WO2023171468A1 - 炭材内装塊成鉱の製造方法および溶銑の製造方法 - Google Patents

炭材内装塊成鉱の製造方法および溶銑の製造方法 Download PDF

Info

Publication number
WO2023171468A1
WO2023171468A1 PCT/JP2023/007401 JP2023007401W WO2023171468A1 WO 2023171468 A1 WO2023171468 A1 WO 2023171468A1 JP 2023007401 W JP2023007401 W JP 2023007401W WO 2023171468 A1 WO2023171468 A1 WO 2023171468A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
iron
producing
carbonaceous
ore
Prior art date
Application number
PCT/JP2023/007401
Other languages
English (en)
French (fr)
Inventor
友司 岩見
隆英 樋口
太一 村上
料太 東
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023543385A priority Critical patent/JPWO2023171468A1/ja
Publication of WO2023171468A1 publication Critical patent/WO2023171468A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing carbonaceous agglomerated ore and a method for producing hot metal in the steel industry.
  • Patent Documents 1 to 4 As an example, as shown in Patent Documents 1 to 4 below, a lot of research and development has been carried out on agglomerates containing carbonaceous material.
  • Patent Document 1 describes a method of manufacturing sintered ore with carbonaceous material by charging granulated particles with carbonaceous material containing coke particles of 3 mm or more as cores into a sintering machine together with normal raw materials and firing them.
  • Patent Document 2 discloses a carbon material-incorporated agglomerate containing an iron-containing raw material, a carbon material, and a binder, with the condition that pores of 0.5 ⁇ m or more are 10% or less.
  • Patent Document 3 discloses a carbonaceous agglomerate in which a porous ore with a pore size on the nanometer level is coated with a carbonaceous material so that the carbon content is 18% or more.
  • Patent Document 4 discloses a method in which an iron-containing raw material, a carbonaceous material, a hydraulic binder, and water are pressurized and formed into agglomerates.
  • Patent Documents 1 to 4 that disclose agglomerated ore with carbonaceous materials have the following problems. That is, in Patent Document 1, since coke particles of 3 mm or more are used, the contact area between coke and iron oxide and the contact area with the atmosphere are limited, and the effect of improving reducibility is limited. . Further, in Patent Document 2, the carbonaceous material is a raw material containing a carbon source of 0 to 10 mm, and the particle size conditions with high reducibility were not necessarily aimed at. Furthermore, in Patent Document 3, the method is limited to porous ores, which reduces the flexibility of raw materials. Furthermore, Patent Document 4 does not specify the particle size of the carbonaceous material, and does not aim at particle size conditions with high reducing properties.
  • the present invention has been made in view of the above circumstances, and its purpose is to obtain a highly reducible raw material and to reduce the amount of reducing material used in hot metal production in a countercurrent moving bed.
  • the purpose of this invention is to propose a method for producing agglomerated ore containing carbonaceous materials and a method for producing hot metal that can reduce the amount of coal.
  • the present invention includes a step of bringing a carbon-containing gas containing carbon monoxide into contact with a porous material to recover carbon;
  • This method includes an agglomeration step of mixing the carbon-containing raw material containing carbon with an iron-containing raw material and agglomerating the mixture.
  • the method for producing a carbonaceous agglomerate configured as described above, (1) performing the step of recovering the carbon using a carbon deposition reaction; (2) the iron-containing raw material contains iron ore and/or dust generated in a steel mill; (3) the carbon-containing raw material contains iron carbide; (4) in the agglomeration step, biomass is further mixed into the carbon-containing raw material; (5) The carbon content per particle in the carbonaceous agglomerate ore is 15% by mass or less; (6) In the agglomeration step, a binder is further mixed into the carbon-containing raw material, and in the agglomeration step, the binder is cold hardened; (7) In the agglomeration step, a cement-based solidifying material is further mixed with the carbon-containing raw material, and in the agglomeration step, the cement-based solidifying material is solidified; is considered to be a more preferable solution.
  • the present invention also provides a method for producing hot metal using carbonaceous agglomerate produced by the method for producing carbonaceous agglomerate ore, which comprises iron-containing agglomerates containing the carbonaceous agglomerate.
  • a method for producing hot metal in which the iron-containing lumpy raw material is reduced and melted as a countercurrent moving bed by charging the raw material from above and flowing reducing gas upward from below to produce hot metal.
  • the present invention also provides a method for producing hot metal using the carbonaceous agglomerate produced by the above-described method for producing a carbonaceous agglomerate, wherein the carbonaceous agglomerate is heated at a temperature of 1160 to 1450°C.
  • This is a method for producing hot metal, in which hot metal is produced by heating to reduce and melt the iron, and then cooling to obtain reduced iron, and melting the reduced iron to produce hot metal.
  • the carbon used in the carbonaceous agglomerate ore is very small, and iron Since the contact area with the contained raw materials and gas is increased, a carbonaceous-incorporated agglomerate ore with higher reducibility than before can be obtained.
  • FIG. 1 is a diagram for explaining an embodiment of a method for producing hot metal according to the present invention. It is a graph showing the influence of carbon species on the reducibility of iron ore.
  • (a) It is a SEM photographic image of the recovered carbon used in the present invention.
