JP5820344B2 - 還元物の製造方法 - Google Patents

還元物の製造方法 Download PDF

Info

Publication number
JP5820344B2
JP5820344B2 JP2012151460A JP2012151460A JP5820344B2 JP 5820344 B2 JP5820344 B2 JP 5820344B2 JP 2012151460 A JP2012151460 A JP 2012151460A JP 2012151460 A JP2012151460 A JP 2012151460A JP 5820344 B2 JP5820344 B2 JP 5820344B2
Authority
JP
Japan
Prior art keywords
oxide
coal
reduction
organic compound
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012151460A
Other languages
English (en)
Other versions
JP2014012879A5 (ja
JP2014012879A (ja
Inventor
濱口 眞基
眞基 濱口
憲幸 奥山
憲幸 奥山
康爾 堺
康爾 堺
貴洋 宍戸
貴洋 宍戸
松井 良行
良行 松井
青木 秀之
秀之 青木
泰洋 齋藤
泰洋 齋藤
中 内田
中 内田
山崎 義昭
義昭 山崎
鉄也 金井
鉄也 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012151460A priority Critical patent/JP5820344B2/ja
Priority to PCT/JP2013/067884 priority patent/WO2014007174A1/ja
Priority to EP13813540.5A priority patent/EP2871249B1/en
Publication of JP2014012879A publication Critical patent/JP2014012879A/ja
Publication of JP2014012879A5 publication Critical patent/JP2014012879A5/ja
Application granted granted Critical
Publication of JP5820344B2 publication Critical patent/JP5820344B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0066Preliminary conditioning of the solid carbonaceous reductant
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Compounds Of Iron (AREA)

