JP5846245B2 - 自動焦点検出装置 - Google Patents

自動焦点検出装置 Download PDF

Info

Publication number
JP5846245B2
JP5846245B2 JP2014101961A JP2014101961A JP5846245B2 JP 5846245 B2 JP5846245 B2 JP 5846245B2 JP 2014101961 A JP2014101961 A JP 2014101961A JP 2014101961 A JP2014101961 A JP 2014101961A JP 5846245 B2 JP5846245 B2 JP 5846245B2
Authority
JP
Japan
Prior art keywords
pair
line sensors
edge angle
focus detection
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014101961A
Other languages
English (en)
Other versions
JP2014186339A (ja
Inventor
金井 守康
守康 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2014101961A priority Critical patent/JP5846245B2/ja
Publication of JP2014186339A publication Critical patent/JP2014186339A/ja
Application granted granted Critical
Publication of JP5846245B2 publication Critical patent/JP5846245B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Description

本発明は、瞳分割位相差方式の自動焦点検出装置に関する。
一眼レフカメラに搭載される自動焦点検出装置は、瞳分割位相差方式の場合、瞳分割された一対の被写体像をラインセンサ上に照射し、ラインセンサ上の一対の被写体像の位相差からデフォーカスを求める構成である。具体的には、ラインセンサ上に形成された一対の被写体像の間隔が所定長のときに合焦、所定長より短いときには前ピン、所定長より長いときには後ピンと判定され、合焦位置からのピントずれの量がデフォーカス量として出力される。
この瞳分割位相差方式の焦点検出には、水平方向のコントラスト成分を有する被写体について焦点検出する縦線検出と、垂直方向のコントラスト成分を有する被写体について焦点検出する横線検出と、この縦線検出と横線検出の両方を実施するクロス型検出とが知られている。
例えば特許文献1には、クロス型の焦点検出において、垂直・水平二組の画素列の出力を足し合わせた値(合成センサ出力)から位相差を求めることで、焦点検出精度が向上する旨の記載がある。また特許文献2には、クロス型の焦点検出に用いる2対のラインセンサを平行に隣接させ且つラインセンサの並び方向を相対的にずらして配置することで、感度を落とさずに画素ピッチを狭くでき、これによって焦点検出精度が向上する旨の記載がある。
特公平7−74855号公報 特開2005−300844号公報 特開平2−272410号公報 特開2002−174766号公報
しかし、従来の縦線検出、横線検出及びクロス型検出のいずれによっても、被写体が斜め方向にコントラスト成分(輝度分布)を有している場合は、ピントずれが生じてしまう。特許文献1、2には、斜め方向のコントラスト成分を有する被写体に関する記載がなく、斜め方向のコントラスト成分を検出する斜め線検出について何ら開示していない。
斜め線検出は、縦線検出用ラインセンサまたは横線検出用ラインセンサの出力を利用して実現可能であるが、部品精度や組み立て誤差によって一対のラインセンサ上に形成される被写体像の位置がずれていると、被写体の異なる領域を焦点検出していることとなり、焦点検出精度が著しく低下してしまう問題があった。この部品精度による斜め線検出の精度低下を抑える対策方法としては、例えば特許文献3にセパレータレンズの誤差に合わせてセンサ配置を決めることが記載されているが、樹脂成形部品であるセパレータレンズのキャビティ毎にラインセンサを用意しなければならず、コストがかかる。また特許文献4には、セパレータレンズ自体の精度を上げることで斜め線検出精度を向上させることが記載されているが、部品加工精度に限界があり、かつ、ラインセンサを光学系に組み付けする際に生じる組み立て誤差の影響を補正することができない。
本発明は、以上の問題意識に基づき、低コスト及び簡単な構成で、部品精度や組み立て誤差の影響を減少させ、斜め線検出精度を高められる自動焦点検出装置を得ることを目的とする。
本発明は、二つの画素列を平行に隣接させたパラレルラインセンサを用いれば該パラレルセンサの二つの画素列の出力波形の位相差から被写体の輪郭(エッジ角度の影響度)を把握できること、及び、被写体の輪郭(エッジ角度の影響度)に応じてデフォーカス量を補正するまたはデフォーカス演算に用いる一対のラインセンサを選択することで、部品精度や組み立て誤差の影響が少なくなり、斜め線検出精度を高められることに着眼して完成されたものである。
すなわち、本発明は、被写体光束を瞳分割して一対の被写体像を異なる検出領域のラインセンサ上に投影し、該投影した一対の被写体像の位相差からデフォーカス量を求める自動焦点検出装置において、ラインセンサは、横方向に配置した縦線検出用の一対の横ラインセンサと縦方向に配置した横線検出用の一対の縦ラインセンサで構成され、各々が二つの画素列を平行に隣接させたパラレルラインセンサであって、このパラレルラインセンサの二つの画素列の出力波形の位相差から算出された前記被写体像のエッジ角度の影響度を判別する判別手段と、前記パラレルラインセンサについて予め測定により検出した誤差量から定めたエッジ角度の影響度を所定値範囲と比較し、比較結果に応じてデフォーカス演算に用いる一対のラインセンサの出力を選択する選択手段と、選択されたセンサ出力に基づいてデフォーカス演算する演算手段と、を備えたことを特徴としている。