  • (b) It is an enlarged photographic image of the broken line area in (a). This is a SEM photographic image of carbon black used in a comparative example. It is a figure showing the reduction rate of iron ore.
  • FIG. 1 is a flowchart for explaining an example of a method for manufacturing a carbonaceous material-incorporated agglomerated ore according to the present embodiment.
  • An example of the method for producing a carbonaceous agglomerated ore according to the present invention will be described with reference to FIG. 1.
  • step S1 a carbon-containing gas containing carbon monoxide is prepared.
  • step S2 carbon is recovered from the carbon-containing gas containing carbon monoxide.
  • step S3 a carbon-containing raw material containing the recovered carbon is prepared.
  • an iron-containing raw material is prepared.
  • step S5 the carbon-containing raw material containing the recovered carbon is mixed with the prepared iron-containing raw material, preferably together with a binder, a solidifying agent such as cement, and biomass, and agglomerated, thereby forming a carbon-incorporated agglomerate. ore is produced.
  • the step of preparing a carbon-containing raw material containing the recovered carbon in step S3 may be omitted, and the carbon recovered in step S2 may be used as it is in step S5.
  • the carbon-containing gas containing carbon monoxide in the S1 step is blast furnace gas, converter gas, or their synthesis gas, or a part of the carbon dioxide contained in these gases is purified by a water gas shift reaction. It is possible to use a reformed gas that has been reformed into carbon oxide.
  • the carbon-containing gas is brought into contact with a porous material to collect carbon monoxide as shown by the following chemical reaction formulas (I) to (II).
  • a carbon deposition reaction can be used in which a bimolecular decomposition reaction (I) or a monomolecular decomposition reaction (II) of carbon monoxide is allowed to proceed and carbon is deposited in the porous material.
  • an iron porous material As the porous material, it is preferable to use solid carbon or iron carbide as the carbon-containing raw material and to use the iron porous material as the iron-containing raw material.
  • the porous material and carbon can be used together as an iron-containing raw material and a carbon-containing raw material without separating them.
  • the carbon recovered includes solid carbon precipitated on the surface of the porous material and iron carbide carburized into iron.
  • the iron-containing raw material in step S4 includes iron ore and/or dust generated within a steelworks.
  • FIG. 2 is a diagram illustrating the processes from step S1 to step S4 in the method for producing agglomerated ore with carbonaceous materials.
  • FIG. 2 shows an example in which an iron porous material (iron whisker) is used as the porous material, solid carbon and iron carbide are used as the carbon-containing raw material, and iron whiskers are used as the iron-containing raw material.
  • iron porous material iron whisker
  • the left side of FIG. 2 is the porous material formation zone, the central part is the modification zone, and the right side is the carbonization zone.
  • the porous material formation zone for example, by sucking gas at 1000°C from below through the carbonaceous material, which is a mixture of iron powder and carbonaceous material, the carbonaceous material is reduced to a porous acicular shape. Obtaining iron (iron whiskers).
  • a water gas shift reaction occurs in which carbon dioxide is reformed into carbon monoxide by heating various exhaust gases containing carbon dioxide through iron whiskers while heating the gas to over 800°C using the gas sucked in during thermal carbon reduction. process to obtain carbon monoxide-rich gas.
  • carbon monoxide-rich gas is passed through the iron whiskers as a carbon-containing gas in an environment of 500 to 800°C using the atmospheric temperature of the water gas shift reaction.
  • Solid carbon is deposited on the surface to obtain solid carbon and iron carbide.
  • the obtained solid carbon and iron carbide are subjected to an agglomeration process and a reduction process. This process corresponds to S1 to S4 in the method for producing carbonaceous agglomerate ore shown in FIG.
  • FIG. 3 is a diagram illustrating the processes from step S3 to step S5 in the method for producing agglomerated ore with carbonaceous material.
  • iron whiskers containing solid carbon and iron carbide are used as the carbon-containing raw material and iron-containing raw material
  • cement powder is used as the solidifying material.
  • the solidifying material is not limited to cement powder, and a binder that can be hardened in cold may be used.
  • solid carbon and/or iron carbide 6 (carbon A predetermined amount of the cement powder 10 stored in the storage tank 8 is cut out from each storage tank to the conveyor 12.
  • the iron-containing raw material, the carbon-containing raw material, and the cement powder 10 are conveyed to the kneading machine 14 by the conveyor 12.
  • the transported iron-containing raw material, carbon-containing raw material, and cement powder 10 are mixed together with an appropriate amount of water 16 inside the kneader 14 to form mixed powder 20.
  • the mixed powder 20 is conveyed to the granulator 24 by the conveyor 22, and is granulated inside the granulator 24 together with an appropriate amount of water 16.
  • the mixed powder 20 is cured for a predetermined period to solidify the cement powder, and is then filled with carbonaceous material. It becomes agglomerate 26. If the blending amount of the cement powder 10 is increased, the crushing strength of the carbonaceous material-incorporated agglomerated ore 26 will be increased. Therefore, the amount of cement powder 10 to be mixed with the carbon-containing raw material may be determined depending on the required crushing strength of the carbonaceous material-incorporated agglomerated ore 26. The crushing strength of the carbonaceous agglomerated ore 26 can be measured using an autograph (1 mm/min).