Description

本発明は、有機化合物と酸化物とが加熱された状態で、有機化合物によって酸化物の少なくとも一部を還元し、還元物を製造する方法に関するものである。本発明の還元技術は、酸化鉄を還元する鉄鋼製錬分野、および非鉄酸化物を還元する非鉄金属製錬分野の両方に適用可能である。以下では、酸化鉄を中心に説明するが、本発明はこれに限定する趣旨ではない。
鉄鉱石などの酸化鉄を石炭などの炭材により還元して金属鉄などの還元物を製造するため、高炉法のほか、溶融還元法、直接還元製鉄法が開発されている。このうち直接還元製鉄法は、鉄鉱石と炭材とを含む混合物を成形した塊成物(炭材内装塊成鉱;炭材内装ペレットまたは炭材内装ブリケットなどとも呼ばれる。)を用いるもので、高炉や溶融還元炉で使用されるような高温度でなくても、高速で還元反応を進行させることができる。
近年、酸化鉄と炭材の接合状態を改善し、より容易に酸化鉄の還元を行なう方法が提案されている。例えば特許文献1には、鉱石に含まれる結晶水等の結合水を利用して鉱石中の酸化物が還元され易いように鉱石を処理することにより、結合水を含有する低品質の鉱石を改良する方法が開示されている。具体的には、結合水を含有する鉱石を加熱し、結合水を水蒸気として脱水させることにより、シングルナノメートル径の細孔壁を有する多孔質化した多孔質鉱石に、分子の大きさが上記細孔壁よりも一桁小さいサブナノメートルの有機化合物を含む有機液体(コールタール等)、又はタール等の気化した有機化合物を含む有機ガスを接触させることによって、上記有機化合物を、多孔質鉱石のシングルナノメートル径の細孔壁に付着させる方法が開示されている。特許文献1では、タール等の有機化合物を付着させた多孔質鉱石を500℃以上の温度範囲で加熱することにより、互いに密接に近接している鉱石に含まれる酸化物と有機化合物に含まれる炭素との間で還元反応が生起し、酸化物がより容易に還元される旨記載されている。
特許第4206419号公報
本発明の目的は、酸化物の還元反応をより低温で進行させることができ、エネルギー効率や生産性が高められた新規な酸化物の還元技術を提供することにある。
上記課題を解決することのできた本発明に係る還元物の製造方法は、有機化合物と酸化物とが加熱された状態で、前記酸化物の少なくとも一部を還元し、還元物を得る還元物の製造方法であって、溶融状態の前記有機化合物と、前記酸化物との接触による還元工程を含むところに要旨を有するものである。
本発明によれば、有機化合物を溶融状態で酸化物と接触させ、還元しているため、エネルギー効率および生産性が一層高められた還元技術を提供することができる。
図1は、実施例1に用いた改質炭のギーセラー流動曲線を示すグラフである。 図2は、石炭のギーセラー流動曲線を示すグラフである。 図3は、実施例1において、酸化鉄粉末と改質炭粉末の混合物からなるペレットを、300℃で加熱したときのXRD分析結果を示すグラフである。 図4は、実施例1において、酸化鉄粉末と改質炭粉末の混合物からなるペレットを、400℃で加熱したときのXRD分析結果を示すグラフである。
本発明者らは、炭材による鉄鉱石の還元反応について詳細に検討したところ、溶融状態にある炭材を鉄鉱石と接触させると、接触した部分で、炭材中の水素による鉄鉱石の還元反応が進行することを見出した。この還元反応は、炭材を液体状態で鉄鉱石と接触させたことに起因して進行するものであり、従来の溶融還元に対し、液相還元と位置づけることができる(詳細は後述する。)。しかも上記還元反応は、前述した特許文献1とは異なり、好ましくは約500℃未満の、より低温域で進行するため、鉄鉱石の還元が一層促進され、エネルギー効率やコストなどが飛躍的に向上する。また、後述するように上記還元反応は、溶融状態にある有機化合物中の水素が、直接、酸化物と接触して反応することによって進行するものであるから、鉄鉱石などの酸化鉄の還元だけでなく、酸化亜鉛やイルミナイト(チタン鉱石)などの非鉄酸化物の還元にも適応でき、鉄鋼製錬分野のみならず、非鉄金属製錬分野にも応用可能であることを見出し、本発明を完成した。
すなわち、本発明に係る還元物の製造方法は、有機化合物と酸化物とが加熱された状態で、前記酸化物の少なくとも一部を還元し、還元物を得る還元物の製造方法であって、溶融状態の前記有機化合物と、前記酸化物との接触による還元工程を含むところに特徴がある。
本発明において「還元物」とは、完全に還元された還元物のみならず、部分的に還元された部分還元物も含む趣旨である。例えば、酸化物が酸化鉄の場合、完全に還元された金属鉄のみならず、マグネタイト、ウスタイトなどの部分還元鉄も含まれる。
また、本発明において「有機化合物」とは、酸化物の還元材として使用される炭素質還元材を意味する。詳細には上記有機化合物は、好ましくは500℃未満で溶融状態を形成し易く、溶融状態にて酸化物と接触し、水素を発生して酸化物を還元するものである(詳細な反応メカニズムは後述する)。本発明による還元反応が進行するためには、酸化物との接触時に有機化合物が溶融していることが必要であり、液相状態を形成する前に固化するものは、上記還元反応が進行しない。
ここで、上記の溶融状態を示す温度は、有機化合物の種類に応じ、適切な方法で測定することができる。例えば、石炭であれば、ギーセラー流動度計を用いて測定することができる。また、ピッチであれば、ホットステージ(加熱)付きの光学顕微鏡で測定することができる。
図1に、後記実施例1で用いた改質炭(約270〜280℃で溶融状態を示す)のギーセラー流動曲線を示す。図1に示すように、この改質炭は約260℃で溶融し始め、約430℃前後で最大の流動性を示し、約475℃で固化することが分かる。
参考のため、図2に、上記改質炭に近い最大流動性を示す石炭(弱粘結炭の一種)のギーセラー流動曲線を示す。図2に示すように、上記石炭は、約360℃で溶融し始め、約450℃前後で最大の流動性を示し、約475℃で固化することが分かる。従って、改質炭の代わりに、このような流動性の高い石炭(例えば、500℃未満で溶融状態を形成し易い石炭)を用いても、上記還元反応は進行することが分かる。これに対し、流動性の低い石炭(例えば、500℃未満で溶融状態を形成し難い石炭)では上記還元反応は進行しない。
本発明に用いられる有機化合物としては、例えば高流動性の石炭、種々の高分子材料、石油精製プロセスで発生する重質油、重質原油などの油類が挙げられる。好ましくは500℃未満で溶融状態を形成し、高い流動性を有する有機化合物(例えば、高流動性石炭)である。流動性が高いものほど、酸化物との接触効率が高まると考えられるため、還元温度を低くでき、有用である。最も好ましくは、石炭の溶剤抽出物であり、灰分濃度が3%以下と低く、ハイパーコールと呼ばれる改質炭である。前記改質炭は、無灰炭を含み、通常、灰分濃度が3%以下、好ましくは灰分濃度が1%以下であり、安価で流動性が高い(約200℃〜500℃で溶融状態を形成する)ため、上記還元反応を進行させるための還元材として極めて有用である。本発明に用いられる改質炭の種類や製造方法は特に限定されず、改質炭に関する種々の文献[例えば、R&D 神戸製鋼技報/Vol.56 No.2 p15−22(Aug.2006)などでハイパーコールと称する改質炭が挙げられる]を参照することができる。
上記改質炭の使用により、例えば、以下の効果が期待できる。
上記改質炭は、優れた流動性と膨張性を有しているため、例えば、石炭−鉄鉱石複合体の乾留(たとえばフェロコークス)において、鉄鉱石の添加により石炭粒子相互の接着不足や基質の消失が起こって、炭素含有塊成鉱の強度が低下するといった問題を低減できる。その結果、鉄鉱石と石炭の間の良好な界面状態が維持され、従来、装入が不可能と考えられていた酸化性雰囲気である焼結炉や、溶融還元炉への装入が可能になる。
また、上記改質炭は、上述した特性(優れた流動性と膨張性)により、石炭のみを乾留する場合と比較して、粗大または扁平な気孔が減少し、強度が向上する。その結果、従来、部分還元鉱石の欠点である強度低下の問題を低減できるため、シャフト炉への装入量を増大できる。
なお、上記改質炭は、その高い流動性を利用して、これまでは、石炭と鉄鉱石の密着性を向上させるバインダーとして多く使用されており、例えばフェロコークスでは、体積基準では90%程度を占める石炭側に作用するバインダーとして使用していた。フェロコークス中の上記改質炭は、石炭に拘束されて動き回れず、上記改質炭と鉄鉱石との接触は事実上起っていない(鉄鉱石と上記改質炭との接触は限りなく遠い)。すなわち、フェロコークス中の上記改質炭は、溶融状態での鉄鉱石との接触は十分ではなく、溶融状態で接触する前に固化してしまう。これに対し、本発明では、上記改質炭を、バインダーとしてではなく、還元材として用いるものであり、そのために、溶融状態にて鉄鉱石と接触させている点で、従来とは相違するものである。
また、上記改質炭の関連技術として、特開2004−307714号公報には、高揮発分炭などの低品位炭を、格段に高い流動性を備えた冶金用改質炭に改質する技術が開示されている。具体的には、上記公報では、石炭構造単位に近似した2環芳香族化合物を含有する有機溶剤を用いて抽出温度(加熱温度)250〜420℃といった、従来の石炭乾留温度よりも大幅に低い温度で、低品位炭から直接に抽出操作を行なうことによって、低品位炭の流動性を向上できることが記載されている。しかしながら、上記公報においても、流動性が改善された上記改質炭を、強度向上のためのバインダーとして使用しているに過ぎず、酸化物の還元工程は、従来と同様、固定炭素と固体酸化物との間で進行することが記載されている点で、やはり、本発明とは相違する。
上記有機化合物は、単独で使用しても良いし、2種以上を併用しても良い。例えば、石炭(好ましくは高流動性石炭)と、上記改質炭との混合物を使用することができる。その混合比率は特に限定されず、好ましくは500℃未満で溶融状態を示すような比率で混合されていれば良い。
本発明において「酸化物」とは、酸素を含み、上記有機化合物によって還元されるものである。上記酸化物には、酸化鉄と非鉄酸化物の両方が含まれる。
本発明に用いられる非鉄酸化物には、酸化亜鉛、イルミナイト(チタン鉱石)などの酸化チタン、酸化マグネシウム、酸化鉛、二酸化ケイ素などが挙げられる。
上記酸化物は、前述した本発明による還元方法によって部分還元された酸化物(例えば、マグネタイトなど)を用いることもできる。部分還元された酸化物が触媒作用を有する場合には、その触媒作用により、以下に詳述する有機化合物の脱水素による水素ラジカル反応が促進されるため、酸化物の還元も促進されるようになる。
以下、本発明による還元反応のメカニズムについて、後記する実施例1に用いた改質炭(配分濃度が3%以下)を例に挙げて説明する。実験に用いた改質炭は、約270〜280℃で溶融状態を示すものであり、当該温度域を超えると、脱水素重縮合を開始し、活性な水素ラジカルを生成する。このとき、改質炭の極く近傍に酸化物[実施例1では酸化鉄(ヘマタイト)]が存在すると、改質炭由来の水素ラジカルは酸化物中の酸素を引き抜き、酸化物を還元[酸化鉄(ヘマタイト)の場合はマグネタイトに還元]すると共に、水が生成する。
このように本発明に係る酸化物の還元反応は、溶融状態にある有機化合物由来の水素ラジカル発生に起因する、酸化物中の酸素引き抜きによるものであり、この現象は、有機化合物側から見ると、水の生成と、炭化(溶融状態から固体状態への移行)をもたらすものである。上記還元反応では、有機化合物の脱水素重縮合による炭化反応が急速に短時間で進むようになる。
後記する実施例1では、図3および図4に示すように、300℃超〜400℃の間で還元反応が認められたが、このような極く低温域での還元反応は、溶融状態にある有機化合物が酸化物と接触している場合に、はじめて進行するものである。裏返せば、溶融状態にある有機化合物が酸化物と接触していない場合(分離している場合)には、有機化合物側で生成した水素ラジカルは、水素ラジカル同士が再結合して水素分子を生成するのみであって、当該水素ラジカルによる酸化物の還元は、上記のような極く低温域では決して進行しない。
また、上記の還元反応は、有機化合物を酸化物(固体)と接触させるに当たり、従来のように、有機化合物を固体状態で接触させる(すなわち、固体同士の接触)のではなく、溶融状態(液体)で接触させたことに起因するものであり、有機化合物を液体状態で酸化物と接触させて還元を進行させる反応は、いわば、液相還元とも呼ぶことができる。
ここで、本発明における上記液相還元と、製鋼分野における溶融還元との相違について述べると、溶融還元は鉄鉱石などの酸化物が溶けてFeOというスラグの状態で、石炭などの有機化合物中の炭素(C)と反応する(炭素還元)点で、石炭などの有機化合物中が溶けて、有機化合物中の水素が鉄鉱石などの酸化物中の酸素(O)と反応し、酸化物を還元する上記液相還元とは、反応メカニズムが相違する。また、上記液相還元は、溶融状態にある有機化合物と、酸化物とが接触している場合に進行する点で、固体状態の有機化合物と、固体状態の酸化物とが接触して進行する溶融還元とは、反応時の形態が相違する。また、還元反応の温度を対比すると、液相還元は、炭素還元よりも低温で起る。すなわち、還元反応が極く低温域で起ることに、本発明に係る液相還元の技術的意義が存在する。
なお、前述した上記特許文献1でも、鉱石と炭材との接触による還元を行なっているが、当該特許文献1は、高結晶水含有鉱石を加熱脱水して得られるナノスケールの多孔質鉱石を利用し、当該多孔質鉱石の細孔壁よりも一桁小さいサブナノスケールのタールを接触させる技術である(鉱石の多孔質化による接触面積の向上効果による還元反応の促進)点で、改質炭などの高流動性炭材の使用による鉄鉱石との濡れ性を向上する本発明とは、接触時の還元機構が相違している。
しかも本発明によれば、例えば還元促進のために汎用される炭材の粉砕手段や、タールを再循環させて還元させるなどの特別な手段は不要であるといった利点もある。すなわち、本発明では、溶融状態の有機化合物が酸化物と接触し、加熱していく過程で生じる酸化物の還元を効率的に利用し、反応中に温度が一旦低下するといったエネルギーロスもなく、酸化物の還元(酸化鉄の場合、ヘマタイトからマグネタイト、最終的には金属鉄)がスムーズに進行するなど、コストや生産性などの点でも極めて有用である。
本発明において、酸化物との接触による有機化合物の液相還元を進行し易くするためには、上記有機化合物が酸化物の還元材として作用するよう、酸化物への有機化合物の混合比率を高くすることが有効である。例えば酸化物100質量部に対し、有機化合物を約25〜1000質量部(より好ましくは50〜500質量部、さらに好ましくは約100〜300質量部)とすることが好ましい。
なお、上記有機化合物は、酸化物との接触時に溶融状態になっていれば良く、接触段階の初めから、または原料段階から、溶融状態のものを使用する必要はない。例えば、原料として、固体の有機化合物と固体の酸化物を用い、固体同士で接触させた後、加熱して溶融状態とすることもできる。或いは、固体の酸化物と接触させる時点で、溶融させておいた有機化合物を用意し、両者を接触させても良い。有機化合物中の水素を有効に活用する(溶けたら直ぐに反応する)という、上述した本発明による還元メカニズムを考慮すると、前者の態様が推奨される。
本発明に係る還元物の製造方法は、上記還元工程を少なくとも含んでいれば良い。すなわち、上記水素還元の後、炭素還元が進行しても良く、これにより、還元物を、最終的に金属鉄とすることができる。本発明では、溶融状態の有機化合物が酸化物と接触するため、上記水素還元に引き続き、炭素還元も進行するようになる。還元工程においては、加熱することが好ましく、前記有機化合物が溶融状態となる(流動性が生じ始める)温度以上に加熱することが好ましい。前記改質炭を用いる場合は、400℃以上に加熱して還元工程を行うのが好ましい。
本発明による還元技術は、鉄鋼製錬分野および非鉄金属製錬分野に適用可能である。
鉄鋼精錬分野において、本発明の技術は、鉄鉱石と固体炭素を利用する高炉法、直接還元製鉄法(松井:新製鉄プロセスと新技術の萌芽:(社)日本鉄鋼協会 第179回西山記念講座,2003)に適用可能であり、低い温度で還元反応が進行するため、エネルギー効率や生産性が向上する。
例えば高炉法では、例えば、グレート式ペレット焼成炉、グレート・キルン、シャフト炉、キュポラなどに適用可能である。
本発明の技術は、高炉に比べ、大量生産し難い直接還元製鉄法に好適に用いられる。直接還元製鉄法では、回転炉床、固定層法、流動層法、ロータリーキルン法、ロータリーハース法などに適用可能である。なお、ロータリーハース法においては、炭材内装塊成鉱を使用しない方法も開示されており、代表的には、COMETプロセスが挙げられる。COMETプロセスは、微粉の鉄鉱石と炭材をそれぞれ層状に、交互に2〜3層堆積させる方法であり、Hi−QIP(High Quality Iron Pebble)法も含まれるが、当該方法にも本発明の技術を適用することができる。
また、本発明の方法は、上述した鉄鋼製錬分野のみならず、非鉄金属製錬分野にも適用可能である。上記非鉄金属製錬分野は、炭素による還元製錬と金属の揮発製錬に大別される(非鉄金属製錬 講座・現代の金属学 製錬編 第2巻、(社)日本金属学会,1980)が、本発明の方法はいずれにも適用可能である。
このうち前者(炭素による還元製錬)について、製綱過程で用いられる種々のフェロアロイのうち、Fe以外の主な構成元素はSi,Mn,Cr,Niなどであり、いずれも安定な酸化物を生成するが、当該酸化物は、Feとの共存下において、高温で炭素によりFeとの合金に還元される。このように上記安定な酸化物を高温で還元する際に炭素が用いられる製錬分野において、本発明法を適用可能である。
また、大きい蒸気圧をもつ後者の金属の揮発製錬法としては、酸化物を炭素質還元剤で還元し、生成する金属蒸気を捕集する方法が最も一般的である。その代表例としてZn乾式製錬が挙げられる。炭素質還元剤で還元製錬を行う方法としては、ZnのほかにMg、Pbなどが挙げられ、いずれの場合も、本発明法を適用可能である。
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
実施例1
酸化物として酸化鉄[ヘマタイト(Fe23)]、有機化合物として改質炭(ハイパーコール)を用いた。実験に用いた改質炭は、約270〜280℃で溶融状態を示すものであり、特開2009−144130号公報の実施例1に記載の方法に基づき、製造した。
まず、酸化鉄[和光純薬(株)製のFe23試薬]粉末と、ハイパーコール粉末とを7:3の重量比で混合した混合物を25mmφの金型に充填(充填量15g)し、100℃に加熱した後、圧力2トン/cm2にてタブレット状に成形した塊成物を得た。
上記塊成物を、窒素気流中にて、5℃/分の昇温速度で300℃または400℃まで加熱し、XRD分析を行なった。なお、加熱処理後のタブレットの状態を観察すると、300℃では若干の変形が認められ、400℃では円筒状を呈しないまでの大きな変形が認められたことから、いずれの加熱温度の場合も、改質炭が溶融したことが確認された。XRD分析の条件は以下のとおりである。
装置;理学電機製 RINT1500 X線回折装置
測定条件
ターゲット;Cu
単色化;モノクロメ−タ使用(Kα)
ターゲット出力;40kV−200mA
スリット ;発散1゜,散乱1゜,受光0.15mm
走査速度 ;2°/min.
サンプリング幅;0.02°
測定範囲(2θ) ;5°〜70°
図3は、300℃まで熱処理したときのXRD分析チャートである。図3に示すように、300℃の加熱処理では、ヘマタイト(Fe23)のピークのみが観察され、マグネタイト(Fe34)のピークは認められなかった。
図4は、更に400℃まで熱処理したときのXRD分析チャートである。図4に示すように、400℃の加熱処理では、ヘマタイト(Fe23)の他、マグネタイト(Fe34)のピークも大きく認められた。ピーク面積から得られた組成は、ヘマタイト(Fe23)60%、マグネタイト(Fe34)40%であった。すなわち、加熱温度を300℃(図3)から400℃(図4)まで高めると、ヘマタイト→マグネタイトへの還元反応が進行することが分かる。
上記図3および図4より、還元反応は、300℃超〜400℃の間で始まると考えられる。このような低温域で酸化鉄の還元反応が進行する理由は詳細には不明であるが、一つの要因として、約270〜280℃で溶融状態を示す改質炭を酸化鉄と混合して上記温度域まで加熱すると、酸化鉄の周囲を改質炭が取り囲むように溶融し、この2つの物質間の接触効率が高まったことが考えられる。
参考実験
以下の実験は、上記実施例1における酸化鉄の還元反応が、改質炭中の水素に起因して生じたことを裏付けるために行なった。
詳細には、前述した400℃の加熱実験において、改質炭単独、および(改質炭+酸化鉄)の混合物中における、それぞれの水素含有率と水の生成量が、加熱処理の前後で、どのように変化するかを、カールフィッシャー法により測定して調べた。なお、(改質炭+酸化鉄)の混合物の場合、酸化鉄による水素含有率の低下や水の生成も若干起こるため、酸化鉄による影響を除くため、表1には、改質炭基準に補正した数値を記載した。これらの結果を表1に示す。
まず、改質炭単独のときの結果について考察する。加熱前における改質炭の水素含有率は5.9wt%であったが、400℃に加熱処理すると、5.4wt%まで減少した(5.9wt%−5.4wt%=0.5wt%の低下)。これは主に、脱水素重縮合や脱アルキル反応に起因すると考えられる。
一方、(改質炭と酸化鉄)の混合物では、400℃まで加熱後の水素含有率は5.2wt%まで低下した(5.9wt%−5.2wt%=0.7wt%の低下)。すなわち、改質炭に酸化鉄を混合することにより、酸化鉄を混合しない改質炭単独の場合に比べ、水素含有率の低下分は、0.5wt%から0.7wt%へと、40wt%増加することが分かる。
また、水素含有率の低下に伴い、水の生成量は増加した。すなわち、改質炭単独のときの水生成量は0.13wt%であったが、酸化鉄と混合したときの水生成量は0.93wt%と、大きく増加した。
以上の実験結果は、400℃までの加熱によって改質炭から生成する水素が、酸化鉄のマグネタイトへの還元に消費され、水を生成する、という上述した本発明の還元反応機構を強く支持するものである。

Claims (4)

  1. 有機化合物と酸化物とが加熱された状態で、前記酸化物の少なくとも一部を還元し、還元物を得る還元物の製造方法であって、溶融状態の前記有機化合物と、前記酸化物との接触による還元工程を含み、前記有機化合物は、石炭の溶剤抽出物から構成されることを特徴とする還元物の製造方法。
  2. 前記有機化合物は、500℃未満で溶融状態を示すものである請求項1に記載の還元物の製造方法。
  3. 前記酸化物100質量部に対し、前記有機化合物を25〜1000質量部の範囲で含むものである請求項1または2に記載の還元物の製造方法。
  4. 前記還元工程の後、400℃以上に加熱して還元する工程を更に含む請求項1〜のいずれかに記載の還元物の製造方法。
JP2012151460A 2012-07-05 2012-07-05 還元物の製造方法 Active JP5820344B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012151460A JP5820344B2 (ja) 2012-07-05 2012-07-05 還元物の製造方法
PCT/JP2013/067884 WO2014007174A1 (ja) 2012-07-05 2013-06-28 還元物の製造方法
EP13813540.5A EP2871249B1 (en) 2012-07-05 2013-06-28 Method for producing reduction product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151460A JP5820344B2 (ja) 2012-07-05 2012-07-05 還元物の製造方法

Publications (3)

Publication Number Publication Date
JP2014012879A JP2014012879A (ja) 2014-01-23
JP2014012879A5 JP2014012879A5 (ja) 2015-07-30
JP5820344B2 true JP5820344B2 (ja) 2015-11-24

Family

ID=49881930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151460A Active JP5820344B2 (ja) 2012-07-05 2012-07-05 還元物の製造方法

Country Status (3)

Country Link
EP (1) EP2871249B1 (ja)
JP (1) JP5820344B2 (ja)
WO (1) WO2014007174A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589935A (ja) * 1981-06-26 1983-01-20 Toyo Eng Corp ペレツトの製造法
JP3845893B2 (ja) * 1996-03-15 2006-11-15 株式会社神戸製鋼所 金属鉄の製法
JP4295544B2 (ja) 2003-04-09 2009-07-15 株式会社神戸製鋼所 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法
JP4206419B2 (ja) 2006-09-15 2009-01-14 友宏 秋山 鉱石処理方法、鉱石処理装置、製鉄方法及び製鉄・製鋼方法
JP5342794B2 (ja) 2007-11-22 2013-11-13 株式会社神戸製鋼所 炭素材料の製造方法
CN101970699B (zh) * 2008-08-30 2013-05-22 塔塔钢铁有限公司 从具有高浓度锌的铁矿石分离锌和提取铁、有用成分的方法
JP2012062505A (ja) * 2010-09-14 2012-03-29 Kobe Steel Ltd 塊成物の製造方法

Also Published As

Publication number Publication date
EP2871249A4 (en) 2016-02-24
EP2871249A1 (en) 2015-05-13
EP2871249B1 (en) 2017-08-16
JP2014012879A (ja) 2014-01-23
WO2014007174A1 (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
JP7365360B2 (ja) 固体複合体の製造方法
JP4295544B2 (ja) 冶金用改質炭の製造方法、ならびに冶金用改質炭を用いた還元金属および酸化非鉄金属含有スラグの製造方法
EP2100979B1 (en) Process for preparation of ore, equipment for preparation thereof, ironmaking process and ironmaking/steelmaking process
WO2010117008A1 (ja) 金属鉄の製法
JP5297077B2 (ja) フェロモリブデンの製造方法
TW200426222A (en) Process for producing particulate iron metal
JP2011042870A (ja) アルカリ含有製鉄ダストを原料とする還元鉄の製造装置および製造方法
JP4603626B2 (ja) 還元鉄の製造方法
JP5880941B2 (ja) 還元鉄の製造方法
JP4280292B2 (ja) フェロモリブデンの製造方法
Zhao et al. High-temperature interactions between vanadium-titanium magnetite carbon composite hot briquettes and pellets under simulated blast furnace conditions
JP2011042869A (ja) 還元鉄製造用炭材内装塊成化物およびそれを用いた還元鉄製造方法
JP2011246760A (ja) フェロモリブデンの製造方法およびフェロモリブデン
JP5820344B2 (ja) 還元物の製造方法
JP3907467B2 (ja) 溶融金属製造方法
AU2021424483A1 (en) Coffee as a carbon source in the preparation of iron and ferro-alloys
JP5052963B2 (ja) 溶融亜鉛の製造方法
JP5565143B2 (ja) 高炉操業方法
WO2023171468A1 (ja) 炭材内装塊成鉱の製造方法および溶銑の製造方法
JP5103915B2 (ja) 還元金属の製造方法
JP2008120973A (ja) 高炉用コークスの製造方法
JP2000119722A (ja) 還元鉄ペレットの製造方法
JP4565462B2 (ja) 製鉄用原料、製鉄用反応促進材、該製鉄用原料又は該製鉄用反応促進材の製造方法、及び、該製鉄用原料又は該製鉄用反応促進材を利用した製鉄方法
JP2021025098A (ja) 酸化鉱石の製錬方法
JPS58210109A (ja) 低硫黄還元鉄の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151002

R150 Certificate of patent or registration of utility model

Ref document number: 5820344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150