選択手段は、前記エッジ角度の影響度を所定値範囲と比較して一対のラインセンサの焦点ずれ量が小さい方の出力を選択することが好ましい。
選択手段はまた、一対の横ラインセンサ及び一対の縦ラインセンサの両方の焦点ずれ量が所定値以内となるエッジ角度の影響度のときは、該一対の横ラインセンサと一対の縦ラインセンサの両方を選択することが好ましい。この場合、演算手段は、一対の横ラインセンサの出力を用いたデフォーカス演算結果と一対の縦ラインセンサの出力を用いたデフォーカス演算結果の平均値を算出し、この平均値をデフォーカス量として求める。
本発明によれば、二つの画素列を平行に隣接させたパラレルラインセンサを採用し、このパラレルセンサの隣接する二つの画素列の出力波形の位相差に応じてデフォーカス量を補正するまたはデフォーカス演算に用いる一対のラインセンサの出力を選択するので、センサ光学部品の部品精度や組み立て誤差があってもその影響をなくすことができ、低コスト及び簡単な構成で、斜め線検出精度を高められる自動焦点検出装置が得られる。
本発明の自動焦点検出装置を搭載した一眼レフカメラの主要構成を示すブロック図である。 AFモジュールの構成を示す分解斜視図である。 ラインセンサ上に投影される被写体像を示す模式平面図であって、(A)縦横ラインセンサ対の組み立て誤差がない場合、(B)縦ラインセンサ対のみ組み立て誤差がある場合、(C)縦横ラインセンサ対の両方に組み立て誤差がある場合を示している。 パラレルラインセンサの二つの画素列の出力波形を示す模式図であって、(A)縦方向にエッジを有する被写体の場合、(B)斜め方向にエッジを有する被写体の場合を示している。 被写体像のエッジ角度とラインセンサの焦点ずれ量との関係を示すグラフである。 参考例の製造段階で実施される、セパレータレンズの部品精度及び縦横ラインセンサ対の組み立て誤差による焦点検出誤差を検出するフローチャートである。 図6のS5で実行される誤差補正情報の記憶処理の一例を示すフローチャートである。 参考例におけるAF処理の一例を示すフローチャートである。 実施形態において、製造段階で実施される、セパレータレンズの部品精度及び縦横ラインセンサ対の組み立て誤差による焦点検出誤差を検出するフローチャートである。 実施形態において、縦ラインセンサ対の組み立て誤差がある場合に実施するAF処理の一例を示すフローチャートである。 実施形態において、縦横ラインセンサ対の両方に組み立て誤差がある場合に実施するAF処理の一例を示すフローチャートである。
図1は、本発明を一眼レフカメラの自動焦点検出装置に適用した実施形態であって、その主要構成をブロックで示した図である。このAF一眼レフカメラは、自動焦点検出装置としてAFモジュール(自動焦点検出モジュール)60を内蔵したカメラボディ11と、このカメラボディ11に着脱可能なAF対応の撮影レンズ51とを備えている。
カメラボディ11は、カメラボディ11および撮影レンズ51を総括的に制御し、判別手段、選択手段、及び演算手段としても動作するボディCPU31を備えている。一方、撮影レンズ51は、レンズ機能を制御するレンズCPU57を備えている。さらにカメラボディ11は、撮影レンズ51に搭載されたレンズCPU57との間でレンズ情報、AFレンズ駆動情報等を入出力する周辺制御回路21を備えている。
撮影レンズ51からカメラボディ11内に入射した被写体光束は、大部分がメインミラー13により、ファインダ光学系を構成するペンタプリズム17に向かって反射され、ペンタプリズム17で反射されてアイピースから射出する。ペンタプリズム17から射出された被写体光束の一部は測光IC18の受光素子に入射する。一方、メインミラー13の中央部に形成されたハーフミラー部14に入射した光束の一部はハーフミラー部14を透過し、メインミラー13の背面に設けられたサブミラー15により下方に反射され、AFモジュール60に入射する。
測光IC18は、受光量に応じて光電変換した電気信号を、周辺制御回路21を介してボディCPU31に測光信号として出力する。ボディCPU31は、測光信号およびフィルム感度情報等に基づいて所定の露出演算を実行し、露出用の適正シャッタ速度および絞り値を算出する。そして、これらの算出したシャッタ速度および絞り値に基づいて、撮影処理の際に周辺制御回路21は、絞り機構22を駆動して撮影レンズ51の絞り(図示せず)を算出した絞り値に設定し、算出したシャッタ速度に基づいて露光機構23を駆動して露光する。
AFモジュール60は、被写体70の焦点状態を検出して画素単位のビデオ信号をボディCPU31に出力する。ボディCPU31は、AFモジュール60からの入力信号に基づいてデフォーカス演算を行い、算出したデフォーカス量だけモータードライブ回路32を介してAFモータ33を駆動する。AFモータ33の回転は、ギアブロック34により減速され、カメラボディ11のマウント部に設けられたジョイント35と撮影レンズ51のマウント部に設けられたジョイント55との接続を介して撮影レンズ51のギアブロック54に伝達され、ギアブロック54を介して焦点調節光学系56を進退移動させる。
ボディCPU31は、制御プログラム等をメモリしたROM31a、演算用、制御用の所定のデータを一時的にメモリするRAM31b、A/D変換器31c及びD/A変換器31dを内蔵している。
ボディCPU31には、スイッチ手段として、周辺制御回路21等への電源をオン/オフするメインスイッチSWM、レリーズボタンの半押しでオンする測光スイッチSWS、レリーズボタンの全押しでオンするレリーズスイッチSWRが設けられている。
またボディCPU31には、設定されたAF、露出、撮影などのモード、シャッタ速度、絞り値などの各種撮影情報を表示する表示パネル36と、外部不揮発性メモリ手段としてのEEPROM38が接続されている。表示パネル36は、通常、カメラボディ11の外面およびファインダ視野内の2ヶ所に設けられた表示器を含む。EEPROM38には、カメラボディ11特有の各種定数などがメモリされている。
カメラボディ11には、撮像手段としてのCCDイメージセンサ45が設けられている。CCDイメージセンサ45による撮像面と等価に、AFモジュール60による焦点検出面が設定されている。CCDイメージセンサ45の出力信号は、AFE(アナログフロントエンド)46でデジタル化され、DSP41でLCD42に表示可能なビデオ信号に加工される。DSP41は、ボディCPU31との間で撮影に関する情報を授受する。