  • Examples of the cold molding method include a method in which a cement-based solidifying agent or the like is mixed and then granulated using a pelletizer or a drum mixer, or a method in which compression molding is performed using a briquette machine or the like. Further, in order to maintain strength after reduction, it is preferable that the carbon content per particle of the carbonaceous material-incorporated agglomerate is 15% by mass or less. Here, if the carbon content per particle of the carbonaceous agglomerate ore exceeds 15% by mass, the crushing strength of the carbonaceous agglomerate ore measured by autograph (1 mm/min) will exceed the threshold value (2. 5 MPa), which is not preferable.
  • FIG. 4 is a diagram for explaining one embodiment of the method for producing hot metal according to the present invention.
  • the method for producing hot metal according to the present embodiment will be explained using an example in which a blast furnace 32 is used as a vertical shaft furnace. Note that there is no vertical shaft furnace for producing hot metal that does not use coke.
  • a blast furnace 32 an iron-containing lumpy raw material 30 containing the carbonaceous material-incorporated agglomerate 26 and other raw materials 28 produced by the above-described method for producing carbonaceous material-incorporated agglomerate ore is charged from above the blast furnace 32, and then from below.
  • the iron-containing lumpy raw material 30 By flowing the reducing gas 34 upward, the iron-containing lumpy raw material 30 can be reduced and melted as a countercurrent moving bed to produce hot metal 36.
  • the exhaust gas 38 discharged from the top of the blast furnace 32 due to reduction may be included in the carbon-containing gas containing carbon monoxide used in the method for producing the carbonaceous agglomerated ore according to the present embodiment, and may be included in the carbon-containing gas containing carbon monoxide.
  • a gas obtained by reforming carbon dioxide contained in the exhaust gas into carbon monoxide may be included in the carbon-containing gas containing carbon monoxide.
  • the example of manufacturing hot metal using the blast furnace 32 was shown above, it is not limited to this.
  • a reduction step in which a rotary hearth furnace is used in place of the blast furnace 32 to heat the coal-filled agglomerate to 1160 to 1450°C to reduce and melt it, and then cool it to obtain reduced iron; You may manufacture hot metal by carrying out the melting process which obtains hot metal by melting.
  • an existing rotary hearth furnace can be used as is if the agglomerated ore with carbonaceous material is produced using recovered carbon.
  • Table 1 shows the composition of the iron ore used. T. in Table 1.
  • Fe represents the total amount of iron.
  • LOI is the loss on ignition when heated at 1000° C. for 60 minutes, and in the case of iron ore, most of it is crystal water.
  • the recovered carbon contained 38.35% by mass of C and the balance was Fe as cementite (iron carbide) and solid carbon. Furthermore, of the total carbon, 18.7 mol% of C existed as cementite and 81.3 mol% of C existed as solid carbon.
  • the particle size of iron ore A was adjusted to -105 ⁇ m.
  • -105 ⁇ m represents the bottom of a sieve with a mesh size of 105 ⁇ m.
  • the sample was prepared by mixing weighed powders of iron ore A and recovered carbon in a mortar by stirring for 3 minutes without pressing with a pestle. A uniform mixed powder could be obtained without changing the powder particle size during mixing.
  • the sample was mixed by adding carbon in an amount 0.8 times the molar amount of oxygen in iron oxide, and further adding carbon in an amount 0.2 times the molar amount of iron in iron oxide or iron carbide.
  • the uniformly mixed sample was press-molded for 30 seconds under a pressure of 98 MPa to form a cylindrical shape with a diameter of 10 mm and a height of 10 mm.
  • the molded sample was heated to 1300° C. at a heating rate of 10° C./min in an atmosphere in which a 5% by volume N 2 -Ar mixed gas was supplied at a flow rate of 0.5 NL/min.
  • the generated gas was analyzed using an infrared spectrophotometer, and the reduction rate of iron ore was calculated.
  • the results are shown in Figure 5.
  • a similar test was conducted using carbon black instead of the recovered carbon, and the results are also shown in FIG.
  • the recovered carbon solid line
  • the recovered solid carbon was in the form of fibers of several nanometers as shown in Figures 6(a) and (b), whereas carbon black was in the form of particles with a particle size of several tens of micrometers as shown in Figure 7. there were.
  • the solid carbon recovered from carbon monoxide becomes very small, so by using the carbon in the carbon-filled agglomerate ore, the contact area with the iron-containing raw material and gas becomes larger, and as a result, It is thought that agglomerated ore containing carbonaceous material with high reducibility was obtained.
  • the sample was press-molded for 30 seconds with a pressure of 98 MPa to form a cylindrical shape with a diameter of 10 mm and a height of 10 mm.
  • the molded sample was heated to 1300° C. at a heating rate of 10° C./min in an atmosphere in which 5% by volume N2-Ar mixed gas was supplied at a flow rate of 0.5 NL/min.
  • the generated gas was analyzed using an infrared spectrophotometer, and the reduction rate of iron ore was calculated. The results are shown in FIG. Compared to the comparative example, the reduction progressed faster in the example containing iron carbide.
  • a highly reducible raw material that can reduce the amount of reducing agent used in reducing iron-containing raw materials in hot metal production in a countercurrent moving bed. can be obtained, and it is industrially useful as well as a method for producing hot metal using this raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

高被還元性の原料を得ることができ、向流移動層における溶銑製造で使用する還元材の量を削減できる、炭材内装塊成鉱の製造方法および溶銑の製造方法を提案する。 本発明の炭材内装塊成鉱の製造方法は、一酸化炭素を含む炭素含有ガスを多孔質材料に接触させて炭素を回収する工程と、前記炭素を含むカーボン含有原料を鉄含有原料に混合して塊成化する塊成化工程と、を含む。

Description

炭材内装塊成鉱の製造方法および溶銑の製造方法
 本発明は、製鉄業における炭材内装塊成鉱の製造方法および溶銑の製造方法に関する。
 向流移動層における溶銑製造においては、鉄含有原料の還元で使用する還元材の量を削減するため、高被還元性の原料が求められる。高被還元性原料の一つとして、塊成化した原料中に炭材を含むことで、
 炭材による直接還元:
  C+FeO→CO+FeOX-2
 および、
 ソリューションロス反応によって生成したCOによる内部からの間接還元:
  C+CO→2CO
  CO+FeO→CO+FeOX-1
によって、還元性を向上させた炭材内装塊成鉱が挙げられる。
 一例として、以下の特許文献1~4に示されるように、炭材内装塊成鉱の研究開発は数多く行われている。
 特許文献1には、3mm以上のコークス粒子を核とした炭材内装造粒粒子を焼結機に通常原料と一緒に装入して焼成することで、炭材内装焼結鉱を製造する方法が開示されている。特許文献2には、鉄含有原料と炭材とバインダーを含有する炭材内装塊成鉱であり、0.5μm以上の細孔が10%以下という条件とともに開示されている。特許文献3には、孔径がナノメートルレベルの多孔質鉱石を炭素含有量が18%以上となるように炭材で被覆した炭材内装塊成鉱が開示されている。特許文献4には、鉄含有原料と炭材と水硬性バインダーと水を用い、加圧および成形して塊成化する方法が開示されている。
特開2015-129353号公報 特開2019-157253号公報 特開2019-007036号公報 特開2014-025135号公報
 炭材内装塊成鉱を開示している特許文献1~4には、以下のような課題があった。すなわち、特許文献1では、3mm以上のコークス粒子を使用するため、コークスと鉄酸化物の接触面積、および雰囲気との接触面積が限定的であり、被還元性の向上効果は限定的であった。また、特許文献2では、炭材は0~10mmの炭素源を含む原料とされており、必ずしも還元性の高い粒度条件を志向したものではなかった。さらに、特許文献3では、多孔質鉱石に限定されており、原料の自由度が低下してしまっていた。さらにまた、特許文献4では、炭材の粒度における指定はなく、還元性の高い粒度条件を志向したものではなかった。
 本発明は、このような事情に鑑みてなされたものであって、その目的とするところは、高被還元性の原料を得ることができ、向流移動層における溶銑製造で使用する還元材の量を削減できる炭材内装塊成鉱の製造方法および溶銑の製造方法を提案することにある。
 本発明は、一酸化炭素を含む炭素含有ガスを多孔質材料に接触させて炭素を回収する工程と、
前記炭素を含むカーボン含有原料を鉄含有原料に混合して塊成化する塊成化工程と、を含む炭材内装塊成鉱の製造方法である。
 なお、前記のように構成される本発明に係る炭材内装塊成鉱の製造方法においては、
(1)前記炭素を回収する工程を、カーボンデポジション反応を用いて行うこと、
(2)前記鉄含有原料は、鉄鉱石および/または製鉄所内発生ダストを含むこと、
(3)前記カーボン含有原料が炭化鉄を含むこと、
(4)前記塊成化工程では、前記カーボン含有原料にバイオマスがさらに混合されること、
(5)前記炭材内装塊成鉱中の1粒子あたりの炭素含有量が15質量%以下であること、
(6)前記塊成化工程では、前記カーボン含有原料にバインダーがさらに混合され、前記塊成化工程では前記バインダーを冷間で硬化させること、
(7)前記塊成化工程では、前記カーボン含有原料にセメント系固化材がさらに混合され、前記塊成化工程では前記セメント系固化材を固化させること、
がより好ましい解決手段となるものと考えられる。
 また、本発明は、上述した炭材内装塊成鉱の製造方法で製造された炭材内装塊成鉱を用いた溶銑の製造方法であって、前記炭材内装塊成鉱を含む鉄含有塊状原料を上方から装入し下方から還元ガスを上方に向けて流すことで、前記鉄含有塊状原料を向流移動層として還元および溶融させて溶銑を製造する、溶銑の製造方法である
 なお、前記のように構成される本発明に係る溶銑の製造方法においては、前記溶銑をシャフト炉で製造すること、がより好ましい解決手段となるものと考えられる。
 また、本発明は、上述した炭材内装塊成鉱の製造方法で製造された炭材内装塊成鉱を用いた溶銑の製造方法であって、前記炭材内装塊成鉱を1160~1450℃に加熱して還元および溶融させた後に冷却して還元鉄とし、前記還元鉄を溶融させて溶銑を製造する、溶銑の製造方法である。
 本発明の炭材内装塊成鉱の製造方法によれば、一酸化炭素を含む炭素含有ガスから回収される炭素を用いることで炭材内装塊成鉱に使用される炭素が非常に小さく、鉄含有原料やガスとの接触面積が大きくなるため、従来と比較して被還元性の高い炭材内装塊成鉱が得られる。
本実施形態に係る炭材内装塊成鉱の製造方法の一例を説明するためのフローチャートである。 炭材内装塊成鉱の製造方法のうち、S1ステップからS3ステップまでの処理を説明する図である。 炭材内装塊成鉱の製造方法におけるS3ステップからS5ステップまでの処理を説明する図である。 本発明に係る溶銑の製造方法の一実施形態を説明するための図である。 鉄鉱石の被還元性に与える炭素種の影響を示すグラフである。 (a)本発明で用いる回収した炭素のSEM写真像である。(b)(a)の破線部の拡大写真像である。 比較例で用いるカーボンブラックのSEM写真像である。 鉄鉱石の還元率を示す図である。
 以下、本発明の実施の形態について具体的に説明する。なお、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
<本発明に係る炭材内装塊成鉱の製造方法について>
