JP5843630B2 - 冷却システム - Google Patents

冷却システム Download PDF

Info

Publication number
JP5843630B2
JP5843630B2 JP2012012942A JP2012012942A JP5843630B2 JP 5843630 B2 JP5843630 B2 JP 5843630B2 JP 2012012942 A JP2012012942 A JP 2012012942A JP 2012012942 A JP2012012942 A JP 2012012942A JP 5843630 B2 JP5843630 B2 JP 5843630B2
Authority
JP
Japan
Prior art keywords
water
radiator
refrigerant
cooling
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012012942A
Other languages
English (en)
Other versions
JP2013152045A (ja
Inventor
山下 哲也
哲也 山下
池田 隆
隆 池田
杉本 猛
猛 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012012942A priority Critical patent/JP5843630B2/ja
Publication of JP2013152045A publication Critical patent/JP2013152045A/ja
Application granted granted Critical
Publication of JP5843630B2 publication Critical patent/JP5843630B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、冷凍・冷蔵ショーケース等へ利用できる冷却装置に関するものである。特に水等を利用して排熱を行う冷却装置に関するものである。
従来より、冷却装置が発生する熱を室外に排熱する場合、直接室外の空気に排熱する空冷式の冷却システムと、一度間接的に水などの媒体に排熱してから室外の空気に排熱する水冷式の冷却システムが知られている。
ここで、冷却装置においても、地球温暖化防止の観点から、冷媒量の最小化と装置の高効率運転化への取り組みが進められている。例えば、冷凍機の凝縮器を水冷凝縮器にして室内に設置し、冷媒量を最小化するとともに、室外に設置した放熱器と水冷凝縮器とを冷却水配管で連結して水回路を構成し、水循環ポンプにより水を循環させて冷凍機による排熱を室外に排出させる装置がある(例えば、特許文献1参照)。
特開平11−108529号公報(図1)
上記のような水回路を利用する冷却装置における構成では、水循環ポンプは、圧縮機の起動(駆動開始)/停止と同時に、起動/停止する。このため、例えば圧縮機がインバータ制御機能などの容量制御機能を有している場合でも、圧縮機の駆動中においては、水循環ポンプは常に全速で駆動するようにしているため、無駄な運転動力を消費していた。
この発明は、上記のような課題を解決するためになされたもので、より省エネルギーをはかることができる冷却装置を得ることを目的とする。
この発明に係る冷却システムは、冷媒を圧縮する容量可変の圧縮機、冷媒と水とを熱交換させる水冷凝縮器、冷媒を圧力調整する絞り装置および冷媒の熱交換により冷却対象を冷却する蒸発器を配管接続して構成する冷媒回路水冷凝縮器に水を供給する流量可変の水循環ポンプ、並びに、冷媒回路の運転負荷に基づいて、水循環ポンプが水冷凝縮器に供給する水の流量を制御する制御装置を有する冷却装置と、通過する水に放熱させる複数の放熱器と、各放熱器を流れる水の流量を調整する複数の放熱器用流量調整装置とを備え、冷却装置が有する水循環ポンプと、複数の放熱器とを並列に配管接続して水回路を構成し、制御装置は、冷媒回路における運転負荷に基づいて、各放熱器用流量調整装置が調整する水の流量を制御し、蒸発器を有するショーケースの前面足元の部分および前面下部の外枠内面部分の少なくとも一方に、放熱器を設けるものである。
この発明の冷却装置は、以上のように構成して冷却運転を行うので、水循環ポンプは、インバータ制御機能などの容量制御機能を有している圧縮機を搭載している冷却装置の運転負荷に合わせて容量制御し、流量を可変することができるので、省エネルギーをはかることができる。また、地球温暖化防止への貢献を同時に達成することができるという効果が得られる。