図2は、AFモジュール60の構成を示す分解斜視図である。AFモジュール60は、いわゆる瞳分割位相差方式のAFモジュールであって、撮影レンズ51による被写体像(一次像)f1が形成される予定焦点面(一次結像面)よりも後方に配置したコンデンサーレンズ61と、コンデンサーレンズ61により集められた被写体光束を瞳分割するセパレータマスク62及びセパレータレンズ63と、瞳分割された一対の被写体像(二次像)f2V、f2Hが一対の横ラインセンサ64H及び一対の縦ラインセンサ64V上に投影されるCCD焦点検出素子64とを備えている。セパレータマスク62は、セパレータレンズ63の入射側に配置されていて、被写体光束を透過させる透過穴62V、62Hを縦方向と横方向にそれぞれ一対ずつ有している。セパレータレンズ63は、複数のレンズを一体成形したものである。
CCD焦点検出素子64は、いわゆる瞳分割された一対の被写体光束をそれぞれ受光して積分する複数のラインセンサを有している。複数のラインセンサは、横方向に配置した縦線検出用の一対の横ラインセンサ64Hと縦方向に配置した横線検出用の一対の縦ラインセンサ64Vとで構成され、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vを構成する各ラインセンサが、二つの画素列a、bを間隔dで平行に隣接させたパラレル型ラインセンサ(図4)からなる。なお、このパラレル配置される二つの画素列a、bは隣接するラインセンサであればよく、従って画素列a、bを半ピッチずつずらして並べて千鳥格子のように配置しても、またはエリアセンサ配列されたセンサ列の任意の二つの画素列であってもよく、その作用に変化はない。
このCCD焦点検出素子64には、図示されていないが、各ラインセンサの受光光量(積分値)をチェックするモニタセンサと、各ラインセンサ及びモニタセンサを駆動制御する制御回路系が備えられている。制御回路系は、モニタセンサのモニタ電圧(出力電圧)が所定の閾値に達すると、そのモニタセンサに対応するラインセンサの積分を終了させる。そして、全てのラインセンサの積分を終了させると、ラインセンサが積分した電荷を、ラインセンサ毎に画素単位で逐一電圧に変換し、画素単位のビデオ信号として、ボディCPU31へ出力する。
図3(A)〜(C)は、CCD焦点検出素子64の一対の横ラインセンサ64H及び一対の縦ラインセンサ64V上にそれぞれ投影される一対の被写体像f2V、f2Hを示す模式平面図である。
図3(A)は、セパレータレンズ63の部品精度が良好で、かつ、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの組み立て誤差がない場合を示している。この場合、一対の横ラインセンサ64Hには一対の被写体像f2Hの同じ領域が、一対の縦ラインセンサ64Vには被写体像f2Vの同じ領域が投影される。
図3(B)は、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの組み立て誤差はないが、一対の縦ラインセンサ64Vに対するセパレータレンズ63の部品精度が悪い場合、またはセパレータレンズ63の部品精度は良好、一対の横ラインセンサ64Hの組み立て誤差はないが、一対の縦ラインセンサ64Vの組み立て誤差がある場合を示している。この場合、一対の横ラインセンサ64H上には一対の被写体像f2Hの同じ箇所が投影されるものの、一対の縦ラインセンサ64V上には一対の被写体像f2Vの異なる箇所が投影される。このままの状態でCCD焦点検出素子64が焦点検出すると、一対の縦ラインセンサ64Vは一対の被写体像f2Vの異なる箇所を焦点検出することとなり、焦点検出精度が著しく低下してしまう。ここで、一対の縦ラインセンサ64V上に投影された一対の被写体像f2Vにはマイナス方向(被写体像の間隔が狭まる方向)の誤差が生じ、一対の縦ラインセンサ64Vの出力に基づいて合焦させた場合は後ピンとなってしまう。
図3(C)は、セパレータレンズ63の部品精度は良好であるが、一対の横ラインセンサ64Hと一対の縦ラインセンサ64Vの両方に組み立て誤差がある場合を示している。この場合、一対の横ラインセンサ64H上に投影される一対の被写体像f2Hにはプラス方向(被写体像の間隔が広がる方向)の誤差が生じ、一対の縦ラインセンサ64V上に投影される一対の被写体像f2Vにはマイナス方向(被写体像の間隔が狭まる方向)の誤差が生じる。このため、一対の横ラインセンサ64Hの出力に基づいて合焦させた場合は前ピン、一対の縦ラインセンサ64Vの出力に基づいて合焦させた場合は後ピンとなってしまう。
図4は、一対の横ラインセンサ64Hを構成するパラレルラインセンサの二つの画素列a、b上に投影される被写体像と、このパラレルラインセンサの出力波形Va、Vbとの関係を示す模式平面図である。図4において、画素列a、b上に投影される被写体像は塗りつぶして示してある。
被写体が縦方向にコントラスト成分(輝度分布)を有する場合は、図4(A)に示されるように、上下に並ぶ二つの画素列a、bにおいて横方向の同じ位置で被写体の輪郭(エッジ)が投影されるので、該二つの画素列a、bからの出力波形Va、Vbは同一となり、位相差pは生じない。
これに対し、被写体が斜め方向にコントラスト成分(輝度分布)を有する場合は、図4(B)に示されるように、上下に並ぶ二つの画素列a、bにおいて横方向の異なる位置に被写体像の輪郭(エッジ)が投影されるので、該二つの画素列a、bからの出力波形Va、Vbに位相差pが生じる。画素列a、bの位相差pは、セパレータレンズ63の部品精度及びセンサ組み立て誤差とは無関係に、被写体像のエッジ角度θのみによって変化する。
被写体像のエッジ角度θ(図4(B)に示すように二つの画素列a、bの並び方向と直交する方向に対する時計回り方向に測った角度)[deg]は、ラインセンサの画素列a、bの間隔d、画素列a、bの出力波形Va、Vbの位相差pとしたとき、横ラインセンサ64Hにおいてはtanθ=p/dにより、縦ラインセンサ64Vにおいてはtan(θ−90°)=p/dにより算出できる。ただし位相差pは、p=Vb−Vaによって算出され、図4(B)の例の場合、pの符号は正の値を取る。また縦ラインセンサ64Vは横ラインセンサ64Hを基準に半時計回り方向に90°回転させた配置を取るセンサである為、tan(θ−90°)を用いる。なお、図4は、説明の便宜上、位相差を検出するパラレルラインセンサの二つの画素列a、bの位相差検出領域に単一のエッジが存在する場合を示している。実際の撮影時には、状況により、パラレルラインセンサの二つの画素列a、bの位相差検出領域に角度の異なる複数のエッジが混在する場合も想定される。その場合、パラレルラインセンサの二つの画素列a、bの出力波形Va、Vbの位相差pから算出されるエッジ角度θは、これら角度の異なる複数のエッジの平均値となり、必ずしも被写体像の単一のエッジ角度と一致しない。複数のエッジが混在するときのエッジ角度θは、厳密に言えば、被写体像のエッジ角度の影響度を示す数値である。一方、パラレルラインセンサの二つの画素列a、bの出力波形Va、Vbの位相差pと焦点検出誤差量との関係は、単一エッジであっても複数エッジの平均であっても、略一致する。位相差pとエッジ角度θの関係は検出するエッジの数に関係なく一義的に決定されるので、本明細書では複数エッジが混在する場合の説明を省略した。
図5は、被写体像のエッジ角度θと横ラインセンサ64H及び縦ラインセンサ64Vの焦点ずれ量(焦点検出誤差)との関係を示すグラフである。各ラインセンサの画素列a、bの並び方向に対する被写体像のずれ(焦点ずれ)はセパレータレンズ63の部品精度やセンサ組み立て誤差により変化するので、図5のグラフでは、横ラインセンサ64Hの被写体像のエッジ角度θ=0°及び縦ラインセンサ64Vの被写体像のエッジ角度θ=180゜のときに生じる焦点ずれ量を“0”、横ラインセンサ64Hの被写体像のエッジ角度θ=45°及び縦ラインセンサ64Vの被写体像のエッジ角度θ=135°のときに生じる焦点ずれ量を“1”として規格化してある。図5の実線が横ラインセンサ64Hの焦点ずれを示し、破線が縦ラインセンサ64Vの焦点ずれを示している。このように横ラインセンサ64Hと縦ラインセンサ64Vにおいて、被写体像のエッジ角度θの関係は、その位相が90°シフトしたものになる。
本実施形態は、図5に示す被写体像のエッジ角度θと横ラインセンサ64H及び縦ラインセンサ64Vの焦点ずれ量との関係を利用し、被写体像のエッジ角度θに応じてデフォーカス演算に用いるラインセンサの出力を補正または選択することにより、斜め方向にコントラスト成分(輝度分布)を有する被写体についても焦点検出精度を高める。
先ず、図6〜図8を参照し、被写体像のエッジ角度θに応じてデフォーカス演算に用いるラインセンサ対の出力を補正する参考例について説明する。図6〜図8のフローチャートは、ボディCPU31により実行される。
図6は、製造段階で実施される、セパレータレンズ63の部品精度と一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの組み立て誤差による焦点検出誤差を検出するフローチャートである。ボディCPU31は、先ず、所定距離に予め設置しておいた被写体70としてのチャートをAFモジュール60により焦点検出させ(S1)、チャート角度α(図3(B)、(C)参照)で、パラレルラインセンサの二つの画素列a、bの出力波形Va、Vbの位相差pを測定し(S3)、チャート角度αにおける誤差補正情報をEEPROM38に記憶する(S5)。チャートは、初期状態において、パラレルラインセンサの位相差から算出される被写体像のエッジ角度θ=0°となる向き、すなわちチャート角度α=0°で設置しておく。S3で位相差測定するパラレルラインセンサは、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vを構成するいずれのパラレルラインセンサでもよいが、後述のS27でエッジ角度θの算出に用いるパラレルセンサと同一のものとする。
図7は、図6のS5で実行される誤差補正情報の記憶処理の一例を示すフローチャートである。この処理では、被写体像のエッジ角度θ=0°となる向きで設置しておいたチャートをAFモジュール60により焦点検出させ(S11)、被写体像のエッジ角度θと一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの焦点ずれ量とを関連させた誤差補正情報をEEPROM38に記憶し(S13)、被写体像のエッジ角度θが180°であるか否かをチェックする(S15)。被写体像のエッジ角度θが180°でなければ、被写体像のエッジ角度θを+1°増やす方向及び回転量でチャートを回転させ(S15;N、S17)、S11へ戻る。そして、被写体像のエッジ角度θが180°になったら、処理を終了する(S15;Y)。被写体像のエッジ角度θが180°になるまでS11〜S17の処理を繰り返すことにより、被写体像のエッジ角度θ(0°≦θ≦180°;θは正の整数)に対応する誤差補正情報が得られる。
図8は、AF処理を示すフローチャートである。ボディCPU31は、先ず、CCD焦点検出素子64の一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vに積分を開始させ(S21)、いずれかのモニタセンサのモニタ電圧が所定の閾値に達したときまたは所定時間が経過したときのいずれか早いときに、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの各々に蓄積された蓄積電荷を画素単位のビデオ信号として順に読み出し(S23)、読み出した一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの出力の少なくとも一方を用いてデフォーカス演算する(S25)。
続いて、S23で読み出したパラレルラインセンサの二つの画素列の出力波形Va、Vbの位相差pから該パラレルラインセンサ上に投影された被写体像のエッジ角度θを算出する(S27)。ここで、エッジ角度θは、tanθ=p/dにより算出する。dは、読み出したパラレルラインセンサの二つの画素列の間隔である。S27のエッジ角度算出に利用するパラレルラインセンサは、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vを構成するいずれのパラレルラインセンサでもよいが、前述のS3の位相差測定に用いたパラレルラインセンサと同一のものとする。本実施例では、一対の横ラインセンサ64Hの一方のパラレルラインセンサを用いている。
続いて、算出した被写体像のエッジ角度θに対応する誤差補正情報を用いて、S25で算出したデフォーカス量を補正する(S29)。誤差補正情報は、上述したように製造段階(図6、図7)でEEPROM38に記憶されているので、S29ではエッジ角度θに対応する誤差補正情報をEEPROM38から読み出して用いる。本実施例では、パラレルラインセンサの二つの画素列a、bの出力波形Va、Vbの位相差pを被写体像のエッジ角度(またはエッジ角度の影響度)を示す数値θに変換して誤差補正情報を関連させているが、パラレルラインセンサの二つの画素列a、bの出力波形Va、Vbの位相差pと直接関連させた誤差補正情報を作成し、この誤差補正情報を用いてデフォーカス補正を行ってもよい。
そして、補正後のデフォーカス量が所定の合焦幅より小さいか否かをチェックし(S31)、デフォーカス量が所定の合焦幅より小さければ表示パネル36に合焦OKである旨を表示する(S33)。デフォーカス量が所定の合焦幅以上であれば、このデフォーカス量に相当するパルス数を算出し(S35)、このパルス数に達するまで、モータードライブ回路32を介してAFモータ33を駆動させ、焦点調節光学系56を移動させる(S37)。
なお、本実施形態ではCCD焦点検出素子64として一対の横ラインセンサ64と一対の縦ラインセンサ64Vの両方を備えているが、上記参考例においては、必ずしも一対の横ラインセンサ64と一対の縦ラインセンサ64Vの両方を具備している必要はなく、一対のラインセンサを有していればよい。
次に、図9〜図11を参照し、被写体像のエッジ角度θに応じてデフォーカス演算に用いるラインセンサ対の出力を選択する実施形態について説明する。図9〜図11のフローチャートは、ボディCPU31により実行される。
図9は、製造段階で実施される、セパレータレンズ63の部品精度と一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの組み立て誤差による焦点検出誤差を検出するフローチャートである。ボディCPU31は、所定距離に予め設置しておいた被写体70としてのチャートをAFモジュール60により焦点検出させ(S41)、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの組み立てによる誤差量を検出し(S43)、この誤差量に応じて実行する制御プログラムを設定する(S45)。本実施形態では、一対の縦ラインセンサ64Vのみに組み立て誤差がある場合には図10に示すAF処理を実行し、一対の横ラインセンサ64Hと一対の縦ラインセンサ64Vの両方に組み立て誤差がある場合には図11に示すAF処理を実行するように設定する。
図10は、一対の横ラインセンサ64Hの組み立て誤差はないが、一対の縦ラインセンサ64Vの組み立て誤差がある場合、すなわち、図3(B)に示すように、一対の横ラインセンサ64H上には一対の被写体像f2Hの同じ箇所が投影され、一対の縦ラインセンサ64V上には一対の被写体像f2Vの異なる箇所が投影される場合に実施するAF処理の一例を示すフローチャートである。
ボディCPU31は、先ず、CCD焦点検出素子64の一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vに積分を開始させ(S51)、いずれかのモニタセンサのモニタ電圧が所定の閾値に達したときまたは所定時間が経過したときのいずれか早いときに、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの各々に蓄積された蓄積電荷を画素単位のビデオ信号として順に読み出し(S53)、読み出した一対の横と縦ラインセンサ64Hと64Vの各パラレルラインセンサの二つの画素列a、bの出力波形Va,Vbの位相差pから被写体像のエッジ角度θを算出する(S55)。ここで、エッジ角度θはtanθ=p/dにより算出する。本実施形態では、エッジ角度θの算出に一対の横ラインセンサ64Hのうち一方のパラレルラインセンサを用い、該横ラインセンサ64H上に投影された被写体像のエッジ角度θを算出している。S53では一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの出力を同時に読み出しているが、S53で一対の横ラインセンサ64Hの出力を読み出し、後で一対の縦ラインセンサ64Vの出力を読み出す構成として処理の高速化を図ってもよい。
続いて、算出したエッジ角度θが0°<θ<60°または120°<θ<180°の範囲にあるか否かをチェックし(S57)、この範囲内であれば一対の横ラインセンサ64Hの出力を用いてデフォーカス演算する(S57;Y、S59)。範囲外であれば、一対の縦ラインセンサ64Vの出力を用いてデフォーカス演算する(S57;N、S61)。
算出したエッジ角度θが0°<θ<60°または120°<θ<180°の範囲にある場合は、組み立て誤差の生じていない一対の横ラインセンサ64Hの焦点ずれ量が図5に示される実線のように変化を生じないか、あるいは極めて変化が小さいため、一対の横ラインセンサ64Hの出力をデフォーカス演算に用いることで焦点検出精度は良好に維持される。しかし、エッジ角度θが60°≦θ≦120°のときは、一対の横ラインセンサ64Hの出力波形の立ち上がりまたは立ち下がりが急激に減少していることから、焦点検出精度が低下し、また、位相差pの検出精度も低下するので、投影される被写体像が二つの画素列a、bの並び方向にずれていても、図5の破線で示した焦点ずれ量が±0.5以内におさまる一対の縦ラインセンサ64Vの出力をデフォーカス演算に用いるほうが焦点検出精度を高めることができる。なお、一対の横ラインセンサ64Hと一対の縦ラインセンサ64Vを切り替えるエッジ角度θ(閾値)の具体的数値については、例えば個体差などによって生じる組み立て誤差の程度により、±10°程度の範囲内で変更してもよい。