 図1は、本実施形態に係る炭材内装塊成鉱の製造方法の一例を説明するためのフローチャートである。図1により本発明の炭材内装塊成鉱の製造方法の一例を説明すると、まず、S1ステップにおいて、一酸化炭素を含む炭素含有ガスを準備する。次に、S2ステップにおいて、一酸化炭素を含む炭素含有ガスから炭素を回収する。次に、S3ステップにおいて、回収した炭素を含むカーボン含有原料を準備する。同時に、S4ステップにおいて、鉄含有原料を準備する。最後に、S5ステップにおいて、回収した炭素を含むカーボン含有原料を準備した鉄含有原料に、好ましくはバインダーやセメント等の固化材、バイオマスとともに混合して塊成化することで、炭材内装塊成鉱が製造される。なお、S3ステップの回収した炭素を含むカーボン含有原料を準備する工程をなくし、S2ステップで回収した炭素をそのままS5ステップで用いてもよい。
 ここで、S1ステップの一酸化炭素を含む炭素含有ガスとしては、高炉ガス、転炉ガス、または、これらの合成ガス、もしくは、これらのガスに含まれる二酸化炭素の一部を水性ガスシフト反応により一酸化炭素に改質した改質ガスなどを使用することができる。
 S2ステップの一酸化炭素を含む炭素含有ガスから炭素を回収する方法としては、当該炭素含有ガスを多孔質材料に接触させて下記化学反応式(I)~(II)によって示される一酸化炭素の二分子分解反応(I)又は一酸化炭素の一分子分解反応(II)を進行させ、炭素を多孔質材料に析出させるカーボンデポジション反応を用いることができる。
2CO     → C+CO    ・・・   (I)
CO+H2 → C+HO    ・・・   (II)
 カーボンデポジション反応において、例えば、白金やNi等の多孔質材料を用いる場合には多孔質材料の表面に固体炭素が析出するので当該固体炭素が回収される。一方、鉄の多孔質材料を用いる場合には、析出した固体炭素の一部または全部が鉄に浸炭するので固体炭素および炭化鉄、もしくは、炭化鉄として炭素が回収される。
 多孔質材料として鉄の多孔質材料を用いる場合には、固体炭素、炭化鉄をカーボン含有原料とし、鉄の多孔質材料を鉄含有原料とすることが好ましい。これにより、多孔質材料と炭素とを分離することなく、これらをまとめて、鉄含有原料およびカーボン含有原料として用いることができる。なお、鉄の多孔質材料を用いる場合において回収される炭素には、多孔質材料の表面に析出した固体炭素および鉄に浸炭した炭化鉄が含まれる。
 S4ステップの鉄含有原料には、鉄鉱石および/または製鉄所内発生ダストが含まれることが好ましい。
 図2は、炭材内装塊成鉱の製造方法のうち、S1ステップからS4ステップまでの処理を説明する図である。図2では、多孔質材料として鉄の多孔質材料(鉄ウィスカー)を用い、固体炭素および炭化鉄をカーボン含有原料とし、鉄ウィスカーを鉄含有原料として用いる例を示している。
 図2の左側が多孔質材料形成ゾーンであり、中央部が改質ゾーンであり、右側が炭化ゾーンである。多孔質材料形成ゾーンでは、例えば、1000℃のガスを鉄粉に炭材を混合した炭材内装原料を介して下方から吸引することで、炭材内装原料を熱炭素還元して多孔質針状鉄(鉄ウィスカー)を得ている。改質ゾーンでは、熱炭素還元において吸引したガスを用いて800℃以上に加熱しつつ二酸化炭素を含む種々の排ガスを鉄ウィスカーを通過させることで二酸化炭素を一酸化炭素に改質する水性ガスシフト反応を進行させて一酸化炭素リッチガスを得ている。炭化ゾーンでは、水性ガスシフト反応での雰囲気温度を利用して500~800℃の環境下で一酸化炭素リッチガスを炭素含有ガスとして鉄ウィスカーに通過させることで、カーボンデポジット反応(炭化)により鉄ウィスカーの表面に固体炭素を析出させ、固体炭素や炭化鉄を得ている。その後、得られた固体炭素や炭化鉄を塊成化プロセス、還元プロセスに供する。このプロセスは、図1に示した炭材内装塊成鉱の製造方法におけるS1~S4に相当する。
 図3は、炭材内装塊成鉱の製造方法におけるS3ステップからS5ステップまでの処理を説明する図である。図3では、固体炭素や炭化鉄を含む鉄ウィスカーをカーボン含有原料および鉄含有原料として用い、固化材としてセメント粉を用いる例で説明する。なお、固化材としては、セメント粉に限らず冷間で硬化できるバインダーを用いてもよい。
 図3に示す例において、まず、貯蔵糟2に貯蔵された鉄の多孔質材料4(鉄含有原料)および一酸化炭素を含む炭素含有ガスから回収された固体炭素および/または炭化鉄6(カーボン含有原料)と、貯蔵糟8に貯蔵されたセメント粉10とが、それぞれの貯蔵糟から搬送機12に所定量切り出される。鉄含有原料、カーボン含有原料およびセメント粉10は、搬送機12によって混錬機14に搬送される。搬送された鉄含有原料、カーボン含有原料およびセメント粉10は、適量の水16と共に、混錬機14の内部で混合されて混合粉20となる。その後、混合粉20は搬送機22によって造粒機24に搬送され、適量の水16と共に、造粒機24の内部で造粒され、所定期間養生してセメント粉を固化させることで炭材内装塊成鉱26となる。セメント粉10の配合量を増やせば炭材内装塊成鉱26の圧壊強度は高くなる。このため、カーボン含有原料に対するセメント粉10の配合量は、求められる炭材内装塊成鉱26の圧壊強度に応じて定めればよい。炭材内装塊成鉱26の圧壊強度はオートグラフ(1mm/min)により測定できる。
 なお、上述した炭材内装塊成鉱の製造方法において、得られた炭材内装塊成鉱のカーボン量が所定炭素質量割合に達しない場合は、カーボン含有原料などにバイオマスなどを追加し、所定炭素質量割合とすることが好ましい。同様に、鉄含有原料が所定鉄質量割合に達しない場合には、鉄鉱石や製鉄所内発生ダストを追加してもよい。また、炭材内装塊成鉱の成形時は、含有したカーボンの燃焼、ガス化を避ける必要があるため、冷間での成形が好ましい。冷間で成形する方法としては、例えば、セメント系の固化剤などを配合した後にペレタイザーやドラムミキサーで造粒する方法、あるいはブリケットマシン等による圧縮成形する方法が挙げられる。また、還元後の強度維持のため、炭材内装塊成鉱の1粒子あたりの炭素含有量が15質量%以下であることが好ましい。ここで、炭材内装塊成鉱の1粒子あたりの炭素含有量が15質量%を超えると、オートグラフ(1mm/min)で測定される炭材内装塊成鉱の圧壊強度が閾値(2.5MPa)を下回ってしまうため、好ましくない。
<上述した製造方法で求めた炭材内装塊成鉱を用いた溶銑の製造方法について>
 図4は、本発明に係る溶銑の製造方法の一実施形態を説明するための図である。図4に示すように、竪型のシャフト炉として高炉32を用いた例で本実施形態にかかる溶銑の製造方法を説明する。なお、コークスを用いない溶銑製造の竪型のシャフト炉は存在しない。高炉32において、上述した炭材内装塊成鉱の製造方法で製造された炭材内装塊成鉱26と他の原料28とを含む鉄含有塊状原料30を高炉32の上方から装入し、下方から還元ガス34を上方に向けて流すことで、鉄含有塊状原料30を向流移動層として還元および溶融させて溶銑36を製造することができる。また、還元によって高炉32の炉頂から排出される排ガス38を、本実施形態に係る炭材内装塊成鉱の製造方法に用いる一酸化炭素を含む炭素含有ガスに含めてもよく、水性ガスシフト反応により当該排ガスに含まれる二酸化炭素を一酸化炭素に改質したガスを一酸化炭素を含む炭素含有ガスに含めてもよい。排ガス38を一酸化炭素を含む炭素含有ガスに含めることで、高炉排ガスの有効活用ができるとともに、溶銑製造プロセスにおけるカーボンリサイクルが実現できるので好ましい。なお、上記では高炉32を用いて溶銑を製造する例を示したがこれに限らない。例えば、高炉32に代えて回転炉床炉を用いて炭材内装塊成鉱を1160~1450℃に加熱して還元および溶融させた後に冷却して還元鉄を得る還元工程と、当該還元鉄を溶融することで溶銑を得る溶融工程とを実施して溶銑を製造してもよい。回転炉床炉を用いた場合であっても、回収した炭素を用いた炭材内装塊成鉱であれば、既存の回転炉床炉をそのまま用いることができる。
 回収した炭素が鉄鉱石の被還元性に与える影響を調査した。用いた鉄鉱石の成分組成を表1に示す。表1中のT.Feは全鉄量を表す。また、LOIは、1000℃で60min間加熱したときの強熱減量であり、鉄鉱石の場合には大半が結晶水である。回収した炭素は、セメンタイト(炭化鉄)および固体炭素として、C:38.35質量%、残部がFeであった。また、全炭素のうち、セメンタイトとして存在するCが18.7モル%および固体炭素として存在するCが81.3モル%であった。
Figure JPOXMLDOC01-appb-T000001
 鉄鉱石Aの粒径を-105μmに揃えた。-105μmとは、目開き105μmの篩の篩下を表す。試料は、鉄鉱石Aおよび回収した炭素の秤量した粉末を乳鉢中で乳棒を押し付けずに3分間撹拌することで混合した。混合時に粉末粒径を変えることなく均一な混合粉末とすることができた。試料は、酸化鉄中の酸素モル量の0.8倍の炭素を加え、さらに、酸化鉄や炭化鉄中の鉄モル量の0.2倍の炭素を加えて、混合した。酸化鉄中の酸素モル量の0.8倍の炭素を加えることにより、炭素を還元材として用い、酸化鉄や炭化鉄中の鉄モル量の0.2倍の炭素を加えることにより、金属鉄への浸炭の効果を狙い、炭素に還元材と浸炭材との2つの役割を与えた。
 均一に混合した試料を98MPaの加圧力で30s間プレス成形し、直径10mm、高さ10mmの円筒形に成形した。成形試料を5体積%N-Ar混合ガスを0.5NL/minの流量で供給する雰囲気中で10℃/minの加熱速度で1300℃まで加熱した。発生するガスを赤外分光光度計でガス分析し、鉄鉱石の還元率を計算した。結果を図5に示す。比較例として、回収した炭素に替えて、カーボンブラックを用いて同様の試験を行った結果を図5に併記した。図5から明らかなように、回収した炭素(実線)は、カーボンブラック(破線)に比べ、鉄鉱石Aの被還元性を向上させている。
 回収した固体炭素は図6(a)(b)に示すように数nmほどの繊維状であったのに対し、カーボンブラックは、図7に示すように粒径が数十μmほどの粒子であった。このように、一酸化炭素から回収される固体炭素は非常に小さくなるので、当該炭素を炭材内装塊成鉱に用いることで、鉄含有原料やガスとの接触面積が大きくなり、これにより、被還元性の高い炭材内装塊成鉱が得られたものと考えられる。
 次に、回収炭素内における炭化鉄の影響について調査を行った。一酸化炭素を含む炭素含有ガスを多孔質針状鉄に接触させて析出させた炭化鉄を含む回収炭素、および比較例として多孔質アルミナに接触させて析出させた炭化鉄を含まない回収炭素を用意した。それぞれの全炭素における炭化鉄内の炭素のモル割合は炭化鉄を含む回収炭素が30.9mol%、含まない物は0mol%であった。
 それぞれの回収炭素とヘマタイト試薬を均一に混合後、試料を98MPaの加圧力で30s間プレス成形し、直径10mm、高さ10mmの円筒形に成形した。回収炭素とヘマタイト試薬の混合率は混合試料中のC(回収炭素由来)とO(ヘマタイト試薬由来)のモル比C/O=1.0となるように混合した。成形試料を5体積%N2-Ar混合ガスを0.5NL/minの流量で供給する雰囲気中で10℃/minの加熱速度で1300℃まで加熱した。発生するガスを赤外分光光度計でガス分析し、鉄鉱石の還元率を計算した。結果を図8に示す。比較例と比べ、炭化鉄を含む実施例の方が早く還元が進行した。
 本発明に係る炭材内装塊成鉱の製造方法によれば、向流移動層における溶銑製造において、鉄含有原料の還元で使用する還元材の量を削減することができる高被還元性の原料を得ることができ、この原料を用いた溶銑の製造方法とともに、産業上有用である。
 2、8 貯蔵糟
 4 多孔質材料
 6 固体炭素および/または炭化鉄
 10 セメント粉
 12、22 搬送機
 14 混錬機
 16 水
 20 混合粉
 24 造粒機
 26 炭材内装塊成鉱
 28 他の原料
 30 鉄含有塊状原料
 32 高炉
 34 還元ガス
 36 溶銑
 38 排ガス

 

Claims (11)

  1.  一酸化炭素を含む炭素含有ガスを多孔質材料に接触させて炭素を回収する工程と、
     前記炭素を含むカーボン含有原料を鉄含有原料に混合して塊成化する塊成化工程と、
     を含む、炭材内装塊成鉱の製造方法。
  2.  前記炭素を回収する工程を、カーボンデポジション反応を用いて行う、請求項1に記載の炭材内装塊成鉱の製造方法。
  3.  前記鉄含有原料は、鉄鉱石および/または製鉄所内発生ダストを含む、請求項1または2に記載の炭材内装塊成鉱の製造方法。
  4.  前記カーボン含有原料が炭化鉄を含む、請求項1~3のいずれか一項に記載の炭材内装塊成鉱の製造方法。
  5.  前記塊成化工程では、前記カーボン含有原料にバイオマスがさらに混合される、請求項1~4の何れか一項に記載の炭材内装塊成鉱の製造方法。
  6.  前記炭材内装塊成鉱中の1粒子あたりの炭素含有量が15質量%以下である、請求項1~5の何れか一項に記載の炭材内装塊成鉱の製造方法。
  7.  前記塊成化工程では、前記カーボン含有原料にバインダーがさらに混合され、前記塊成化工程では前記バインダーを冷間で硬化させる、請求項1~6の何れか一項に記載の炭材内装塊成鉱の製造方法。
  8.  前記塊成化工程では、前記カーボン含有原料にセメント系固化材がさらに混合され、前記塊成化工程では前記セメント系固化材を固化させる、請求項1~6の何れか一項に記載の炭材内装塊成鉱の製造方法。
  9.  請求項1~8の何れか一項に記載の炭材内装塊成鉱の製造方法で製造された炭材内装塊成鉱を用いた溶銑の製造方法であって、
     前記炭材内装塊成鉱を含む鉄含有塊状原料を上方から装入し下方から還元ガスを上方に向けて流すことで、前記鉄含有塊状原料を向流移動層として還元および溶融させて溶銑を製造する、溶銑の製造方法。
  10.  前記溶銑をシャフト炉で製造する、請求項9に記載の溶銑の製造方法。
  11.  請求項1~8の何れか一項に記載の炭材内装塊成鉱の製造方法で製造された炭材内装塊成鉱を用いた溶銑の製造方法であって、
     前記炭材内装塊成鉱を1160~1450℃に加熱して還元および溶融させた後に冷却して還元鉄とし、前記還元鉄を溶融させて溶銑を製造する、溶銑の製造方法。

     
PCT/JP2023/007401 2022-03-07 2023-02-28 炭材内装塊成鉱の製造方法および溶銑の製造方法 WO2023171468A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023543385A JPWO2023171468A1 (ja) 2022-03-07 2023-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022034562 2022-03-07
JP2022-034562 2022-03-07

Publications (1)

Publication Number Publication Date
WO2023171468A1 true WO2023171468A1 (ja) 2023-09-14

Family

ID=87935225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007401 WO2023171468A1 (ja) 2022-03-07 2023-02-28 炭材内装塊成鉱の製造方法および溶銑の製造方法

Country Status (2)

Country Link
JP (1) JPWO2023171468A1 (ja)
WO (1) WO2023171468A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064709A (ja) * 1999-08-26 2001-03-13 Sumitomo Metal Ind Ltd 溶銑の製造方法
JP2003183715A (ja) * 2001-12-12 2003-07-03 Kobe Steel Ltd 溶融金属製造方法
JP2009035820A (ja) * 2007-07-10 2009-02-19 Kobe Steel Ltd 炭材内装酸化鉄塊成化物およびその製造方法、ならびに還元鉄または金属鉄の製造方法
JP2016125125A (ja) * 2015-01-08 2016-07-11 Jfeスチール株式会社 焼結鉱製造用の炭材内装造粒粒子とその製造方法および焼結鉱の製造方法
JP2017193742A (ja) * 2016-04-20 2017-10-26 Jfeスチール株式会社 炭素内装鉱の製造方法
KR20210035524A (ko) * 2019-09-24 2021-04-01 현대제철 주식회사 탄재내장펠렛용 조성물 및 이를 이용한 탄재내장펠렛 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064709A (ja) * 1999-08-26 2001-03-13 Sumitomo Metal Ind Ltd 溶銑の製造方法
JP2003183715A (ja) * 2001-12-12 2003-07-03 Kobe Steel Ltd 溶融金属製造方法
JP2009035820A (ja) * 2007-07-10 2009-02-19 Kobe Steel Ltd 炭材内装酸化鉄塊成化物およびその製造方法、ならびに還元鉄または金属鉄の製造方法
JP2016125125A (ja) * 2015-01-08 2016-07-11 Jfeスチール株式会社 焼結鉱製造用の炭材内装造粒粒子とその製造方法および焼結鉱の製造方法
JP2017193742A (ja) * 2016-04-20 2017-10-26 Jfeスチール株式会社 炭素内装鉱の製造方法
KR20210035524A (ko) * 2019-09-24 2021-04-01 현대제철 주식회사 탄재내장펠렛용 조성물 및 이를 이용한 탄재내장펠렛 제조방법

Also Published As

Publication number Publication date
TW202340485A (zh) 2023-10-16
JPWO2023171468A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
RU2435868C1 (ru) Способ получения брикетированного восстановленного железа и способ получения чугуна
RU2455370C1 (ru) Содержащий оксид титана агломерат для получения гранулированного металлического железа
JP2004156140A (ja) フェロニッケルおよびフェロニッケル精錬原料の製造方法
JP2009507134A (ja) 鉱石還元方法、ならびに酸化チタンおよび鉄金属化生成物
JP2007077484A (ja) 炭材内装塊成化物の製造方法
JP4603628B2 (ja) 含炭非焼成ペレットを用いる高炉操業方法
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
JP3502011B2 (ja) 炭材内装塊成化物の製造方法
WO2023171468A1 (ja) 炭材内装塊成鉱の製造方法および溶銑の製造方法
TWI841276B (zh) 含碳材團礦的製造方法及鐵水的製造方法
WO2005111248A1 (ja) 半還元焼結鉱およびその製造方法
JP2018127694A (ja) 金属酸化物の製錬方法
JP2018178219A (ja) 酸化鉱石の製錬方法
JP7416340B1 (ja) 溶銑の製造方法
JP3732024B2 (ja) 還元鉄ペレットの製造方法
JP4867394B2 (ja) 製鉄用非焼成塊成鉱
JP2020056052A (ja) 酸化鉱石の製錬方法
JP7459660B2 (ja) 酸化鉱石の製錬方法
TWI842099B (zh) 成塊礦及其製造方法
JP2020045542A (ja) 酸化鉱石の製錬方法
JP7488449B2 (ja) 塊成化物製造用バインダー、それを用いた塊成化物の製造方法、還元鉄の製造方法、塊成化物
TWI802162B (zh) 還原爐之操作方法
JP7498417B2 (ja) 塊成鉱及びその製造方法
JP7338309B2 (ja) 酸化鉱石の製錬方法
JP5880941B2 (ja) 還元鉄の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023543385

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766646

Country of ref document: EP

Kind code of ref document: A1