求される場合は、(d)成分としてタルクを含むことが好ましい。タルクの平均粒子径は、好ましくは1〜30μmであり、より好ましくは2〜25μmであり、更に好ましくは3〜20μmである。ここでいう平均粒子径は、粒度分布測定器を用いて測定した体積基準の粒子径である。平均粒子径の測定に用いる分散溶媒としては、例えば、エタノールが挙げられる。これらのフィラーは、無処理のまま用いてもよいが、樹脂等の他の成分との親和性や界面結合力を高める目的で、公知の無機表面処理剤(例えば、高級脂肪酸、及びそのエステルや塩等の誘導体、カップリング剤、チタンカップリング剤等)を使用して処理してもよい。
(a)成分と(b)成分の総量100質量部に対する(d)成分の含有量は、好ましくは5〜50質量部であり、より好ましくは15〜40質量部であり、更に好ましくは15〜35質量部である。(d)成分の含有量を上記範囲とすることで、MFR、成形流動性及び耐衝撃性のバランスを一層向上させることができる。とりわけ、(d)成分がタルクである場合、その含有量を上記数値範囲とすることで、その効果は一層顕著となる。
本実施形態の樹脂組成物は、本実施形態の効果の範囲内で、公知の添加剤を目的に応じて任意の割合で含んでもよい。添加剤としては、例えば、可塑剤、滑剤(例えば、高級脂肪酸、及びその金属塩、高級脂肪酸アミド類等)、熱安定化剤、酸化防止剤(例えば、フェノール系酸化防止剤、フォスファイト系酸化防止剤、チオジブロプロピオン酸エステル型のチオエーテル等)、耐候剤(例えば、ベンゾトリアゾール系耐候剤、ベンゾフェノン系耐候剤、サリシレート系耐候剤、シアノアクリレート系耐候剤、シュウ酸誘導体、ヒンダードアミン系耐候剤等)、ポリオレフィン樹脂の結晶核剤(例えば、芳香族カルボン酸の金属塩、ソルビトール系誘導体、有機リン酸塩、芳香族アミド化合物等の有機系核剤や、無機系核剤等)、金属不活性化剤、難燃剤(例えば、有機リン酸エステル系化合物、ポリリン酸アンモニウム系化合物、ポリリン酸メラミン系化合物、ホスフィン酸塩類、水酸化マグネシウム、芳香族ハロゲン系難燃剤、シリコーン系難燃剤、フッ素系ポリマー、有機リン化合物、赤リン、無機系リン酸塩等のリン系難燃剤、ハロゲン系難燃剤、シリカ系難燃剤等)、難燃助剤(例えば、三酸化アンチモン、五酸化アンチモン等)、帯電防止剤(例えば、ポリアミドエラストマー、四級アンモニウム塩系、ピリジン誘導体、脂肪族スルホン酸塩、芳香族スルホン酸塩、芳香族スルホン酸塩共重合体、硫酸エステル塩、多価アルコール部分エステル、アルキルジエタノールアミン、アルキルジエタノールアミド、ポリアルキレングリコール誘導体、ベタイン系帯電防止剤、イミダゾリン誘導体等)、抗菌剤、抗カビ剤、摺動性改良剤(例えば、低分子量ポリエチレン等の炭化水素系摺動性改良剤、高級アルコール、多価アルコール、ポリグリコール、ポリグリセロール、高級脂肪酸、高級脂肪酸金属塩、脂肪酸アミド、脂肪酸と脂肪族アルコールとのエステル、脂肪酸と多価アルコールとのフルエステル又は部分エステル、脂肪酸とポリグリコールとのフルエステル又は部分エステル、シリコーン系摺動性改良剤、フッ素樹脂系摺動性改良剤等)、無機又は有機の充填材や強化材(ポリアクリロニトリル繊維、導電性金属繊維等)等が挙げられる。
また、意匠性を付与する目的で、公知の着色剤(例えば、無機顔料、有機系顔料、メタリック顔料、染料等)を樹脂組成物に添加することができる。
本実施形態の樹脂組成物の第二の形態は、
(a)ポリプロピレン樹脂及び(b)ポリフェニレンエーテル樹脂の総量100質量部と、(c)混和剤1〜20質量部と、(d)フィラー5〜50質量部とを含む樹脂組成物であり、
(a)成分において、ゲルパーミエーションクロマトグラフィー(GPC、移動相:o−ジクロロベンゼン、標準物質:ポリスチレン)から求められる、分子量30,000以下の成分の割合が(a)成分の1.0〜5.1%であり、かつ、分子量10,000,000以上の成分の割合が(a)成分全体の0.5〜1.6%である、樹脂組成物である。この第二の形態の樹脂組成物は、剛性及び耐衝撃性を維持しつつ、成形流動性がより一層優れ、フローマークが改良された樹脂組成物である。以下、特に断りがない限り、(a)成分、(b)成分、(c)成分、(d)成分及びその他の成分については、第一の形態において上述したものを用いることができる。
第二の形態の樹脂組成物における、好ましい形態としては、以下のものが挙げられる。
(1)(a)成分と(b)成分の総量100質量部に対し、(d)フィラー5〜50質量部を、更に含むことが好ましい。
(2)(c)成分が、ビニル芳香族化合物を主体とする重合体ブロックAと、重合体ブロックを構成する共役ジエン化合物に含まれるビニル結合量の総量に対する、1,2−ビニル結合量及び3,4−ビニル結合量の総量が30〜90%である、共役ジエン化合物を主体とする重合体ブロックBと、を含むブロック共重合体の少なくとも一部が水素添加された水素添加ブロック共重合体であることが好ましい。
(3)重合体ブロックBにおける、重合体ブロックを構成する共役ジエン化合物に含まれるビニル結合量の総量に対する、1,2−ビニル結合量及び3,4−ビニル結合量の総量は、65〜90%であることが好ましい。この場合、1,2−ビニル結合量及び3,4−ビニル結合量の総量は、65〜85%であることがより好ましい。特に、重合体ブロックBがブタジエンを主体とする重合体である場合、重合体ブロックBにおける1,2−ビニル結合量及び3,4−ビニル結合量の総量は、上記範囲であることが好ましい。
(4)(d)成分は、タルクであることが好ましい。
第二の形態の樹脂組成物は、その効果の範囲内において、第一の形態の樹脂組成物において説明した添加剤等の成分を更に含有してもよい。
<樹脂組成物の製造方法>
本実施形態の樹脂組成物の製造方法について説明する。本実施形態の樹脂組成物は、種々の溶融混練機や混練押出機等を用いて製造できる。
溶融混練機や混練押出機としては、特に限定されず、公知の混練機を用いることができる。例えば、単軸押出機、二軸押出機等の多軸押出機、ロール、ニーダー、ブラベンダープラストグラフ、バンバリーミキサー等の加熱溶融混練機が挙げられる。それらの中でも二軸押出機を用いた溶融混練機が好ましい。具体的には、コペリオン社製の「ZSK」シリーズ、東芝機械社製の「TEM」シリーズ、日本製鋼所社製の「TEX」シリーズ等の混練押出機が挙げられる。
押出機を用いる場合、その種類や規格等は特に限定されず、適宜に公知の押出機を用いることができる。例えば、押出機のL/D比(バレル有効長(L)/バレル内径(D))は、通常、好ましくは20〜75であり、より好ましくは30〜60である。
押出機は、原料の流れ方向に対し上流側に第1原料供給口を設け、その下流に第1真空ベントを設け、その下流に第2原料供給口を設け、更にその下流に第2真空ベントを設けたもの等が好ましい。押出機は、これらの下流に、第3原料供給口や第3真空ベント等を更に設けたものであってもよい。押出機の原料供給口の総数やそれらの配置は、樹脂組成物の材料の種類の数等を考慮して適宜設定することができる。
第2原料供給口への原料供給方法は、特に限定されないが、押出機の第2、第3の原料供給口の開放口からの単なる添加供給よりも、押出機サイド開放口から強制サイドフィーダーを用いて添加供給する方法が一層安定であるため、好ましい。
溶融混練温度やスクリュー回転数は、特に限定されないが、通常、溶融混練温度が200〜370℃であり、スクリュー回転数が100〜1200rpmであることが好ましい。
前述の通り、本実施形態の樹脂組成物は、(a)成分として、高分子量ポリプロピレン樹脂と低分子量ポリプロピレン樹脂との混合物であることが好ましい。特に(a−1)メルトフローレートが0.1〜1g/10分の高分子量ポリプロピレン樹脂と(a−2)メルトフローレートが4〜9g/10分の低分子量ポリプロピレン樹脂とを含む混合物であることが好ましい。(a−1)成分及び(a−2)成分の重量比((a−1)/(a−2))は、上述したように、好ましくは75/25〜90/10であり、より好ましくは77.5/22.5〜90/10である。
(a)成分が上述のような2種以上の成分を含む混合物である場合、以下の製造方法1又は製造方法2により樹脂組成物を製造することが好ましい。
製造方法1:下記工程(1−1)及び(1−2)を含む樹脂組成物の製造方法。
工程(1−1):(a−2)成分、(b)成分及び(c)成分を溶融混練し、混練物を得る工程、
工程(1−2):工程(1−1)で得られた混練物に対して、(a−1)成分を添加し、溶融混練する工程。
製造方法2:下記工程(2−1)及び(2−2)を含む樹脂組成物の製造方法。
工程(2−1):(a−2)成分の一部、(b)成分及び(c)成分を溶融混練し、混練物を得る工程、
工程(2−2):工程(2−1)で得られた混練物に対して、(a−2)成分の残部及び(a−1)成分を添加し、溶融混練する工程。
これらの製造方法のように、溶融混練時における、耐熱クリープ性及び熱エージング性の向上に有効である高分子量の成分(例えば、(a−1)成分)の添加のタイミングを遅くすることで、高分子量の成分の熱劣化を一層抑制できる。その結果、耐熱クリープ性及び熱エージング性に一層優れた樹脂組成物を得ることができる。高分子量の成分の添加のタイミングを遅くする方法としては、例えば、溶融混練機や混練押出機の下流側の原料供給口から高分子量の成分を添加する方法等が挙げられる。
また、成形流動性の向上に有効な低分子量の成分(例えば、(a−2)成分)の添加のタイミングを早くすることで、優れた成形流動性を付与できる。その結果、高いレベルの成形流動性と耐熱クリープ性とを維持したまま、熱エージング性に優れた樹脂組成物を効率よく得ることができる。低分子量の成分の添加のタイミングを早くする方法としては、例えば、溶融混練機や混練押出機の上流側の原料供給口から低分子量の成分を添加する方法等が挙げられる。
(d)成分を用いる場合は、(a−2)成分に対する(a−1)成分の重量比((a−1)/(a−2))は、好ましくは65/35〜90/10であり、より好ましくは70/30〜90/10であり、更に好ましくは75/25〜90/10であり、より更に好ましくは80/20〜90/10である。(d)成分としてフィラーを用いる場合、(a−2)成分に対する(a−1)成分の重量比の質量比を上記数値範囲とすることで、本実施形態の効果が一層優れたものになる。(a)成分が上述の(a−1)成分及び(a−2)成分を含む混合物である場合、本実施形態の樹脂組成物の製造方法は、以下の製造方法3又は製造方法4であることが好ましい。