デフォーカス演算後は、算出したデフォーカス量が所定の合焦幅より小さいか否かをチェックし(S63)、デフォーカス量が所定の合焦幅より小さければ表示パネル36に合焦OKである旨を表示する(S63;Y、S65)。デフォーカス量が所定の合焦幅以上であれば、このデフォーカス量に相当するパルス数を算出し(S63;N、S67)、このパルス数に達するまで、モータードライブ回路32を介してAFモータ33を駆動させ、焦点調節光学系56を移動させる(S69)。
図11は、一対の横ラインセンサ64Hと一対の縦ラインセンサ64Vの両方に組み立て誤差がある場合、すなわち、図3(C)に示すように、一対の横ラインセンサ64H上に投影される一対の被写体像f2Hにはプラス方向(被写体像の間隔が広がる方向)の誤差が生じ、一対の縦ラインセンサ64V上に投影される一対の被写体像f2Vにはマイナス方向(被写体像の間隔が狭まる方向)の誤差が生じている場合に実施するAF処理の一例を示すフローチャートである。
図11のS71、S73及びS75の処理は、上述した図10のS51、S53及びS55の処理とほぼ同一である。ただし、図11のS75では、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vのうちいずれか一つのパラレルラインセンサに対し、該パラレルラインセンサの二つの画素列a、bの出力波形Va、Vbの位相差pからセンサ対上に投影された被写体像のエッジ角度θを算出する。
S75で被写体像のエッジ角度θを算出したら、エッジ角度θが0°<θ<30°または150°<θ<180°の範囲にあるか否かをチェックする(S77)。この範囲内であれば、一対の横ラインセンサ64Hの出力を用いてデフォーカス演算を実行し、S89へ進む(S77;Y、S79)。一方、上記範囲外であれば(S77;N)、一対の縦ラインセンサ64Vの出力を用いてデフォーカス演算を実行し(S79)、さらにエッジ角度θが60°<θ<120°の範囲にあるか否かを再チェックする(S81)。エッジ角度θが60°<θ<120°の範囲外であれば、一対の横ラインセンサ64Hの出力を用いてデフォーカス演算し、一対の縦ラインセンサ64Vの出力から算出したデフォーカス量と一対の横ラインセンサ64Hの出力から算出したデフォーカス量の平均値を算出し、これをデフォーカス量として求め、S89へ進む(S81;N、S83、S85)。エッジ角度θが60°<θ<120°の範囲内であれば、そのままS89へ進む。
被写体像のエッジ角度θが0°<θ<30°または150°<θ<180°の範囲にある場合は、一対の横ラインセンサ64Hの焦点ずれ量が図5に示されるように±0.5以内であるから、この一対のラインセンサ64Hの出力をデフォーカス演算に用いることで焦点検出精度は良好に維持される。また、エッジ角度θが60°<θ<120°の範囲にある場合は、一対の縦ラインセンサ64Vの焦点ずれ量が図5に示されるように±0.5以内であるから、この一対の縦ラインセンサ64Vの出力をデフォーカス演算に用いることで焦点検出精度は良好に維持される。また、エッジ角度θが30°≦θ≦60°または120°≦θ≦150°の範囲にある場合は、一対の横ラインセンサ64Hと一対の縦ラインセンサ64Vの焦点ずれ量の絶対値が上記二つの範囲にある場合よりも大きくなるが、焦点ずれの方向が逆向きとなり、かつ、その絶対値が比較的近い値となるので、一対の横ラインセンサ64Hの出力を用いたデフォーカス演算結果と一対の縦ラインセンサ64Vの出力を用いたデフォーカス演算結果の平均値をデフォーカス量として求めることで、焦点検出精度を高められる。なお、この場合も一対の横ラインセンサ64Hと一対の縦ラインセンサ64Vを切り替えるエッジ角度θ(閾値)の具体的数値については、例えば個体差などによって生じる組み立て誤差の程度により、±10°程度の範囲内で変更してもよい。
そして、S89では、S79、S81及びS87のいずれかで算出したデフォーカス量が所定の合焦幅より小さいか否かをチェックする。算出したデフォーカス量が所定の合焦幅より小さければ表示パネル36に合焦OKである旨を表示する(S89;Y、S91)。デフォーカス量が所定の合焦幅以上であれば、このデフォーカス量に相当するパルス数を算出し(S89;N、S93)、このパルス数に達するまで、モータードライブ回路32を介してAFモータ33を駆動させ、焦点調節光学系56を移動させる(S95)。
以上のように本実施形態では、CCD焦点検出素子64に設けたパラレルラインセンサ(一対の横ラインセンサ64H及び一対の縦ラインセンサ64V)の出力波形の位相差pによって被写体の輪郭(エッジ角度θ)を判別し、この判別結果に応じてデフォーカス量を補正する、または、デフォーカス演算に用いるセンサ出力を選択するので、セパレータレンズ63の部品精度及びセンサ組み立て誤差の影響を小さくでき、斜め方向にコントラスト成分(輝度分布)を有する被写体についても良好な焦点検出精度を維持できる。具体的に本実施形態によれば、一対の横ラインセンサ64H及び一対の縦ラインセンサ64Vの両方の焦点検出のズレ量を、従来に比べ、エッジ角度θ全域でおよそ±0.5程度以下に改善できた。
以上では、被写体像のエッジ角度θに応じてデフォーカス量を補正する参考例と被写体像のエッジ角度θに応じてデフォーカス演算に用いるセンサ対の出力を選択する実施形態について説明したが、被写体像のエッジ角度θに応じてデフォーカス演算に用いるセンサ対の出力を選択し、さらに、該選択したセンサ対の出力を補正データに基づいて補正する構成としてもよい。
11 カメラボディ
13 メインミラー
14 ハーフミラー部
15 サブミラー
31 ボディCPU(判別手段 選択手段 演算手段)
32 モータードライブ回路
33 AFモータ
34 54 ギアブロック
35 55 ジョイント
36 表示パネル
38 EEPROM
51 撮影レンズ
56 焦点調節光学系
57 レンズCPU
60 AFモジュール
61 コンデンサーレンズ
62 セパレータマスク
62H 62V 透過穴
63 セパレータレンズ
64 CCD焦点検出素子
64H 横ラインセンサ
64V 縦ラインセンサ
70 被写体(チャート)
a b 画素列
d 画素列の間隔
f1 被写体像(一次像)
f2H f2V 被写体像(二次像)
p 位相差
Va Vb 出力波形
θ 被写体像のエッジ角度
α チャートのエッジ角度