この発明の実施の形態1における冷却システムの構成を示す図である。 この発明の実施の形態1に係る制御器17の処理の流れを示す図である。 この発明の実施の形態1に係る冷却装置11の制御による消費電力を示す図である。 この発明の実施の形態2における冷却システムの構成を示す図である。 この発明の実施の形態2における冷却装置11の具体的な構造例を示す図である。
発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は、この発明の実施の形態1における冷却システムの構成を示す図である。本実施の形態の冷却システムは、冷却装置11、放熱器14等で構成する。例えば、図1に示す冷却用ショーケース、冷却貯蔵庫などの冷却装置11は、店舗の店内、工場の低温作業室等に設置されている。一方、放熱器14等は、例えば室外に設けられている。ここで、本実施の形態では2台の冷却装置11(冷媒回路6)を有している。
図1において、本実施の形態の冷却装置11は、容量制御機能を有する圧縮機1、四方弁5、水冷凝縮器2、絞り装置3および蒸発器4を冷媒配管で環状に接続し、冷媒回路6を構成している。ここでは、1台の冷却装置11で1つの冷媒回路6を構成しているが、例えば、1台の冷却装置11で複数の冷媒回路6を構成するようにしてもよい。
圧縮機1は、冷媒回路6の冷媒を吸入し、冷媒を圧縮して高温、高圧の状態にして吐出する。本実施の形態は、例えば、インバータ回路を有しており、回転数を変化させて容量制御を行うことができるタイプの圧縮機1で構成している。水冷凝縮器2は、水回路10を循環する水と圧縮機1から流入する冷媒とを熱交換させ、高温、高圧の冷媒を凝縮液化するとともに、冷媒から水に熱を移動し、水を加温させる熱交換器である。水冷凝縮器2は、例えば二重管式熱交換器、プレート式熱交換器などで構成する。ここで、冷媒回路6内の冷媒量を少なくするためには、冷媒が通過する側の内容積が小さいプレート式熱交換器で構成することが望ましい。
絞り装置3は冷媒を減圧等させる。ここで、絞り装置3としては、例えば電子式膨張弁等のように、開度を可変に制御でき、通過する冷媒の流量を制御できる流量制御手段が最適であるが、例えば毛細管、膨張弁などの冷媒流量調節手段で構成してもよい。ここで、冷媒回路6内の冷媒量を少なくするためには、一定量の冷媒でも制御性がよい電子式膨張弁で構成することが望ましい。蒸発器4は、冷媒回路6の冷媒と蒸発器用送風機7から送られる空気との間で熱交換を行い、熱を空気から冷媒に移動させ、冷却対象空間の空気を冷却する。また、蒸発器用送風機7は、蒸発器4に熱交換対象となる冷却対象空間の空気を送るための送風機である。四方弁5は、例えば、圧縮機1が吐出する高温の冷媒により蒸発器4に付いた霜を除く除霜運転を行う場合に、冷媒の流れを通常運転とは逆方向に流す場合に設けられる。このため、例えばヒータ等により蒸発器4の除霜を行う場合には、四方弁5を構成する必要はない。
冷媒回路6においては、冷却運転(通常運転)時は、図1の実線方向に冷媒を循環させる。また、除霜運転時は、四方弁5を切り替えて、図1の破線方向に逆サイクルに冷媒を循環させる。ここで、冷媒回路6を循環する冷媒として、例えばR410A、R32、R404A、2,3,3,3−テトラフルオロプロペン(HFO1234yf)等のテトラフルオロプロペンまたはこのテトラフルオロプロペンを含む混合冷媒、プロパン、イソブタン、二酸化炭素、アンモニア、空気などを用いる。
また、水回路10は、冷却装置11内にある流量可変の水循環ポンプ8、凝縮器用電動弁9および水冷凝縮器2、放熱器用電動弁16並びに放熱器14を水配管で接続して構成し、水を循環させる回路である。ここで、本実施の形態等における水とは、不凍液等、冷媒と熱交換しても態変化しない流体であるものとする。また、本実施の形態では、水回路10を構成する機器のうち、水循環ポンプ8、凝縮器用電動弁9および水冷凝縮器2を各冷却装置11が有している。このため、本実施の形態では、各冷媒回路6に対応して、水循環ポンプ8および凝縮器用電動弁9が設けられ、水回路10の水の流れに対して並列に回路接続されていることになる。そして、冷却装置11における、装置外の水配管との接続は、入口水配管接続口12および出口水配管接続口13を介して行う。ここで、本実施の形態における水回路10においては、放熱器14、放熱器用送風機15および放熱器用電動弁16の組み合わせを複数組(本実施の形態では2組)、水回路10に対して並列に接続している。
