JP2008098785A - 受信機 - Google Patents

受信機 Download PDF

Info

Publication number
JP2008098785A
JP2008098785A JP2006275738A JP2006275738A JP2008098785A JP 2008098785 A JP2008098785 A JP 2008098785A JP 2006275738 A JP2006275738 A JP 2006275738A JP 2006275738 A JP2006275738 A JP 2006275738A JP 2008098785 A JP2008098785 A JP 2008098785A
Authority
JP
Japan
Prior art keywords
signal
unit
receiver
digital
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006275738A
Other languages
English (en)
Inventor
Kazuhiko Takeyama
和彦 竹山
Takashi Enoki
貴志 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006275738A priority Critical patent/JP2008098785A/ja
Publication of JP2008098785A publication Critical patent/JP2008098785A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superheterodyne Receivers (AREA)

Abstract

【課題】信号帯域幅を制御する通信システムにおいて、妨害波入力によっても通信スループットを低下させず、且つ低消費電力化を図ること。
【解決手段】直交復調時のローカル信号周波数を希望波の中心周波数に設定するダイレクトコンバージョン受信機構成の第1受信モードと、直交復調時のローカル信号周波数を希望波のサイド周波数乃至希望波外に設定し第1のアナログベースバンド系115aはONとしディジタル直交復調部111はOFFとする第1のLow−IF受信機構成の第2受信モードと、直交復調時のローカル信号周波数を希望波のサイド周波数乃至希望波外に設定し第1のアナログベースバンド系115aはOFFとしディジタル直交復調部111はONとする第2のLow−IF受信機構成の第3受信モードとを、希望波と妨害波との妨害波比aに応じて切り換えるスイッチ部110及び制御部113を具備する。
【選択図】図1

Description

本発明は、受信機に関し、特に、ユーザの要求及び通信環境に応じて信号の帯域幅を制御して通信する次世代移動体通信システムにおけるマルチバンド受信機として有用な受信機に関する。
近年、移動体通信システムにおいて周波数利用効率を高めるべく、ユーザの要求及び通信環境に応じて帯域幅の異なる信号を通信する通信システムが検討されている(非特許文献1参照)。非特許文献1においては、最大無線帯域幅20MHzの通信システムが報告されている。
また、無線帯域幅が20MHz以上の広い帯域を用いた伝送方式として、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式が知られている(非特許文献2及び非特許文献3参照)。OFDM信号は、直交する複数のサブキャリアを用いてディジタル情報を伝送する周波数分割多重のディジタル変調方式であり、マルチパスに強い、周波数利用効率が高い等の特徴を有している。
また、従来、任意の帯域幅の信号を受信可能な受信機として、例えば、特許文献1に開示されたものが知られている。
このような従来の受信機の構成例を図12に示す。図12は、可変帯域ディジタルフィルタを備えたLow−IF方式の受信機の構成を示すブロック図である。
図12に示す受信機10は、アンテナ11、RFフィルタ部12、直交復調部13、固定ローカル発振部14、イメージ抑圧部15、A/D(Analog to Digital)変換部16、直交復調部17、可変ローカル発振部18、チャネル選択部19を備えている。
図12において、アンテナ11は、受信した受信信号をRFフィルタ部12に出力する。
RFフィルタ部12は、アンテナ11から入力された受信信号のうち通信に用いる周波数帯域のRF信号のみを通し、通過したRF信号を直交復調部13に出力する。
固定ローカル発振部14は、直交復調のための基準信号(ローカル発振信号)を生成し、生成した基準信号を直交復調部13に出力する。
直交復調部13は、固定ローカル発振部14から入力されるローカル発振信号を用いてRFフィルタ部12から入力されたRF信号の全チャネルを、低い周波数帯域、例えばDC近傍の周波数に直交変換し、直交変換した信号をイメージ抑圧部15に出力する。
イメージ抑圧部15は、直交復調部13の直交復調処理に付随する処理部であり、直交復調部13から入力された信号のイメージ成分を抑圧し、抑圧した信号をA/D変換部16に出力する。
A/D変換部16は、イメージ抑圧部15から入力された信号をディジタル信号に変換し、変換したディジタル信号を直交復調部17に出力する。
可変ローカル発振部18は、所望のチャネルに対応した発振周波数の基準信号(ローカル発振信号)を生成し、生成した基準信号を直交復調部17に出力する。
直交復調部17は、ディジタル処理部であり、可変ローカル発振部18から入力される直交復調のための基準信号であるローカル発振信号を用いて、A/D変換部16から入力されたディジタル信号をディジタル処理により直交復調し、直交復調した信号をチャネル選択部19に出力する。
チャネル選択部19は、例えばディジタルフィルタで構成されるディジタル処理部であり、直交復調部17から入力された信号から所望のチャネルの信号を選択して出力する。
このように、受信機10においては、可変ローカル発振部18によって受信信号の帯域に応じた基準信号を形成することで、帯域幅の異なる信号を受信した場合でも、直交復調部17でその帯域幅に応じた直交復調処理を行うことができるので、マルチバンドの受信信号を復調することができるようになっている。
従来の受信機の他の構成例を図13に示す。図13は、従来の他のLow−IF方式の受信機の構成を示すブロック図である。
図13に示す受信機20は、図12に示した受信機10のイメージ抑圧部15とA/D変換部16との配設位置が相互に異なるのみで、図12に示した受信機10と同等の機能を備えている。
図12及び図13に示す受信機10,20のイメージ抑圧部15は、それぞれ同様の動作をディジタル処理によって行う。
次に、上述のように構成された従来の受信機10,20の動作について、図14のスペクトラム図を参照して説明する。
図14(a)は受信信号、図14(b)はイメージ抑圧部15の出力、図14(c)はチャネル選択部19のフィルタ特性、図14(d)はチャネル選択部19の出力を示している。
ここで、受信対象とする無線通信システムのチャネルは、図14(a)に示すチャネル1(CH1)〜チャネル6(CH6)であるものとする。また、図14において、CH4を希望チャネル(希望CH)とし、CH1〜CH6の中から希望チャネルを選択受信するものとする。
受信機10,20においては、固定ローカル発振部14の周波数Loを、図14(a)に示すように、希望チャネル(希望CH)の帯域の範囲外に設定する。そして、受信不要なその他のチャネルのうち、少なくとも所望波のイメージ成分を含む帯域を、図14(b)に示すように、イメージ抑圧部15によって抑圧する。
イメージ抑圧部15の出力は、A/D変換部16に入力され、A/D変換部16において、図14(c)に示す全チャネルの受信信号が一括してA/D変換される。そして、A/D変換部16でA/D変換された信号は、直交復調部17に入力される。
直交復調部17は、可変ローカル発振部18からのローカル発振信号を用いて、希望チャネル(図14の例ではCH4)の受信信号を直交復調する。これにより、図14(d)に示すように、希望CH4の受信信号が復調される。
チャネル選択部19は、任意に帯域幅を可変できるディジタルフィルタで構成されており、直交復調部17で直交復調された出力から希望チャネル(CH4)の信号を選択して出力する。
これにより、受信機10,20は、任意の帯域幅の信号を受信することが可能となる。
このような任意の帯域幅を受信することが可能な他の方式の受信機として、可変帯域アナログローパスフィルタを備えたダイレクトコンバージョン方式の受信機がある。図15は、従来のダイレクトコンバージョン方式の受信機の構成を示すブロック図である。
図15に示す受信機30は、アンテナ31、無線信号受信部32、AGC(Auto Gain Control)部33a,33b、可変帯域ローパスフィルタ部34a,34b、A/D変換部35a,35b、ディジタル信号処理部36を備えている。
無線信号受信部32は、RFフィルタ部321と、低雑音増幅部322と、直交復調部323を備えている。直交復調部323は、ローカル周波数を基準に、増幅後の受信信号を直交復調するようになっている。なお、このローカル周波数は、受信信号の帯域に応じて可変制御できるようになっている。
ディジタル信号処理部36は、AGC部33a,33bと可変帯域ローパスフィルタ部34a,34bを制御する制御部361と、信号復調部362とを備えている。
図15において、無線信号受信部32は、アンテナ31が受信した信号に対して、信号増幅やダウンコンバート等の所定の無線処理を施すと共に、I(同相)成分信号、Q(直交)成分信号に変換して出力する。無線信号受信部32から出力されたI・Q信号は、可変帯域ローパスフィルタ部34a,34bにそれぞれ入力される。
可変帯域ローパスフィルタ部34a,34bは、例えば図16に示すような、特性a、特性b、特性c、の3つのフィルタ特性に切り換えることができるようになっている。
このように構成された受信機30の動作について、図17に示すスペクトル図を参照して説明する。図17(a)、図17(b)、図17(c)は、帯域幅の異なる希望CHの受信信号を示している。
受信機30は、図17(a)に示す受信信号の場合には、無線信号受信部32に入力するローカル周波数をf1に設定すると共に、可変帯域ローパスフィルタ34a、34bを特性aに設定することで、希望CHの受信信号を受信することが可能となる。
同様に、図17(b)に示す受信信号の場合には、無線信号受信部32に入力するローカル周波数をf2に設定すると共に、可変帯域ローパスフィルタ34a、34bを特性bに設定することで、希望CHの受信信号を受信することが可能となる。
さらに、図17(c)に示す受信信号の場合には、無線信号受信部32に入力するローカル周波数をf3に設定すると共に、可変帯域ローパスフィルタ34a、34bを特性cに設定することで、希望CHの受信信号を受信することが可能となる。
3GPP TR 25.814 V1.3 ITU−RS奇書(TG11/3) テレビジョン学会研究報告Vol.17,No.54,p7-12,BCS 93-33(Sep.1993) 特許第3615099号公報
しかしながら、前記従来のLow−IF方式の受信機においては、希望波の信号レベルに対して非希望波である妨害波の信号レベルが大きい場合、AD変換部のダイナミックレンジが非希望波に割り当てられるため、希望波の信号品質が劣化するという課題があった。
また、従来のLow−IF方式の受信機においては、基本構成以外に、イメージ周波数帯を抑圧するためのイメージリジェクションフィルタを備える必要があるため、回路規模が大きくなるという課題があった。
また、従来のダイレクトコンバージョン方式の受信機においては、一般に、DCオフセットによる受信品質の劣化を防ぐためにDCカット構成を採る必要がある。このため、従来のダイレクトコンバージョン方式の受信機では、信号帯域幅が狭い信号を受信する場合、DC近傍の信号品質が劣化して通信スループットが低下するという課題があった。
また、従来のイメージリジェクションフィルタを備えたLow−IF方式の受信機、及びダイレクトコンバージョン方式の受信機においては、2系統のアナログベースバンド系を動作させる必要があるため、消費電力が大きくなるという課題があった。
本発明は、かかる点に鑑みてなされたもので、信号帯域幅を制御する通信システムにおいて、妨害波入力による通信スループットの低下を防止することができ、且つアナログベースバンド系による電力消費を低減することができる受信機を提供することを目的とする。
かかる課題を解決するため、マルチバンドの受信信号を復調する受信機であって、アナログ受信信号を直交復調するアナログ直交復調部と、ディジタル変換された受信信号を直交復調するディジタル直交復調部と、前記アナログ直交復調部と前記ディジタル直交復調部との間に設けられ、前記アナログ直交復調部によって得られた2系統の直交信号それぞれに対して、アナログベースバンド処理を施す第1及び第2のアナログベースバンド処理部と、ディジタルベースバンド復調処理を行うことで、受信データを得るディジタルベースバンド復調部と、受信モードを、・第1の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波の中心周波数に設定し、かつ前記第1及び第2のアナログベースバンド処理部の両方を動作させ前記第1及び第2のアナログベースバンド処理部により得られた信号を前記ディジタルベースバンド復調部に供給し、かつ前記ディジタル直交復調部を動作停止させるモード、・第2の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波のサイド周波数乃至前記希望波外に設定し、かつ前記第1及び第2のアナログベースバンド処理部の両方を動作させ前記第1及び第2のアナログベースバンド処理部により得られた信号を前記ディジタルベースバンド復調部に供給し、かつ前記ディジタル直交復調部を動作停止させるモード、・第3の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波の中心周波数に設定し、かつ前記第1又は第2のアナログベースバンド処理部の一方のみを動作させ、かつ前記ディジタル直交処理部を動作させ前記ディジタル直交処理部により得られた信号を前記ディジタルベースバンド復調部に供給するモード、のいずれかに切り替える制御部と、を具備する構成を採る。
本発明によれば、信号帯域幅を制御する通信システムにおいて、妨害波入力による通信スループットの低下を防止することができ、且つアナログベースバンド系による電力消費を低減することができるので、受信品質を劣化させることなく低消費電力化を図ることができる。
以下、本発明の実施の形態に係る受信機について、図面を参照して詳細に説明する。本発明の実施の形態に係る受信機は、希望波と妨害波とのレベル比(U/D比)に応じて受信モードを切り換えることで、妨害波による信号品質の劣化を抑えつつ低消費電力化を図ることを特徴としている。
(実施の形態1)
図1は、本発明の実施の形態1に係る受信機の構成を示すブロック図である。
図1に示すように、本例の受信機100は、アンテナ101、アンテナ共用部102、低雑音増幅部103、直交復調部104、可変帯域ローパスフィルタ105a,105b、AGC部106a,106b、A/D変換部107a,107b、ディジタル信号処理部108を備えている。
ディジタル信号処理部108は、スイッチ部110、ディジタル直交復調部111、OFDM復調部112、制御部113、検波部114を備えている。
図1において、アンテナ101は、無線信号を受信し、受信した受信信号をアンテナ共用部102に出力する。
アンテナ共用部102は、アンテナ101を図1に示す受信系と図示しない送信系とで共用させると共に、アンテナから入力される受信信号の非希望波である妨害波を抑圧するように動作し、妨害波を抑圧した受信信号を低雑音増幅部103に出力する。
低雑音増幅部103は、アンテナ共用部102から入力された受信信号を低雑音で増幅し、増幅した信号を直交復調部104に出力する。
直交復調部104は、低雑音増幅部103から入力された信号を、基準信号であるローカル発信信号を用いて直交復調して、2系統のアナログベースバンド信号に変換し、変換した2系統のアナログベースバンド信号を、第1のアナログベースバンド系115aの可変帯域ローパスフィルタ105a、及び第2のアナログベースバンド系115bの可変帯域ローパスフィルタ105bに、それぞれ出力する。
第1及び第2のアナログベースバンド系115a,115bの可変帯域ローパスフィルタ105a,105bは、直交復調部104から入力された2系統のアナログベースバンド信号に対してそれぞれ不要成分を抑圧するように動作し、フィルタを構成している素子の一部を複数段階で切り換えることで帯域幅を切り換えたアナログベースバンド信号を、AGC部106a,106bにそれぞれ出力する。
第1及び第2のアナログベースバンド系115a,115bのAGC部106a,106bは、可変帯域ローパスフィルタ105a,105bから入力されたアナログベースバンド信号の振幅レベルを、後段のA/D変換部107a,107bにおいて最適な入力レベルになるように調整し、振幅調整したアナログベースバンド信号をA/D変換部107a,107bに出力する。
第1及び第2のアナログベースバンド系115a,115bのA/D変換部107a,107bは、AGC部106a,106bから入力される振幅調整されたアナログベースバンド信号をA/D変換し、A/D変換したベースバンド信号をディジタル信号処理部108に出力する。
ディジタル信号処理部108のスイッチ部110は、第1のアナログベースバンド系115aのA/D変換部107aから入力されるベースバンド信号の出力経路を、ディジタル直交復調部111に出力する出力経路と、OFDM復調部112に出力する出力経路とのいずれかに切り換えるように、制御部113により切り換え制御される。
ディジタル直交復調部111は、第1のアナログベースバンド系115aのA/D変換部107aから入力されたベースバンド信号を直交復調し、直交復調により生成したI、Q信号をOFDM復調部112に出力する。
OFDM復調部112は、第1及び第2のアナログベースバンド系115a,115bのA/D変換部107a,107b、又はディジタル直交復調部111から入力されたOFDM信号を、FFT処理等を行って復調する。なお、OFDM復調部112は、FFT帯域幅を切り換えることができ、通信システムにおける最大帯域幅までの信号処理が可能となっている。
制御部113は、第2のアナログベースバンド系115bの可変帯域ローパスフィルタ部105b、AGC部106bのON/OFF制御、ディジタル信号処理部108のスイッチ部110の切り換え制御、及びディジタル信号処理部108のディジタル直交復調部111のON/OFF制御を行う。
また、制御部113は、直交復調部104のローカル発振信号の周波数制御、第1及び第2のアナログベースバンド系115a,115bの可変帯域ローパスフィルタ部105a、105bの帯域幅制御、AGC部106a、106bのゲイン制御、及びディジタル信号処理部108のディジタル直交復調部111のローカル発振信号の周波数制御を行う。
本例の受信機100におけるディジタル信号処理部108のOFDM復調部112は、希望波と妨害波とのレベル比(U/D比)を求めるように動作する検波部114を備えている。
次に、本例の受信機100の受信機構成について説明する。
本例の受信機100は、ローカル周波数制御、フィルタ帯域幅制御、ディジタル信号処理部制御を行うことで、(1)ダイレクトコンバージョン受信モード、(2)第1のLow−IF受信モード、(3)第2のLow−IF受信モード、の3つの受信モードを任意に設定することが可能な受信機構成を有している。以下に、これら3つの受信モード時のそれぞれの受信機構成について説明する。
図2は、本発明の実施の形態1に係る受信機のダイレクトコンバージョン受信モード時の受信機構成を示すブロック図である。図3は、本発明の実施の形態1に係る受信機の第1のLow−IF受信モード時の受信機構成を示すブロック図である。図4は、本発明の実施の形態1に係る受信機の第2のLow−IF受信モード時の受信機構成を示すブロック図である。
まず、図2に示すダイレクトコンバージョン受信モード(以下、これを「第1受信モード」という)時の受信機構成(DCR構成)を、受信機100Aとして、図5に示すスペクトラム図を用いて説明する。
図2に示すように、第1受信モード時の受信機100Aは、図1に示した受信機100の設定を変えたものであり、受信機100の各部と同じ機能を有する構成については、図1と同一の符号を付してその説明を省略する。
第1受信モード時の受信機100Aにおいては、直交復調部104のローカル信号周波数を希望波の中心周波数に設定し、可変帯域ローパスフィルタ105a、105bの帯域を、図5に示すスペクトラムのA[Hz]に設定する。また、ディジタル信号処理部108のスイッチ部110は、第1のアナログベースバンド系115aのA/D変換部107aから入力されるベースバンド信号をOFDM復調部112に出力するように、制御部113によりベースバンド信号の出力経路を切り換える。
また、第1受信モード時の受信機100Aにおいては、制御部113によるON/OFF制御により、第2のアナログベースバンド系115bはONとし、ディジタル直交復調部111はOFFとする。
図5に、第1受信モード時の受信機100Aにおける可変帯域ローパスフィルタ105a、105bの妨害波抑圧特性を示す。図5に示すように、第1受信モード時の受信機100Aにおいては、可変帯域ローパスフィルタ105a、105bによって妨害波1、妨害波2、妨害波3、妨害波4が抑圧されることが分かる。
このように、第1受信モード時の受信機100Aにおいては、可変帯域ローパスフィルタ105a、105bによって妨害波1、妨害波2、妨害波3、妨害波4が抑圧されるので、A/D変換部107a、107bには、希望波のみが入力される。
これにより、第1受信モード時の受信機100Aにおいては、OFDM復調部112は、A/D変換部107a、107bから入力される希望波を含んだ帯域をFFT処理し、希望波のみを復調する。
なお、第1受信モード時の受信機100Aにおいては、第1及び第2のアナログベースバンド系115a,115bのA/D変換部107a、107bの出力信号がFFT処理帯域に対して大きい場合には、OFDM復調部112内にてFFT処理前にデシメーション(フィルタ)処理を行う。
次に、図3に示す第1のLow−IF受信モード(以下、これを「第2受信モード」という)時の受信機構成を、受信機100Bとして、図6に示すスペクトラム図を用いて説明する。
図3に示すように、第2受信モード時の受信機100Bは、図1に示した受信機100の設定を変えたものであり、受信機100の各部と同じ機能を有する構成については、図1と同一の符号を付してその説明を省略する。
第2受信モード時の受信機100Bは、直交復調部104のローカル信号周波数を希望波のサイド周波数乃至希望波外に設定し、可変帯域ローパスフィルタ105a、105bの帯域を図6に示すスペクトラムのB[Hz]に設定する。また、ディジタル信号処理部108のスイッチ部110は、第1のアナログベースバンド系115aのA/D変換部107aから入力されるベースバンド信号をOFDM復調部112に出力するように、制御部113によりベースバンド信号の出力経路を切り換える。
また、第2受信モード時の受信機100Bにおいては、制御部113によるON/OFF制御により、第2のアナログベースバンド系115bはONとし、ディジタル直交復調部111はOFFとする。
図6に、第2受信モード時の受信機100Bにおける可変帯域ローパスフィルタ105a、105bの妨害波抑圧特性を示す。図6に示すように、第2受信モード時の受信機100Bにおいては、可変帯域ローパスフィルタ105a、105bによって妨害波3、妨害波4が抑圧されることが分かる。
このように、第2受信モード時の受信機100Bにおいては、可変帯域ローパスフィルタ105a、105bによって妨害波3、妨害波4が抑圧されるので、A/D変換部107a、107bには、希望波、妨害波1、及び妨害波2が入力される。
これにより、第2受信モード時の受信機100Bにおいては、OFDM復調部112は、A/D変換部107a、107bから入力される希望波、妨害波1、及び妨害波2を含んだ帯域をFFT処理し、希望波と妨害波1及び妨害波2とを分離して、希望波のみ復調する。
なお、第2受信モード時の受信機100Bにおいても、第1受信モード時の受信機100Aの場合と同様に、第1及び第2のアナログベースバンド系115a,115bのA/D変換部107a、107bの出力信号がFFT処理帯域に対して大きい場合には、OFDM復調部112内にてFFT処理前にデシメーション(フィルタ)処理を行う。
次に、図4に示す第2のLow−IF受信モード(以下、これを「第3受信モード」という)時の受信機構成を、受信機100Cとして、図7に示すスペクトラム図を用いて説明する。
図4に示すように、第3受信モード時の受信機100Cは、図1に示した受信機100の設定を変えたものであり、受信機100の各部と同じ機能を有する構成については、図1と同一の符号を付してその説明を省略する。
第3受信モード時の受信機100Cは、直交復調部104のローカル信号周波数を希望波のサイド周波数乃至希望波外に設定し、可変帯域ローパスフィルタ105a、105bの帯域を図7に示すB[Hz]に設定する。また、ディジタル信号処理部108のスイッチ部110は、第1のアナログベースバンド系115aのA/D変換部107aから入力されるベースバンド信号をディジタル直交復調部111に出力するように、制御部113によりベースバンド信号の出力経路を切り換える。
また、第3受信モード時の受信機100Cにおいては、制御部113によるON/OFF制御により、第2のアナログベースバンド系115bはOFFとし、ディジタル直交復調部111はONとする。
図7に、第3受信モード時の受信機100Cにおける可変帯域ローパスフィルタ105a、105bの妨害波抑圧特性を示す。図7に示すように、第3受信モード時の受信機100Cにおいては、可変帯域ローパスフィルタ105a、105bによって妨害波3、4が抑圧されることが分かる。
また、図7に示すように、妨害波1及び妨害波2は、希望波に対して十分に低いレベルになっている。
このように、第3受信モード時の受信機100Cにおいては、可変帯域ローパスフィルタ105a、105bによって妨害波3、妨害波4が抑圧されるので、A/D変換部107a、107bには、希望波、及び希望波に対してレベルの低い妨害波1、妨害波2が入力される。
図4に示すように、第3受信モード時の受信機100Cにおいては、第1のアナログベースバンド系115aのA/D変換部107aから入力されたベースバンド信号をディジタル直交復調部111で直交復調し、直交復調により生成したI・Q信号をOFDM復調部112に出力する。
ここで、ベースバンド信号に含まれる妨害波1及び妨害波2は、希望波に対して十分レベルが低いので、希望波に多重されても問題なくディジタル直交復調部111で復調することができる。
これにより、第3受信モード時の受信機100Cにおいては、OFDM復調部112は、ディジタル直交復調部111から入力される希望波を含んだ帯域をFFT処理し、希望波のみを復調する。
なお、第3受信モード時の受信機100Cにおいては、第1のアナログベースバンド系115aのA/D変換部107aの出力信号がFFT処理帯域に対して大きい場合には、OFDM復調部112内にてFFT処理前にデシメーション(フィルタ)処理を行う。
次に、上述した各受信モードの特徴について説明する。図8は、図2に示すダイレクトコンバージョン受信モード時の受信機構成、図3に示す第1のLow−IF受信モード時の受信機構成、図4に示す第2のLow−IFモード時の受信機構成のそれぞれの特徴を示す表である。
図8に示す表は、各受信モード時における受信機構成の各項目における優劣を、「◎」、「○」、「△」、「×」の記号で示しており、「◎」の記号が最も特性が優れており、以下、「○」、「△」、「×」の記載順で特性が低くなることを表している。
また、図8において、U/D比は、非希望波である妨害波と希望波とのレベル比を示しており、「大」の表記は非希望波である妨害波が希望波に比べて大きいことを示す。
図8に示すように、上述した第1受信モード時のダイレクトコンバージョン受信機構成(DCR構成)の受信機100Aでは、アナログフィルタによって妨害波(非希望波)を抑圧できるので、U/D比によって信号品質が劣化することは無い。
しかしながら、このような第1受信モード時のDCR構成の受信機100Aでは、DCオフセットを抑圧するため一般にDCカット構成を採っている。このため、第1受信モード時のDCR構成の受信機100Aでは、DC近傍信号の品質が劣化し、特に狭帯域設定時に信号品質劣化が顕著化する。
ところで、一般に、アクティブフィルタにおいては、信号帯域幅の増加に伴い、消費電力が大きくなる。
従って、第1受信モード時のDCR構成においては、アナログベースバンド帯域を信号帯域幅の1/2にできるので、第2受信モード時の第1のLow−IF受信機構成に比べ消費電力を小さくできる。しかし、第1受信モード時のDCR構成においては、I・Qの2系統の第1及び第2のアナログベースバンド系115a,115bが必要なため、1系統のアナログベースバンド系115aのみを用いる第3受信モード時の第2のLow−IF受信機構成に比べ消費電力が大きくなる。
また、第2受信モード時の第1のLow−IF受信機構成では、IF信号をA/D変換するので、第1モード時のDCR構成の受信機構成で起こるようなDCカットによる受信品質の劣化は無い。
しかしながら、第2受信モード時の第1のLow−IF受信機構成では、A/D変換部107a,107bに、希望波とイメージ周波数帯の非希望波である妨害波とが入力するため、U/D比が大きい場合、A/D変換部107a,107bでの量子化雑音によって希望波の受信品質が劣化する。
第2受信モード時の第1のLow−IF受信機構成においては、アナログベースバンド帯域をDCR構成に比べ広く取る必要があり、I・Qの2系統の第1及び第2のアナログベースバンド系115a,115bが必要となって消費電力が大きくなる。
また、第3受信モード時の第2のLow−IF受信機構成においては、第2受信モード時の第1のLow−IF受信機構成と同様に、IF信号をA/D変換するので、第1受信モード時のDCR構成で起こるようなDCカットによる受信品質の劣化は無い。
しかしながら、第3受信モード時の第2のLow−IF受信機構成では、A/D変換部107a,107bに、希望波とイメージ周波数帯の非希望波である妨害波が入力し、イメージ周波数帯成分を抑圧できないため、非希望波である妨害波のイメージ成分と希望波とのレベル比が変調仕様によって決定される一定の値以上である場合には受信品質が劣化する。
なお、第3受信モード時の第2のLow−IF受信機構成においては、アナログベースバンド系は、第1のアナログベースバンド系115aの1系統のみでよいので、消費電力は小さくなる。
次に、本例の受信機100の動作について説明する。
本例の受信機100は、ユーザの要望及び通信環境に応じて、例えば、「20MHz」、「10MHz」、「5MHz」、「2.5MHz」、「1.25MHz」の各信号帯域幅を切り換える通信システムに用いられる。
受信機100は、例えば、図9に示すフローチャートに従って動作してデータ受信処理を実行する。なお、このデータ受信処理は、通信システムのシーケンスの一部のみを示すものである。
図9において、受信機100の動作がスタートすると、データ受信処理が開始される(ステップST901)。
ここで、受信機100のデータ受信処理の開始時には、予め受信した制御信号情報により設定帯域幅は既知となっている。
次いで、受信機100の受信帯域幅がどのような設定帯域幅であるかを判断する(ステップST902)。
ここで、受信機100の設定帯域幅が最大帯域幅(20MHz)の場合には、制御部113の制御により第1受信モードを選択して、ダイレクトコンバージョン受信機構成(DCR構成)を採る(ステップST903)。
また、ステップST902において、受信機100の受信帯域幅が最大帯域幅の1/2以下の場合には、妨害波比aの測定を行う(ステップST904)。この妨害波比aの測定は、例えば可変ローパスフィルタ帯域幅を広くして、OFDM復調部112において広帯域幅にてFFT処理し、各周波数のサブキャリアのレベルを求めることにより容易に測定可能である。
次いで、ステップST904での妨害波比aの測定結果に基づいて、妨害波比(U/D比)aの閾値X、Yに対するレベルを判定する(ステップST905)。ここで、閾値X、Yは、設定された変調方式より受信機100に備えられた図示しないメモリ内のテーブルを参照して決定する。
ステップST905において、例えば、設定変調波条件より選択される閾値が、「X=20dB」、「Y=−10dB」であるとした場合、希望波信号の設定帯域幅が「10MHz」以下、妨害波比(U/D比)aが、「20dB」以下(X≧a)の場合には、制御部113の制御により第1受信モードを選択して、ダイレクトコンバージョン受信機構成(DCR構成)を採る(ステップST906)。
また、妨害波比(U/D比)aが、「−10dB」以下(a≦Y)の場合には、制御部113の制御により第2受信モードを選択して、第1のLow−IF受信機構成を採る(ステップST907)。
また、妨害波比(U/D比)aが、「20dB」未満から「−10dB」より大きい範囲(X>a>Y)の場合においては、制御部113の制御により第3受信モードを選択して、第2のLow−IF受信機構成を採る(ステップST908)。
このように、本例の受信機100は、上述のフローチャートに沿って決定した第1受信モード、第2受信モード、及び第3受信モードの何れかの受信モードの受信機構成に切り換えた後、データ信号受信を開始する(ステップST909)。
上述のように、本例の受信機100によれば、妨害波比(U/D比)aに応じて、第1受信モード、第2受信モード、及び第3受信モードの何れかの受信モードの受信機構成に容易に切り換えることができる。
従って、本例の受信機100においては、U/D比aが閾値Xより低い場合には、第2受信モードもしくは第3受信モードの第1又は第2のLow−IF受信機構成を採り、U/D比aが閾値Xより大きい場合には第1受信モードのDCR構成を採ることで、無線部での妨害波による信号品質劣化(スループット劣化)を抑えることができる。
また、本例の受信機100は、第2受信モード時もしくは第3受信モード時に、イメージ抑圧を受信機仕様に必須なFFT処理で行うことで、従来必要だったイメージリジェクションフィルタをなくすことができ、装置の小型化を図ることができる。
また、本例の受信機100は、U/D比aが閾値Yより低い場合には、第3受信モードの第2のLow−IF受信機構成を採ることで、低消費電力化を図ることができる。
また、本例の受信機100は、変調信号に応じて閾値を変えることで、第3受信モードの第2のLow−IF受信機構成での使用時間を多くすることができ、低消費電力化を図ることができる。
なお、本例の受信機100においては、フィルタの切り換えによってA/D変換部107a、107bへの信号入力レベルが変化するのは明白であり、A/D変換部107a、107bへの信号入力レベルの変化量が推定できる場合には、AGC部106a,106bも切り換えることが望ましい。
また、図1に示した受信機100においては、帯域可変ローパスフィルタ105a,105bをAGC部106a,106bの前段に配置したが、AGC部106a,106bの位置によって本受信機構成の効果が変化することはなく、帯域可変ローパスフィルタ105a,105bとAGC部106a,106bとの位置は図1に示した位置に限定されるものではない。
また、本例の受信機100においては、第1及び第2のアナログベースバンド系115a,115bのA/D変換部107a,107b、又はディジタル直交復調部111から入力された信号を、OFDM復調部112でFFT処理等を行って復調するようにしているが、この復調部は、ディジタルベースバンド復調処理を行うことで、受信データを得るディジタルベースバンド復調部であればどのようなものであってもよい。
また、制御部113は、受信信号が広帯域信号か狭帯域信号かに応じて、前記第1から第3の受信モードを切り替え制御するようにしてもよい。
(実施の形態2)
本発明の実施の形態2に係る受信機は、検波部が受信信号1フレーム中の予め指定した一部のOFDMシンボルを受信した時に妨害波比を測定し、その測定結果の情報に基づいて受信機構成を決定することを特徴としている。
図10に、一般的なOFDM信号のフレームフォーマットを示す。
OFDM信号の1フレームは、20サブフレームより構成されており、1サブフレームは、図10に示すように、7つのOFDMシンボルを持っている。
また、OFDMシンボルには、既知のリファレンス信号情報を持つリファレンスシンボルとデータ信号情報を持つデータシンボルがある。
本例の受信機においては、毎サブフレームにおいてリファレンスシンボル時に、前述した第2受信モードの第1のLow−IF受信機構成にて受信してOFDM復調するとともに、妨害波比(U/D比)aを測定する。
そして、次シンボル以降のデータ信号の妨害波比aが閾値Xより大きい場合には第1受信モードのDCR構成を採り、妨害波比aが閾値Yより小さい場合には第3受信モードの第2のLow−IF受信機構成を採り、それ以外の場合には第2受信モードの第1のLow−IF受信機構成を継続する。
一般に、最初の第2受信モードの第1のLow−IF受信機構成での妨害波比aの測定時において、妨害波比aが閾値Xより大きい場合、AD変換での量子化雑音により希望波に割り当てられるダイナミックレンジが小さくなり、希望波の受信品質が劣化する。
しかしながら、OFDM信号においては、リファレンス信号情報は、データ信号と比較してロバスト性が高く、更にリファレンス信号が復調できない場合においても、前後(時間軸上及び周波数軸上)のサブフレームのリファレンス信号より推測することができるので受信品質の劣化を非常に小さくできる。
従って、本例の受信機によれば、受信したOFDM信号の一部のOFDMシンボル受信時に妨害波比aの測定を行うことにより、受信信号品質の劣化を招くこと無く、低消費電力化を実現することができる。
(実施の形態3)
本発明の実施の形態3に係る受信機は、最大帯域幅設定時においては帯域制限をRF帯域のフィルタで行い、可変帯域ローパスフィルタをOFFしてスルーすることで低消費電力化を図ることを特徴としている。
図11は、本発明の実施の形態3に係る受信機の構成を示すブロック図である。なお、図11に示す受信機1100において、図1に示した受信機100と共通する構成部分には、図1と同一の符号を付してその説明を省略する。
図11に示すように、本例の受信機1100は、図1に示した受信機100のアンテナ共用部102と、可変帯域ローパスフィルタ部105a,105bと、制御部113とに替えて、最大帯域幅分の帯域制限を行うアンテナ共用部1102と、スイッチSWa,SWbのON/OFFによるスルー機能を持った可変帯域ローパスフィルタ部1105a、1105bと、制御部1113とを備えた構成を採る。
第3世代移動体通信の仕様において、移動局の周波数帯域幅は、2110MHz〜2170MHzの60MHz分の帯域がある。
しかしながら、現状では、この60MHz分の帯域を3つの事業者が20MHz毎に分割して使用しており、1つの事業者が最大帯域幅として使用できるRF周波数は予め決まっている。
一般に、RF帯域での可変フィルタは、細かな切り換え制御を行う場合には、回路規模の増加、通過ロスの増加となる。
そこで、本例の受信機1100のアンテナ共用部1102においては、通過帯域を1つの事業者が使用する周波数帯域幅とする。
また、制御部1113は、帯域可変ローパスフィルタ部1105a、1105bの電源を、スイッチSWa,SWbのON/OFFにより、ON/OFF制御できるように構成する。
次に、本例の受信機1100の動作について説明する。
図11において、本例の受信機1100は、最大帯域幅の信号を受信する時、可変帯域ローパスフィルタ1105a、1105bの電源を制御部1113の制御によりOFFしてスルー構成にする。
また、本例の受信機1100は、最大帯域幅設定時においては前述した第1受信モードのDCR受信機構成に固定した構成を採り、妨害波比aが大きい場合においては妨害波をアンテナ共用部1102にて抑圧する。
このように、本例の受信機1100によれば、RF帯域にて信号の帯域制限を行うことで、ベースバンド帯域の可変帯域ローパスフィルタを使用せずに信号受信することができる。
これにより、本例の受信機1100においては、可変帯域ローパスフィルタ部1105a、1105bの消費電力を削減でき、低消費電力化を図ることができる。
本発明の第1の態様に係る受信機は、マルチバンドの受信信号を復調する受信機であって、アナログ受信信号を直交復調するアナログ直交復調部と、ディジタル変換された受信信号を直交復調するディジタル直交復調部と、前記アナログ直交復調部と前記ディジタル直交復調部との間に設けられ、前記アナログ直交復調部によって得られた2系統の直交信号それぞれに対して、アナログベースバンド処理を施す第1及び第2のアナログベースバンド処理部と、ディジタルベースバンド復調処理を行うことで、受信データを得るディジタルベースバンド復調部と、受信モードを、・第1の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波の中心周波数に設定し、かつ前記第1及び第2のアナログベースバンド処理部の両方を動作させ前記第1及び第2のアナログベースバンド処理部により得られた信号を前記ディジタルベースバンド復調部に供給し、かつ前記ディジタル直交復調部を動作停止させるモード、・第2の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波のサイド周波数乃至前記希望波外に設定し、かつ前記第1及び第2のアナログベースバンド処理部の両方を動作させ前記第1及び第2のアナログベースバンド処理部により得られた信号を前記ディジタルベースバンド復調部に供給し、かつ前記ディジタル直交復調部を動作停止させるモード、・第3の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波の中心周波数に設定し、かつ前記第1又は第2のアナログベースバンド処理部の一方のみを動作させ、かつ前記ディジタル直交処理部を動作させ前記ディジタル直交処理部により得られた信号を前記ディジタルベースバンド復調部に供給するモード、のいずれかに切り替える制御部と、を具備する構成を採る。
この構成によれば、前記受信機構成切替手段により、希望波と妨害波との妨害波比に応じて前記各受信モードを切り換えることにより、妨害波による信号品質の劣化を抑えつつ低消費電力化を図ることができる。
本発明の第2の態様に係る受信機は、前記第1の態様において、前記制御部は、前記ディジタルベースバンド復調部により得られた希望波と非希望波とのレベル比に基づいて、前記第1から第3の受信モードを切り替え制御する構成を採る。
この構成によれば、無線部での妨害波による信号品質劣化(スループット劣化)を抑えることができる。また、前記第2及び第3受信モードのLow−IF受信機構成を採り、イメージ抑圧を受信機仕様に必須なFFT処理で行うことで、従来必要だったイメージリジェクションフィルタをなくすことができ、装置の小型化を図ることができる。また、第3受信モードの第2のLow−IF受信機構成を採ることで、低消費電力化を図ることができる。
本発明の第3の態様に係る受信機は、前記第1の態様において、前記制御部は、受信信号が広帯域信号か狭帯域信号かに応じて、前記第1から第3の受信モードを切り替え制御する構成を採る。
この構成によれば、受信信号が広帯域信号か狭帯域信号かに応じて、前記第1から第3の受信モードを切り替え制御して、前記各受信機構成を選択的に構成することができる。
本発明の第4の態様に係る受信機は、前記第1の態様において、前記ディジタルベースバンド復調部は、OFDM信号を復調するOFDM復調部であり、前記制御部は、受信したOFDM信号のフレーム構成情報を基に設定した一部のOFDMシンボル受信時に、前記OFDM復調部により得られた前記希望波と非希望波とのレベル比に基づいて、前記第1から第3の受信モードを切り替え制御する構成を採る。
この構成によれば、前記一部のOFDMシンボル受信時に測定した希望波と妨害波のレベル比に応じて、前記第1から第3の受信モードを切り替え制御して、前記各受信機構成を選択的に構成することができる。
本発明の第5の態様に係る受信機は、前記第1の態様において、前記第1及び第2のアナログベースバンド処理部は、信号の最大帯域幅の周波数帯域のみを通過させる高周波フィルタと、前記無線信号の帯域幅に応じてフィルタ通過帯域を切り換えて前記ベースバンド信号の帯域外の信号成分を減衰させ且つ最大帯域幅の信号の受信時にフィルタ処理を行わないスルー機能を有する可変帯域フィルタと、を具する構成を採る。
この構成によれば、前記可変帯域フィルタ手段のスルー機能によりフィルタ処理を行わないようにすることで、低消費電力化を図ることができる。
本発明に係る受信機及び受信方法は、帯域幅を制御して通信するシステムにおいて、受信品質を劣化させることなく、低消費電力化を図ることができるので、ユーザの要求及び通信環境に応じて信号の帯域幅を制御して通信する次世代移動体通信システムにおけるマルチバンド受信機として有用である。
本発明の実施の形態1に係る受信機の構成を示すブロック図 本発明の実施の形態1に係る受信機のダイレクトコンバージョン受信モード時の受信機構成を示すブロック図 本発明の実施の形態1に係る受信機の第1のLow−IF受信モード時の受信機構成を示すブロック図 本発明の実施の形態1に係る受信機の第2のLow−IF受信モード時の受信機構成を示すブロック図 図2に示すダイレクトコンバージョン受信モード時の信号スペクトラム図 図3に示す第1のLow−IF受信モード時の信号スペクトラム図 図4に示す第2のLow−IF受信モード時の信号スペクトラム図 図2に示すダイレクトコンバージョン受信モード時の受信機構成、図3に示す第1のLow−IF受信モード時の受信機構成、図4に示す第2のLow−IFモード時の受信機構成のそれぞれの特徴を示す表 本発明の実施の形態1に係る受信機の動作を示すフローチャート 本発明の実施の形態2に係る受信機において受信する一般的なOFDM信号のフレーム構成図 本発明の実施の形態3に係る受信機の構成を示すブロック図 従来の可変帯域ディジタルフィルタを備えたLow−IF方式の受信機の構成を示すブロック図 従来の他のLow−IF方式の受信機の構成を示すブロック図 図12に示す従来のLow−IF方式の受信機の信号スペクトラム図 従来のダイレクトコンバージョン方式の受信機の構成を示すブロック図 図15に示す従来のダイレクトコンバージョン方式の受信機のフィルタ特性図 図15に示す従来のダイレクトコンバージョン方式の受信機の信号スペクトラム図
符号の説明
100,1100 受信機
101 アンテナ
102,1102 アンテナ共用部
103 低雑音増幅部
104 直交復調部
105a,105b,1105a,1105b 可変帯域ローパスフィルタ部
106a,106b AGC部
107a,107b A/D変換部
108 ディジタル信号処理部
110 スイッチ部
111 ディジタル直交復調部
112 OFDM復調部
113,1113 制御部
114 検波部
115a 第1のアナログベースバンド系
115b 第2のアナログベースバンド系

Claims (6)

  1. マルチバンドの受信信号を復調する受信機であって、
    アナログ受信信号を直交復調するアナログ直交復調部と、
    ディジタル変換された受信信号を直交復調するディジタル直交復調部と、
    前記アナログ直交復調部と前記ディジタル直交復調部との間に設けられ、前記アナログ直交復調部によって得られた2系統の直交信号それぞれに対して、アナログベースバンド処理を施す第1及び第2のアナログベースバンド処理部と、
    ディジタルベースバンド復調処理を行うことで、受信データを得るディジタルベースバンド復調部と、
    受信モードを、
    ・第1の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波の中心周波数に設定し、かつ前記第1及び第2のアナログベースバンド処理部の両方を動作させ前記第1及び第2のアナログベースバンド処理部により得られた信号を前記ディジタルベースバンド復調部に供給し、かつ前記ディジタル直交復調部を動作停止させるモード、
    ・第2の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波のサイド周波数乃至前記希望波外に設定し、かつ前記第1及び第2のアナログベースバンド処理部の両方を動作させ前記第1及び第2のアナログベースバンド処理部により得られた信号を前記ディジタルベースバンド復調部に供給し、かつ前記ディジタル直交復調部を動作停止させるモード、
    ・第3の受信モード:前記アナログ直交復調部のローカル信号周波数を希望波の中心周波数に設定し、かつ前記第1又は第2のアナログベースバンド処理部の一方のみを動作させ、かつ前記ディジタル直交処理部を動作させ前記ディジタル直交処理部により得られた信号を前記ディジタルベースバンド復調部に供給するモード、
    のいずれかに切り替える制御部と、
    を具備する受信機。
  2. 前記制御部は、前記ディジタルベースバンド復調部により得られた希望波と非希望波とのレベル比に基づいて、前記第1から第3の受信モードを切り替え制御する、
    請求項1に記載の受信機。
  3. 前記制御部は、受信信号が広帯域信号か狭帯域信号かに応じて、前記第1から第3の受信モードを切り替え制御する、
    請求項1に記載の受信機。
  4. 前記ディジタルベースバンド復調部は、OFDM信号を復調するOFDM復調部であり、
    前記制御部は、受信したOFDM信号のフレーム構成情報を基に設定した一部のOFDMシンボル受信時に、前記OFDM復調部により得られた前記希望波と非希望波とのレベル比に基づいて、前記第1から第3の受信モードを切り替え制御する、
    請求項1に記載の受信機。
  5. 前記第1及び第2のアナログベースバンド処理部は、
    信号の最大帯域幅の周波数帯域のみを通過させる高周波フィルタと、
    前記無線信号の帯域幅に応じてフィルタ通過帯域を切り換えて前記ベースバンド信号の帯域外の信号成分を減衰させ且つ最大帯域幅の信号の受信時にフィルタ処理を行わないスルー機能を有する可変帯域フィルタと、
    を具する請求項1に記載の受信機。
  6. 所定周波数のローカル信号によって受信した無線信号をディジタル信号処理可能なベースバンド信号に直交復調する直交復調部と、
    前記無線信号の帯域幅に応じてフィルタ通過帯域を切り換えて前記ベースバンド信号の帯域外の信号成分を減衰させる可変帯域フィルタと、
    前記可変帯域フィルタ部から出力される周波数変換信号の信号レベルを可変して後段のAD変換手段の入力レベルが一定になるように調整する入力レベル調整部と、
    アナログ信号をディジタル信号に変換するAD変換部と、
    前記AD変換部から出力されるディジタル信号に対して直交復調処理及びOFDM復調処理可能なディジタル信号処理部と、
    前記無線信号の制御情報と前記OFDM復調処理時に得られる情報に基づいて、前記直交復調部のローカル信号周波数、前記可変帯域フィルタの通過帯域、前記ディジタル信号処理部の直交復調処理の有無、前記各部の電源電圧の有無を選択する制御部と、
    を具備する受信機。
JP2006275738A 2006-10-06 2006-10-06 受信機 Pending JP2008098785A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006275738A JP2008098785A (ja) 2006-10-06 2006-10-06 受信機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275738A JP2008098785A (ja) 2006-10-06 2006-10-06 受信機

Publications (1)

Publication Number Publication Date
JP2008098785A true JP2008098785A (ja) 2008-04-24

Family

ID=39381206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275738A Pending JP2008098785A (ja) 2006-10-06 2006-10-06 受信機

Country Status (1)

Country Link
JP (1) JP2008098785A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278486A (ja) * 2007-04-25 2008-11-13 Seiko Epson Corp 変調信号受信装置および振幅変調信号の復調方法
JP2012216882A (ja) * 2011-03-31 2012-11-08 Sony Corp 受信装置、受信方法、プログラム、および受信システム
JP2012216955A (ja) * 2011-03-31 2012-11-08 Sony Corp 受信装置、受信方法、プログラム、および受信システム
WO2014199600A1 (ja) * 2013-06-11 2014-12-18 日本電気株式会社 無線受信装置及び無線受信方法
JP2015156575A (ja) * 2014-02-20 2015-08-27 三菱電機株式会社 受信装置及び受信方法、並びに中間周波数切換え方法
JP2018182411A (ja) * 2017-04-05 2018-11-15 ルネサスエレクトロニクス株式会社 無線受信機及び中間周波数選択方法
US10797742B2 (en) 2015-12-04 2020-10-06 Nec Corporation Receiving circuit, receiving apparatus and receiving method
RU2784002C1 (ru) * 2022-03-09 2022-11-23 Акционерное общество "Ульяновский механический завод" Процессор цифрового разделения квадратур

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278486A (ja) * 2007-04-25 2008-11-13 Seiko Epson Corp 変調信号受信装置および振幅変調信号の復調方法
JP2012216882A (ja) * 2011-03-31 2012-11-08 Sony Corp 受信装置、受信方法、プログラム、および受信システム
JP2012216955A (ja) * 2011-03-31 2012-11-08 Sony Corp 受信装置、受信方法、プログラム、および受信システム
WO2014199600A1 (ja) * 2013-06-11 2014-12-18 日本電気株式会社 無線受信装置及び無線受信方法
JP2015156575A (ja) * 2014-02-20 2015-08-27 三菱電機株式会社 受信装置及び受信方法、並びに中間周波数切換え方法
US10797742B2 (en) 2015-12-04 2020-10-06 Nec Corporation Receiving circuit, receiving apparatus and receiving method
JP2018182411A (ja) * 2017-04-05 2018-11-15 ルネサスエレクトロニクス株式会社 無線受信機及び中間周波数選択方法
RU2784002C1 (ru) * 2022-03-09 2022-11-23 Акционерное общество "Ульяновский механический завод" Процессор цифрового разделения квадратур

Similar Documents

Publication Publication Date Title
EP1989784B1 (en) Controlling a receiver to reduce influence by interference
US8886149B2 (en) Detection and mitigation of interference in a multimode receiver using variable bandwidth filter
US9112569B2 (en) Detection and mitigation of interference based on interference location
US7395087B2 (en) Radio receiver and signal amplifying method in radio receiver
JP2008098785A (ja) 受信機
JPWO2013008747A1 (ja) 受信装置及び利得制御方法
US9143246B2 (en) Detection and mitigation of interference in a receiver
US8055232B2 (en) Radio frequency receiving apparatus, radio frequency receiving method, LSI for radio frequency signal and LSI for base band signal
US10263654B2 (en) Radio receiver and intermediate frequency selection method
US20080227421A1 (en) Reducing Power Consumption In Receivers Employing Conversion To Intermediate Frequency
JP2001086172A (ja) 受信機
JP2005192018A (ja) 受信機
JP2012191266A (ja) 受信装置、および、プログラム
JP2007027879A (ja) 受信装置および受信方法
JP2007300260A (ja) 受信回路
JP4012094B2 (ja) 受信機
JP4207054B2 (ja) 情報受信装置
JP2002199038A (ja) 無線通信方式及び無線通信装置
JP2006121160A (ja) マルチモード受信機、および通信端末
JP4941560B2 (ja) Zero−IF方式により直交周波数分割多重された信号を受信する受信機及び受信方法
JP2009177568A (ja) 受信装置とこれを用いた電子機器
KR100774514B1 (ko) 지상파 디지털 방송용 수신기
JP2008236664A (ja) 伝送装置
JP2006303718A (ja) 受信装置及び復調方法
JP2005073097A (ja) Ibocデジタルラジオ放送受信機