Claims (3)

  1. 被写体光束を瞳分割して一対の被写体像を異なる検出領域のラインセンサ上に投影し、該投影した一対の被写体像の位相差からデフォーカス量を求める自動焦点検出装置において、
    前記ラインセンサは、横方向に配置した縦線検出用の一対の横ラインセンサと縦方向に配置した横線検出用の一対の縦ラインセンサで構成され、各々が二つの画素列を平行に隣接させたパラレルラインセンサであって、
    このパラレルラインセンサの二つの画素列の出力波形の位相差から算出された前記被写体像のエッジ角度の影響度を判別する判別手段と、
    前記パラレルラインセンサについて予め測定により検出した誤差量から定めたエッジ角度の影響度を所定値範囲と比較し、比較結果に応じてデフォーカス演算に用いる一対のラインセンサの出力を選択する選択手段と、
    選択されたセンサ出力に基づいてデフォーカス演算する演算手段と、
    を備えたことを特徴とする自動焦点検出装置。
  2. 請求項1記載の自動焦点検出装置において、前記選択手段は、前記エッジ角度の影響度を所定値範囲と比較して前記一対のラインセンサの焦点ずれ量が小さい方の出力を選択する自動焦点検出装置。
  3. 請求項2記載の自動焦点検出装置において、前記選択手段は、前記一対の横ラインセンサ及び前記一対の縦ラインセンサの両方の焦点ずれ量が所定値以内となるエッジ角度の影響度のとき、該一対の横ラインセンサと一対の縦ラインセンサの両方を選択し、
    前記演算手段は、前記一対の横ラインセンサの出力を用いたデフォーカス演算結果と前記一対の縦ラインセンサの出力を用いたデフォーカス演算結果の平均値を算出し、この平均値をデフォーカス量として求める自動焦点検出装置。
JP2014101961A 2009-07-14 2014-05-16 自動焦点検出装置 Expired - Fee Related JP5846245B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014101961A JP5846245B2 (ja) 2009-07-14 2014-05-16 自動焦点検出装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009165977 2009-07-14
JP2009165977 2009-07-14
JP2014101961A JP5846245B2 (ja) 2009-07-14 2014-05-16 自動焦点検出装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010153833A Division JP2011039499A (ja) 2009-07-14 2010-07-06 自動焦点検出装置