製造方法3:下記工程(3−1)、(3−2)及び(3−3)を含む樹脂組成物の製造方法。
工程(3−1):(a−2)成分の全量、(b)成分の全量、及び(c)成分の一部又は全量を溶融混練し、混練物を得る工程、
工程(3−2):工程(3−1)で得られた混練物に対して、(a−1)成分の全量、(d)成分の一部又は全量、及び(c)成分の残部(但し、工程(3−1)で(c)成分を全量用いた場合を除く。)を添加し、溶融混練し、混練物を得る工程、
工程(3−3):工程(3−2)で得られた混練物に対して、(d)成分の残部(但し、工程(3−2)で(d)成分を全量用いた場合を除く)を添加し、溶融混練する工程。
製造方法4:下記工程(4−1)、(4−2)及び(4−3)を含む樹脂組成物の製造方法。
工程(4−1):(a−2)成分の一部、(b)成分の全量、及び(c)成分の一部又は全量(但し、工程(4−1)で(c)成分を全量用いた場合を除く。)を溶融混練し、混練物を得る工程、
工程(4−2):工程(4−1)で得られた混練物に対して、(a−2)成分の残部、(c)成分の残部、(a−1)成分の全量、及び(d)成分の一部又は全量を添加し、溶融混練し、混練物を得る工程、
工程(4−3):工程(4−2)で得られた混練物に対して、(d)成分の残部(但し、工程(4−2)で(d)成分を全量用いた場合を除く)を添加し、溶融混練する工程。
これらの製造方法のように、溶融混練時における、剛性、耐衝撃性及びフローマークの向上に有効である高分子量の成分の添加のタイミングを遅くすることで、高分子量の成分の熱劣化を一層抑制できる。その結果、剛性、耐衝撃性及びフローマークが一層優れた樹脂組成物を得ることができる。高分子量の成分の添加のタイミングを遅くする方法としては、例えば、溶融混練機や混練押出機の下流側の原料供給口から高分子量の成分を添加する方法等が挙げられる。
また、成形流動性の向上に有効な低分子量の成分の添加のタイミングを早くすることで、優れた成形流動性を付与できる。その結果、剛性及び耐衝撃性を維持しつつ、成形流動性及びフローマークが一層優れた樹脂組成物を効率よく得ることができる。低分子量の成分の添加のタイミングを早くする方法としては、例えば、溶融混練機や混練押出機の上流側の原料供給口から低分子量の成分を添加する方法等が挙げられる。
本実施形態の成形品は、上述の樹脂組成物を含む。本実施形態の成形品は、例えば、上述の樹脂組成物を成形することにより得ることができる。本実施形態の成形品は、種々の部材等として用いることができる。特に、二次電池槽(密閉系二次電池槽等も含む)の部材として好適に使用できる。
成形方法としては、特に限定されず、例えば、射出成形、中空成形、押出成形、シート成形、フィルム成形、熱成形、回転成形、積層成形等の成形方法が挙げられる。最終的に得られる成形品は、シート、フィルム、その他形状の射出成形品等とすることで、直接電極及び電解質を包んだ構造を有する二次電池電槽等の部材として利用できる。
以下、実施例によって、本発明の実施の形態を説明するが、本発明はこれらの実施例により限定されるものではない。
<<実施例1〜11、比較例1〜6>>
実施例1〜11、比較例1〜6において使用した原料は以下のとおりである。
(a)ポリプロピレン樹脂
(a−1)メルトフローレート(230℃、荷重2.16kg)=0.4g/10分、分子量分布(Mw/Mn)=7.7、融点167℃、密度0.90g/cmのポリプロピレン。
(a−2)メルトフローレート(230℃、荷重2.16kg)=5.9g/10分、分子量分布(Mw/Mn)=12.5、融点166℃、密度0.90g/cmのポリプロピレン。
(a−3)メルトフローレート(230℃、荷重2.16kg)=0.5
g/10分、分子量分布(Mw/Mn)=13.7、融点166℃、密度0.90g/cmのポリプロピレン。
(a)ポリプロピレン樹脂のメルトフローレートは、ISO 1133に準拠して測定した。
(a)ポリプロピレン樹脂の分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)とから求めた。GPCの測定条件は後述する。
(b)ポリフェニレンエーテル樹脂
(b−1)2,6−キシレノールを酸化重合して得た、還元粘度(0.5g/dLのクロロホルム溶液、30℃測定)=0.52のポリフェニレンエーテル。
還元粘度は、ウベローデ粘度計を用いて、0.5g/dLのクロロホルム溶液、30℃の条件で測定した。
(c)混和剤
(c−1)ポリスチレン−水素添加されたポリブタジエン−ポリスチレンの構造を有する水素添加ブロック共重合体。結合スチレン量は43%、ポリブタジエン部分の1,2−ビニル結合量は75%、ポリスチレン鎖の数平均分子量は20,000、ポリブタジエン部の水素添加率は99.9%であった。
水素添加ブロック共重合体は、n−ブチルリチウムを開始剤とし、テトラヒドロフランを1,2−ビニル結合量の調節剤として用い、シクロヘキサン溶媒中で、スチレンとブタジエンとをアニオンブロック共重合させることにより、スチレン−ブタジエン系ブロック共重合体を得た。次に、ビス(η5−シクロペンタジエニル)チタニウムジクロリドとn−ブチルリチウムとを水素添加触媒として用いて、得られたスチレン−ブタジエン系ブロック共重合体を、水素圧5kg/cm、温度50℃の条件で水素添加した。なお、ポリマー構造は、モノマーの仕込み量及び仕込み順序を調整することで制御した。分子量は、触媒量を調整することで制御した。1,2−ビニル結合量は、1,2−ビニル結合量の調節剤の添加量及び重合温度を調整することで制御した。水素添加率は、水素添加時間を調整することで制御した。
ポリブタジエン部分の1,2−ビニル結合量は、赤外分光光度計によって測定し、Analytical Chemistry,Volume21,No.8,August 1949に記載の方法に準じて算出した。
結合スチレン量は、紫外線分光光度計によって測定した。
ポリスチレン鎖の数平均分子量は、GPC(移動相:クロロホルム、標準物質:ポリスチレン)によって行った。
ポリブタジエン部の水素添加率は、核磁気共鳴装置(NMR)によって測定した。
(c−2)商品名「Kraton G1701M Polymer(ポリスチレン鎖−ポリオレフィン鎖を有する共重合体;Kraton社製)」
ベースコポリマー:スチレン、エチレン/プロピレン(ポリプロピレン量37%)、メルトフローレート(230℃、荷重5kg)=1g/10分
<実施例1>
樹脂組成物の製造装置として、二軸押出機の「TEM58SS」(東芝機械社製、L/D比=53.8)を用いた。二軸押出機において、原料の流れ方向に対し上流側に第1原料供給口、これより下流に第2原料供給口を設け、これらの原料供給口の間と第2原料供給口の下流に真空ベントを設けた。また、第2供給口への原料供給方法は、押出機サイド開放口から強制サイドフィーダーを用いて供給する方法とした。
上記のように設定した二軸押出機に、(a)〜(c)成分を表1に示した組成で供給し、押出機のバレル設定温度を270〜320℃、スクリュー回転数を650rpm、吐出量を500kg/時間の条件にて溶融混練し、樹脂組成物のペレットを得た。
<実施例2〜11>
二軸押出機に、(a)〜(c)成分を表1に示した組成で供給した点以外は実施例1と同様にして樹脂組成物のペレットを得た。
<比較例1、3〜6>
二軸押出機に、(a)〜(c)成分を表2に示した組成で供給した点以外は実施例1と同様にして樹脂組成物のペレットを得た。
<比較例2>
樹脂組成物の製造装置として、二軸押出機の「TEM58SS」(東芝機械社製、L/D比=53.8)を用いた。二軸押出機において、原料の流れ方向に対し上流側に第1原料供給口、これより下流に第2原料供給口を設け、これらの原料供給口の間と第2供給口の下流に真空ベントを設けた。また、第2供給口への原料供給方法は、押出機サイド開放口から強制サイドフィーダーを用いて供給する方法とした。
上記のように設定した押出機に、(a)〜(c)成分を表2に示した組成で供給し、押出機のバレル設定温度を300〜350℃、スクリュー回転数を665rpm、吐出量を500kg/時間の条件にて溶融混練し、樹脂組成物のペレットを得た。
実施例及び比較例で得た樹脂組成物のペレットの特性等を以下のとおり評価した。
<メルトフローレート(MFR)>
実施例及び比較例で得た樹脂組成物のペレットについて、ISO 1133に準拠して、250℃、荷重10kgの条件でメルトフローレート(MFR)を測定した。メルトフローレートについては、10g/10分以上の場合を合格と判断した。
<耐熱クリープ性>
実施例及び比較例で得た樹脂組成物のペレットを、ホッパー側からノズル側に向かって4箇所のシリンダー温度を夫々245℃に設定したスクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形して、クリープ測定用テストピースを得た。なお、使用したスクリューインライン型種出成形機は、ホッパーからノズル迄の間が4つのシリンダーブロックから構成されており、各シリンダーブロックの温度設定を制御できるものである。すなわち、この場合、4つのシリンダーブロックの設定温度を全て245℃に設定した。得られたクリープ測定用テストピースについて、ギアオーブンを用い80℃の環境下に24時間静置し熱履歴処理を行った。
なお、クリープ測定用テストピースとしては、図3に示す形状のダンベル成形品(厚さ1mm)を用いた。図3は、実施例で用いたテストピースの簡略正面図を示す。テストピース1の幅Lは65mm、幅Lは40mm、幅Lは22mm、高さHは10mmとした。
そして、クリープ測定用テストピースを、80℃のギアオーブン中に24時間静置し、熱履歴処理を行った。
熱履歴処理後のクリープ測定用テストピースのクリープ測定を行った。クリープ試験機(安田精機製作所社製、「145−B−PC型」)を用いて、チャック間距離を40mm、試験荷重を応力12.25MPa相当、試験温度を80℃、試験時間を165時間の条件でクリープ測定(耐熱クリープ性試験)を行った。耐熱クリープ性は、以下の式で求めた歪[%]により評価した。歪[%]については、40%未満の場合を合格と判断した。

歪[%]=(165時間後のテストピースの変位)/(チャック間距離)×100
<熱エージング性>
実施例及び比較例で得た樹脂組成物のペレットを、スクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形し、引張強度測定用テストピースを得た。スクリューインライン型射出成形機のホッパーからノズルまでの間に配置された4つのシリンダーブロックの設定温度については、ホッパー側からノズル側に向けて、順次、220℃/230℃/245℃/245℃に設定した。得られた引張強度測定用テストピースについて、ギアオーブンを用い80℃の環境下に24時間静置し熱履歴処理を行った。
熱履歴処理後の引張強度測定用テストピースについて、ギアオーブンを用い120℃の環境下で2,000時間のエージングを行った。
熱エージング性測定として、熱履歴処理後及びエージング後の引張強度測定用テストピースについて、引張試験(ISO 527)を実施した。樹脂組成物の熱エージング性は、以下の式で求めた引張強度保持率により評価した。引張強度保持率については、97%以上の場合を合格と判断した。

引張強度保持率[%]=(エージング後の引張強度)/(熱履歴処理後の引張強度)×100
<成形安定性>
実施例及び比較例で得た樹脂組成物のペレットのMFRを、ISO 1133に準拠して、(1)温度:230℃、荷重:10kg、(2)温度250℃、荷重:10kg、の条件で測定した。樹脂組成物の成形安定性は、以下の式で求めたMFR保持率によって評価した。MFR保持率については、80%以上の場合を合格と判断した。

MFR保持率[%]=上記(1)の条件でのMFR値/上記(2)の条件でのMFR値×100
<ポリプロピレン樹脂(a)成分の分子量、分子量分布の測定>
以下の方法によって、実施例及び比較例で得られた樹脂組成物からポリプロピレン樹脂(a)の抽出を行った。
(抽出方法、抽出条件)
実施例及び比較例で得た樹脂組成物のペレット5gを濾過フィルターに入れて、該濾過フィルターを沸騰キシレン(和光純薬工業社製)中に入れ、樹脂組成物中の(a)成分をキシレン中に全て溶かした。沸騰キシレンの温度は150℃、加熱時間は10時間で行った。(a)成分が溶けたキシレンの温度を室温(23℃)まで下げることで(a)成分を析出させた。析出した(a)成分を濾過した後、120℃で真空乾燥することで、樹脂組成物から(a)成分を抽出した。
このように抽出されたポリプロピレン樹脂(a)の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定した。
GPC測定の条件は以下の通りである。
測定装置:「Alliance GPC2000」(Waters社製)
カラム:「TSKgel GMH6−HT」×2+「TSKgel GMH6−HTL」×2
検出器:R.I.(示差屈折)検出器
移動相:o−ジクロロベンゼン(0.025%BHT含有)
カラム温度:140℃
流速:1.0mL/分
試料濃度:0.15%(w/v)−o−ジクロロベンゼン
注入量:0.5mL
尚、単分散の重量平均分子量が既知で分子量の異なるスチレン樹脂(重量平均分子量500〜20,600,000)を検量線用標準サンプルとして用いた。
(a)成分における、分子量30,000以下の成分の割合、及び分子量10,000,000以上の成分の割合は、前述の方法で求めた。
実施例1〜11の結果を表1に示し、比較例1〜6の結果を表2に示す。
Figure 0005860463
Figure 0005860463
実施例1〜11の樹脂組成物のペレットは、いずれもMFRが10g/分以上、耐熱クリープ性が40%未満、熱エージング性(引張強度保持率)が97%以上、成形安定性(MFR保持率)が80%以上であり、成形流動性と耐熱クリープ性とのバランス、熱エージング性及び成形安定性に優れることが確認された。一方、比較例1〜6の樹脂組成物は、成形流動性、耐熱クリープ性、熱エージング及び成形安定性の少なくともいずれかが劣っていることが確認された。
<<実施例12〜17、比較例7〜9>>
実施例12〜17及び比較例7〜9について検討した。実施例12〜17及び比較例7〜9で使用した原料は以下のとおりである。
(a)ポリプロピレン樹脂
(a−1−1)メルトフローレート(230℃、荷重2.16kg)=0.4/10分、分子量分布(Mw/Mn)=7.7、融点167℃、密度0.90g/cmのポリプロピレン。
(a−2−1)メルトフローレート(230℃、荷重2.16kg)=5.9g/10分、分子量分布(Mw/Mn)=12.5、融点166℃、密度0.90g/cmのポリプロピレン。
(a−3−1)メルトフローレート(230℃、荷重2.16kg)=0.5g/10分、分子量分布(Mw/Mn)=13.7、融点166℃、密度0.90g/cmのポリプロピレン。
(a−4−1)メルトフローレート(230℃、荷重2.16kg)=10g/10分、分子量分布(Mw/Mn)=11.5、融点160℃、密度0.90g/cmのポリプロピレン。
(a)ポリプロピレン樹脂のメルトフローレートは、ISO 1133に準拠して測定した。
また、(a)ポリプロピレン樹脂の分子量分布(Mw/Mn)は、GPC(移動相:o−ジクロロベンゼン、標準物質:ポリスチレン)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比から求めた。
(a)ポリプロピレン樹脂の融点は、示差走査熱量計(DSC)(パーキンエルマー社製、商品名「DSC−2型」)を用いて測定した。具体的には、まず、試料約5mgを、20℃で2分間保った後、昇温速度20℃/分で230℃まで昇温させた後、230℃で2分間保した。そして、降温速度20℃/分で20℃まで降温させた後、さらに20℃で2分間保った。昇温速度20℃/分で昇温させたときに現れる吸熱ピークのトップピークの温度を、融点とした。
(b)ポリフェニレンエーテル樹脂
2,6−キシレノールを酸化重合して得た、還元粘度(0.5g/dLのクロロホルム溶液、30℃測定)=0.41のポリフェニレンエーテル。
還元粘度は、ウベローデ粘度計を用いて、0.5g/dLのクロロホルム溶液、30℃の条件で測定した。
(c)混和剤
水素添加されたポリブタジエン−ポリスチレン−水素添加されたポリブタジエン−ポリスチレンの構造(B−A−B−A)を有する水素添加ブロック共重合体。
結合スチレン量44%、ポリマー全体の数平均分子量95,000、分子量分布1.06、ポリスチレン部(A)の数平均分子量20900、水素添加前のポリブタジエンの1,2−ビニル結合量が75%ポリブタジエン部の水素添加率が99.9%の水添ブロック共重合体
水素添加ブロック共重合体は、n−ブチルリチウムを開始剤とし、テトラヒドロフランを1,2−ビニル結合量の調節剤として用い、シクロヘキサン溶媒中で、スチレンとブタジエンとをアニオンブロック共重合させることにより、スチレン−ブタジエン系ブロック共重合体を得た。次に、ビス(η5−シクロペンタジエニル)チタニウムジクロリドとn−ブチルリチウムとを水素添加触媒として用いて、得られたスチレン−ブタジエン系ブロック共重合体を、水素圧5kg/cm、温度50℃の条件で水素添加した。なお、ポリマー構造は、モノマーの仕込み量及び仕込み順序を調整することで制御した。分子量は、触媒量を調整することで制御した。1,2−ビニル結合量は、1,2−ビニル結合量の調節剤の添加量及び重合温度を調整することで制御した。水素添加率は、水素添加時間を調整することで制御した。
ポリブタジエン部分の1,2−ビニル結合量は、赤外分光光度計によって測定し、Analytical Chemistry,Volume21,No.8,August 1949に記載の方法に準じて算出した。
結合スチレン量は、紫外線分光光度計によって測定した。
数平均分子量及び分子量分布の測定は、GPC(移動相:クロロホルム、標準物質:ポリスチレン)によって行った。
ポリブタジエン部の水素添加率は、NMRによって測定した。
(d)フィラー
タルク(林化成社製、商品名「タルカンパウダー PK−C」、平均粒子径:11μm)なお、平均粒子径は、粒度分布測定器「SA−CP3L」(島津製作所製)によって測定した。
<実施例12>
樹脂組成物の製造装置として、二軸押出機(コペリオン社製、商品名「ZSK25」)を用いた。二軸押出機において、原料の流れ方向に対し上流側に第1原料供給口、これより下流に第2原料供給口を設け、これらの原料供給口の間と第2供給口の下流に真空ベントを設けた。また、第2供給口への原料供給方法は、押出機サイド開放口から強制サイドフィーダーを用いて供給する方法とした。上記のように設定した二軸押出機に、(a)〜(d)成分を表3に示した組成で供給し、押出機のバレル設定温度を270〜320℃、スクリュー回転数300rpm、吐出量15kg/時間の条件にて溶融混練し、樹脂組成物のペレットを得た。得られた樹脂組成物の各物性を以下のとおり測定した。測定結果を表3に示す。
<実施例13〜17、比較例7〜9>
二軸押出機に、(a)〜(d)成分を表1に示した組成で供給した点以外は実施例12と同様にして樹脂組成物のペレットを得た。得られた樹脂組成物の各物性を以下のとおり測定した。測定結果を表3に示す。
<メルトフローレート(MFR)>
実施例及び比較例で得た樹脂組成物のペレットについて、ISO 1133に準拠して、250℃、荷重10kgの条件でメルトフローレート(MFR)を測定した。
<剛性(曲げ弾性率)>
実施例及び比較例で得た樹脂組成物のペレットを、スクリューインライン型射出成形機に供給し、金型温度60℃の条件で、曲げ弾性率測定用テストピースを射出成形した。スクリューインライン型射出成形機のホッパーからノズル迄の間に配置された4つのシリンダーブロックの設定温度については、ホッパー側からノズル側に向けて、順次、220℃/230℃/245℃/245℃に設定した。そして図3に示すテストピース1を作製し、幅Lは65mm、幅Lは40mm、幅Lは22mm、高さHは10mmとした。そして、曲げ弾性率測定用テストピースを、80℃のギアオーブン中に24時間静置し、熱履歴処理を行った。熱履歴処理を行ったテストピースを用いて、ISO 178に準じて曲げ弾性率を測定した。
<耐衝撃性(Charpy衝撃強度)>
実施例及び比較例で得た樹脂組成物のペレットをスクリューインライン型射出成形機に供給し、金型温度60℃の条件で、Charpy衝撃強度測定用テストピースを射出成形した。スクリューインライン型射出成形機のホッパーからノズル迄の間に配置された4つのシリンダーブロックの設定温度については、ホッパー側からノズル側に向けて、順次、220℃/230℃/245℃/245℃に設定した。図3に示すテストピース1を作製し、幅Lは65mm、幅Lは40mm、幅Lは22mm、高さHは10mmとした。そして、Charpy衝撃強度測定用テストピースを、80℃のギアオーブン中に24時間静置し、熱履歴処理を行った。熱履歴処理を行ったテストピースを用いて、ISO 179に準じてCharpy衝撃強度を測定した。
<成形流動性>
実施例及び比較例で得た樹脂組成物のペレットを、シリンダー温度220〜280℃、金型温度60℃に設定した射出成形機に供給し、厚さ1.8mmの短冊試験片を作製した。その際、1mmショートする時のゲージ圧力を測定し、この圧力をSSP[Short Shot Pressure](MPa)とした。このSSPの値が小さいほど成形流動性に優れるものと評価した。
<フローマーク>
実施例及び比較例で得た樹脂組成物のペレットを、シリンダー温度220〜280℃、金型温度60℃に設定した射出成形機に供給し、15cm×15cm×2mmの平板(直径1mmピンゲート)を射出成形した。その際、フローマークの有無を目視で確認し、以下の判定基準に基づき、フローマークを評価した。

A:フローマークが全く確認できなかった。
B:フローマークが若干確認された。
C:フローマークが多数確認された。
<耐熱クリープ性>
実施例及び比較例で得た樹脂組成物のペレットを、ホッパー側からノズル側に向けてシリンダー温度を245℃に設定したスクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形して、クリープ測定用テストピースを得た。該クリープ測定用テストピースについて、ギアオーブンを用い80℃の環境下に24時間静置し熱履歴処理を行った。
なお、クリープ測定用テストピースとしては、図3に示す形状のダンベル成形品(厚さ1mm)を用いた。図3は、実施例で用いたテストピースの簡略正面図を示す。テストピース1の幅Lは65mm、幅Lは40mm、幅Lは22mm、高さHは10mmとした。
そして、クリープ測定用テストピースを、80℃のギアオーブン中に24時間静置し、熱履歴処理を行った。
熱履歴処理後のクリープ測定用テストピースのクリープ測定を行った。クリープ試験機(安田精機製作所社製、「145−B−PC型」)を用いて、チャック間距離を40mm、試験荷重を応力7.35MPa相当、試験温度を60℃、試験時間を500時間の条件でクリープ測定(耐熱クリープ性試験)を行った。耐熱クリープ性については、以下の式で求めた歪[%]により評価した。歪[%]については、10%未満の場合を合格と判断した。

歪[%]=(500時間後のテストピースの変位)/(チャック間距離)×100
<熱エージング性>
実施例及び比較例で得た樹脂組成物のペレットを、スクリューインライン型射出成形機に供給し、金型温度60℃の条件で射出成形し、引張強度測定用テストピースを得た。スクリューインライン型射出成形機のホッパーからノズルまでの間に配置された4つのシリンダーブロックの設定温度については、ホッパー側からノズル側に向けて、順次、220℃/230℃/245℃/245℃に設定した。得られた引張強度測定用テストピースについて、ギアオーブンを用い80℃の環境下に24時間静置し熱履歴処理を行った。
熱履歴処理後の引張強度測定用テストピースについて、ギアオーブンを用い120℃の環境下で1,000時間のエージングを行った。
熱エージング性測定として、熱履歴処理後及びエージング後の引張強度測定用テストピースについて、引張試験(ISO 527)を実施した。樹脂組成物の熱エージング性は、以下の式で求めた引張強度保持率により評価した。

引張強度保持率[%]=(エージング後の引張強度)/(熱履歴処理後の引張強度)×100
<成形安定性>
実施例及び比較例で得た樹脂組成物のペレットのMFRを、ISO 1133に準拠して、(1)温度:250℃、荷重:10kg、(2)温度270℃、荷重:10kg、の条件で測定した。樹脂組成物の成形安定性は、以下の式で求めたMFR保持率により評価した。

MFR保持率[%]=上記(1)の条件でのMFR値/上記(2)の条件でのMFR値×100
<ポリプロピレン樹脂(a)成分の分子量、分子量分布の測定>
実施例1〜11及び比較例1〜6と同様の方法で、実施例12〜17及び比較例7〜9で得られた樹脂組成物から(a)成分を抽出した。抽出された(a)成分の分子量特性(分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))、分子量30,000以下の成分の割合、及び分子量10,000,000以上の成分の割合)も、実施例1〜11、比較例1〜6と同様の方法で測定した。
実施例12〜17及び比較例7〜9の結果を表3に示す。
Figure 0005860463
実施例12〜17の樹脂組成物は、比較例7〜9の樹脂組成物と比較して、少なくとも、成形流動性、耐熱クリープ性、熱エージング性及び成形安定性がバランス良く優れることが確認された。さらに、実施例12〜17の樹脂組成物は、剛性、耐衝撃性、成形流動性及びフローマークが同時に優れることも確認された。一方、比較例7〜9の樹脂組成物は、剛性、耐衝撃性、成形流動性及びフローマークの少なくともいずれかが劣っていることが確認された。
本出願は、2011年7月5日に日本国特許庁へ出願された日本特許出願(特願2011−149433)及び2012年2月16日に日本国特許庁へ出願された日本特許出願(特願2012−031540)に基づくものであり、その内容はここに参照として取り込まれる。
本発明に係る樹脂組成物は、例えば、ニッケル−水素電池等の二次電池の電槽(容器)用材料等として好適に用いることができる。

Claims (14)

  1. (a)ポリプロピレン樹脂及び(b)ポリフェニレンエーテル樹脂の総量100質量部と、
    (c)前記(a)成分と前記(b)成分との相溶性改善のための混和剤1〜20質量部と、を含む樹脂組成物であり、
    前記(a)成分において、
    ゲルパーミエーションクロマトグラフィー(GPC、移動相:o−ジクロロベンゼン、標準物質:ポリスチレン)から求められる、分子量30,000以下の成分の割合が、前記(a)成分全体の3.0〜5.1%であり、かつ、分子量10,000,000以上の成分の割合が、前記(a)成分全体の1.0〜1.6%である、樹脂組成物。
  2. 前記(a)成分と前記(b)成分の総量100質量部に対し、(d)フィラー5〜50質量部を、更に含む、請求項1に記載の樹脂組成物。
  3. 前記(a)成分の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))が、8〜11である、請求項1又は2に記載の樹脂組成物。
  4. 前記(c)成分が、水素添加ブロック共重合体、ポリスチレン鎖−ポリオレフィン鎖を有する共重合体、及びポリフェニレンエーテル鎖−ポリオレフィン鎖を有する共重合体からなる群より選ばれる1種以上である、請求項1〜3のいずれか一項に記載の樹脂組成物。
  5. 前記(c)成分が、ビニル芳香族化合物を主体とする重合体ブロックAと、重合体ブロックを構成する共役ジエン化合物に含まれるビニル結合量の総量に対する1,2−ビニル結合量及び3,4−ビニル結合量の総量が30〜90%である、共役ジエン化合物を主体とする重合体ブロックBと、を含むブロック共重合体の少なくとも一部が水素添加された水素添加ブロック共重合体である、請求項1〜4のいずれか一項に記載の樹脂組成物。
  6. 前記重合体ブロックBにおける、前記重合体ブロックを構成する前記共役ジエン化合物に含まれる前記ビニル結合量の総量に対する前記1,2−ビニル結合量及び前記3,4−ビニル結合量の総量が、65〜90%である、請求項5に記載の樹脂組成物。
  7. 前記(d)成分が、タルクである、請求項2〜6のいずれか一項に記載の樹脂組成物。
  8. 前記(a)成分を含むマトリックス相と、前記(b)成分を含む分散相とを有する、請求項1〜7のいずれか一項に記載の樹脂組成物。
  9. (a)ポリプロピレン樹脂及び(b)ポリフェニレンエーテル樹脂の総量100質量部と、(c)前記(a)成分と前記(b)成分との相溶性改善のための混和剤1〜20質量部と、(d)フィラー5〜50質量部とを含む樹脂組成物であり、
    前記(a)成分において、ゲルパーミエーションクロマトグラフィー(GPC、移動相:o−ジクロロベンゼン、標準物質:ポリスチレン)から求められる、分子量30,000以下の成分の割合が前記(a)成分全体の1.0〜5.1%であり、かつ、分子量10,000,000以上の成分の割合が前記(a)成分全体の0.5〜1.6%である、樹脂組成物。
  10. 前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂、及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
    前記(a−2)成分に対する前記(a−1)成分の質量比((a−1)/(a−2))が、75/25〜90/10であり、
    下記工程(1−1)及び(1−2)を含む、請求項1〜9のいずれか一項に記載の樹脂組成物の製造方法;
    工程(1−1):前記(a−2)成分、前記(b)成分及び前記(c)成分を溶融混練し、混練物を得る工程、
    工程(1−2):前記工程(1−1)で得られた前記混練物に対して、前記(a−1)成分を添加し、溶融混練する工程。
  11. 前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂、及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
    前記(a−2)成分に対する前記(a−1)成分の重量比((a−1)/(a−2))が、75/25〜90/10であり、
    下記工程(2−1)及び(2−2)を含む、請求項1〜9のいずれか一項に記載の樹脂組成物の製造方法;
    工程(2−1):前記(a−2)成分の一部、前記(b)成分及び前記(c)成分を溶融混練し、混練物を得る工程、
    工程(2−2):前記工程(2−1)で得られた前記混練物に対して、前記(a−2)成分の残部及び前記(a−1)成分を添加し、溶融混練する工程。
  12. 前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂、及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
    前記(a−2)成分に対する前記(a−1)成分の重量比((a−1)/(a−2))が、70/30〜90/10であり、
    下記工程(3−1)、(3−2)及び(3−3)を含む、請求項2〜9のいずれか一項に記載の樹脂組成物の製造方法;
    工程(3−1):前記(a−2)成分の全量、前記(b)成分の全量、及び前記(c)成分の一部又は全量を溶融混練し、混練物を得る工程、
    工程(3−2):前記工程(3−1)で得られた前記混練物に対して、前記(a−1)成分の全量、前記(d)成分の一部又は全量、及び前記(c)成分の残部(但し、前記工程(3−1)で前記(c)成分を全量用いた場合を除く。)を添加し、溶融混練し、混練物を得る工程、
    工程(3−3):前記工程(3−2)で得られた前記混練物に対して、前記(d)成分の残部(但し、前記工程(3−2)で前記(d)成分を全量用いた場合を除く。)を添加し、溶融混練する工程。
  13. 前記(a)成分が、(a−1):メルトフローレート(230℃、荷重2.16kg)が0.1〜1g/10分のポリプロピレン樹脂及び(a−2):メルトフローレート(230℃、荷重2.16kg)が4〜9g/10分のポリプロピレン樹脂を含み、
    前記(a−2)成分に対する前記(a−1)成分の重量比((a−1)/(a−2))が、70/30〜90/10であり、
    下記工程(4−1)、(4−2)及び(4−3)を含む、請求項2〜9のいずれか一項に記載の樹脂組成物の製造方法;
    工程(4−1):前記(a−2)成分の一部、前記(b)成分の全量、及び前記(c)成分の一部又は全量を溶融混練し、混練物を得る工程、
    工程(4−2):前記工程(4−1)で得られた前記混練物に対して、前記(a−2)成分の残部、前記(c)成分の残部(但し、前記工程(4−1)で前記(c)成分を全量用いた場合を除く。)、前記(a−1)成分の全量、及び前記(d)成分の一部又は全量を添加し、溶融混練し、混練物を得る工程、
    工程(4−3):前記工程(4−2)で得られた混練物に対して、前記(d)成分の残部(但し、前記工程(4−2)で前記(d)成分を全量用いた場合を除く。)を添加し、溶融混練する工程。
  14. 請求項1〜9のいずれか一項に記載の樹脂組成物を含む成形品。
JP2013523053A 2011-07-05 2012-07-05 樹脂組成物及びその製造方法 Active JP5860463B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013523053A JP5860463B2 (ja) 2011-07-05 2012-07-05 樹脂組成物及びその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011149433 2011-07-05
JP2011149433 2011-07-05
JP2012031540 2012-02-16
JP2012031540 2012-02-16
PCT/JP2012/067224 WO2013005806A1 (ja) 2011-07-05 2012-07-05 樹脂組成物及びその製造方法
JP2013523053A JP5860463B2 (ja) 2011-07-05 2012-07-05 樹脂組成物及びその製造方法

Publications (2)

Publication Number Publication Date
JPWO2013005806A1 JPWO2013005806A1 (ja) 2015-02-23
JP5860463B2 true JP5860463B2 (ja) 2016-02-16

Family

ID=47437152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013523053A Active JP5860463B2 (ja) 2011-07-05 2012-07-05 樹脂組成物及びその製造方法

Country Status (5)

Country Link
US (1) US8946356B2 (ja)
EP (1) EP2730613B1 (ja)
JP (1) JP5860463B2 (ja)
CN (1) CN103619943B (ja)
WO (1) WO2013005806A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100069B2 (ja) * 2013-04-17 2017-03-22 旭化成株式会社 難燃性樹脂組成物
WO2015050060A1 (ja) * 2013-10-01 2015-04-09 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
JP6175339B2 (ja) * 2013-10-01 2017-08-02 旭化成株式会社 樹脂組成物及びその成形体
CN103937206A (zh) * 2014-04-18 2014-07-23 芜湖凯奥尔环保科技有限公司 一种汽车塑料件用聚丙烯改性聚苯醚材料
JP6586327B2 (ja) * 2014-09-25 2019-10-02 旭化成株式会社 樹脂組成物及び成形体
JP6860997B2 (ja) * 2016-08-29 2021-04-21 旭化成株式会社 樹脂組成物
CN108659361A (zh) * 2018-03-15 2018-10-16 苏州甫众塑胶有限公司 一种用于制造全固态碱性电池壳的复合材料及其制备方法
CN109575420A (zh) * 2018-12-17 2019-04-05 特塑(大连)高分子材料有限公司 一种永久抗静电聚烯烃树脂材料及其制备方法
CN113088005A (zh) * 2021-04-16 2021-07-09 贵州凯科特材料有限公司 一种汽车用高性能复合材料
JP2023001874A (ja) * 2021-06-21 2023-01-06 旭化成株式会社 ポリフェニレンエーテル系樹脂組成物

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL295748A (ja) 1962-07-24
NL295699A (ja) 1962-07-24
US3281383A (en) 1962-08-09 1966-10-25 Phillips Petroleum Co Branched polymers prepared from monolithium-terminated polymers and compounds having at least three reactive sites
US3257357A (en) 1963-04-01 1966-06-21 Du Pont Copolymers of polyphenylene ethers
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
US3257358A (en) 1963-07-02 1966-06-21 Du Pont 2, 6-dichloro-1, 4-polyphenylene ether
SE307674B (ja) 1963-12-26 1969-01-13 Shell Int Research
GB1130770A (en) 1965-12-29 1968-10-16 Asahi Chemical Ind Process for producing thermoplastic elastomers
US3639517A (en) 1969-09-22 1972-02-01 Phillips Petroleum Co Resinous branched block copolymers
JPS4966743A (ja) 1972-10-18 1974-06-28
JPS5238596B2 (ja) 1973-09-06 1977-09-29
JPS52785B2 (ja) 1973-11-08 1977-01-10
JPS5217880B2 (ja) 1974-05-25 1977-05-18
JPS5217880A (en) 1975-07-31 1977-02-10 Mitsubishi Heavy Ind Ltd Method to walk inside tube
US4192828A (en) 1978-02-28 1980-03-11 Hooker Chemicals & Plastics Corp. Polymer compositions having enhanced low temprature impact resistance on ageing
FR2426062B1 (fr) 1978-02-28 1985-11-22 Hooker Chemicals Plastics Corp Melanges de polymeres d'halogenure de vinyle ayant des proprietes ameliorees de resistance aux chocs
JPS5610542A (en) 1979-07-06 1981-02-03 Nippon Steel Chem Co Ltd Iridescent resin composition
JPS5934731B2 (ja) 1979-10-29 1984-08-24 電気化学工業株式会社 樹脂組成物
JPS56100840A (en) 1980-01-16 1981-08-13 Denki Kagaku Kogyo Kk Resin composition
GB2134909B (en) 1983-01-20 1986-08-20 Asahi Chemical Ind Catalytic hydrogenation of conjugated diene polymer
JPS63152628A (ja) 1986-12-17 1988-06-25 Asahi Chem Ind Co Ltd 色調の優れたポリフエニレンエ−テル系樹脂の製造法
JP2703335B2 (ja) 1989-05-15 1998-01-26 株式会社クラレ 制振性に優れる重合体及び組成物
US4987194A (en) 1988-10-07 1991-01-22 Kuraray Company, Limited Block copolymers and composition containing the same
IL97430A0 (en) * 1990-03-26 1992-06-21 Himont Inc Heat resistant propylene polymer compositions
JP3178285B2 (ja) 1995-01-17 2001-06-18 旭化成株式会社 密閉型二次電池用電槽
KR100268123B1 (ko) 1995-06-29 2001-04-02 야마모토 카즈모토 수지조성물및2차전지전조용수지조성물
JP3512923B2 (ja) 1995-10-24 2004-03-31 松下電器産業株式会社 密閉形アルカリ蓄電池
JP3601562B2 (ja) 1996-03-06 2004-12-15 旭化成ケミカルズ株式会社 クリープ強さおよびフローマークが改良された樹脂組成物
JPH11140245A (ja) 1997-11-04 1999-05-25 Asahi Chem Ind Co Ltd 衝撃強度に優れた樹脂組成物
JP2000058007A (ja) 1998-08-03 2000-02-25 Mitsubishi Engineering Plastics Corp 密閉型二次電池用電槽
US6602637B1 (en) 1999-11-17 2003-08-05 Mitsubishi Engineering-Plastics Corporation Secondary battery case
JP3563341B2 (ja) 1999-11-17 2004-09-08 三菱エンジニアリングプラスチックス株式会社 二次電池用電槽
JP2002060562A (ja) 2000-06-05 2002-02-26 Mitsubishi Engineering Plastics Corp 樹脂組成物及びそれを用いた樹脂成形体
JP5088647B2 (ja) * 2007-02-10 2012-12-05 旭化成ケミカルズ株式会社 樹脂組成物及びその製法
ATE548420T1 (de) * 2007-03-26 2012-03-15 Asahi Kasei Chemicals Corp Thermoplastische zusammensetzung und daraus hergestellter formkörper
JP5158844B2 (ja) * 2007-06-01 2013-03-06 旭化成ケミカルズ株式会社 発熱体冷却システムの冷媒保存容器
EP2261275B1 (en) 2008-03-31 2013-10-02 Asahi Kasei E-materials Corporation Microporous film and method for producing the same
JP4694654B2 (ja) * 2008-07-31 2011-06-08 旭化成イーマテリアルズ株式会社 微多孔性フィルム及びその製造方法
JP5197463B2 (ja) 2009-03-27 2013-05-15 旭化成ケミカルズ株式会社 樹脂組成物およびその成形体
JP5666160B2 (ja) 2009-04-01 2015-02-12 旭化成ケミカルズ株式会社 樹脂組成物及びその成形体
JP5550393B2 (ja) * 2010-03-15 2014-07-16 旭化成ケミカルズ株式会社 樹脂組成物
JP5534964B2 (ja) 2010-06-11 2014-07-02 旭化成ケミカルズ株式会社 ポリフェニレンエーテル樹脂組成物の製造方法
EP2628759B1 (en) * 2010-10-13 2021-06-30 Asahi Kasei Kabushiki Kaisha Polyphenylene ether as well as resin composition and molding thereof
JP5570440B2 (ja) * 2011-01-17 2014-08-13 旭化成ケミカルズ株式会社 樹脂組成物、熱可塑性樹脂組成物および該樹脂組成物の製造方法ならびに該樹脂組成物を成形して得られる成形体

Also Published As

Publication number Publication date
EP2730613A4 (en) 2014-07-23
CN103619943B (zh) 2015-11-11
EP2730613B1 (en) 2015-03-04
WO2013005806A1 (ja) 2013-01-10
JPWO2013005806A1 (ja) 2015-02-23
CN103619943A (zh) 2014-03-05
US20140206810A1 (en) 2014-07-24
EP2730613A1 (en) 2014-05-14
US8946356B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
JP5860463B2 (ja) 樹脂組成物及びその製造方法
US9783675B2 (en) Resin composition and molded article thereof
JP5570440B2 (ja) 樹脂組成物、熱可塑性樹脂組成物および該樹脂組成物の製造方法ならびに該樹脂組成物を成形して得られる成形体
JP5550393B2 (ja) 樹脂組成物
US6762218B2 (en) Impact resistant thermoplastic molding materials comprised of syndiotactic polystyrene, glass fibers and thermoplastic elastomer (tpe) impact modifiers
JP5088647B2 (ja) 樹脂組成物及びその製法
US20190218382A1 (en) Method of manufacturing a resin composition
JP6192623B2 (ja) 樹脂組成物及びその成形体
JP2019156957A (ja) 樹脂組成物
JP6175339B2 (ja) 樹脂組成物及びその成形体
JP6165013B2 (ja) 樹脂組成物及びその成形体
JP6706083B2 (ja) 樹脂組成物の製造方法
JP5312928B2 (ja) 樹脂組成物、その製造方法並びにこれからなる成形品、ケーブル用被覆材及びケーブル
JP4001789B2 (ja) 二次電池用樹脂組成物
JP2000344974A (ja) 耐油性の樹脂組成物
JP3853919B2 (ja) 樹脂組成物
JP3621019B2 (ja) 樹脂組成物
JP6185442B2 (ja) 樹脂組成物及びその成形体
JP2015078275A (ja) 成形体
JP7194823B2 (ja) 配線部品
JP2022083843A (ja) 配線部品
JP2003338266A (ja) 密閉型二次電池電槽用樹脂組成物
JP6049483B2 (ja) ポリプロピレン系樹脂組成物及びその成形品
JP2021085023A (ja) 熱可塑性樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151218

R150 Certificate of patent or registration of utility model

Ref document number: 5860463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350