流量可変の水循環ポンプ8は、水回路10の水を加圧して水回路10内を移送するものである。本実施の形態は、例えば、インバータ回路を有しており、回転数を変化させて流量を可変できるタイプの水循環ポンプ8で構成している。凝縮器用電動弁9は、開度を可変に制御でき、水冷凝縮器2を通過する水の流量を制御できる開閉装置である。また、放熱器用流量調整装置となる放熱器用電動弁16は、開度を可変に制御でき、放熱器14を通過する水の流量を制御できる流量制御手段である。そして、放熱器14は、水回路10を流れる水と放熱器用送風機15から送られる空気との間で熱交換を行い、熱を水から放熱器周囲の空気に移動させて水を冷却する。流体供給手段となる放熱器用送風機15は、放熱器14に室外(冷却対象空間外)の空気を送る送風機である。本実施の形態では、放熱器用送風機15により、室外の空気を流体として放熱する例を示しているが、例えば、ポンプ(図示せず)などを用いて、水回路10外の水を流体として放熱するようにしてもよい。
また、制御器17は、冷却装置11内の圧縮機1、凝縮器用電動弁9、水循環ポンプ8等の機器を制御する制御装置である。本実施の形態では、冷却装置11(冷媒回路6)毎に制御器17を有している。各冷媒回路6(制御器17)を連携して制御するため、それぞれを通信線等により接続し、通信(信号の送受信)可能としている。また、本実施の形態では、一方の制御器17を親側の制御器17とする。そして、親側の制御器17は、各放熱器用電動弁16の開度を調整する制御を行う。制御器17における制御の詳細については後述する。
次に、冷媒回路6における冷却運転(通常運転)時の動作について説明する。まず、圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出し、四方弁5を介して水冷凝縮器2へ流入させる。水冷凝縮器2は、水循環ポンプ8から供給される水と冷媒との間で熱交換を行い、冷媒回路6の冷媒を凝縮液化させる。水冷凝縮器2から流出した冷媒は絞り装置3に流入する。絞り装置3は凝縮液化した冷媒を減圧する。絞り装置3を通過した冷媒は蒸発器4に流入する。蒸発器4は、冷媒回路6の冷媒と蒸発器用送風機7から送られる冷却対象空間の空気との間で熱交換を行い、冷媒を蒸発ガス化するとともに冷却対象となる空間の空気を冷却する。蒸発器4から流出した冷媒は、四方弁5を介して圧縮機1に吸入される。
さらに、水回路10の冷却運転時の動作について水回路10の水の流れに基づいて説明する。対応する冷媒回路6が運転を行っている場合、水循環ポンプ8は、水を吸入、加圧して移送させる。水は凝縮器用電動弁9を通って水冷凝縮器2へ流入する。水冷凝縮器2において冷媒と水とが熱交換する。これにより、熱が冷媒から水に移動し水が加温(加熱)する。水冷凝縮器2において加温された水は、放熱器用電動弁16を通って放熱器14へ流入する。放熱器14において、放熱器用送風機15から送られる室外側の空気と水とが熱交換する。これにより、熱が水から放熱器周囲の空気に移動して、水が冷却する。ここで、本実施の形態では、放熱器用電動弁16、放熱器14、放熱器用送風機15を複数台有しており、それぞれ個別に運転/停止することができる。また、各放熱器14における放熱容量を可変できる。
図2は本発明の実施の形態1に係る制御器17の制御に係る処理の流れを示す図である。次に制御器17の制御を図2にしたがって説明する。各制御器17は、インバータ制御機能を有する圧縮機1を起動させるか起動させない(停止させる)かを判断する(S1)。そして、起動させるものと判断すると、制御対象の凝縮器用電動弁9を開放させ、水循環ポンプ8を駆動させる(S2)。ここで、すでに凝縮器用電動弁9が開放し、水循環ポンプ8が駆動している場合には、そのまま継続する。
一方、起動させないものと判断すると、凝縮器用電動弁9を閉止させ、水循環ポンプ8を停止させる(S3)。例えば、圧縮機1が停止中にもかかわらず、対応する凝縮器用電動弁9が開いていると、他の水循環ポンプ8の駆動により、水が逆流するため、不必要なポンプ動力が生じ、省エネルギーを阻害することになるからである。冷媒回路6毎に水循環ポンプ8を対応して設け、停止中の冷媒回路6に対応する水循環ポンプ8を停止させるようにすることで、必要以上に水の循環動力を多くせずにすみ、さらに省エネルギーをはかることができる。
そして、圧縮機1を駆動して冷媒回路6による冷却運転中、冷媒回路6における冷却負荷が冷却装置11の冷却能力より大きいかどうかを判断する(S4)。冷却装置11の冷却能力より冷却負荷が大きいと判断すると、圧縮機1の回転数を増加させて冷却能力を増大させる。また、水循環ポンプ8の回転数を増加させて流量を増大させる(S5)。
冷媒回路6における冷却負荷が冷却装置11の冷却能力より大きくないと判断すると、さらに、冷媒回路6における冷却負荷が冷却装置11の冷却能力より小さいかどうかを判断する(S6)。冷却負荷が冷却装置11の冷却能力より小さいと判断すると、圧縮機1の回転数を減少させ冷却能力を減少させる。また、水循環ポンプ8の回転数を減少させて流量を減少させる(S7)。ここで、水循環ポンプ8の回転数の変化に合わせて、凝縮器用電動弁9の開度を調整するようにしてもよい。
さらに、本実施の形態では、複数の冷媒回路6に対応する水循環ポンプ8の流量合計に応じて、各放熱器用電動弁16の開度を調整する(S8)。この処理は、親側の制御器17が処理を行う。例えば本実施の形態のような2台の冷却装置11(冷媒回路6)を有している場合に、一方が停止して、冷却負荷合計が50%となり、水循環ポンプ8の流量合計も総流量の50%となっているようなときには、2つの放熱器用電動弁16のうち一方を閉じ、放熱器用送風機15を停止させる。放熱器用電動弁16を閉じることで、水循環ポンプ8が移送する水量が減るため、消費電力の削減をはかることができる。
また、例えば2台の放熱器14の設置場所が異なり、周囲温度条件が異なる場合は、より周囲温度の低い放熱器14側の放熱器用電動弁16の開度を100%とし、他方の放熱器14側の放熱器用電動弁16の開度を0%とするようにしてもよい。このようにすれば、効率よく放熱を行うことができ、より省エネルギーを達成できる。また2つの放熱器用電動弁16の開度の割合をそれぞれ50%としてもよい。そして、一方の開度を25%とし、他方を75%とすることができる。例えば、2台の放熱器14の設置場所が異なり、一方の放熱器14の放熱比率を上げて、暖房用途、加熱用途、給湯用途等に利用する場合に効果的である。この場合、例えば利用用途において、本来必要とする加熱源を省略等することができ、この分、省エネルギーをはかることができる。また、放熱器用電動弁16の開度に合わせて放熱器用送風機15の回転数を低減させるようにしてもよい。放熱器用送風機15の回転数を削減することで、さらに省エネルギーをはかることができる。
図3は実施の形態1に係る冷却装置11の制御による消費電力を示す図である。図3では比較のために、従来の制御による消費電力と共に示している。図3では、冷却装置11における冷却負荷が変動した場合の、2つの冷媒回路6における消費電力と冷却装置11の消費電力(=2つの冷媒回路6における消費電力+水循環ポンプ8の消費電力)とを表している。例えば冷却負荷100%では、本実施の形態における消費電力は従来の消費電力とほぼ変わらない。
冷却負荷50%の部分負荷の場合に、容量制御機能を有する圧縮機1と流量可変の水循環ポンプ8とにおける省エネルギー効果が現れることがわかる。また、本実施の形態では、複数の冷却装置11毎に水循環ポンプ8を設けており、停止中の冷媒回路6に対応する水循環ポンプ8は停止させるようにしていることで、水の循環動力を不要にできるので、さらに省エネルギーをはかることができる。さらに、2つの放熱器用電動弁16のうち、一方を閉じて(より周囲温度の低い放熱器14の放熱器用電動弁16を開く)、不要な水循環動力を削減し、水循環ポンプ8の消費電力の削減を図れ、より省エネルギーを達成することができる。
ここで、さらに本実施の形態における冷却装置11の除霜運転時の動作について説明する。除霜運転を行う際は、四方弁5は、冷媒回路6の冷媒が通常運転とは逆方向に流れるように流路を切り替える。圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出し、四方弁5を介して蒸発器4へ流入させる。蒸発器4は、付着した霜や氷と冷媒との間で熱交換を行い、冷媒を凝縮液化させると共に霜や氷を解かす。蒸発器4から流出した冷媒は絞り装置3に流入する。絞り装置3は凝縮液化した冷媒を減圧する。絞り装置3を通過した冷媒は水冷凝縮器2に流入する。水冷凝縮器2は、水循環ポンプ8から供給される水と冷媒との間で熱交換を行い、冷媒を蒸発ガス化するとともに水を冷却する。水冷凝縮器2から流出した冷媒は、四方弁5を介して圧縮機1に吸入される。
さらに、水回路10の除霜運転時の動作について水回路10の水の流れに基づいて説明する。水循環ポンプ8は、水回路10の水を吸入して加圧して移送させる。水は凝縮器用電動弁9を通って水冷凝縮器2へ流入する。水冷凝縮器2において冷媒と水とが熱交換する。これにより、熱が冷媒から水に移動し、水が冷却する。水循環ポンプ8の移送によって水は放熱器14を流れるが、ここでは、特に積極的に水に吸熱させないものとする。
ここで、複数の冷媒回路6を同時には除霜運転せず、順番に行う方が望ましい。例えば、除霜運転中は水回路10の水が冷却されるため、同時に除霜運転すると、水温が露点温度以下に下がり、水配管に露つき問題が生じる可能性があるからである。また、さらに温度が下がると水が凍結して水配管等が破損してしまうなど、不具合が生じるおそれがある。このため、水が凍結するおそれがある場合には、凍結パンクを防止するため、除霜運転中は、水循環ポンプ8の回転数を最大にして駆動させる方がよい。
以上のように、この発明の冷却装置11においては、制御器17が、冷却運転を行う際、各冷媒回路6の運転負荷に合わせて水循環ポンプ8の流量を増減させ、各水循環ポンプ8の合計流量に基づいて放熱器用電動弁16の開度を調整するようにしたので、省エネルギーをはかることができる。また、制御器17は、凝縮器用電動弁9を、インバータ制御機能を有する圧縮機1の運転/停止に応じて開/閉させるので、他の運転中の水循環ポンプ8の運転により、水が逆流してくることがないため、不必要なポンプ動力が生じず、省エネルギーとなる。
また、複数の冷媒回路6に対応する水循環ポンプ8を設け、たとえば停止中の冷却装置11の水循環ポンプ8は停止させることで、不必要な水の循環動力を不要にできるので、さらに省エネルギーが図れる。
また、制御器17は、冷却運転負荷に応じて容量制御機能を有する圧縮機1の回転数を可変させ、冷却装置11の冷却負荷に応じて、流量可変の水循環ポンプ8の流量を可変させ、合わせて、凝縮器用電動弁9の開度を調整する。さらに、制御器17は、複数の制御器17と制御情報を通信し、複数の冷却装置11の水循環ポンプ8の流量合計に応じて、放熱器用電動弁16の開度を調整するので、水循環ポンプ8の消費電力の削減、省エネルギーをはかることができる。
また、2台の放熱器14が設置される場所が異なり、周囲温度条件が異なる場合は、より周囲温度の低い放熱器14の放熱器用電動弁16の開度を大きくすることで、より省エネルギーをはかることができる。
また、放熱器14の熱交換量を分散化し、最適容量運転をして、水循環ポンプ8の消費電力を削減し、冷却装置の効率を改善することができる。その結果、省エネルギー化が図れる。そして、地球温暖化防止への貢献を同時に達成することができるという効果が得られる。
実施の形態2.
図4は、この発明の実施の形態2における冷却システムの構成を示す図である。本実施の形態においては、放熱器14、放熱器用送風機15および放熱器用電動弁16の組み合わせを複数組(本実施の形態では3組)有している。そして、そのうち、2台をショーケース内に配置する。冷媒回路6および水回路10における動作については、上述した実施の形態1の冷却装置11と同様の動作を行う。
図5は実施の形態2における冷却装置11の具体的な構成例を示す図である。例えば、図5(a)においては、冷却装置11における放熱器14をショーケースの前面足元の部分に設けるようにしたものである。図5(a)のような配置をすることで、放熱器14をコールドアイル対策の暖房加熱源として利用することができる。
また、例えば、図5(b)においては、冷却装置11における放熱器14をショーケースの前面下部の外枠内面の部分に設けるようにしたものである。図5(b)のような配置をすることで、放熱器14を結露対策の加熱源として利用することができる。
例えば、冷媒回路6を停止していても、放熱器用電動弁16を開き、水循環ポンプ8を駆動してショーケース内の放熱器14に水を通過させ、放熱器用送風機15を駆動させて空気と熱交換させることで、暖房、加熱することも可能である。このとき、他の加熱源を必要としないので、省エネルギーをはかることができる。
以上のように、実施の形態2によれば、放熱器14の一部を室内(冷却装置11内)に配置し、水による排熱を店舗内の暖房、ショーケースの足元通路のコールドアイル対策等に有効利用することができる。また、ショーケースの外枠の結露防止加熱源としてヒータ代替に利用できる。このため、これらの加熱に必要な負荷を軽減でき(他の機器による運転動力、加熱ヒータの熱量等を減らすことができ)、さらに省エネルギーをはかることができる。そして、地球温暖化防止への貢献を同時に達成することができるという効果が得られる。
実施の形態3.
ここで、実施の形態1および2における冷却装置11では、2つの冷媒回路6を有する例を示したが、3つ以上有する場合も同様の効果を奏する。
また、各冷却装置11(冷媒回路6)に対して制御器17を有するようにしたが、制御装置を1台として集中して処理を行い、複数の冷媒回路6、水回路10等の制御を行うようにしてもよい。
1 圧縮機、2 水冷凝縮器、3 絞り装置、4 蒸発器、5 四方弁、6 冷媒回路、7 蒸発器用送風機、8 水循環ポンプ、9 凝縮器用電動弁、10 水回路、11 冷却装置、12 入口水配管接続口、13 出口水配管接続口、14 放熱器、15 放熱器用送風機、16 放熱器用電動弁、17 制御器。

Claims (4)

  1. 冷媒を圧縮する容量可変の圧縮機、前記冷媒と水とを熱交換させる水冷凝縮器、前記冷媒を圧力調整する絞り装置および前記冷媒の熱交換により冷却対象を冷却する蒸発器を配管接続して構成する冷媒回路前記水冷凝縮器に前記水を供給する流量可変の水循環ポンプ、並びに、前記冷媒回路の運転負荷に基づいて、前記水循環ポンプが前記水冷凝縮器に供給する水の流量を制御する制御装置を有する冷却装置と、
    通過する水に放熱させる複数の放熱器と、
    各放熱器を流れる前記水の流量を調整する複数の放熱器用流量調整装置とを備え、
    前記冷却装置が有する前記水循環ポンプと、前記複数の放熱器とを並列に配管接続して水回路を構成し、
    前記制御装置は、前記冷媒回路における運転負荷に基づいて、各放熱器用流量調整装置が調整する水の流量を制御し、
    前記蒸発器を有するショーケースの前面足元の部分および前面下部の外枠内面部分の少なくとも一方に、前記放熱器を設けることを特徴とする冷却システム。
  2. 前記冷却装置を複数有し、
    各冷却装置の前記水冷凝縮器を通過する水の流れを制御する開閉装置と
    前記各冷却装置の前記水冷凝縮器を、前記放熱器に対して並列に配管接続して前記水回路を構成し、
    前記制御装置は、前記冷媒回路を停止させると、停止に係る前記冷媒回路に対応する前記水循環ポンプを停止させ、対応する前記開閉装置を閉止させる制御を行うとを特徴とする請求項1に記載の冷却システム。
  3. 前記放熱器と熱交換させる流体を供給する流体供給手段をさらに備え、
    前記制御装置は、前記放熱器用流量調整装置における水の流量に基づいて、前記流体供給手段が前記放熱器に供給する流体の流量を制御することを特徴とする請求項1又は請求項2に記載の冷却システム。
  4. 前記制御装置は、前記冷媒回路における運転負荷に基づいて、各放熱器用流量調整装置の開度調整を行うときに、前記複数の放熱器のうちの、周囲温度が低い前記放熱器に対応する放熱器用流量調整装置の開度を優先して大きくすることを特徴とする請求項1〜請求項3のいずれか一項に記載の冷却システム。
JP2012012942A 2012-01-25 2012-01-25 冷却システム Expired - Fee Related JP5843630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012012942A JP5843630B2 (ja) 2012-01-25 2012-01-25 冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012012942A JP5843630B2 (ja) 2012-01-25 2012-01-25 冷却システム

Publications (2)

Publication Number Publication Date
JP2013152045A JP2013152045A (ja) 2013-08-08
JP5843630B2 true JP5843630B2 (ja) 2016-01-13

Family

ID=49048526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012012942A Expired - Fee Related JP5843630B2 (ja) 2012-01-25 2012-01-25 冷却システム

Country Status (1)

Country Link
JP (1) JP5843630B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448771B2 (ja) * 2015-04-09 2019-01-09 三菱電機株式会社 捩り管形熱交換器
JP2019168213A (ja) * 2018-08-08 2019-10-03 株式会社ヤマト ブラインチラー及び冷却システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229905Y2 (ja) * 1980-09-16 1987-07-31
JPS5760156A (en) * 1980-09-30 1982-04-10 Sankyo Denki Co Ltd Refrigerated/cold storage showcase with water-cooled condenser
JPS5913874A (ja) * 1982-07-15 1984-01-24 サンデン株式会社 水冷式凝縮器を有する冷凍・冷蔵シヨ−ケ−ス
JP2680572B2 (ja) * 1987-01-16 1997-11-19 株式会社日立製作所 半導体集積回路の冷却水温度制御方法
JP2651717B2 (ja) * 1988-12-28 1997-09-10 日立金属株式会社 空気冷却装置
JPH11108529A (ja) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd 冷却装置
US20060010893A1 (en) * 2004-07-13 2006-01-19 Daniel Dominguez Chiller system with low capacity controller and method of operating same
JP2007187383A (ja) * 2006-01-12 2007-07-26 Hitachi Plant Technologies Ltd 冷熱源システム
JP5204987B2 (ja) * 2007-04-11 2013-06-05 高砂熱学工業株式会社 空調システムおよび空調システムの制御方法
JP5404132B2 (ja) * 2009-03-30 2014-01-29 三菱重工業株式会社 熱源システムおよびその制御方法
JP5336268B2 (ja) * 2009-06-09 2013-11-06 株式会社日立製作所 冷却システム及び冷却方法

Also Published As

Publication number Publication date
JP2013152045A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
US9909790B2 (en) Methods and systems for controlling integrated air conditioning systems
JP5121747B2 (ja) 地中熱ヒートポンプ装置
JP6231395B2 (ja) 複合熱源ヒートポンプ装置
JP4298990B2 (ja) 二酸化炭素を冷媒として用いた冷凍装置
KR20120125857A (ko) 이원냉동사이클을 갖는 축열장치 및 그 운전방법
JP2018124046A (ja) 空気調和装置
KR20110118417A (ko) 히트펌프식 급탕장치
JP5404761B2 (ja) 冷凍装置
JP2007051841A (ja) 冷凍サイクル装置
JPWO2017085859A1 (ja) 空気調和装置
JP7034251B2 (ja) 熱源装置および冷凍サイクル装置
JP5404471B2 (ja) ヒートポンプ装置及びヒートポンプ装置の運転制御方法
JP5843630B2 (ja) 冷却システム
JP4033788B2 (ja) ヒートポンプ装置
JP6537990B2 (ja) ヒートポンプ式冷温水供給システム
JP2015124911A (ja) 給湯空調システム
JP6238935B2 (ja) 冷凍サイクル装置
KR101649447B1 (ko) 도시가스를 이용한 지열히트펌프 시스템
JP6359397B2 (ja) 複合熱源ヒートポンプ装置
JP6359398B2 (ja) 複合熱源ヒートポンプ装置
JP6208086B2 (ja) 複合熱源ヒートポンプ装置
JP6143682B2 (ja) 複合熱源ヒートポンプ装置
JP2006017440A (ja) ヒートポンプ空調機
JP5333557B2 (ja) 給湯空調システム
JP6071540B2 (ja) ヒートポンプ冷温水システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5843630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees