JP5828215B2 - 受信装置、受信方法、およびプログラム - Google Patents

受信装置、受信方法、およびプログラム Download PDF

Info

Publication number
JP5828215B2
JP5828215B2 JP2011080120A JP2011080120A JP5828215B2 JP 5828215 B2 JP5828215 B2 JP 5828215B2 JP 2011080120 A JP2011080120 A JP 2011080120A JP 2011080120 A JP2011080120 A JP 2011080120A JP 5828215 B2 JP5828215 B2 JP 5828215B2
Authority
JP
Japan
Prior art keywords
signal
frequency
band
received
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011080120A
Other languages
English (en)
Other versions
JP2012216955A (ja
Inventor
岡本 卓也
卓也 岡本
高橋 宏雄
宏雄 高橋
友謙 後藤
友謙 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011080120A priority Critical patent/JP5828215B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Priority to CN201280015065.2A priority patent/CN103460610B/zh
Priority to EP12765696.5A priority patent/EP2693647B1/en
Priority to RU2013143171/07A priority patent/RU2600984C2/ru
Priority to US14/006,871 priority patent/US9203678B2/en
Priority to BR112013024391A priority patent/BR112013024391A2/pt
Priority to PCT/JP2012/057528 priority patent/WO2012133193A1/ja
Publication of JP2012216955A publication Critical patent/JP2012216955A/ja
Application granted granted Critical
Publication of JP5828215B2 publication Critical patent/JP5828215B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/76Wired systems
    • H04H20/77Wired systems using carrier waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/455Demodulation-circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Circuits Of Receivers In General (AREA)
  • Superheterodyne Receivers (AREA)

Description

本技術は、特に、周波数帯域が可変な信号を受信する場合の受信性能を向上させることができるようにした受信装置、受信方法、およびプログラムに関する。
地上デジタル放送などにおいては、一般的に、一定の周波数間隔を空けてチャネル(物理チャネル)を規定し、法令で決められた帯域幅の独立した信号を送るようになっている。チャネル間干渉などの観点から、所定の帯域幅のガードバンドが各チャネルの間に設定される。
例えば、欧州の地上デジタル放送規格であるDVB-T/T2の場合、図1Aに示すように各チャネルの帯域幅は8MHzである。受信機は、そのような予め決められた帯域幅の信号が送信されてくることを前提として設計されることになる。
このような伝送方式によって信号を送信する送信事業者は、例えば、チャネル(物理チャネル)の一部に妨害波が存在する場合、その帯域全体を使わないような選択を行っていた。これにより、周波数帯域の無駄が生じることになる。
ところで、欧州の第2世代のケーブルデジタル放送の規格として2010年に規格化されたDVB-C2では、このような無駄を避ける仕組みが盛り込まれている(非特許文献1)。
図1Bに示すように、DVB-C2にはData Sliceという概念があり、それを所定の数だけ組み合わせてC2 Systemが構成される。個々のData Sliceは3408キャリア以下の帯域幅とし、規格で定められた条件を満たす範囲であれば自由な組み合わせが許されている。
また、DVB-C2にはNotchという概念がある。送信事業者は、外乱等のために使用不可能な帯域をNotchとして定義し、サブキャリア単位で表すNotchの位置の情報をC2 Systemに含めることができるようになっている。
図2Aは、DVB-T/T2の信号の例を示す図であり、図2Bは、DVB-C2の信号の例を示す図である。図2の横軸は周波数を表す。DVB-C2の信号について説明する。
図2Bにおいて線で囲んで示すように、C2 Systemは、Preamble SymbolとData Symbolから構成される。規格上、1つのC2 Systemは最大3.5GHz程度の帯域幅を有する信号となる。
Preamble Symbolは、L1 signalling part 2 data(L1情報)と呼ばれる伝送制御情報の伝送に用いられるシンボルである。L1情報の詳細については後述する。Preamble Symbolを用いて、3408キャリア周期(OFDM(Orthogonal Frequency Division Multiplex)の3408のサブキャリア周期)で同じ情報が繰り返し送信される。3408キャリアは7.61MHzの周波数帯域に相当する。
Data Symbolは番組データなどのTS(Transport Stream)等の伝送に用いられるシンボルである。Data SymbolはData Slice毎に分割される。例えばData Slice 1(DS1)とData Slice 2(DS2)とではそれぞれ異なる番組のデータが伝送される。Data Sliceの数などの、各Data Sliceに関するパラメータがL1情報に含まれる。
図2Bにおいて黒で塗りつぶして示す部分がNotchである。Notchは、FM放送、警察用の無線通信、軍事用の無線通信などに用いられる周波数帯域であり、C2 Systemの信号の送信に用いられない。送信機が出力する送信信号のうちのNotchの区間は無信号の区間になる。Notchには、帯域幅が48キャリア未満のNarrowband Notchと、48キャリア以上のBroadband Notchとがある。Notchの数や帯域幅などの、各Notchに関するパラメータもL1情報に含まれる。
このように、DVB-C2の信号には帯域幅が可変な「Data Slice」と「Notch」が存在する。受信機としては、送信側によってほぼ任意に選択される帯域幅のOFDM信号を復調できることが求められる。DVB-C2では、所望のData Sliceの幅が3408キャリアより小さい場合がある。所望のData Sliceのキャリア数は、チャネルスキャン時にL1情報から取得される。
受信機における受信処理は、図3Aに示すような固定の帯域幅(3409キャリア)のTuning Window内の信号を受信するようにして行われる。所望のData Sliceの信号を受信するのに適したTuning Windowの中心位置(中心周波数)は送信側からL1情報によって指定される。
受信機においては、送信側により指定された周波数の信号を用いて直交復調を行うことによってOFDM信号の復調処理が行われる。復調処理によって得られたL1情報に基づいて番組データの復号が行われる。
DVB-C2規格書 [Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation digital transmission system for cable systems (DVB-C2)] DVB Document A138
通常、送信機から指定された周波数のベースバンド信号にダウンコンバージョンすることによって、所望のData SliceのOFDM信号を復調することが可能である。受信信号の復調処理を行い、L1情報に含まれるOFDM信号の配置情報に従って、必要部分、すなわち所望のData Sliceを構成するData Symbolの伝送に用いられているOFDM信号を取り出すことによってそれを実現することができる。
しかし、所望のData SliceがDVB-C2のDependent Static DSであり、受信信号の帯域内にNotch(Broadband Notch)が含まれる場合には復調できないことがある。ここで、Dependent Static DSの表現は、他のData Slice(DS)の帯域においてL1情報を取得してからでないと復調することができず、いわば他のData Sliceに従属しているData Sliceという意味で用いている表現である。
Dependent Static DSは、図2BのDS8のように他のData Sliceから離れたData Sliceである。Dependent Static DSは1つのData Sliceから構成されることもあるし、複数のData SliceからなるData Slice群から構成されることもある。
Dependent Static DSを受信する場合、どのようにTuning Windowを選んだとしても、図3Bに示すように受信信号の帯域内にBroadband Notchが存在するか、C2 Systemの帯域外が存在することになる。Dependent Static DSを含む帯域を受信して復調してもL1情報を復号できることが保証されない。なお、DVB-C2において受信信号の帯域内にBroadband Notchが含まれる状況は、基本的に、受信しようとするData Sliceが、Dependent Static DSである場合以外にはない。
例えば、Dependent Static DSの帯域が、受信信号の帯域内において周波数の高い帯域、または低い帯域に偏っている場合に復調処理を正しく行うことができないことがある。後述するように、OFDM信号の復調処理においてはキャリア周波数誤差を補正するためにOFDMシンボルを用いてGI相関の計算が行われるが、Dependent Static DSの帯域に偏りがある状態でクロック周波数誤差が存在すると、正しい補正値を求めることができない。
本技術はこのような状況に鑑みてなされたものであり、周波数帯域が可変な信号を受信する場合の受信性能を向上させることができるようにするものである。
本技術の一側面の受信装置は、伝送制御情報のシンボルとデータシンボルとを送信するキャリアを含む所定の周波数帯域幅を有する信号を、帯域幅を固定して受信する受信部と、前記キャリアが前記帯域幅の全体に含まれる場合、前記受信部により受信された受信信号を、前記受信信号の中心周波数が直流成分となるベースバンド信号に変換する復調部と、前記ベースバンド信号に基づいて前記伝送制御情報を復号する復号部とを備え、前記復調部は、前記キャリアが前記帯域幅の一部に含まれ、前記受信信号の帯域の中心周波数である第1の周波数と、受信対象の前記キャリアの信号と、受信対象の前記キャリアの信号と帯域が隣接する隣接信号とからなる、前記受信信号の帯域の一部に含まれる所望信号の帯域の中心周波数である第2の周波数とが異なる場合、前記復号部により復号された前記伝送制御情報に基づいて、前記受信信号を、前記第2の周波数が直流成分となるベースバンド信号に変換する
前記受信装置は、1つのICチップであってもよいし、ICチップを含む部品、ICチップを含む部品から構成される装置であってもよい。
前記所望信号の帯域には、受信対象の信号の帯域と、前記受信対象の信号の帯域に隣接する隣接信号の帯域とが含まれるようにすることができる。
前記復調部には、前記第1の周波数と前記第2の周波数とが異なる場合であって、受信対象の前記キャリアの信号の両端のうちの一方の端が前記隣接信号と隣接するときに、前記受信信号を前記ベースバンド信号に変換させることができる。
前記受信信号に含まれる伝送制御情報に基づいて前記第1の周波数と前記第2の周波数を特定し、前記ベースバンド信号の直流成分となる周波数を設定する設定部をさらに設けることができる。この場合、前記復調部には、前記設定部により設定された周波数に従って、前記受信信号の変換を行わせることができる。
前記所望信号の帯域以外の帯域の信号を抑圧する処理部をさらに設けることができる。この場合、前記復調部には、前記処理部により信号が抑圧された前記受信信号を前記ベースバンド信号に変換させることができる。
前記第1の周波数を中心周波数とする帯域は、DVB-C2のTuning Windowの帯域であり、前記所望信号の帯域は、受信対象のData SliceのOFDM信号を少なくとも一部に含むOFDM信号の帯域であるようにすることができる。
前記復調部には、前記所望信号の帯域が、C2 System外の帯域とNotchの帯域に挟まれている場合、前記受信信号を、前記所望信号の帯域の中心周波数より、前記C2 System外の帯域に近い周波数が直流成分となる前記ベースバンド信号に変換させることができる。
本技術によれば、周波数帯域が可変な信号を受信する場合の受信性能を向上させることができる。
DVB-T/T2とDVB-C2の信号のスペクトラムを示す図である。 C2 Systemの例を示す図である。 受信信号の例を示す図である。 受信装置の第1の構成例を示すブロック図である。 L1情報に含まれるパラメータを示す図である。 受信信号の例を示す図である。 信号の周波数遷移について説明する図である。 送信信号の例を示す図である。 受信信号の帯域の例を示す図である。 受信信号の帯域の他の例を示す図である。 受信装置の動作について説明するフローチャートである。 受信装置の詳細な構成例を示すブロック図である。 GI相関計算部の構成例を示すブロック図である。 図13の各位置において観測される信号の例を示す図である。 図13の各位置において観測される信号の他の例を示す図である。 OFDM信号の波形を示す図である。 誤差がない場合のOFDM信号の波形を示す図である。 キャリア周波数誤差がある場合のOFDM信号の波形を示す図である。 クロック周波数誤差がある場合のOFDM信号の波形を示す図である。 周波数と位相差の関係を示す図である。 周波数と位相差の関係を示す他の図である。 周波数と位相差の関係を示すさらに他の図である。 受信装置の第2の構成例を示すブロック図である。 受信装置の第3の構成例を示すブロック図である。 受信信号の帯域のさらに他の例を示す図である。 受信システムの構成例を示す図である。 コンピュータの構成例を示す図である。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.受信装置の構成と動作
2.効果について
3.変形例
<受信装置の構成と動作>
[受信装置の構成例]
図4は、本技術の一実施形態に係る受信装置の第1の構成例を示すブロック図である。
図4の受信装置1は、DVB-C2の信号の受信が可能なLow-IF受信機である。受信装置1は、RFチューナ11、復調部12、およびMPEGデコーダ13から構成される。
RFチューナ11は、周波数変換部21、および発振器22から構成される。復調部12は、直交復調部31、発振器32、FFT演算部33、等化部34、ECC処理部35、および周波数設定部36から構成される。ケーブル回線を介して受信装置1に入力されたDVB-C2のOFDM信号を表すRF信号は、RFチューナ11の周波数変換部21に入力される。
RFチューナ11の周波数変換部21は、入力されたRF信号を受信し、発振器22から供給された信号に基づいてRF信号の周波数変換を行う。周波数変換部21は、周波数変換を行うことによって得られたIF信号を直交復調部31に出力する。
発振器22は、Tuning Windowに従って所定の周波数の信号を生成し、周波数変換部21に出力する。
復調部12の直交復調部31は、周波数変換部21から供給されたIF信号に対して、発振器32から供給された信号に基づいて直交復調を施す。直交復調部31は、直交復調を施すことによって得られた、C2 Systemを構成するPreamble Symbol、Data Symbolなどの各シンボルを表す時間域のベースバンド信号をFFT演算部33に出力する。
発振器32は、周波数設定部36により設定された周波数の信号を生成し、直交復調部31に出力する。
FFT演算部33は、直交復調部31から供給されたベースバンド信号に対してFFT演算を施し、周波数域の信号を等化部34に出力する。
等化部34は、FFT演算部33から供給された周波数域の信号からパイロットシンボルを抽出し、抽出したパイロットシンボルに基づいて伝送路特性を推定する。等化部34は、推定した伝送路特性に基づいて伝送路の歪みを除去することによって、FFT演算部33から供給された周波数域の信号の等化を行い、等化後の信号をECC処理部35に出力する。
ECC処理部35は、等化部34から供給された等化後の信号に含まれるBCH符号、LDPC符号に基づいて各シンボルのデータの誤り訂正復号を行い、誤り訂正復号後のデータを出力する。ECC処理部35からは、誤り訂正復号によって得られたL1情報、TSのデータが出力され、周波数設定部36とMPEGデコーダ13に供給される。
周波数設定部36は、ECC処理部35から供給されたL1情報に基づいて、例えば受信信号の帯域全体にOFDM信号が含まれる場合には、所望のData Sliceの中心周波数の情報を発振器32に出力する。所望のData Sliceは、受信対象とするData Sliceを表す。
図5は、L1情報に含まれるパラメータを示す図である。主なパラメータについて説明する。
3行目のSTART_FREQUENCYは、C2 Systemの開始位置となる周波数を表す。開始位置は0Hzを起点して絶対周波数により表される。4行目のC2_BANDWIDTHは、C2 Systemの帯域幅を表す。
8行目のNUM_DSLICEは、C2 Frameに含まれるData Sliceの数を表す。9行目のNUM_NOTCHは、C2 Frameに含まれるNotchの数を表す。10行目から45行目までの各パラメータがData Slice毎に記述される。
11行目のDSLICE_IDは、C2 SystemにおけるData SliceのIDを表す。12行目のDSLICE_TUNE_POSは、START_FREQUENCYにより表される周波数を基準として、Data Sliceの中心周波数を表す。
46行目から50行目までの各パラメータがNotch毎に記述される。47行目のNOTCH_STARTは、START_FREQUENCYにより表される周波数を基準としてNotchの位置を表す。48行目のNOTCH_WIDTHは、Notchの帯域幅を表す。
周波数設定部36は、受信対象とする所望のData Sliceの中心周波数をDSLICE_TUNE_POSから特定するなどの処理を行う。
MPEGデコーダ13は、ECC処理部35から供給されたTSを構成するTSパケットに格納されているデータのデコードを行い、デコード後のデータを後段に出力する。TSパケットに格納されているデータはMPEG2などの所定の方式で圧縮されている。
[信号の周波数遷移について]
ここで、帯域全体にOFDM信号が含まれる場合の受信信号の周波数遷移について説明する。
帯域全体にOFDM信号が含まれる場合の受信信号を図6Aに示す。図6Aに示す台形の底辺に沿って示す軸が周波数を表し、上向きの矢印の位置が帯域の中心周波数を表す。図6Aの受信信号の帯域にはOFDM信号のみが含まれ、Notchが含まれていない。図6AのOFDM信号には所望のData SliceのOFDM信号が含まれる。
図4の例においては、帯域全体にOFDM信号が含まれるRF信号が周波数変換部21に入力される。周波数変換部21に入力されるRF信号の周波数は例えば666MHzであり、RFチューナ11内に設けられる図示せぬバンドパスフィルタを通過した8MHzなどの所定の帯域幅を有する信号である。周波数変換部21は、666MHzのRF信号を例えば5MHzのIF信号に変換し、直交復調部31に出力する。Tuning Windowの帯域幅、すなわち受信信号の帯域幅を8MHzとして説明する。
受信信号の帯域全体にOFDM信号が含まれる場合、周波数設定部36は、L1情報に含まれる所望のData SliceのDSLICE_TUNE_POSに従って、DSLICE_TUNE_POSにより指定される周波数を発振器32に設定する。
直交復調部31は、発振器32により生成された信号に基づいて直交復調を行い、IF信号を、所望のData Sliceの中心周波数が直流成分となるベースバンド信号にダウンコンバージョンする。直交復調部31は、直交復調によって得られたベースバンド信号を出力する。図4において直交復調部31から出力される信号の中心周波数が0MHzであることは、その信号がベースバンド信号であることを表す。
このように、受信信号の帯域全体にOFDM信号が含まれる場合、所望のData SliceのDSLICE_TUNE_POSにより指定される周波数が直流成分となるベースバンド信号にダウンコンバージョンするようにして復調処理が行われる。
次に、帯域の一部にのみOFDM信号が含まれる場合の受信信号の周波数遷移について説明する。
帯域の一部にのみOFDM信号が含まれる場合の受信信号を図6Bに示す。図6Bに示す受信信号のうち、斜線を付して示す部分がNotchを表す。図6Bの受信信号には、中心周波数より高い周波数の帯域にNotchが含まれている。図6Bの受信信号に含まれるOFDM信号はDependent Static DSのOFDM信号であり、所望のData SliceのOFDM信号が少なくとも一部に含まれる。
図7に示すように、帯域の一部にのみOFDM信号が含まれるRF信号が周波数変換部21に入力される。周波数変換部21に入力されるRF信号の周波数は666MHzである。周波数変換部21は、666MHzのRF信号を5MHzのIF信号に変換し、直交復調部31に出力する。
受信信号の帯域の一部にのみOFDM信号が含まれる場合、周波数設定部36は、L1情報に基づいて、受信信号に含まれるOFDM信号の帯域全体の中心周波数を特定する。以下、適宜、受信信号に含まれるDVB-C2のOFDM信号全体を所望OFDM信号という。
周波数設定部36は、特定した所望OFDM信号の帯域の中心周波数を発振器32に設定する。
直交復調部31は、発振器32により生成された信号に基づいて直交復調を行い、IF信号を、所望OFDM信号の帯域の中心周波数が直流成分となるベースバンド信号にダウンコンバージョンする。直交復調部31は、直交復調によって得られたベースバンド信号を出力する。図7のベースバンド信号において、Notchの帯域を除く、所望OFDM信号の帯域の中心に上向きの矢印を示していることは、ベースバンド信号が、所望OFDM信号の帯域の中心周波数が直流成分となる信号であることを表す。
このように、受信信号の帯域の一部にのみOFDM信号が含まれる場合、所望のData SliceのDSLICE_TUNE_POSにより指定される周波数ではなく、所望のData Sliceを含む所望OFDM信号の帯域の中心周波数が直流成分となるベースバンド信号にダウンコンバージョンするようにして復調処理が行われる。
送信側は、それぞれのData Sliceの受信に最適な周波数の情報をL1情報に設定していると考えられる。しかし、送信側が最適と考える周波数と、復調にとって最適な周波数が異なる可能性があり、復調にとって最適な周波数を受信側で計算し、計算した周波数を用いてダウンコンバージョンを行った方が好ましい。受信装置1においては、受信信号の帯域の一部にのみOFDM信号が含まれる場合には、最適な中心周波数を所望OFDM信号の帯域の中心周波数として計算し、それを使って受信を行うようになされている。
これにより、所望のData SliceがDependent Static DSの全部または一部に含まれるData Sliceであり、受信信号の帯域の一部にしかOFDM信号が含まれていない場合の受信性能を向上させることが可能になる。受信信号の帯域の中心周波数ではなく、所望OFDM信号の帯域の中心周波数が直流成分となるベースバンド信号にダウンコンバージョンすることによって受信性能を向上させることができる理由については後述する。
なお、最適な中心周波数の計算に用いられるL1情報は、Dependent Static DSではないData Slice(通常のData Slice)を受信したときに受信されたL1情報である。DVB-C2においては、所望のData SliceがDependent Static DSの全部または一部に含まれるData Sliceである場合、先に、通常のData Sliceの受信が行われる。通常のData Sliceの受信時にL1情報を復号することができ、Dependent Static DSの受信は、通常のData Sliceの受信時に取得されたL1情報を用いて行われる。上述したように、Dependent Static DSを含む帯域の信号を受信して復調してもL1情報を復号できるとは限らない。
[具体例について]
復調処理の具体例について説明する。
図8は、送信側における送信信号の例を示す図である。
図8の送信信号は8MHzの帯域幅を有する信号であり、その周波数帯域には、Broadband Notchに挟まれたDependent Static DSが存在する。Dependent Static DSを挟んで周波数の低い帯域にあるBroadband Notchには局所的な妨害波が含まれる。また、Dependent Static DSを挟んで周波数の高い帯域にあるBroadband NotchにはDVB-Cなどの他の規格の信号が妨害波として含まれる。
図8のDependent Static DSの帯域幅は2MHzであり、帯域幅が同じDS0乃至4の5つのData Sliceから構成される。Dependent Static DSにはL1情報を伝送するPreamble SymbolのブロックであるL1ブロックが付加される。通常のData Sliceを受信したときに取得されるL1情報には、DS0乃至4のそれぞれの中心周波数である周波数f乃至fの情報が含まれる。
受信対象とする所望のData Sliceが左端のDS0である場合について説明する。DS0の左端はBroadband Notchに接し、右端は、隣接するData Slice群であるDS1乃至4に接する。所望のData Sliceの中心周波数と、所望のData Sliceを含む所望OFDM信号の帯域の中心周波数とが異なることになる。所望OFDM信号の帯域幅は2MHzである。
図9は、受信信号の帯域の中心周波数が所望のData SliceであるDS0の中心周波数と同じ周波数になるように、周波数をシフトさせた受信信号の例を示す図である。この場合、IF信号は、DS0の中心周波数である周波数fが直流成分となるベースバンド信号にダウンコンバージョンされることになる。
図9の所望OFDM信号の帯域の位置は、受信信号の帯域において右側(周波数の高い側)に偏っている状態になる。
所望OFDM信号の帯域の位置が受信信号の帯域において偏った位置にあると受信性能が劣化する。所望OFDM信号の偏りに起因する受信性能の劣化を防ぐために図9に示すようにDS0以外のData SliceのOFDM信号を抑圧する干渉除去フィルタを設定した場合、取得可能なContinual Pilotの数が少なくなり、復調自体が困難になる。DVB-C2のData Symbolには、Scattered Pilot、Continual Pilotなどのパイロットシンボルが挿入され、復調時の伝送路特性の推定に用いられる。
図10は、受信信号の帯域の中心周波数が所望OFDM信号の帯域の中心周波数と同じ周波数になるように、周波数をシフトさせた受信信号の例を示す図である。この場合、IF信号は、所望OFDM信号の帯域に含まれるDS2の中心周波数である周波数fが直流成分となるベースバンド信号にダウンコンバージョンされることになる。
図10の所望OFDM信号の帯域の位置は、受信信号の帯域において中央にある状態になる。
これにより、所望OFDM信号の偏りに起因する受信性能の劣化を防ぐことができる。また、DS0乃至4のOFDM信号以外の信号を抑圧する干渉除去フィルタを設定したとしても、Continual Pilotを2MHzの帯域に含まれる分だけ取得することができ、復調自体が困難になることもない。
受信信号の帯域の中心周波数として、DS2の中心周波数ではなく、DS2の中心周波数近傍の周波数を用いることも可能である。DS0の中心周波数よりDS2の中心周波数に近い周波数であれば、受信信号の帯域におけるOFDM信号の偏りを軽減することが可能になる。
受信信号の帯域の中心周波数が所望OFDM信号の帯域の中心周波数と同じ周波数になるように受信信号の帯域をシフトすることが、図10のように所望のData Sliceが所望OFDM信号の帯域の端に含まれる場合にのみ行われるようにしてもよいし、端以外の位置に含まれる場合にも行われるようにしてもよい。
[受信装置の動作について]
ここで、図11のフローチャートを参照して、Dependent Static DSを受信するための受信装置1の処理について説明する。
ステップS1において、受信装置1の各部は通常のData Sliceを受信する。この場合の受信装置1の各部における信号の周波数遷移は図4を参照して説明したものになる。
すなわち、RFチューナ11の周波数変換部21はRF信号をIF信号に変換する。復調部12の直交復調部31は、発振器32から供給された信号に基づいてIF信号の直交復調を行う。受信対象が通常のData Sliceであるから、直交復調部31による直交復調は、IF信号を、受信信号の帯域の中心周波数が直流成分となるベースバンド信号にダウンコンバージョンするようにして行われる。また、FFT演算部33は、時間域のベースバンド信号に対してFFT演算を施す。等化部34は周波数域の信号の等化を行う。ECC処理部35は、等化後の各シンボルのデータの誤り訂正復号を行い、誤り訂正復号後のデータを出力する。
ステップS2において、周波数設定部36は、通常のData Sliceの受信時に誤り訂正復号後のデータとしてECC処理部35から出力されたL1情報を取得する。
ステップS3において、周波数設定部36は、Dependent Static DSを受信するための受信信号の帯域の中心周波数を、図10を参照して説明したように所望OFDM信号の帯域の中心周波数として決定する。
ステップS4において、受信装置1の各部はDependent Static DSを受信する。この場合の受信装置1の各部における信号の周波数遷移は図7を参照して説明したものになる。
すなわち、RFチューナ11の周波数変換部21はRF信号をIF信号に変換する。復調部12の直交復調部31は、発振器32から供給された信号に基づいてIF信号の直交復調を行う。受信対象がDependent Static DSであるから、直交復調部31による直交復調は、IF信号を、所望OFDM信号の帯域の中心周波数が直流成分となるベースバンド信号にダウンコンバージョンするようにして行われる。また、FFT演算部33は、時間域のベースバンド信号に対してFFT演算を施す。等化部34は周波数域の信号の等化を行う。ECC処理部35は、等化後の各シンボルのデータの誤り訂正復号を行い、誤り訂正復号後のデータを出力する。
以上の処理により、受信装置1は、Dependent Static DSの受信性能を向上させることができる。
<効果について>
ここで、Dependent Static DSの受信時に以上のようにして受信信号の帯域をシフトすることによって受信性能を向上させることができる理由について説明する。
図12は、受信装置1の詳細な構成例を示すブロック図である。図12に示す構成のうち、図4等に示す構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図12の復調部12には、図4の構成の他に、クロック周波数補正部51、キャリア周波数補正部52、GI相関計算部53、キャリア周波数補正値生成部54、クロック周波数誤差検出部55、およびクロック周波数補正値生成部56が設けられる。直交復調部31による直交復調によって得られたベースバンド信号である時間域のOFDM信号はクロック周波数補正部51に供給される。また、FFT演算部33によるFFT演算によって得られた周波数域のOFDM信号はクロック周波数誤差検出部55に供給される。
クロック周波数補正部51は、クロック周波数補正値生成部56から供給されたクロック周波数補正値に従って、直交復調部31から供給された時間域のOFDM信号に含まれるクロック周波数誤差(サンプリング周波数誤差)を補正する。クロック周波数補正部51に供給される受信信号には実軸成分(I成分)と虚軸成分(Q成分)とが含まれる。クロック周波数補正部51は、クロック周波数誤差を補正した補正後の時間域のOFDM信号をキャリア周波数補正部52に出力する。
キャリア周波数補正部52は、キャリア周波数補正値生成部54から供給されたキャリア周波数補正値に従って、クロック周波数補正部51から供給された時間域のOFDM信号に含まれるキャリア周波数誤差を補正する。キャリア周波数補正部52は、キャリア周波数誤差を補正した補正後の時間域のOFDM信号をFFT演算部33とGI相関計算部53に出力する。
GI相関計算部53は、キャリア周波数補正部52から供給された時間域のOFDM信号と、その時間域のOFDM信号を有効シンボル長だけ遅延させた遅延信号との乗算値の、例えばGI長に相当する時間分の平均値をGI相関(自己相関)として求める。このようにして求められたGI相関は、OFDMシンボルの境界でピーク値をとることになる。
ピーク値をとるGI相関の位相は、デジタル直交復調に用いられるキャリアの周波数と、デジタル直交復調されるOFDM信号(受信されたOFDM信号)の中心周波数とが完全に一致している場合には0になる。しかし、デジタル直交復調に用いられるキャリアの周波数が、デジタル直交復調されるOFDM信号の中心周波数からずれている場合、そのずれ量の分だけ、ピーク値をとるGI相関の位相は回転する。
従って、ピーク値をとるGI相関の位相は、デジタル直交復調に用いられるキャリアの周波数と、デジタル直交復調されるOFDM信号の中心周波数とのずれ量を表すことになる。キャリア周波数補正値生成部54は、ピーク値をとるGI相関の位相に基づいてキャリア周波数誤差を推定し、キャリア周波数誤差推定量をキャリア周波数補正値生成部54に出力する。
キャリア周波数補正値生成部54は積分器であり、GI相関計算部53により推定されたキャリア周波数誤差推定量を積分し、積分結果をキャリア周波数補正値としてキャリア周波数補正部52に出力する。
クロック周波数誤差検出部55は、FFT演算部33から供給された周波数域のOFDM信号に含まれるクロック周波数誤差を推定する。周波数域のOFDM信号に含まれるクロック周波数誤差は、例えばOFDMのパイロットシンボル間の位相差に基づいて推定される。
OFDMにおいては、各サブキャリアは所定の周波数間隔で配置され、サブキャリア番号が大きくなるほど、その周波数も高くなる。クロック周波数に誤差が無い場合、伝送路の雑音等に起因する位相誤差だけが周波数域のOFDM信号に含まれるから、各パイロットキャリアの位相誤差はほぼ一定になる。
これに対し、クロック周波数に誤差がある場合、パイロットキャリアの位相誤差には、伝送路の雑音等に起因する位相誤差に加えて、クロック周波数の誤差に起因する位相誤差が含まれる。クロック周波数の誤差に起因する位相誤差は、サブキャリア番号が大きく、周波数が高いパイロットキャリアの方がより大きくなる。すなわち、クロック周波数の誤差に起因する位相誤差はサブキャリア番号に比例したものになる。
クロック周波数誤差検出部55は、サブキャリア番号に比例する位相誤差を検出し、クロック周波数誤差を推定する。クロック周波数誤差の推定については例えば特開2010−87749号公報に開示されている。クロック周波数誤差検出部55は、クロック周波数誤差推定量をクロック周波数補正値生成部56に出力する。
クロック周波数補正値生成部56は積分器であり、クロック周波数誤差検出部55により推定されたクロック周波数誤差推定量を積分し、積分結果をクロック周波数補正値としてクロック周波数補正部51に出力する。
図13は、GI相関計算部53の構成例を示すブロック図である。
GI相関計算部53は、遅延部61、乗算部62、移動平均計算部63、ピーク検出部64、およびI/Q位相差算出部65から構成される。キャリア周波数補正部52から出力された時間域のOFDM信号は遅延部61と乗算部62に入力される。
遅延部61は、入力された時間域のOFDM信号を有効シンボル長だけ遅延させ、遅延させた後に、複素共役(Conj)にして乗算部62に出力する。
乗算部62は、入力された時間域のOFDM信号と遅延部61による遅延信号との乗算値を求め、移動平均計算部63に出力する。
移動平均計算部63は、乗算部62から供給された乗算値のGI長に相当する時間毎の移動平均をGI相関として求め、ピーク検出部64に出力する。
ピーク検出部64は、GI相関のピーク位置を検出し、ピーク位置におけるI成分の位相とQ成分の位相の情報をI/Q位相差算出部65に出力する。ピーク位置の情報はFFT演算部33にも供給され、FFT演算の対象となる区間が設定される。
I/Q位相差算出部65は、ピーク検出部64により検出されたピーク位置におけるI成分の位相とQ成分の位相の差によって表されるキャリア周波数誤差の情報をキャリア周波数補正値生成部54に出力する。
キャリア周波数誤差の影響について説明する。
図14は、図13の位置A、位置B、位置Cのそれぞれの位置における信号の例を示す図である。位置Aは入力信号が観測される位置であり、位置Bは遅延信号が観測される位置である。位置CはGI相関の移動平均が観測される位置である。横方向が時間方向を表す。
図14の上段に示すように、1OFDMシンボルは、送信時にIFFTが行われる信号区間である有効シンボルと、斜線を付して示す有効シンボルの後半の一部の波形が、そのまま有効シンボルの先頭にコピーされたガードインターバル(GI)とから構成される。
図14の上段は入力信号を表し、中段は遅延信号を表す。キャリア周波数誤差がない場合、図14の下段に示すように、入力信号のOFDMシンボルの境界位置にI成分のGI相関のピークが現れる。
一方、キャリア周波数誤差Δfがある場合、入力信号r(t)を下式(1)で表すと、GI相関は下式(2)で表される。tは時刻を表す。式(1)のrB(t)はキャリア周波数誤差がない場合の入力信号であり、式(2)のTuは有効シンボル長である。
Figure 0005828215
Figure 0005828215
式(2)のe+j2πΔfTuより、GI相関のピーク位置では、I成分とQ成分にキャリア周波数誤差Δfに比例した回転が生じることが分かる。図15はキャリア周波数誤差がある場合の信号の例を示す図である。図15の下段に示すように、Q成分にもGI相関のピークが現れる。
次に、クロック周波数誤差の影響について説明する。
図16は、OFDM信号の波形を示す図である。OFDM信号を信号S1乃至S4の4つの正弦波の集合として考える。信号S1乃至S4が各キャリアに相当する。
時刻t1から時刻t2までの区間がGIの区間に対応し、時刻t2から時刻t3までの区間が有効シンボルの区間に対応する。信号S1の有効シンボルの区間には1周期分の正弦波が含まれ、信号S2の有効シンボルの区間には2周期分の正弦波が含まれる。信号S3の有効シンボルの区間には3周期分の正弦波が含まれ、信号S4の有効シンボルの区間には4周期分の正弦波が含まれる。
図17の矢印で示すように、GI相関は、各キャリアの所定の位置の信号と有効シンボル長だけ後の位置の信号を乗算したものに相当するから、キャリア周波数誤差もクロック周波数誤差もない場合、乗算する信号に位相差が現れず、GI相関がI成分しか生じない。図17の信号S1においては、GIと有効シンボルの境界である位置P1の信号の位相と、有効シンボルの終端である位置P2の信号の位相に差がない。
図18は、0.25キャリア分のキャリア周波数誤差がある場合の波形を示す図である。クロック周波数誤差はないものとする。
この場合、各キャリアの所定の位置の信号の位相と有効シンボル長だけ後の位置の信号の位相には、全キャリアにおいて同一の、固定の位相差Δθが生じる。信号S1の有効シンボルの区間には1.25周期分の正弦波が含まれ、信号S2の有効シンボルの区間には2.25周期分の正弦波が含まれる。信号S3の有効シンボルの区間には3.25周期分の正弦波が含まれ、信号S4の有効シンボルの区間には4.25周期分の正弦波が含まれる。
図19は、1/10クロック分のクロック周波数誤差がある場合の波形を示す図である。キャリア周波数誤差はないものとする。
この場合、各キャリアの所定の位置の信号の位相と有効シンボル長だけ後の位置の信号の位相には、各キャリアにおいて、本来のキャリア周波数に比例した位相差が生じる。
信号S1のGIと有効シンボルの境界位置における信号の位相と、有効シンボルの終端位置における信号の位相の差をΔθとする。信号S2のGIと有効シンボルの境界位置の信号の位相と、有効シンボルの終端位置の信号の位相には位相差Δθ×2が生じ、信号S3のGIと有効シンボルの境界位置の信号の位相と、有効シンボルの終端位置の信号の位相には位相差Δθ×3が生じる。また、信号S4のGIと有効シンボルの境界位置の信号の位相と、有効シンボルの終端位置の信号の位相には位相差Δθ×4が生じる。
信号S1の有効シンボルの区間には0.9周期分の正弦波が含まれ、信号S2の有効シンボルの区間には1.8周期分の正弦波が含まれる。信号S3の有効シンボルの区間には2.7周期分の正弦波が含まれ、信号S4の有効シンボルの区間には3.6周期分の正弦波が含まれる。
クロック周波数誤差のみがある場合の周波数と位相差の関係を図20に示す。図20AはOFDMのキャリアの分布を示す図である。図20Bに示すように、GI相関の位相差はキャリアの周波数(キャリア番号)に比例した量になる。
図20の周波数f〜fの帯域がDVB-C2のTuning Windowの帯域であるとすると、受信信号の帯域全体にOFDM信号が含まれる状態でクロック周波数誤差のみがある場合には、図20Bに示すようにキャリア番号に比例したGI相関の位相差が現れることになる。
受信信号の帯域の一部にのみOFDM信号が含まれる状態でクロック周波数誤差のみがある場合について考える。図21Aに示すように、受信信号の帯域である周波数f〜fの帯域の中心周波数を中心として対称にOFDM信号が分布する場合、図21Bにおいて色を付して示す周波数f11〜f12の範囲の位相差がI/Q位相差算出部65により検出され、キャリア周波数補正値生成部54により積分されることになる。キャリア周波数補正値生成部54による積分結果は0となり、キャリア周波数誤差はないものとして判定される。
ここではクロック周波数誤差のみがある場合を考えているから、キャリア周波数補正値生成部54の判定結果は正しい結果となる。キャリア周波数補正部52においては、いまのキャリア周波数誤差の状態に応じて適切な処理が行われることになる。すなわち、キャリア周波数誤差が0であるからキャリア周波数補正部52においては補正が行われない。
これに対し、図22Aに示すように、受信信号の帯域である周波数f〜fの帯域の中心周波数を中心として対称にOFDM信号が分布しておらず、OFDM信号の帯域に偏りがある場合、図22Bにおいて色を付して示す周波数f21〜f22の範囲の位相差がキャリア周波数補正値生成部54により検出され、キャリア周波数補正値生成部54により積分されることになる。キャリア周波数補正値生成部54による積分結果は0にならず、キャリア周波数誤差が積分結果の分だけあるものとして判定される。
ここではクロック周波数誤差のみがある場合を考えているから、キャリア周波数補正値生成部54の判定結果は正しくない結果となる。キャリア周波数補正部52においては、いまのキャリア周波数誤差の状態とは異なる処理が行われることになる。すなわち、キャリア周波数誤差が実際には0であるにも関わらず、キャリア周波数補正部52においては、積分結果に相当する分だけキャリア周波数誤差を補正する処理が行われてしまう。
受信信号の帯域においてOFDM信号の帯域に偏りがある場合、このように実際のキャリア周波数誤差の状態に合致しない形で補正処理が行われる。これにより、OFDM信号の帯域に偏りがない場合と較べて受信性能が劣化することになる。
言い換えると、受信信号の帯域の一部に含まれる所望OFDM信号の帯域に偏りがある場合にその偏りをなくし、所望OFDM信号の帯域が受信信号の帯域において中心周波数を基準として対称に位置するようにダウンコンバージョンを行うことにより、受信性能を向上させることが可能になる。
<変形例>
図23は、受信装置1の第2の構成例を示すブロック図である。
図23に示す構成のうち、図4の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。図23に示す受信装置1の構成は、直交復調部31の後段であって、FFT演算部33の前段の位置にフィルタ処理部101が設けられている点で図4の構成と異なる。
復調部12の直交復調部31は、RFチューナ11の周波数変換部21から供給されたIF信号に対して直交復調を施す。直交復調部31は、直交復調を施すことによって得られた時間域のベースバンド信号をフィルタ処理部101に出力する。
図23の例においては、図7を参照して説明したように、受信信号の帯域の一部にのみ所望OFDM信号が含まれている。フィルタ処理部101に供給されたベースバンド信号は、所望OFDM信号の帯域の中心周波数が直流成分となる信号にIF信号をダウンコンバージョンした信号である。
フィルタ処理部101は、周波数設定部36から供給された所望OFDM信号に関する情報に基づいて、所望OFDM信号の帯域に隣接する、所望OFDM信号の帯域以外の帯域の信号をローパスフィルタによって抑圧する。フィルタ処理部101は、所望OFDM信号の帯域以外の帯域の信号を抑圧したベースバンド信号をFFT演算部33に出力する。
FFT演算部33は、フィルタ処理部101から供給されたベースバンド信号に対してFFT演算を施し、周波数域のベースバンド信号を出力する。
周波数設定部36は、ECC処理部35から供給されたL1情報に基づいて、受信信号に含まれるOFDM信号の帯域を特定し、OFDM信号の帯域の情報をフィルタ処理部101に出力する。
所望OFDM信号の帯域外に外乱が存在することが想定される。そのような外乱についてはフィルタ処理によって抑圧しておいた方が好ましい。例えば電力の高い信号が外乱として存在する場合、それを抑圧しないときにはFFT演算においてオーバーフローが発生し、受信性能が劣化するおそれがある。FFT演算の前に外乱を抑圧しておくことによって、FFT演算のオーバーフローを防ぐことができ、受信性能を向上させることが可能になる。フィルタ処理の前に上述したようにしてダウンコンバージョンを行い、処理対象の信号をベースバンド信号とすることによって、複素数係数ではなく実数係数のローパスフィルタを用いてフィルタ処理を行うことができ、回路規模を減らすことができる。
フィルタ処理部101の位置は、復調部12内の直交復調部31の前段の位置であってもよいし、RFチューナ11内などの他の位置であってもよい。
図24は、受信装置1の第3の構成例を示すブロック図である。図24に示す構成のうち、図4の構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
図24の受信装置1においては、受信信号の帯域の一部にのみ所望OFDM信号の帯域が含まれる場合、RF信号からIF信号に変換する段階で、所望OFDM信号の帯域の偏りをなくす処理が行われる。
周波数設定部36は、受信信号の帯域の一部にのみ所望OFDM信号が含まれる場合、L1情報に基づいて、受信信号の帯域に含まれる所望OFDM信号の帯域の中心周波数を特定し、所望OFDM信号の帯域の中心周波数の情報をRFチューナ11の発振器22に出力する。
RFチューナ11の発振器22は、周波数設定部36により設定された周波数の信号を生成し、周波数変換部21に出力する。
周波数変換部21は、入力されたRF信号を受信し、発振器22から供給された所定の周波数の信号に基づいてRF信号の周波数変換を行う。周波数変換部21は、周波数変換を行うことによって得られた、所望OFDM信号の帯域の中心周波数と同じ周波数のIF信号を直交復調部31に出力する。
このように、IF信号からベースバンド信号に変換する直交復調の段階ではなく、RF信号からIF信号に変換する段階でOFDM信号の帯域の偏りをなくすことによっても受信性能を向上させることができる。
図25は、受信信号の帯域のシフトの他の例について説明する図である。
図10の場合と同様に、図25のDependent Static DSの帯域幅は2MHzであり、DS0乃至4の5つのData Sliceから構成される。受信対象とする所望のData Sliceが左端のDS0である。Dependent Static DSの左端はBroadband Notchに接し、右端はC2 System外の帯域に接する。図25のDependent Static DSはC2 Systemの端に設定されたData Sliceである。
この場合、周波数設定部36は、L1情報に基づいて、所望OFDM信号の帯域の中心周波数である周波数f2を特定する。周波数設定部36は、所望OFDM信号の帯域の中心周波数である周波数f2より、Broadband Notchから離れた所定の周波数を、受信信号の帯域の中心周波数として設定する。図25の例においては、周波数f2よりC2 System外の帯域に近い、DS3の中心周波数である周波数fが受信信号の帯域の中心周波数として設定されている。
受信信号の帯域の中心周波数として所望OFDM信号の帯域の中心周波数よりC2 System外の帯域に近い周波数を設定することによって、受信信号の帯域に含まれるNotchの帯域幅を狭くすることができ、Notchの帯域に外乱がある場合にその影響を減らすことが可能になる。
[受信システムの構成例]
図26は、受信装置1を適用した受信システムの構成例を示すブロック図である。
図26の受信システム201は、チューナ211、復調部212、信号処理部213、および出力部214から構成される。
チューナ211は、地上デジタル放送、衛星デジタル放送、CATV網、インターネットなどの伝送路を介して伝送されてきた信号を受信し、復調部212に出力する。上述したRFチューナ11はチューナ211に含まれる。
復調部212は、チューナ211から供給された信号に対して、復調処理、誤り訂正処理を含む伝送路復号処理を施し、伝送路復号処理によって得られたデータを信号処理部213に出力する。上述した復調部12が復調部212に含まれる。
信号処理部213は、伝送路復号処理によって得られたデータに対して、伸張処理、デスクランブル処理等の信号処理を適宜施し、送信対象のデータを取得する。上述したMPEGデコーダ13が信号処理部213に含まれる。
信号処理部213による伸張処理は、画像や音声などの送信対象のデータに対して、MPEG等の所定の方式を用いて送信側において圧縮が施されている場合に行われる。また、デスクランブル処理は、送信対象のデータに対して送信側においてスクランブルが施されている場合に行われる。信号処理部213は、信号処理を適宜施すことによって得られた送信対象のデータを出力部214に出力する。
出力部214は、信号処理部213から供給されたデータに基づいて画像を表示させる場合、信号処理部213から供給されたデータに対してD/A変換等の処理を施す。出力部214は、D/A変換等の処理を施すことによって得られた画像信号を受信システム201に設けられたディスプレイ、または受信システム201の外部のディスプレイに出力し、画像を表示させる。
また、出力部214は、信号処理部213から供給されたデータを記録媒体に記録させる場合、信号処理部213から供給されたデータを受信システム201の内部の記録媒体、または外部の記録媒体に出力し、記録させる。記録媒体は、ハードディスク、フラッシュメモリ、光ディスクなどより構成される。外部の記録媒体は、受信システム201の外付けの記録媒体だけでなく、ネットワークを介して接続される記録媒体であってもよい。
以上のような構成を有する受信システム201は、IC(Integrated Circuit)チップ等のハードウェアにより構成されるようにしてもよいし、複数のICチップが配設されることによって構成されるボード等の部品や、その部品を含む独立した装置から構成されるようにしてもよい。
チューナ211、復調部212、信号処理部213、および出力部214は、それぞれ、1つの独立したハードウェア、又はソフトウェアモジュールとして構成することが可能である。また、チューナ211、復調部212、信号処理部213、および出力部214のうちの2つ以上の組み合わせが1つの独立したハードウェア、又はソフトウェアモジュールとして構成されるようにしてもよい。例えば、チューナ211と復調部212が1つのハードウェア等により構成され、信号処理部213と出力部214が1つのハードウェア等により構成されるようにすることも可能である。
受信システム201は、例えば、デジタル放送としてのテレビジョン放送を受信するTVや、ラジオ放送を受信するラジオ受信機、テレビジョン放送を録画するレコーダ機器等に適用することができる。
[コンピュータの構成例]
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。
図27は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
CPU(Central Processing Unit)251、ROM(Read Only Memory)252、RAM(Random Access Memory)253は、バス254により相互に接続されている。
バス254には、さらに、入出力インタフェース255が接続されている。入出力インタフェース255には、キーボード、マウスなどよりなる入力部256、ディスプレイ、スピーカなどよりなる出力部257が接続される。また、入出力インタフェース255には、ハードディスクや不揮発性のメモリなどよりなる記憶部258、ネットワークインタフェースなどよりなる通信部259、リムーバブルメディア261を駆動するドライブ260が接続される。
以上のように構成されるコンピュータでは、CPU251が、例えば、記憶部258に記憶されているプログラムを入出力インタフェース255及びバス254を介してRAM253にロードして実行することにより、上述した一連の処理が行われる。
CPU251が実行するプログラムは、例えばリムーバブルメディア261に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供され、記憶部258にインストールされる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
1 受信装置, 11 RFチューナ, 12 復調部, 13 MPEGデコーダ, 21 周波数変換部, 22 発振器, 31 直交復調部, 32 発振器, 33 FFT演算部, 34 等化部, 35 ECC処理部, 36 周波数設定部, 101 フィルタ処理部

Claims (8)

  1. 伝送制御情報のシンボルとデータシンボルとを送信するキャリアを含む所定の周波数帯域幅を有する信号を、帯域幅を固定して受信する受信部と、
    前記キャリアが前記帯域幅の全体に含まれる場合、前記受信部により受信された受信信号を、前記受信信号の中心周波数が直流成分となるベースバンド信号に変換する復調部と、
    前記ベースバンド信号に基づいて前記伝送制御情報を復号する復号部と
    を備え、
    前記復調部は、前記キャリアが前記帯域幅の一部に含まれ、前記受信信号の帯域の中心周波数である第1の周波数と、受信対象の前記キャリアの信号と、受信対象の前記キャリアの信号と帯域が隣接する隣接信号とからなる、前記受信信号の帯域の一部に含まれる所望信号の帯域の中心周波数である第2の周波数とが異なる場合、前記復号部により復号された前記伝送制御情報に基づいて、前記受信信号を、前記第2の周波数が直流成分となるベースバンド信号に変換する
    受信装置。
  2. 前記復調部は、前記第1の周波数と前記第2の周波数とが異なる場合であって、受信対象の前記キャリアの信号の両端のうちの一方の端が前記隣接信号と隣接するときに、前記受信信号を前記ベースバンド信号に変換する
    請求項1に記載の受信装置。
  3. 前記伝送制御情報に基づいて前記第1の周波数と前記第2の周波数を特定し、前記ベースバンド信号が直流成分となる周波数を設定する設定部をさらに備え、
    前記復調部は、前記設定部により設定された周波数に従って、前記受信信号の変換を行う
    請求項1または2に記載の受信装置。
  4. 前記所望信号の帯域以外の帯域の信号を抑圧する処理部をさらに備え、
    前記復調部は、前記処理部により信号が抑圧された前記受信信号を前記ベースバンド信号に変換する
    請求項1乃至3のいずれかに記載の受信装置。
  5. 前記第1の周波数を中心周波数とする帯域は、DVB-C2のTuning Windowの帯域であり、
    前記所望信号の帯域は、受信対象のData SliceのOFDM信号を少なくとも一部に含むOFDM信号の帯域である
    請求項1乃至4のいずれかに記載の受信装置。
  6. 前記復調部は、前記所望信号の帯域が、C2 System外の帯域とNotchの帯域に挟まれている場合、前記受信信号を、前記所望信号の帯域の中心周波数より、前記C2 System外の帯域に近い周波数が直流成分となる前記ベースバンド信号に変換する
    請求項に記載の受信装置。
  7. 伝送制御情報のシンボルとデータシンボルとを送信するキャリアを含む所定の周波数帯域幅を有する信号を、帯域幅を固定して受信し、
    前記キャリアが前記帯域幅の全体に含まれる場合、受信信号を、前記受信信号の中心周波数が直流成分となるベースバンド信号に変換し、
    前記ベースバンド信号に基づいて前記伝送制御情報を復号し、
    前記キャリアが前記帯域幅の一部に含まれ、前記受信信号の帯域の中心周波数である第1の周波数と、受信対象の前記キャリアの信号と、受信対象の前記キャリアの信号と帯域が隣接する隣接信号とからなる、前記受信信号の帯域の一部に含まれる所望信号の帯域の中心周波数である第2の周波数とが異なる場合、復号した前記伝送制御情報に基づいて、前記受信信号を、前記第2の周波数が直流成分となるベースバンド信号に変換する
    ステップを含む受信方法。
  8. 伝送制御情報のシンボルとデータシンボルとを送信するキャリアを含む所定の周波数帯域幅を有する信号を、帯域幅を固定して受信し、
    前記キャリアが前記帯域幅の全体に含まれる場合、受信信号を、前記受信信号の中心周波数が直流成分となるベースバンド信号に変換し、
    前記ベースバンド信号に基づいて前記伝送制御情報を復号し、
    前記キャリアが前記帯域幅の一部に含まれ、前記受信信号の帯域の中心周波数である第1の周波数と、受信対象の前記キャリアの信号と、受信対象の前記キャリアの信号と帯域が隣接する隣接信号とからなる、前記受信信号の帯域の一部に含まれる所望信号の帯域の中心周波数である第2の周波数とが異なる場合、復号した前記伝送制御情報に基づいて、前記受信信号を、前記第2の周波数が直流成分となるベースバンド信号に変換する
    ステップを含む処理をコンピュータに実行させるプログラム。
JP2011080120A 2011-03-31 2011-03-31 受信装置、受信方法、およびプログラム Expired - Fee Related JP5828215B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011080120A JP5828215B2 (ja) 2011-03-31 2011-03-31 受信装置、受信方法、およびプログラム
EP12765696.5A EP2693647B1 (en) 2011-03-31 2012-03-23 Receiver apparatus, reception method, program, and reception system
RU2013143171/07A RU2600984C2 (ru) 2011-03-31 2012-03-23 Приемное устройство, способ приема, программа и приемная система
US14/006,871 US9203678B2 (en) 2011-03-31 2012-03-23 Receiving device, receiving method, program, and receiving system
CN201280015065.2A CN103460610B (zh) 2011-03-31 2012-03-23 接收装置、接收方法及接收系统
BR112013024391A BR112013024391A2 (pt) 2011-03-31 2012-03-23 dispositivo de recepção, método, e sistema de recepção, e, programa
PCT/JP2012/057528 WO2012133193A1 (ja) 2011-03-31 2012-03-23 受信装置、受信方法、プログラム、および受信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080120A JP5828215B2 (ja) 2011-03-31 2011-03-31 受信装置、受信方法、およびプログラム

Publications (2)

Publication Number Publication Date
JP2012216955A JP2012216955A (ja) 2012-11-08
JP5828215B2 true JP5828215B2 (ja) 2015-12-02

Family

ID=46930916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080120A Expired - Fee Related JP5828215B2 (ja) 2011-03-31 2011-03-31 受信装置、受信方法、およびプログラム

Country Status (7)

Country Link
US (1) US9203678B2 (ja)
EP (1) EP2693647B1 (ja)
JP (1) JP5828215B2 (ja)
CN (1) CN103460610B (ja)
BR (1) BR112013024391A2 (ja)
RU (1) RU2600984C2 (ja)
WO (1) WO2012133193A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078750B (zh) * 2014-10-31 2019-03-19 瑞典爱立信有限公司 无线电接收器、检测无线电接收器中的侵扰信号的方法以及计算机程序
TWI610545B (zh) * 2016-06-21 2018-01-01 晨星半導體股份有限公司 檢測凹口頻帶之檢測方法及檢測裝置
CN108123782B (zh) 2016-11-27 2020-11-06 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
EP3360476B1 (en) * 2017-02-13 2020-09-30 Stichting IMEC Nederland A method and a device for detecting of a vital sign
US10491253B2 (en) * 2018-03-07 2019-11-26 At&T Intellectual Property I, L.P. Reducing interference in radio broadcast bands
RU193322U1 (ru) * 2019-09-02 2019-10-24 Акционерное общество "Концерн "Созвездие" Устройство высокоточной оценки несущей частоты широкополосного сигнала
CN116400302B (zh) * 2023-06-05 2023-08-22 成都实时技术股份有限公司 一种雷达信号接收处理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3660050B2 (ja) * 1996-03-27 2005-06-15 松下電器産業株式会社 受信装置
US6026129A (en) * 1996-03-27 2000-02-15 Matsushita Electric Industrial Co., Ltd. Radio receiving apparatus for receiving communication signals of different bandwidths
JP4284568B2 (ja) * 1999-03-18 2009-06-24 ソニー株式会社 受信装置および方法、並びに記録媒体
EP1271871A1 (en) * 2001-06-20 2003-01-02 Motorola, Inc. Compensation of mismatch between quadrature paths
CA2545546A1 (en) * 2003-11-18 2005-06-02 Ibiquity Digital Corporation Coherent tracking for fm iboc receiver using a switch diversity antenna system
WO2006137324A1 (ja) * 2005-06-22 2006-12-28 Matsushita Electric Industrial Co., Ltd. 無線受信装置
JP4342509B2 (ja) * 2005-11-25 2009-10-14 株式会社東芝 無線受信装置及び無線受信方法
JP2008098785A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 受信機
US8502920B2 (en) * 2007-03-14 2013-08-06 Vyacheslav Shyshkin Method and apparatus for extracting a desired television signal from a wideband IF input
US7672653B2 (en) * 2007-03-20 2010-03-02 Intel Corporation Removing interfering signals in a broadband radio frequency receiver
EP2131540B1 (en) * 2008-06-04 2013-09-18 Sony Corporation New frame structure for multi-carrier systems
JP2010087749A (ja) 2008-09-30 2010-04-15 Sony Corp 受信装置、受信方法、およびプログラム
JP5347792B2 (ja) * 2009-07-16 2013-11-20 ソニー株式会社 信号処理装置、信号処理方法、及び、受信システム
EP2533453B1 (en) * 2011-06-10 2015-08-19 Sony Corporation Apparatus and method for transmitting and receiving in a multi carrier transmission system

Also Published As

Publication number Publication date
US20140010332A1 (en) 2014-01-09
CN103460610B (zh) 2016-10-05
JP2012216955A (ja) 2012-11-08
RU2600984C2 (ru) 2016-10-27
BR112013024391A2 (pt) 2019-09-24
US9203678B2 (en) 2015-12-01
EP2693647B1 (en) 2016-08-31
RU2013143171A (ru) 2015-03-27
EP2693647A1 (en) 2014-02-05
EP2693647A4 (en) 2014-09-10
WO2012133193A1 (ja) 2012-10-04
CN103460610A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5828215B2 (ja) 受信装置、受信方法、およびプログラム
TWI410071B (zh) 訊號處理設備及方法
US8750435B2 (en) Receiving apparatus, receiving method, and receiving system
US8488695B2 (en) Receiving apparatus and method, program, and receiving system
JP5392554B2 (ja) 受信装置及び方法、プログラム、並びに受信システム
KR101395686B1 (ko) Dvb-t/h 수신기에서의 공통 위상 오차를 제거하기 위한 장치 및 방법
JP5754211B2 (ja) 受信装置、受信方法、プログラム、および受信システム
JP5299162B2 (ja) 受信装置、および受信方法
RU2594764C2 (ru) Устройство приема, способ приема и программа
KR101406160B1 (ko) Dvb-t/h 수신기에서의 공통 위상 오차를 제거하기 위한 장치 및 방법
TWI440326B (zh) 信號接收設備,方法,程式及系統
US9094635B2 (en) Reception device, reception method, program, and reception system
US8885107B2 (en) Signal processing device, signal processing method, and program for selectively processing a desired broadcast signal from a plurality of received broadcast signals
JP2004236076A (ja) 受信装置及び受信方法
EP2693670A1 (en) Receiver apparatus, reception method, program, and reception system
JP5686248B2 (ja) 受信装置、受信方法、およびプログラム
JP2003283458A (ja) キャリア判別方法、キャリア判別回路、およびこれらを利用可能な自動周波数同調回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151007

LAPS Cancellation because of no payment of annual fees