Publications (2)

Publication Number Publication Date
JP2014186339A JP2014186339A (ja) 2014-10-02
JP5846245B2 true JP5846245B2 (ja) 2016-01-20

Family

ID=51833914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014101961A Expired - Fee Related JP5846245B2 (ja) 2009-07-14 2014-05-16 自動焦点検出装置

Country Status (1)

Country Link
JP (1) JP5846245B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148732A (ja) * 2015-02-10 2016-08-18 キヤノン株式会社 撮像装置及び画像の表示方法、プログラム、プログラムの記憶媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427814A (ja) * 1990-05-24 1992-01-30 Ricoh Co Ltd 測距装置
JPH07159683A (ja) * 1993-12-10 1995-06-23 Nikon Corp 焦点検出カメラ
JPH08247758A (ja) * 1994-12-28 1996-09-27 Fuji Film Micro Device Kk 測距装置
JP3353865B2 (ja) * 1995-06-09 2002-12-03 株式会社リコー 測距装置
JP3584691B2 (ja) * 1997-09-02 2004-11-04 ミノルタ株式会社 焦点位置検出装置
JP3219387B2 (ja) * 1999-01-08 2001-10-15 ミノルタ株式会社 撮像装置および該撮像装置を用いた測距装置
JP2001208962A (ja) * 2000-01-27 2001-08-03 Nikon Corp 焦点検出装置
JP4887570B2 (ja) * 2001-05-17 2012-02-29 株式会社ニコン 交換式撮影レンズ
JP2003344754A (ja) * 2002-05-29 2003-12-03 Olympus Optical Co Ltd 測距装置
JP2006071741A (ja) * 2004-08-31 2006-03-16 Olympus Corp 焦点検出装置
JP2006106429A (ja) * 2004-10-06 2006-04-20 Canon Inc カメラ

Also Published As

Publication number Publication date
JP2014186339A (ja) 2014-10-02

Similar Documents

Publication Publication Date Title
JP2011039499A (ja) 自動焦点検出装置
US8730374B2 (en) Focus detection apparatus
JP4946059B2 (ja) 撮像装置
JP5169499B2 (ja) 撮像素子および撮像装置
JP4551708B2 (ja) 撮像装置
US7536094B2 (en) Focus detection apparatus and image taking apparatus
US7767946B2 (en) Focus detection device and image pick-up device
US8098984B2 (en) Focus detecting apparatus and an imaging apparatus
US9781330B2 (en) Focus detection apparatus and control method for focus detection apparatus
US8369699B2 (en) Focus detection apparatus
JP5641771B2 (ja) 焦点検出装置
JPH11142724A (ja) カメラ、交換レンズ装置及びカメラシステム
JP2007264299A (ja) 焦点調節装置
US9602716B2 (en) Focus-detection device, method for controlling the same, and image capture apparatus
JP5963552B2 (ja) 撮像装置
JP5846245B2 (ja) 自動焦点検出装置
JP2011142464A (ja) 焦点検出装置および撮像装置
JP4950634B2 (ja) 撮像装置及び撮像システム
JP6512989B2 (ja) 焦点検出装置及び方法、及び撮像装置
US6760547B2 (en) Rangefinder apparatus and camera equipped therewith
JPH05264892A (ja) 自動焦点調節装置
JP5065466B2 (ja) 焦点検出装置および光学機器
US8077251B2 (en) Photometry apparatus and camera
JP4164143B2 (ja) 自動焦点カメラ
JP2001356260A (ja) ピント合わせ装置及び測距装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5846245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees