WO2005111248A1 - 半還元焼結鉱およびその製造方法 - Google Patents

半還元焼結鉱およびその製造方法 Download PDF

Info

Publication number
WO2005111248A1
WO2005111248A1 PCT/JP2005/009504 JP2005009504W WO2005111248A1 WO 2005111248 A1 WO2005111248 A1 WO 2005111248A1 JP 2005009504 W JP2005009504 W JP 2005009504W WO 2005111248 A1 WO2005111248 A1 WO 2005111248A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduced
sintering
ore
particles
semi
Prior art date
Application number
PCT/JP2005/009504
Other languages
English (en)
French (fr)
Inventor
Hideaki Sato
Satoshi Machida
Tatsuro Ariyama
Koichi Nushiro
Koichi Ichikawa
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP05743528A priority Critical patent/EP1749894A4/en
Publication of WO2005111248A1 publication Critical patent/WO2005111248A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents

Definitions

  • the present invention relates to a semi-reduced sintered ore obtained by sintering raw materials such as iron ore, carbonaceous materials, and CaO-based auxiliary raw materials and used as a blast furnace raw material and the like, and a method for producing the same.
  • raw materials such as iron ore, carbonaceous materials, and CaO-based auxiliary raw materials and used as a blast furnace raw material and the like, and a method for producing the same.
  • Sinter which is the main raw material of the blast furnace iron making method, is generally produced as follows.
  • a CaO-based auxiliary material containing calcium oxide such as limestone, quicklime, and dolomite in fine iron ore with an average diameter of 2.0 to 3. Omm, which is about 8 mm or less (also called a lime-based auxiliary material)
  • Silica, nickel slag, etc. SiO 2 raw materials, powdered recycled materials generated and recovered in steelworks, sintered powder with a small particle size and smaller than 3 to 5 mm that requires re-firing
  • KOTAS powder Add charcoal such as anthracite, add an appropriate amount of water, adjust the humidity, mix and granulate them to obtain pseudo-particles with an average diameter of 3.0 to 5.
  • the pseudo particles are filled on a pallet of an endless mobile sintering machine at a height of about 400 to 60 Omm, the carbon material on the surface layer of the packed bed is ignited, and air is directed downward. The carbonaceous material is burned while being sucked, and the simulated particles that are the raw material are sintered by the heat of combustion. The sintered cake obtained by sintering is crushed and sized to form agglomerate ore with a size of 3 to 5 mm or more.
  • Such sinter is charged into a blast furnace and gas-reduced mainly by CO to produce pig iron.
  • the blast furnace ironmaking method mainly uses indirect reduction by CO gas, so it is limited by gas reduction equilibrium and requires a large amount of reducing materials. From the aspect of ensuring the quality, a high-quality lump coat with high strength is required. And pairs to this, in recent years, from the viewpoint of Roinochi extension of Kotasu furnace that is progressing global warming and aging by C_ ⁇ 2 emissions, oxidation by carbon (hereinafter, Ji hereinafter) as ironmaking process Processes that mainly use the direct reduction of iron have been developed and are being put into practical use. In this case, because that no longer be subject to restrictions in the gas reduction equilibrium, it is possible to reduce the intensity of the reducing material to allow a reduction in co 2 emissions Contact Yopi coke oven operating rate.
  • Ji oxidation by carbon
  • Methods for producing reduced iron using direct reduction include, for example, the smelting reduction method, rotary hearth method, and rotary kiln method, all of which involve large-scale capital investment and extremely low productivity. At present, it is a supplementary process of the blast furnace method.
  • Patent Document 1 For example, in Patent Document 1, 5 to 20 wt% of coke breeze and anthracite are blended and granulated into fine ore to form an inner layer, and fine ore, auxiliary materials, and 2 to 5 wt% of fine coal and anthracite are formed in the outer layer. After mixing and forming two-layer pseudo-granules, mixing and granulating them as a part of the sintering raw material, the melt and inner-layer coke breeze generated from the outer layer of the raw material during the sintering process A method for producing a semi-reduced sintered ore characterized in that a portion of the sintered ore is reduced by direct reduction of the sintered ore.
  • the surface layer of pseudo-particles obtained by adding 15 to 18% of a carbon material to iron ore and granulated is coated with CaO, or the granulated pseudo-particles are formed of CaO.
  • a solution in which is dissolved and adding CaO to the surface of the pseudo-particles By immersing it in a solution in which is dissolved and adding CaO to the surface of the pseudo-particles, reoxidation after firing is prevented, and a semi-reduced sintered ore with a high reduction rate can be manufactured.
  • the method of adding carbon materials necessary for reduction to fine iron ore and using the direct reduction reaction to produce semi-reduced sinter involves new large-scale capital investment.
  • This method is highly feasible as a method for producing semi-reduced sintered ore in large quantities without using it.
  • the semi-reduced sinter obtained by the existing sintering machine is used in large quantities in the blast furnace even if the ratio of metal Fe contained in the sinter is low, and If the carbon material used contains a certain amount of C, there is almost no restriction on the quality and dust collection can be used, so the total effect of reducing the blast furnace reducing material ratio and reducing the load on the coke oven is as follows: large.
  • Giant voids are formed in the sintering bed, which is the raw material packed bed, by melting and shrinking of the pseudo particles, and the suction gas in the sintering machine passes through only that portion.
  • the firing zone in which the combustion zone should gradually move from the upper layer to the lower layer of the raw material packed layer which is usually 400 to 600 mm
  • the sintering reaction is hindered, and a large amount of unsintered part remains in the lower part of the sintering bed, preventing the reduction reaction from proceeding and reducing the productivity extremely.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 21-21043
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2000-19092154 Disclosure of the Invention
  • the present invention has been made in view of the above circumstances, and is a semi-reduction sintering method that can be manufactured without deteriorating the operation of the current sintering machine, is partially reduced in iron ore, and contains metal Fe.
  • the purpose is to provide consolidation.
  • Another object of the present invention is to provide a method for producing a semi-reduced sintered ore capable of stabilizing a reaction in a sintering process and achieving a high reduction rate and a high metal iron content.
  • the present invention firstly uses iron ore, carbonaceous material, and CaO-based auxiliary raw materials as sintering raw materials, charges the sintering raw materials into a sintering machine, and forms a raw material layer.
  • This is a semi-reduced sintered ore in which a part of iron ore is reduced by firing this raw material layer, and at least a plurality of reduced iron production particles formed by forming iron ore and carbonaceous material are formed.
  • a semi-reduced sintered ore, which constitutes a part of the raw material layer is characterized in that a part of the iron ore is reduced by sintering and contains metal Fe.
  • the reduced iron-producing particles have a content of 5 to 5% by mass of the raw material layer.
  • one of the particles for producing reduced iron The volume per unit is preferably 10 cm 3 or less.
  • the present invention uses iron ore, carbonaceous material, and CaO-based auxiliary raw materials as sintering raw materials, and charges the sintering raw materials into a sintering machine to form a raw material layer. Is a method for producing semi-reduced sintered ore in which a part of iron ore is reduced by calcining iron ore, and forming iron ore and a carbon material of 5 mass% or more in outer number with respect to iron ore.
  • a plurality of reduced iron-producing particles are mixed in the raw material layer as a part of the raw material layer and calcined to reduce a part of the iron ore to obtain a semi-reduced sintered ore containing metal Fe.
  • the present invention uses iron ore, carbonaceous material, and CaO-based auxiliary raw materials as sintering raw materials, and charges the sintering raw materials into a sintering machine to form a raw material layer.
  • the mass ratio of S i ⁇ 2 is
  • the reduced iron-producing particles are mixed with the raw material layer as a part thereof and calcined to reduce a part of the iron ore, and the semi-reduced calcination containing the metal Fe is included.
  • a method for producing a semi-reduced sintered ore characterized by consolidation is provided.
  • the particles for producing reduced iron a material obtained by compression-molding a raw material by a roll forming machine or a material obtained by rolling and granulating a raw material can be used.
  • the present invention uses iron ore, carbonaceous material, and CaO-based auxiliary raw materials as sintering raw materials, and charges the sintering raw materials into a sintering machine to form a raw material layer.
  • Fired iron A method for producing semi-reduced sintered ore in which a part of ore is reduced, comprising mixing iron ore and iron ore with a carbon material of 10 to 2 Omass% in an external number, and further mixing with water and If necessary, a binder is added and mixed, and the mixture is compression-molded with a roll forming machine to form molded particles, and a mixture of the molded particles in a content of 5 to 50 mass% is used as a sintering raw material.
  • the raw material for producing the shaped particles is preferably 8 mm or less for iron ore and 5 mm or less for carbonaceous material. In this case, it is preferable that the raw material for producing the shaped particles contains 4 Omass% or more of particles of 125 / im or less.
  • the present invention uses iron ore, carbonaceous material, and CaO-based auxiliary raw materials as sintering raw materials, and charges the sintering raw materials into a sintering machine to form a raw material layer.
  • a semi-reduced sinter that is characterized by using it as a raw material and reducing part of the iron ore by firing to contain metal Fe of 3 mass% or more as an average value of the entire sinter.
  • the raw material for producing shaped particles is preferably 8 mm or less for iron ore, 5 mm or less for carbonaceous material, and 5 mm or less for CaO-based auxiliary material.
  • the raw material for producing the shaped particles is 125 m or less. It is preferred that the lower particles contain 4 O mass% or more.
  • a plurality of prequettes formed into a predetermined shape by a roll forming machine, or plate-like shapes formed by a roll forming machine, as shaped particles compression-formed by the mouth forming machine. It can be formed into a sheet or rod shape and then ground to a predetermined size. Further, it is preferable that the volume per one of the molded particles is 10 cm 3 or less.
  • the present invention provides a semi-reduction sintering method in which iron ore, a carbon material, and an auxiliary material are charged to a sintering machine as a sintering raw material and fired, and a portion of the iron ore is reduced by the carbon material.
  • part of the iron ore and part of the carbonaceous material in the sintering raw material, or part of the iron ore, part of the carbonaceous material and part of the auxiliary material in the sintering raw material are previously prepared.
  • a method for producing a semi-reduced sintered ore which is characterized in that it is compression-molded to form a compression-molded body, the remainder of the sintering raw material is granulated, and these are mixed and fired.
  • the compression molded body has a volume of 10 cm 3 or less.
  • the compression-molded body is charged into a region below the raw material layer 34 or less.
  • the mixing ratio of the compression molded body is 50 mass% or less.
  • the present invention uses an iron ore, a carbonaceous material, and an auxiliary material as sintering raw materials, and makes a part of the iron ore, a part of the carbonaceous material, and a part of the auxiliary material among the sintering raw materials uniform in advance.
  • the mixture is compression-molded to form a compression-molded product, the remainder of the sintering material is formed into granules, and these are mixed and fired to reduce a portion of the iron ore with a carbon material, thereby reducing the semi-reduction.
  • the iron ore and the carbonaceous material as raw materials for the compression-molded body should have a total particle size of 125 m or less of 40 mass% or more.
  • the present invention provides a method for producing a semi-reduced sintered ore characterized by the following.
  • the total of the stone and the carbonaceous material having a particle size of 125 m or less is 7 O mass% or more.
  • the present invention uses an iron ore, a carbonaceous material, and an auxiliary material as sintering raw materials, and a part of the iron ore, a part of the carbonaceous material, and a part of the auxiliary material among the sintering raw materials are previously uniform After mixing, the mixture is compression-molded to form a compression-molded product, the remainder of the sintering material is formed into granules, and these are mixed and fired to reduce a portion of the iron ore with a carbon material, thereby reducing the semi-reduction.
  • the auxiliary raw material shall contain a CaO source, use quicklime as a part or all of the CaO source, and use the binder while the compacted form contains quicklime.
  • the present invention provides a method for producing a semi-reduced sintered ore, wherein the method is performed without forming. Ninth, the present invention uses, as a sintering raw material, iron ore, a carbonaceous material, and an auxiliary raw material, and a part of the iron ore, a part of the carbonaceous material, and a part of the auxiliary raw material in the sintering raw material are made uniform in advance.
  • the mixture is compression-molded to form a compression-molded product, the remainder of the sintering material is formed into granules, and these are mixed and fired to reduce a portion of the iron ore with a carbon material, thereby reducing the semi-reduction.
  • the auxiliary raw material contains a CaO source, and the blending amount of the CaO source in the compression-molded body is set as C aO / S i 0 2 in the compression-molded body.
  • a method for producing a semi-reduced sintered ore characterized in that the compounding amount is 1 or more.
  • the binder refers to a binder having a function of binding iron ore particles, for example, starch, tar, molasses, etc., but is not particularly limited as long as it has the above function. .
  • the C a O-based auxiliary material has a function of binding iron ore particles, it is not included in the binder according to the present invention for the purpose of the present invention.
  • iron ore and carbonaceous material are formed into reduced iron-producing particles or shaped particles, which are charged as a part of a raw material layer. The contact with the material is strong, the contact area is large, and the direct reduction reaction occurs only partially, so there is little danger of generating a large amount of melt.
  • iron ore, carbonaceous material, and the like are compression-molded by a roll-forming machine, formed into shaped particles, and charged into a sintering machine as a part of a sintering raw material.
  • a roll-forming machine formed into shaped particles
  • a sintering machine as a part of a sintering raw material.
  • a part of the iron ore and a part of the carbonaceous material among the sintering raw materials, or a part of the iron ore, the part of the carbonaceous material and the auxiliary material of the sintering raw material A part of the iron ore is pre-compressed and then combined with the compact and charged into the sintering machine. This increases the contact area between the iron ore and the carbonaceous material, stabilizing the reaction in the sintering process and reducing the reduction rate Since the compression molded body is dense, it can be shielded from the outside air and the oxidation of metallic iron is suppressed, so that a high metallic iron content can be obtained.
  • the iron ore and the carbonaceous material having a particle size of 125 ⁇ m or less as a whole are reduced to 4 O mass% or more as a whole.
  • a higher reduction rate can be obtained.
  • the eighth embodiment of the present invention by using quick lime as a CaO source to be contained in the compression-molded body, Ca oBecause it has both the function of the source and the binder, it can be molded without using a binder at the time of producing the compression molded body, so that the cost can be reduced.
  • C a O / S i 0 2 is the amount such that one or more of the compression molded body except the ignition loss the amount of C a O source of compressed moldings of the present invention and by, C a O based auxiliary raw material F e 0 of irreducible as a function or a sinter of melt-textured as an aggregate to maintain the strength of the compacts - the S i 0 2 slag
  • the function of preventing generation can be effectively exhibited.
  • an effect combining these effects can be exhibited.
  • Figure 1 is a diagram showing the relationship between the reduction rate of sinter and the ratio of blast furnace reducing materials.
  • Figure 2 shows the relationship between the average reduction rate of sinter ore during charging in the blast furnace and the amount of C emitted from the iron making process. It is a figure shown in comparison with ore.
  • FIG. 3 is a diagram showing the relationship between the reduction rate during sintering and the content of metallic iron after sintering in the case of quasi-particles by tumbling granulation and the case of pre-quette particles.
  • FIG. 1 is a schematic diagram showing an example of equipment for carrying out a method for producing a semi-reduced sintered ore according to a first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a structure of a raw material layer in the method for producing a semi-reduced sintered ore according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining a state of shaped particles during sintering in the method for producing a semi-reduced sintered ore according to the second embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the molding pressure of the molded particles and the yield of +5 mm after the drop test.
  • FIG. 8 is a schematic diagram illustrating an example of equipment for performing the method for producing a semi-reduced sintered ore according to the second embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a structure of a raw material layer in a method for producing a semi-reduced sintered ore according to the second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining an example of a method for charging a sintering raw material in the method for producing a semi-reduced sintered ore according to the third embodiment of the present invention.
  • iron ore, carbonaceous material, and CaO-based auxiliary raw materials are used as sintering raw materials, and they are charged into a sintering machine to form a raw material layer. Manufacture reduced sinter.
  • iron ore and a carbonaceous material of usually 5 mass% or more, preferably 10 to 20 mass% or more with respect to the iron ore are formed.
  • a plurality of reduced iron production particles are charged.
  • the point for effectively proceeding the direct reduction reaction of iron ore by C is the state of contact between the carbonaceous material as the C source and the iron ore as the substance to be reduced, and these are in strong contact. It is important that the contact area is large.
  • Such shaped particles contain a large amount of carbonaceous material for promoting the reduction reaction and may be excessively melted. Since it is a part, it is unlikely that a large amount of melt will be generated, and the productivity of the sinter is hardly reduced without substantially affecting the ventilation of the entire sintering bed.
  • the reduced particles may be re-oxidized by oxygen in the suction gas.However, particles formed of iron ore and carbonaceous material, etc. The form is maintained, and even if the surface is oxidized, the inside is hardly oxidized and a good reduced state is maintained.
  • a specific description will be given.
  • the reduction reaction of iron ore consists of the reaction (direct reduction) with the carbon in the carbonaceous material such as coke shown in equation (1) and the CO gas shown in equation (2). It proceeds by reaction (indirect reduction).
  • the co 2 gas generated by the indirect reduction is converted to CO gas by the reaction represented by equation (3) called the solution loss reaction.
  • the reduced iron-producing particles have a large contact area with the iron ore that is the substance to be reduced and the carbon material that is the reducing agent. Can be effectively advanced.
  • the reduced iron producing particles are charged as a part of the raw material layer, the above reaction occurs locally, and only the reduced iron producing particles are excessively melted. Less likely to occur.
  • the reduced iron-producing particles are firmly adhered to iron ore and carbonaceous material, and retain their morphology even after reduction. The state of reduction is maintained. For this reason, direct reduction can proceed without deteriorating the current operation of the sintering machine, and a part of iron ore is reduced, and a large amount of semi-reduced sinter containing metal Fe is reduced. Can be manufactured.
  • Fig. 1 shows the relationship between the reduction rate of sinter ore on the horizontal axis and the ratio of blast furnace reducing material on the vertical axis, and shows the relationship between pulverized coal injection and l S lkg / thm ( 1 ton of hot metal i 3 lkg) is shown.
  • the reduction ratio of the blast furnace decreases as the reduction ratio of the sinter increases, and the reduction ratio increases rapidly when the reduction ratio exceeds 30%. Since the reduction rate of ordinary sinter is about 2%, by obtaining a semi-reduced sinter having a reduction rate of 30% or more according to this embodiment, it is possible to greatly reduce the ratio of the reducing material in the blast furnace.
  • FIG. 3 is a diagram showing a comparison of C emission amounts with sinters generated preferentially.
  • Line (a) is the case of the sinter which has been partially reduced uniformly
  • line (b) is the case of the sinter where metal has been preferentially generated.
  • the amount of metal Fe contained in the semi-reduced sinter is 3 mass% or more as a whole average value. As a result, it is possible to effectively reduce the ratio of reducing materials in the blast furnace, reduce CO 2 emissions in the entire iron making process, and reduce the load on the coke oven.
  • the carbon material blending amount of the reduced iron-producing particles is preferably at least 5 mass%. This is because if it is less than 5 mAss, the direct reduction reaction may not effectively occur. A carbon material content of 10 mass% or more is more preferable for promoting the direct reduction reaction, but if the carbon material exceeds 20 mass%, excessive melting is likely to occur. 10 to 2 O mass% is preferred. Powdered charcoal is preferred as the carbonaceous material, but other carbonaceous materials such as anthracite or dust collected from coke cooling equipment can be used.
  • the reduced iron production for particles after baking may be mixed C a O-based auxiliary raw material to be 1 or more.
  • the C a O-based auxiliary material functions as an aggregate to maintain the strength of the reduced iron-producing particles or as a non-reducible Fe 0-S i O 2 -based slag as a molten structure of sintered ore. Has a function to prevent generation.
  • the mass ratio of C a OZS i O 2 is smaller than 1, a low-melting-point, non-reducible FeO—S i O 2 -based melt is likely to be generated.
  • C a O is C a O even when the excess - F e 2 O 3 based low-melting melt and or to easier occurrence of, in the event of a melt in large quantities, its shape particles themselves May melt excessively without leaving any residue.
  • Ordinary iron ore contains about 0.6 to 5.5 mass% of SiO 2, and in the current sintering operation, several brands (usually 5 to Because formulating 1 0 brand), as a result S i 0 2 iron Ishihara fee becomes 3.7 to 4.8 111 3 3 3%.
  • the content of the CaO-based auxiliary material is preferably at least 2 mass% in terms of CaO.
  • C a O It is preferable that the content of the auxiliary material be 8 mass% or less in terms of CaO.
  • the Ca O-based auxiliary material (also referred to as lime-based auxiliary material) is not particularly limited as long as it contains Ca O, but typical examples include limestone, quicklime, and dolomite ⁇ ). .
  • the iron ore preferably has a particle size of 8 mm or less
  • the carbon material has a particle size of 5 mm or less
  • the CaO-based auxiliary material preferably has a particle size of 5 mm or less. Good.
  • the iron ore and the carbonaceous material in the particles have a particle size of 125 ⁇ m or less, and have a particle size of 40 mAss% or more.
  • the reactivity of the reduction reaction between them is increased, and the reduction rate of the iron ore can be further increased. More preferably, it is 7 Omass% or more.
  • the CaO-based auxiliary material is contained in the reduced iron-producing particles, the total particle size of the reduced iron-producing particles, including the CaO-based auxiliary material, should be 25 ⁇ m or less and 40 mass% or more. And more preferably 70 mass% or more.
  • the size of the reduced iron-producing particles is preferably 10 cm 3 or less. Since the reduction reaction is an endothermic reaction, the heat is compensated for by the calorific value of the coke during sinter production, but if the particles for producing reduced iron are too large, sufficient heat is not supplied to the inside and unreacted. Because it is easy to become. By setting the size to 10 cm 3 or less, the reduction reaction proceeds sufficiently and the effect of improving the gas permeability of the raw material layer can be obtained. To do. However, when the size of the reduced iron-producing particles is smaller than 0.065 cm 3 (equivalent to a sphere having a diameter of 5 mm), the size of the particles becomes smaller than that of the surrounding granules, and the granulated material becomes smaller during firing.
  • the content of the reduced iron-producing particles is preferably 5 to 50% by mass of the entire raw material layer, and more preferably 10 to 5% onset.
  • the reduced iron-producing particles after forming have relatively high strength, have little collapse when charged into the sintering machine, and have coarse particles in the raw material layer to ensure ventilation. It has the function of improving the productivity of sinter by mixing it in an appropriate amount. However, if the amount of the mixture exceeds 5 O mass% of the entire raw material layer, a layer in which the particles for producing reduced iron are concentrated is formed, and the ventilation becomes excessive, so that an unfired portion is easily generated.
  • the amount of the reduced iron-producing particles is less than 5 mass%, the amount of metal Fe in the obtained semi-reduced sintered ore becomes small, so that the reduction ratio of the reducing material in the blast furnace and the emission of CO 2 The effect of reducing the amount tends to be insufficient.
  • Particles for the production of reduced iron are produced by molding iron ore and carbonaceous material, or iron ore, carbonaceous material and CaO-based auxiliary materials by an appropriate method.
  • the production method includes rolling granulation using a drum mixer or a disc pelletizer, which is conventionally known as a method for producing pseudo-particles as a sintering raw material, or a method of forming a plywood with a plywood machine.
  • Compression molding also referred to as pressure molding
  • a representative roll molding machine or the like can be mentioned. Among these, the compression molding method is preferred.
  • Compression molding of iron ore and carbonaceous material, or iron ore, carbonaceous material and CaO-based auxiliary raw materials improves the contact between iron ore and carbonaceous material compared to the method of quasi-granulation by rolling granulation.
  • the contact area can be strengthened to increase the contact area, so that the reduction reaction of iron ore proceeds more easily, reducing the reduction rate and the content of metallic iron. Can be higher.
  • FIG. Figure 3 shows the reduction ratio of sinter ore on the horizontal axis and the content of metallic iron after sintering on the vertical axis. It is a figure which shows in comparison with the case of a particle. As is clear from this figure, the reduction rate of sintering of the prequette particles is higher than that of the pseudo particles, and the content of metal Fe after sintering is higher. Also, by using compression molded particles such as briguet particles, the porosity in the raw material packed layer is increased, and the permeability of the sintered bed is also improved.
  • pseudo particles used for ordinary sinter are used. That is, a sintering material mainly composed of iron ore, carbonaceous material, and CaO-based auxiliary material is subjected to rolling granulation using a drum mixer, a disc pelletizer, or the like, and is used.
  • a sintering material mainly composed of iron ore, carbonaceous material, and CaO-based auxiliary material is subjected to rolling granulation using a drum mixer, a disc pelletizer, or the like, and is used.
  • ordinary fine iron ore is used as iron ore
  • fine coke is used as carbonaceous material
  • limestone or quicklime is used as CaO-based auxiliary material.
  • the mixing ratio of the carbon material is preferably 2 to 6 mass%.
  • the CaO-based auxiliary material is preferably about 4 to 10% by mass of the total amount of the iron ore and the CaO-based auxiliary material.
  • a downward suction type endless moving sintering machine As a sintering machine, a downward suction type endless moving sintering machine is generally used.
  • This downward suction type endless moving type sintering machine has an endless moving type moving grate, on which the reduced iron producing particles and the ordinary pseudo particles are supplied, and the raw material layer is formed. Is formed, and the raw material layer is continuously sintered to produce the semi-reduced sintered ore of the present embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a facility for producing a semi-reduced sintered ore according to the present embodiment.
  • This equipment includes a raw material manufacturing equipment 40 and a downward suction type endless mobile sintering machine 50.
  • the raw material production facility 40 has a raw material source 1 for ordinary pseudo particles capable of supplying iron ore, a carbonaceous material, and a CaO-based auxiliary material, which are ordinary raw materials of pseudo particles.
  • the raw material from 1 is granulated by a tumbling granulator 2 comprising a drum mixer, a disc pelletizer, etc., and usually becomes pseudo particles.
  • the raw material production facility 40 is a source material for reduced iron-producing particles that can supply iron ore and carbon as raw materials for reduced iron-producing particles, or iron ore, carbon, and CaO-based auxiliary raw materials.
  • the raw material from the raw material source 3 for the reduced iron producing particles is molded by the molding apparatus 4 such as the above-mentioned molding machine or tumbling granulator to become the reduced iron producing particles. .
  • the pseudo particles and the particles for producing reduced iron are mixed at a predetermined ratio by a mixing mixture 5 and stored in a hopper 6.
  • the downward suction type endless mobile sintering machine 5 ⁇ has an endless mobile type moving grate 11, and on the mobile grate 11, a pseudo-particle is usually formed by a roll feeder 110, which is a charging system. A mixture with the reduced iron-producing particles is supplied to form a raw material layer 13. The pseudo particles and the reduced iron-producing particles may be separately supplied onto the moving grate 11 without using the mixer 5.
  • An ignition furnace 12 is provided on the moving path of the moving grate 11, and the pseudo particles on the moving dart 11 are ignited when passing through the ignition furnace 12 to sinter the raw material layer 13. Is started, and a sintered cake 13a is formed.
  • a crusher (not shown) is provided at the outlet side of the moving grate 11, and the sinter that has fallen from the moving grate 11 is crushed by the crusher and supplied to the conveyor 14, and the blast furnace Supplied to
  • a plurality of wind boxes 15 are arranged directly below the moving grate 11 along the traveling direction of the moving grate 11, and each of the wind boxes 15 is connected to a vertical duct 16. . Thereby, the gas above the raw material layer 13 is sucked through the raw material layer 13 by the wind box 15 and the vertical duct 16.
  • the vertical duct 16 is connected to a horizontally disposed main exhaust gas duct 17 so that the exhaust gas is discharged via the main exhaust gas duct 17.
  • An electric precipitator 20 and a main blower 21 are connected to the main exhaust gas duct 17, and the main blower 21 sucks the gas above the raw material layer 13 and the wind box 15 and the vertical duct
  • the exhaust gas is discharged from the chimney 22 via the main exhaust gas duct 16, the electric dust collector 20, and the like.
  • a gas supply hood may be provided on the downstream side of the ignition furnace 12 above the raw material layer 13 and an exhaust gas circulation duct connected from the vertical duct 16 to this hood may be provided to circulate the exhaust gas. Good.
  • the raw material from the raw material source 1 for pseudo particles is usually granulated by the tumbling granulator 2 to produce the pseudo particles, and the raw material source for the particles for reduced iron production.
  • the raw material from 3 is molded by a molding apparatus 4 to produce reduced iron producing particles, and these ordinary pseudo particles and reduced iron producing particles are mixed by a mixer 5 and the mixture is put into a hopper 6 and a roll feeder.
  • the raw material layer 13 is formed by supplying the raw material layer 13 onto the moving grate 11 of the downward suction type endless transfer type sintering machine 50 via 10. At this time, as shown in FIG. 5, the raw material layer 13 is in a state in which the reduced iron producing particles 32 are dispersed in the matrix 31 of the pseudo particles.
  • the surface of the raw material layer 13 is ignited by the ignition furnace 12 and fired while sucking the gas downward through the wind box 15 to sinter the pseudo particles constituting the raw material layer 13. Sinter.
  • the sintered ore obtained by sintering in this manner falls from the moving grating 11, and the dropped ore is crushed by the crusher at the outlet side and is supplied to the conveyor 14 and further blasted. Supplied to In this case, as described above, in the reduced iron producing particles 32 of the raw material layer 13, a direct reduction occurs between the iron ore and the carbonaceous material, and the iron ore is partially reduced, and a part of the metal is reduced.
  • the semi-reduced sintered ore that has become Fe is produced.
  • At least iron ore, carbonaceous material, and CaO-based auxiliary raw materials are used as sintering raw materials, and they are charged into a sintering machine to form a raw material layer.
  • a more specific range of the first embodiment is specified.
  • fine iron ore and fine iron ore are blended with a carbon material of 10 to 20 mass% in external number, and further mixed with water and a binder as necessary.
  • This mixture is compression-molded by a roll molding machine to form molded particles, and a mixture of the molded particles in an amount of 5 to 30 mass% is charged into a sintering machine using as a sintering raw material.
  • the sintering raw material in which the formed particles are blended in an amount of 5 to 50 mass%, preferably 5 to 30 mass% is calcined to reduce a part of the iron ore, and the average value of the entire sintered ore is 3 Obtain semi-reduced sintered ore containing more than mass% of metal Fe.
  • the temperature of the raw material layer is brought to about 140 ° C., and the residence time is more than 1200 ° C. And make direct reduction dominant.
  • molded particles that have been compression molded by a roll molding machine are used as corresponding to the reduced iron-producing particles of the first embodiment.
  • Such compression-molded particles have a higher density than granulated pseudo-particles, which are ordinary sintering raw materials.
  • the reduction rate when sintered is higher than that of the pseudo particles, and the content of the metal Fe after sintering is higher.
  • the iron ore which is the substance to be reduced
  • the carbonaceous material which is the reducing agent
  • the surface of the shaped particles 63 dispersed in the ordinary pseudo particles 62 in the sintering packed layer (raw material layer) 61 has FeO—Si0 2 Film or FeO-CaO-based melt forms a film 64 with a molten structure, and this film 64 prevents bursts due to CO gas or CO 2 gas generated by internal direct reduction .
  • the film 64 remains after reduction (after firing) and retains its shape, which in turn works effectively to prevent reoxidation of the reduced Fe or FeO.
  • the shaped particles can effectively promote the direct reduction reaction of iron ore.
  • the formed particles are a part of the raw material for sintering and are dispersed in the raw material layer in the sintering machine, the above reaction occurs locally, and the excessive melting is caused by the part of the reduced iron manufacturing particles. And there is little risk of generating a large amount of melt.
  • the shaped particles maintain their morphology even after reduction as described above, and the oxygen in the suction gas prevents internal reoxidation and maintains a good reduced state. Direct reduction can proceed without deteriorating the operation of the sintering machine, and a large amount of semi-reduced sinter containing 3% or more of metal Fe can be produced.
  • the effect of reducing CO 2 emissions from the manufacturing process can be increased.
  • the above-mentioned shaped particles effectively reduce iron ore as described above and have high strength. It has little degree of collapse when charged into the sintering machine, and functions as coarse particles to secure ventilation in the raw material layer. Has the function of improving the productivity of However, if the blending amount exceeds 3 Omass% of the entire sintering raw material, a layer in which the particles for producing reduced iron are concentrated is formed, and excessive ventilation causes unfired portions to be easily generated.
  • the blending amount of the shaped particles in the sintering raw material is set to 5 to 30 mass%.
  • the amount of the carbon material in the formed particles is set to 10 to 20 ma Ss % or more for the following reason.
  • the total Fe in iron ore is 56-65 mass%, and the Fe per t of iron ore is 560-650 kg. Since Fe in this is considered to be almost Fe 3+ , the amount of C necessary for reducing 100% of Fe 2 ⁇ 3 by the direct reduction reaction of the above equation (1) is 180 to 2 1 0 kg next, if the fixed C of Konako in one box, which is a typical carbonaceous material and 8 8ma ss%, Konako one hex amount required to reduce the F e 2 0 3 1 00% is It will be 205-239 kg / t iron ore.
  • the required amount of the fine powder coatus is almost 100 kg / t—more than iron ore, that is, 1 Omass% or more.
  • the metal Fe content of the formed particles is preferably 3 Omass%, and the reduction ratio at that time is about 60%. Therefore, the required carbon material (coke breeze) is 123 to 143 kg / t— If it becomes iron ore and requires 1.2 to 1.3 times the theoretical amount, the preferable range of the carbon material is about 15 to 19 mass%. Also, if the carbon material exceeds 2 Omass%, excessive melting is likely to occur, so the upper limit is set to 2 Omass%.
  • charcoal material flour coat is suitable, , Usually can be used anthracite or coke cooling facility precipitator dust other carbonaceous material, the iron ore, S i O 2 is included about 5 mass%. 1 to as gangue, A 1 2 0 3 is Contain about 1 to 2.5 mass%. On the other hand, the C a O-based auxiliary material contains almost no gangue. Also, ash major Ingredient powder Kotasu as carbonaceous material is S i 0 2 and A 1 2 0 3.
  • the slag components F F e 2 0 3 consists of F e O and S i ⁇ 2 Deki been reduced e O — S i ⁇ 2 system slag, so-called firelite is generated.
  • this firelite has extremely poor reducibility, the addition of a CaO-based auxiliary material forms a calcium-ferrite slag and can improve the reducibility. Also, it has a function as an aggregate or a binder for maintaining the strength of the C a O-based auxiliary raw material molded particles.
  • the shaped particles should have a Ca O / S i ⁇ 2 of 1 or more, preferably C a O / S i 0 2 > 1.5, excluding the ignition loss of the shaped particles. It is preferable to contain a C a O-based auxiliary material.
  • the CaO-based auxiliary material tends to generate a low-melting-point melt, and when a large amount of the melt is generated, the particles themselves may be excessively melted without leaving any shape. Therefore, in order to prevent excessive melting of particles, the content of the CaO-based auxiliary material is preferably 8 mass% or less in terms of CaO.
  • the CaO-based auxiliary material is not particularly limited as long as it contains a CaO component, but typical examples thereof include limestone, quicklime and dolomite.
  • the raw material constituting the shaped particles is preferably 8 mm or less for iron ore, 5 mm or less for carbonaceous material, and 5 mm or less for CaO-based auxiliary material.
  • iron ore and the carbonaceous material contained therein are formed as a whole. It is preferable that particles having a particle size of 25 / m or less be 4 Omass% or more.
  • particles having a particle size of 25 / m or less be 4 Omass% or more.
  • particles having a size of 125 ⁇ m or less including not only iron ore and carbonaceous materials but also CaO-based auxiliary raw materials, have a particle size of 125 ⁇ m or less at 40 mass% or more, and 70 mass% or more. Is more preferred.
  • the size of the shaped particles is preferably 10 cm 3 or less. Since the reduction reaction is an endothermic reaction, the heat is compensated for by the amount of combustion heat of the sinter during the production of sinter, but the particles for the production of reduced iron are too large, and insufficient heat is supplied to the inside. This is because they tend to be unreacted. In the case of 10 cm 3 , the diameter is 26.8 mm, which is a limit from the viewpoint of heat conductivity.By setting the diameter to 10 cm 3 or less, the reduction reaction proceeds sufficiently and the permeability of the raw material layer increases. The effect of improving is achieved.
  • the size of the reduced iron-producing particles is less than 0.065 cm 3 (equivalent to a sphere having a diameter of 5 mm), the effect of improving the air permeability becomes difficult to be exhibited effectively.
  • cm 3 is preferred.
  • 0.3 cm 3 or more is preferable.
  • 6 cm 3 or less is preferable.
  • the shaped particles can be obtained by compression-molding iron ore and carbonaceous material, or iron ore, carbonaceous material and CaO-based auxiliary raw material using a wool molding machine or the like. Molding by a knurling machine is classified into pre-ketting and compacting. In the former, two rolls, each having a plurality of pockets serving as a matrix for a molded product, are provided so as to bite into each other and rotate at the same speed without permission. In order to obtain a preform, which is a molded article of a predetermined shape, the two rolls on which no pocket is formed are rotated at the same speed to obtain a plate-like molded product. This is pulverized into molded particles. In this case, compression molding is performed after adding and mixing water and an appropriate amount of a binder as necessary to the raw materials.
  • the molding pressure of the molded particles is preferably 980 kN / ni or more. Thereby, the molded particles can have sufficient strength. An experiment confirming this will be described. Here, an iron ore of 8 mm or less is added with 20% by mass of a fine coat (15 mm), and 3% of water is used as a binder.
  • An aqueous solution of c-starch with a concentration of 40 mAs s% is added in an external number of 1.4 mA s s%, and the molding pressure is varied from 245 to: 1470 kN / m, length 35 mm, width 2
  • pseudo particles used for ordinary sinter are used for the remainder of the raw material layer. That is, sintering raw material mainly composed of iron ore, carbonaceous material and CaO-based auxiliary raw material is formed by rolling granulation using a drum mixer, a disc pelletizer, or the like.
  • ordinary iron ore fine is used as iron ore
  • coke fine is used as carbonaceous material
  • limestone or quicklime is used as CaO-based auxiliary material.
  • the mixing ratio of the carbon material is preferably 4 to 6 mass%.
  • the CaO-based auxiliary material is preferably about 4 to 10 mass% in the total amount of the iron ore and the CaO-based auxiliary material.
  • a downward suction type endless moving sintering machine is generally used as in the first embodiment.
  • the downward suction type endless moving type sintering machine has an endless moving type moving grate, on which the reduced iron-producing particles and the ordinary pseudo particles are supplied to form a raw material layer.
  • the raw material layer is formed and continuously sintered to produce the semi-reduced sintered ore of the present embodiment.
  • FIG. 8 is a schematic diagram illustrating an example of a facility for producing the semi-reduced sintered ore according to the present embodiment.
  • This equipment includes a molded particle manufacturing equipment 100, a pseudo particle manufacturing equipment 200, and a downward suction type endless mobile sintering machine 300.
  • Molded particle production facility 100 mixes raw materials with binders (for example, starch, tar, molasses) with raw material hoppers 101 capable of supplying iron ore, carbonaceous materials and CaO-based auxiliary raw materials And a roll forming machine 103 for obtaining shaped particles from the mixture.
  • the raw material from the raw material group 1101 is fed to the conveyors 104 and 105 with a stirrer 102.
  • the mixture stirred by the stirrer 102 is conveyed to the roll forming machine 103 by the conveyer 106, and the formed particles produced by the roll forming machine 103 are conveyed by the conveyer 107.
  • the sintering machine 300 conveys it to a conveyor 401.
  • the pseudo particle production facility 200 is used to mix raw materials hoppers 201 capable of supplying iron ore, carbonaceous materials, CaO-based auxiliary raw materials, etc. It has a mixing / humidifying machine (drum) 202 and a granulator (drum) 203 for granulating the raw material, and the raw material from the raw material hopper group 201 is a comparator 204, Mixing / humidifying machine (drum) 202 in 205 Conveyed to mixing / humidifying machine (drum) 202 The mixture discharged from 202 is granulated on a conveyor 206 (drum) 2 The simulated particles produced by the granulator (drum) 203 are conveyed to the sintering machine 304 by the conveyor 207. As a result, the molded particles and the pseudo particles are mixed on the conveyor 401. The mixture on the conveyor 401 is transferred to the conveyor 402 and conveyed to the sintering machine 300.
  • the downward suction type endless moving sintering machine 300 has an endless moving type grate 311, and is usually formed on the moving grate 311 1 with pseudo particles by an appropriate charging system. The mixture with the particles is supplied to form the raw material layer 3 13.
  • the moving path of the moving grate 3 1 1 is provided with an ignition furnace 3 1 2 m, and the pseudo particles on the moving grate 3 1 1 are ignited when passing through the ignition furnace 3 1 2, and the raw material layer 3 1 Sintering of 3 is started, and a sintered cake 3 13 a is formed.
  • a crusher (not shown) is provided, and the sinter dropped from the moving grate 311 is pulverized by the crusher and supplied to the conveyor 314. It is supplied to the blast furnace.
  • a plurality of wind boxes 3 15 are arranged directly below the moving dart 3 1 1 along the traveling direction of the moving grate 3 11 1, and each wind box 3 1 5 has a vertical duct 3 1 6 is connected.
  • the gas above the raw material layer 3 13 is sucked through the raw material layer 3 13 by the wind box 3 15 and the vertical duct 3 16.
  • the vertical duct 316 is connected to a horizontally disposed main exhaust gas duct 317 so that exhaust gas is discharged via the main exhaust gas duct 317.
  • the main exhaust gas duct 3 17 is connected to an electric dust collector 3 20 and a main blower 3 2 1.
  • the main blower 3 2 1 sucks the gas above the raw material layer 3 13 and the wind box 3 1 5, Vertical duct 316, main exhaust duct 317, electric precipitator 322, etc., are discharged from chimney 322.
  • a gas supply hood is provided on the downstream side of the ignition furnace 312 above the raw material layer 313, and an exhaust gas circulation duct is connected from the vertical duct 316 to this hood. Exhaust gas circulation may be performed.
  • molded particles are produced by the molded particle production facility 100, pseudo particles are produced by the pseudo particle production facility 200, and the pseudo particles are produced on the conveyor 401 by appropriate means.
  • the mixture is supplied through a conveyor 402 to the moving grate 311 of a downward suction type endless moving sintering machine 300 to form a raw material layer 313.
  • the thick layer 3 13 is in a state in which the shaped particles 332 are dispersed in the matrix 331 of the pseudo particles.
  • the surface of the raw material layer 3 13 is ignited by the ignition furnace 3 12 and fired while sucking gas downward through the wind box 3 15 to sinter the pseudo particles constituting the raw material layer 3 13 To form a sintered ore.
  • the sintered ore obtained by sintering in this way falls from the moving grate 311 and the dropped ore is crushed by the agglomerator on the outlet side and is supplied to the conveyor 314. It is supplied to the blast furnace.
  • the shaped particles 3 32 of the raw material layer 3 13 direct reduction occurs between the iron ore and the carbonaceous material, the iron ore is partially reduced, and a part of the metal F e is reduced.
  • the semi-reduced sintered ore is produced.
  • the temperature of the raw material layer is reached to about 140 ° C., and the stagnation of more than 1200 ° C.
  • the direct reduction is dominant by lengthening the time, but iron ore, carbonaceous material, and auxiliary materials are charged into a sintering machine as a sintering raw material and fired, and part of the iron ore is carbonized.
  • part of iron ore and part of carbonaceous material in sintering raw material, or part of iron ore, part of carbonaceous material and part of auxiliary material in sintering raw material are compression molded.
  • the iron ore and the carbonaceous material are compacted and the contact area between them is increased. Therefore, the reduction of the sinter is promoted by charging such a compact in a sintering machine as a part of the raw material. be able to. For this reason, the reduction rate of the sinter ore and the content of metal Fe can be increased.
  • the entire manufacturing process can be performed. reducing material usage can be reduced (reducing agent ratio), it can also be reduced C 0 2 emissions from thus manufacturing process.
  • the raw material of the compression molded body is densified by pressing, the raw material exists more densely than the granulated material even when it becomes sinter. At this time, the part densified by compression molding is cut off from the outside air, and the oxidation of metallic iron generated by direct reduction is suppressed.
  • a compression-molded product obtained by compression-molding a part of iron ore and a part of carbonaceous material in the sintering raw material, or a part of the iron ore, part of the carbonaceous material and part of the auxiliary raw material in the sintering raw material
  • a high reduction rate and a high metallic iron content can be realized.
  • iron ore from the viewpoint of maintaining good reactivity, iron ore having a particle size of 8 mm or less is preferable, and the carbonaceous material is fine coke having a particle size of 5 mm or less. Pulverized coke of 3 mm or less is preferred.
  • CaO-based auxiliary materials such as limestone and quicklime are used as auxiliary materials.
  • the composition of the core portion of the granulated material (the portion excluding the coagulant described later) and the composition of the compact were as follows. Those having 0 to 20% by mass are preferred.
  • the content of the auxiliary material is preferably blended so that the basicity (C a O / S i O 2 ) of the core portion is 1 or more.
  • the content is preferably 4 to 10% by mass.
  • the core portion of the granulated material may be a single layer, for example, a two-layer structure in which an outer layer made of iron ore is formed outside an inner layer made of iron ore, auxiliary materials and carbonaceous material. Good.
  • the granulated material is formed by coating the outside of the core with a carbon material as a fuel (coagulant). Moreover, you may use the thing by which the carbon material was coat
  • the carbon material to be coated is preferably 1 to 4% by mass with respect to the total of 100% by mass of the iron ore and the auxiliary material.
  • the amount of the carbon material in the core portion is set to 10 to 20% by mass with respect to 100% by mass of the iron ore and the auxiliary raw material. In this range, the iron ore in the pseudo particles is effectively reduced. This is because an unreacted status is unlikely to remain.
  • the sintering of iron ore should be promoted appropriately by setting the amount of carbon material to be coated on the core to 1 to 4% by mass with respect to the total 100% by mass of iron ore and auxiliary materials. Can be.
  • the compression molded body refers to a briquette formed into a predetermined shape by a compression molding means in a roll forming machine, or a predetermined size after being formed into a plate, sheet, or rod by a roll forming machine. This means that the crushing strength of a single particle is 39.2 N or more.
  • the volume of the compression molded body is preferably 10 cm 3 or less. With this range, optimal air permeability can be obtained. If the size is larger than this, the air permeability tends to be excessive, and unfired portions tend to be generated. However, when the size of the compression-molded particles is smaller than 0.065 cm 3 , the particles become smaller than the surrounding granules and are assimilated with the granules during firing, and the reduction ratio is sufficiently high. Does not go up. Therefore, the volume of the compression molded body is more preferably from 0.065 to 10 cm 3 . In addition, the width of the thinnest part of the compression molded By setting it to m or less, good air permeability can be obtained.
  • the iron ore and the carbonaceous material as raw materials constituting the compression-molded body have a particle size of 125 m or less as a whole so as to be 40 mass% or more.
  • the iron ore and the carbonaceous material having a particle size of 125 ⁇ m or less as a whole with 4 O mass% or more means that the iron ore and the carbonaceous material are not individually but iron ore and the carbonaceous material as a whole. It means that the total of carbonaceous materials having a particle size of 125 ⁇ m or less is 40 mass% or more.
  • particles having a particle size of 125 / m or less be 40 mass% or more of the entire formed particles including CaO-based auxiliary raw materials. mass% or more is more preferable.
  • a downward suction type endless moving sintering machine As the sintering machine, it is preferable to use a downward suction type endless moving sintering machine as in the first and second embodiments. Specifically, pseudo particles and compression-molded bodies, which are granulated sintering raw materials, are supplied onto the endless mobile moving grate, a raw material layer is formed, and the raw material layer is provided on a moving path of the mobile grate. The raw material layer is ignited by the ignited furnace and sintering is performed. A plurality of wind boxes are arranged directly below the moving grate, and the gas above the raw material layer is sucked downward through each wind box during sintering.
  • the compression molded body 74 may be supplied from the compression molded body hopper 77 to an appropriate position of the raw material layer 72 via a shot 73 whose charging position can be adjusted.
  • Reference numeral 75 denotes bedding ore
  • 76 denotes a sintering pallet
  • 78 denotes a fixed-quantity cutting device for compression molded products
  • 80 denotes a segregation charging device.
  • the mixing ratio of the compression-molded body to the granules charged in the sintering machine that is, the mixing ratio of the compression-molded body in the raw material layer is 5 to 5 Om.as% or less. If this mixing ratio exceeds 50 mass%, that is, if the compression molded body has a higher ratio than the same ratio as the granulated material, the air permeability tends to be excessive, and an unfired portion tends to be generated. On the other hand, if it is less than 5 mass%, the effect of mixing and charging the compression molded article is small. Preferably it is 10-50 mass%. Fourth embodiment
  • the temperature of the raw material layer is brought to about 140 ° C., and Longer residence time makes direct reduction dominant, but for this purpose, iron ore, carbonaceous material and auxiliary materials are charged into a sintering machine as a sintering raw material and calcined, and part of the iron ore is
  • the semi-reduced sinter obtained by reducing carbonaceous materials, a part of the iron ore, a part of the carbonaceous material and a part of the auxiliary materials among the sintering raw materials are uniformly mixed in advance, and then compression molded.
  • the remainder of the sintering raw material is made into granules, which are mixed and fired.
  • the iron ore and the carbonaceous material are compacted, and the contact area between them is reduced. Since it becomes large, reduction of the sintered ore can be promoted by loading such a compact into a sintering machine as a part of the raw material.
  • the raw material of the compression molded body is densified by compression, the raw material exists more densely than the granulated material even when it becomes sinter. At this time, the part densified by compression molding is cut off from the outside air, and the metallic iron generated by direct reduction Oxidation is suppressed.
  • a compression-molded body obtained by compression-forming a part of iron ore, a part of carbonaceous material and a part of auxiliary material is put into a sintering machine together with a granulated material of sintering raw material, and is subjected to semi-reduction sintering.
  • the production of condensate results in a high reduction rate and a high metallic iron content.
  • iron ore having a particle size of 8 mm or less is preferably 80% or more, and carbonaceous materials having a particle size of 5 mm or less are 80% or more, and further, a particle size of 3 mm Powdered coats with at least 80% of the following are preferred:
  • the auxiliary raw material contains a CaO source, and examples of the CaO source include limestone and quicklime.
  • the compression molded body is, like the third embodiment, a prequette or a roll formed into a predetermined shape by compression molding means in a single-piece molding machine. It is formed into a plate, sheet, or rod by a machine and then crushed to a predetermined size.
  • the crushing strength of a single particle is 39.2 N or more.
  • the volume of the compression-molded particles is preferably 10 cm 3 or less from the viewpoint of obtaining optimal air permeability and reactivity. If the size of the compression-molded particles is smaller than 0.065 cm 3 , the particles may be assimilated with the granules during firing and the reduction rate may not be sufficiently increased.
  • the volume of the molded body is more preferably from 0.065 to 10 cm 3 . Furthermore, good air permeability can be obtained by setting the width of the thinnest portion of the compression molded body to 8 mm or more and 20 mm or less.
  • the iron ore and the carbonaceous material as raw materials constituting the compression-molded body should have a particle size of 125 m or less as a whole to be 40 mass% or more. Is preferred.
  • the iron ore and the carbonaceous material having a particle size of 125 zni or less as a whole having a particle size of 40 mass% or more means that the iron ore and the carbonaceous material are not individually but iron ore and the carbonaceous material. ⁇ It means that the total of carbonaceous materials having a particle size of 125 m or less is 4 O mass% or more. It is more preferably at least 70 mass%. In addition, it is preferable that particles of 125 m or less, including not only iron ore and carbonaceous materials but also CaO-based auxiliary raw materials, have particles of 25 mass% or less, and more than 70 mass%. Is more preferred.
  • the compression molded body can be molded without using a binder.
  • quick lime as the CaO source to be contained in the compression molded body
  • quick lime functions as a CaO source and also has the same function as a pinner. Molding becomes possible without using a binder. Therefore, it is possible to reduce the cost by omitting the binder usually used when forming the compression molded body.
  • the amount of the CaO source used as the auxiliary material be larger in the granulated product than in the compression molded body.
  • the compounding amount of the CaO source in the compression-molded product is 40 to 70 mass% of the compounding amount of the CaO source in the granulated product.
  • the CaO source is usually added to generate a melt necessary for sintering, but the compression-molded body of the present invention effectively causes a reduction reaction between iron ore and carbonaceous material. Therefore, the amount of the CaO source does not need to be as large as the remaining granulated material, and the amount of the CaO source blended in the remaining granulated material is 40%. 770 mass% is sufficient. Even if the amount of the CaO source in the compact is reduced, the quality of the sintered ore is appropriately maintained, the reduction rate of the compact is rather increased, and the amount of the aO source in the compact is small. As a result, costs can be reduced.
  • the amount of C a O based auxiliary raw material in the compression molded body is preferably a C a O / S i 0 2 is 1 or more such amount in the compacts except ignition loss. This ensures, C a O based auxiliary raw materials irreducible of F e as a melt tissue ⁇ or sinter as an aggregate to maintain the strength of the compression molded body 0 - generation of S i 0 2 Slag Can be effectively exhibited.
  • the composition of the core portion of the granulated product and the composition of the compression-molded body are preferably such that the carbon material as a reducing agent is 10 to 20% by mass with respect to 100% by mass of iron ore and auxiliary materials.
  • the content of the auxiliary material is preferably blended so that the basicity (CaO / Si 2 ) of the core portion is 1 or more. Specifically, the content is preferably 4 to 10% by mass.
  • the core portion of the granulated material may be a single layer or, for example, a two-layer structure in which an outer layer made of iron ore is formed outside an inner layer made of iron ore, auxiliary materials and carbonaceous material. Good.
  • the granulated material is formed by coating the outside of the core with a carbon material as a fuel (coagulant).
  • a compression-molded body having a carbon material coated on the outside may be used.
  • the carbon material to be coated is preferably 1 to 4% by mass with respect to 100% by mass of iron ore and auxiliary raw materials.
  • the reason why the amount of carbon material in the core portion is set to 100 to 20% by mass with respect to 100% by mass of iron ore auxiliary material is that iron iron ore in the pseudo-particles is within this range. This is because it can be effectively reduced and unreacted coatas are unlikely to remain.
  • the sintering of iron ore should be promoted appropriately by setting the amount of carbon material to be coated on the core to 1 to 4% by mass with respect to the total 100% by mass of iron ore and auxiliary materials. Can be.
  • the sintering machine has a downward suction endless movement. It is preferable to use a mold sintering machine. More specifically, pseudo particles and compression molded bodies, which are granulated sintering raw materials, are supplied on the endless movable movable pallet, a raw material layer is formed, and the movable grate is moved. The raw material layer is ignited by an ignition furnace provided in the passage, and sintering is performed. A plurality of wind boxes are arranged immediately below the moving grate, and the gas above the raw material layer is sucked downward through each wind box during sintering.
  • the sintering raw material may be charged into the sintering machine after the compression molded body and the granulated material are mixed, or both may be charged separately and mixed when forming the raw material layer. It may be. In the case where the distribution of the compression-molded articles is given a distribution, it is preferable that the compression-molded articles be separately charged using, for example, the above-described apparatus of FIG.
  • the compression-molded body When charging the compression-molded body into the sintering machine, it is preferable to charge the compression-molded body in a region below the lower raw material layer 34 of the sintering machine. In the region near the surface of the raw material layer, the sintering temperature is relatively low and the high-temperature holding time is short. This tendency becomes more remarkable because the air permeability is improved by loading the compression molded body into this region. As a result, the reduction reaction of the compact ends in an insufficient state compared with the lower layer of the packed bed.
  • the mixing ratio of the compression-molded body to the granules charged in the sintering machine that is, the mixing ratio of the compression-molded body in the raw material layer is 5 to 5 Orn ass% or less. If the mixing ratio exceeds 5 mass%, that is, if the compression molded body has a higher ratio than the same ratio as the granulated material, the air permeability tends to be excessive, and an unfired portion tends to be generated. On the other hand, if it is less than 5 mass%, the effect of mixing and charging the compression molded product is small. Preferably it is 10 to 50 mass%.
  • the first example corresponds to the first embodiment, and corresponds to the following comparative example 1, examples 1 to 4, comparative example 2, and examples 5 to 9.
  • the average particle diameter in the particle size 8 mm or less 2. 3 mm, S i 0 2 content of 3. 5 mass% of the fine iron ore, recycled Dust, particle size less than 3 mm of serpentinite, particle size 5 mm or less
  • the average particle diameter is an arithmetic average particle diameter on a mass basis.
  • the arithmetic average particle size D is obtained by classifying particles into a plurality of particle size ranges, d is the representative particle size (intermediate value of the range) in each particle size range, and W is the total mass of the particles in each particle size range.
  • D is obtained by classifying particles into a plurality of particle size ranges, d is the representative particle size (intermediate value of the range) in each particle size range, and W is the total mass of the particles in each particle size range.
  • the charge of the simulated particles was 45 kg. While igniting the filled material layer surface for 2 minutes with an ignition burner using propane gas as fuel while sucking the firing furnace at an exhaust pressure of 2 kPa, the exhaust pressure was raised to 10 kPa for firing. Sinter was produced. Table 2 shows the components of the sinter at this time, and Table 3 shows the results of measuring the production rate, the product yield of 5 mm or more, and the shutter strength. As shown in these figures, the production rate, the product yield of 5 mm or more, and the shutter strength were within acceptable ranges, but the obtained sintered ore did not contain metal Fe. (Example 1)
  • Fine iron ore with a particle size of 8 mm or less and an average particle size of 2.3 mm, and carbonaceous material (fine dust) of 10 mass% of the fine iron ore are humidified with a drum mixer for 3 minutes. After mixing, granulate while humidifying for 5 minutes with a disc pelletizer with a diameter of ⁇ 130 mm and a depth of 150 mm, pass through a sieve with a mesh size of 5 mm, and a diameter of 5 to 12 mm reduced iron production particles were produced. After mixing 13.5 kg of the reduced iron producing particles and 31.5 kg of pseudo particles produced under the same conditions as in Comparative Example 1 for 1 minute with a drum mixer, the diameter used in Comparative Example 1 was ⁇ 30.
  • the obtained sintered ore had a high content of metal Fe of 8.5 mAss%, a high production rate, a product yield of 5 mm or more, and good shutter strength.
  • Example 1 Compared to 13.5 kg of particles for reduced iron production produced in the same manner as in Example 1, except that the blending amount of carbon material in the particles for reduced iron production was 15 mass% based on the fine iron ore.
  • the batch type firing furnace having a diameter of 300 mm used in Comparative Example 1 was formed to have a constant layer thickness. And fired under the same conditions.
  • the components of the sintered ore at this time are shown in Table 2, and the results of measurement of the production rate, the product yield of 5 mm or more, and the shatter strength are shown in Table 3.
  • the obtained sinter had a high content of metal Fe of 15.5 m s s%, a high production rate, a product yield of 5 mm or more, and a good shutter strength.
  • the content of metal Fe was as high as 19.7 mass%, but a partial overmelting state was observed around the particles for producing reduced iron, so that the production rate was 1.4 1 t / m 2 / h.
  • the product yield was 5 mm or more, and the shirt strength was good.
  • Example 2 Compared with 13.5 kg of particles for reduced iron production produced in the same manner as in Example 1, except that the blending amount of carbon material of the particles for reduced iron production was set to 5 mass% of the fine iron ore.
  • the batch-type baking furnace having a diameter of ⁇ 300 mm used in Comparative Example 1 was mounted so as to have a constant layer thickness. And fired under the same conditions.
  • the components of the sintered ore at this time are shown in Table 2, and the results of measuring the production rate, the product yield of 5 mm or more, and the strength of the shirt are shown in Table 3.
  • the metal Fe content was 0.8 mass%, which was lower than the other examples in which metal Fe was obtained, and the effect of reducing the blast furnace reducing material ratio was smaller than in the other examples. .
  • the production rate was high, the product yield was 5 mm or more, and the shutter strength was lower than the other examples.
  • Comparative Example 1 Only the reduced iron-producing particles produced in the same manner as in Example 1 were used in Comparative Example 1, except that the amount of carbon material in the reduced iron-producing particles was set to 2 Omass% as an external number relative to the fine iron ore. It was charged into a batch-type firing furnace having a diameter of 300 mm so as to have a constant layer thickness, and fired under the same conditions. As in Comparative Example 1, the components of the sintered ore at this time are shown in Table 2, and the production rate, product yield of 5 mm or more, and shutter strength were measured. Table 3 shows the results.
  • Reduced iron was manufactured in the same manner as in Example 1 except that the composition of the particles for producing reduced iron was 6 mass% of quicklime and 15 mass% of external carbon material relative to the fine iron ore. 13.5 kg of particles for iron production and 31.5 kg of pseudo particles produced under the same conditions as in Comparative Example 1 were mixed in the same manner as in Example 1, and then the diameter used in Comparative Example 1 was ⁇ 30 Omm.
  • Example 1 the diameter used in Comparative Example 1 was ⁇ 30 Omm.
  • the components of the sintered ore at this time are shown in Table 2, and the results of measurement of the production rate, the product yield of 5 mm or more, and the shutter strength are shown in Table 3.
  • the obtained sintered ore has a high metal Fe content of 17.9 ma ss%, a production rate of 5 mm or more, and an acceptable product yield. It was good.
  • the composition of the sinter at this time is shown in Table 2, and the measurement results of production rate, product yield of 5 mni or more, and shutter strength are shown in Table 3.
  • the obtained sintered ore had a metal Fe content of 5.2 mAss%.
  • the production rate, product yield of 5 mm or more, and shutter strength all showed slightly lower values.
  • traces of excessive melting were observed in the obtained sintered ore.
  • Comparative Example 1 Reduced iron-producing particles produced by the same method as in Example 1 except that the carbon material blending amount of the reduced iron-producing particles was 5 mass% based on fine iron ore. After mixing 25.0 kg of the pseudo-particles produced under the same conditions as in Example 1 in the same manner as in Example 1, it was mounted in the batch-type calcination furnace with a diameter of 30 mm used in Comparative Example 1 so as to have a constant layer thickness. And fired under the same conditions. As in Comparative Example 1, the components of the sintered ore at this time are shown in Table 2, and the measurement results of the production rate, the product yield of 5 mm or more, and the shirt strength are shown in Table 3. As shown in these figures, the obtained sintered ore had a content of metal Fe of 2.2 mass%. The production rate, product yield of 5 mm or more, and shutter strength were also good. (Example 9)
  • Example 1 Compared with 2.4 kg of reduced iron production particles produced in the same manner as in Example 1, except that the blending amount of carbon material in the particles for reduced iron production was set to 20 mass% of the fine iron ore.
  • the batch-type firing furnace having a diameter of 30 Omm used in Comparative Example 1 was mounted so as to have a constant layer thickness. And fired under the same conditions.
  • the components of the sintered ore at this time are shown in Table 2, and the measurement results of the production rate, the product yield of 5 mm or more, and the shirt strength are shown in Table 3.
  • Example 1 Example 1 Example 1 Example 2 Example 3 Example 4 Example 2 Example 5 Example 6 Example 7 Example 8 Example 9
  • the second example corresponds to the second embodiment described above, and includes the following comparative example 11, examples 11 to: 14, comparative example 12, example 15 and comparative example 13, 14 corresponds to this.
  • the raw material to be mixed was mixed with sintering mixed material with 4.0 mass% of coke breeze, mixed for 3 minutes while humidifying with a drum mixer, and then granulated for another 3 minutes.
  • the pseudo particles were charged into a test batch type firing furnace having a diameter of ⁇ 30 Omm so as to have a constant layer thickness.
  • the loading amount of the simulated particles was 45 kg by dry weight. While igniting the filled material layer surface for 2 minutes with an ignition burner using propane gas as fuel while sucking the firing furnace at an exhaust air pressure of 2 kPa, the exhaust air pressure was raised to 10 kPa and firing and firing were performed. Consolidation was produced.
  • Table 5 shows the components of the sinter at this time
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the shutter strength. As shown in these figures, the production rate, the product yield of 10 mm or more, and the shutter strength were within an acceptable range, but the obtained sintered ore did not contain metal Fe.
  • Table 5 shows the components of the sinter at this time
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the shutter strength.
  • the obtained sintered ore had a content of metal Fe of 3.4 mass%, a good production rate, a product yield of 10 mm or more, and a good strength.
  • prequet particles were produced in the same manner as in Example 11 so that the content of the prequet particles was 10 mass% in the inside. Then, after mixing with the pseudo particles produced in Comparative Example 11, 40 kg was fired in the same manner as in Comparative Example 11 using 40 kg as a sample.
  • Table 5 shows the components of the sinter at this time
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the shirt strength. As shown in these figures, the obtained sintered ore had a content of metal Fe of 5.6 mass%, a production rate of 10 mm or more, and a good shutter strength.
  • the sintering was performed in exactly the same manner as in Example 12 except that the blending amount of the briguet particles was changed to 5 mass% by number.
  • Table 5 shows the components of this sinter
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the shutter strength.
  • the obtained sintered ore has a content of metal Fe of 3.0 mass%, a production rate, a product yield of 10 mm or more, and good strength.
  • Example 11 Except that the size of the briquette particles was set to 19 mm X 14 mm X 8 mm, a prequette was manufactured in the same manner as in Example 11 and the number of the prequette particles was 3 After mixing with the pseudo particles manufactured in Comparative Example 11 so as to be Omass%, the mixture was fired in the same manner as in Example 11.
  • Table 5 shows the components of the sintered ore at this time.
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the strength of the shirt. As shown in these figures, the obtained sintered ore had a metal Fe content of 10.2 mass%, a good production rate, a product yield of 10 mm or more, and good shutter strength.
  • prequette particles were produced in the same manner as in Example 12, mixed with pseudo particles, and fired in the same manner as in Example 12.
  • Table 5 shows the components of the sinter at this time.
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the shutter strength. In this case, the briguet melted to a considerable extent, but the metal Fe content was 2.1 m s s%.
  • Example 11 was carried out in the same manner as in Example 11 except that powdered iron ore was mixed with a raw material obtained by mixing quicklime as a binder and a CaO source with 6. Prequet particles were manufactured, and the prequet particles were mixed with the pseudo particles manufactured in Comparative Example 11 so that the content of the precket particles became 1 Omass%, and then fired in the same manner as in Comparative Example 11 using 40 kg as a sample. did.
  • Table 5 shows the components of the sinter at this time
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the strength of the shirt.
  • the obtained sintered ore had a content of metal Fe of 7.3 mAss%, a production rate, a product yield of 10 mm or more, and a good shutter strength.
  • Example 11 Preket particles were manufactured in the same manner as in Example 1, and the preket particles were mixed with the pseudo particles manufactured in Comparative Example 11 so that the number of the preket particles became 1 Omass%. It was fired in the same manner as 11.
  • Table 5 shows the components of the sinter at this time.
  • Table 6 shows the results of measuring the production rate, the product yield of 5 mm or more, and the strength of the shirt. As shown in these figures, the obtained sintered ore had a metal Fe content of 4.8 mass%, a production rate, a product yield of 10 mm or more, and a shutter strength within acceptable values. .
  • Example 11 Except that the prequette particles were spherical with a diameter of 5 mm, a prequette was manufactured in the same manner as in Example 11, and the pseudo particles manufactured in Comparative Example 11 so that the number of the prequette particles was 5 Omass% by number. Then, the mixture was sintered in the same manner as in Example 11. Table 5 shows the components of the sinter at this time, and Table 6 shows the measurement results of the production rate, the product yield of 5 mm or more, and the shutter strength. As shown in these figures, the obtained sintered ore has a metal Fe content of 3.8 mass%, and the sintered ore after sintering is considered to have been formed by excessive melting of prequette. Holes were also seen.
  • Example 11 Example 11 Example 12 Example 13 Example 14 Example 15 Example 16 Example 17 Example 18 Production rate
  • the third example corresponds to the third embodiment described above.
  • pellet feed is used as iron ore
  • limestone and quicklime are used as CaO-based auxiliary raw materials
  • coke breeze is used as carbonaceous material.
  • Table 7 shows their compositions.
  • Granules and compression molded articles were prepared using the above-mentioned sintering raw materials.
  • Tables 8 and 9 show the raw material composition of the core portion of the granulated product and the raw material composition of the compression molded product, respectively.
  • the granulated product the one shown in Table 8 was used, which was coated with coke breeze as a coagulant so as to be 3 mass% of the raw material as a coagulant.
  • the compression molded body those having the dimensions and volumes shown in Tables A, B, and C were used.
  • a sinter pot test was performed using these granulated and pressed compacts.
  • the pretreatment of the raw materials was performed under the same mixing and granulation conditions, the raw material packed bed was set to a diameter of 270 mm and a height of 300 mm, and the suction negative pressure was set at 6 kPa. . Table 11 shows the results.
  • Comparative Example 21 in Table 11 is a case where a sintered ore was manufactured using only the granulated material without using a compression molded body.
  • Example 21 33 mass% of the compression-molded body shown in A of Table 10 was added to the sintering raw material mixture of Comparative Example 21 as a raw material to be charged into a sintering machine. This is the case where the whole is charged and fired.
  • the production rate and the product yield are the same as in Comparative Example 21 and the reduction rate of the granulated material is 40%, which is equivalent to that of Comparative Example 21.However, the reduction rate of the compression molded part is 60%.
  • the reduction rate of the entire sinter was 46.6%, significantly higher than the standard 1.
  • Example 22 is different from Example 21 in that the compression-molded body was charged into the lower part / of the sintering material packed layer and fired.
  • the production rate and product yield are equivalent to Comparative Example 21 and Example 21, and the reduction rate of the granulated material is 40%, which is equivalent to Comparative Example 21 and Example 21.
  • the reduction ratio of the compression molded part was as high as 67%, and the reduction ratio of the entire sinter was 49%, which was significantly higher than that of Comparative Example 21.
  • Example 23 is a case where the size of the compression-molded body was enlarged to that of Example 22 to be B in Table 10.
  • Example 24 is different from Example 23 in that the compression-molded body was charged into the lower half in the sintering material packed layer and fired.
  • the production rate and product yield are the same as in Comparative Example 21 and the reduction rate of the granulated material is 40%, which is equivalent to that of Comparative Example 21.However, the reduction rate of the compressed molded product is 69%.
  • the reduction rate of the entire sinter was 49.6%, which was significantly higher than that of Comparative Example 21.
  • Example 25 is a case where the compression-molded body was added to Example 23 as a raw material to be charged into a sintering machine at 5 O s s% and fired.
  • the production rate and product yield are the same as in Comparative Example 21 and the reduction rate of the granulated material is 40%, which is equivalent to that of Comparative Example 21, but the reduction rate of the compression molded part is as high as 60%.
  • the reduction ratio of the entire sintered ore was 50%, which was significantly higher than that of Comparative Example 21.
  • Example 26 with respect to Example 2 3 is the case where the content of the compression molded body was sintered by changing the 4m a ss% of the total sintering machine instrumentation Nyuhara fee.
  • the production rate and product yield were the same as in Comparative Example 21.
  • the reduction rate of the entire sintered ore was 41%, lower than that of Example 23, but slightly higher than that of Comparative Example 21.
  • Example 27 is different from Example 23 in that the content of the compression-molded body was changed to 55 mass% of the entire raw material charged into the sintering machine.
  • the product yield was equivalent to Comparative Example 21 and the production rate was higher than Comparative Example 21.
  • the air permeability was too high, and the reduction rate of the compression-molded body was reduced.
  • the reduction rate of the entire sintered ore was 46%, which was higher than Comparative Example 21 but lower than that of Example 23.
  • Example 28 is different from Example 23 in that the size of the compression-molded body was reduced and This is the case.
  • the production rate and product yield were equivalent to those of Comparative Example 21.
  • the firing tended to be unstable, and the reduction ratio of the entire sinter was 44%, which was higher than Comparative Example 21 but lower than Example 23.
  • the production rate and product yield were the same as in Comparative Example 21.
  • C a O Bruno S i 0 2 is low, and decreases the reduction ratio of the compression molded body is reduced rate of the entire sinter 4 3% and slightly lower than high but Example 2 3 than the reference 1 Value.
  • the fourth example corresponds to the fourth embodiment described above.
  • pellet feed is used as the iron ore
  • limestone and quick lime are used as the CaO-based auxiliary material
  • powdered coal is used as the carbonaceous material.
  • Table 12 shows the raw material composition of the core part of the granulated material and the raw material composition of the compression molded body.
  • a coagulated powder coke was used as a coagulant outside the core portion shown in Table 2 so as to be 3 mass% of the charged raw material.
  • the compression molded body one having the dimensions and volume as shown in Table 14 was used.
  • a sinter pot test was performed using these granules and the compact.
  • the pretreatment of the raw materials was performed under the same mixing and granulation conditions, the raw material packed bed was set at a diameter of 270 tnm and a height of 300 mm, and a suction negative pressure of 6 kPa was used. did.
  • Table 15 shows the composition and properties of the compacts, and Table 16 shows the test results.
  • Examples 31 and 32 in Tables 15 and 16 show that the compression molded body was added as 33 mass% as a raw material for a sintering machine, and Example 31 was used as a CaO source.
  • Example 32 uses limestone and quick lime.
  • the value of Fe / CaO of the compression-molded product was the same as the value of the granulated product, and starch was added as binder at 1.4 mAss%. j3 ⁇ 4
  • the crushing strength and the drop strength of the compact were higher in Example 32 than in Example 3.1, and the results of the baking test performed by mixing with the granulated product showed that the production rate, product yield, And the reduction ratio was the same between Example 31 and Example 32.
  • Example 33 is different from Example 31 in that, instead of starch as a binder and limestone as a CaO source, quicklime having a binder effect was blended. Is a case where starch as a binder is not added, and is within the scope of the present invention. Crushing strength and drop strength of compression molded products was lower than that of Example 32, but equivalent to that of Example 31. In addition, as a result of performing a sintering test by mixing with the granulated product, the production rate and the product yield are equivalent to those in Example 31 and the reduction rate is slightly lower than that in Example 31 and there is no problem. Level.
  • Example 34 is a case where a fine raw material was used as a compounding raw material with respect to Example 31.
  • Example 31 In the raw material after mixing, the ratio of the particle size was 125 ⁇ or less, which was the same as that of Example 31. The mass was 75 mass% with respect to 55 mass%, and the crushing strength and the drop strength of the product were lower than those in Example 31. However, there was no problem in handling. In addition, according to the results of a sintering test conducted after mixing with the granulated product, the production rate and the product yield were the same as those in Example 31.However, the reduction rate of the compression molded part was 68%. Example 31 It was improved from 60% of 1.
  • Example 35 is a composition in which CaO was reduced with respect to Example 31, and Fe / CaO was 0.7 with respect to Example 31, which was within the scope of the present invention. is there. According to the result of performing a firing test by mixing with the granulated product, the production rate and the product yield were the same as those in Example 31.However, the reduction rate of the compression molded part was 65%. More than 60%.
  • Example 36 is a composition in which CaO was reduced compared to Example 31, and FeZCaO was 0.4 with respect to the standard 1, which is within the scope of the present invention. According to the results of the sintering test performed by mixing with the granulated product, the production rate and the product yield were the same as those in Example 31.However, the reduction rate of the compression molded part was 63%. It improved more than 60% of 1.
  • Example 37 is a composition in which CaO was reduced with respect to Example 32, and Fe / CaO was 0.7 with respect to Example 32, which is within the scope of the present invention. .
  • the production rate and the product yield were the same as in Example 32, but the reduction rate of the compression molded part was 68%. Of 62%.
  • Example 38 is a composition in which C a O was reduced compared to Example 32, and Fe / C a O is 0.4 with respect to Example 32, which is within the scope of the present invention.
  • the production rate and the product yield were the same as in Example 32, but the reduction rate of the compression molded part was 65%. Of 62%.
  • Example 39 is a case where iron ore powder having a diameter of 3 mm or less was used as a raw material of a compression-molded body instead of the pellet feed of Examples 31 and 32.
  • the production rate and product yield were almost the same as in Examples 31 and 32, but the reduction rate of the compression molded part was 48%, which was lower than Examples 31 and 32.
  • Example 40 is different from Example 39 in that iron ore powder was pulverized before mixing to 1 mm or less, and the ratio of 125 ⁇ m or less in the whole mixed raw material was 40 mass%, and Within the range. According to the results of the sintering test performed by mixing with the granulated product, the production rate and the product yield were the same as those in Example 39, but the reduction rate of the compression molded part was 56%. 9 improved from 48%.
  • Example 41 is a case where iron ore powder was pulverized before mixing to 1 mm or less with respect to Example 39, and the proportion of 125 ⁇ m or less in the whole mixed raw material was 58 mass%. It is within the scope of the invention. According to the results of the sintering test performed by mixing with the granulated product, the production rate and the product yield were the same as in Example 39, but the reduction rate of the compression-molded body was 62%. It improved from 9.48% of 9.
  • Example 4 2 is obtained by changing the C a OZS i 0 2 compression molding body portion of Example 34 in 1 .. 1.
  • the production rate and the product yield were the same as in Example 34, but the reduction rate of the compression molded part was 55%, which was lower than Example 34.
  • Table 1 2
  • Particle size after mixing is less than 125 jum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

焼結原料として鉄鉱石と炭材とCaO系副原料とが使用される。焼結原料は焼結機に装入され、原料層を構成する。少なくとも鉄鉱石と炭材とを成形してなる複数の還元鉄製造用粒子が前記原料層の一部を構成する。この原料層は焼成され、且つ、鉄鉱石の一部が還元され、半還元焼結鉱が製造される。半還元焼結鉱焼は、金属Feを含有する。

Description

明細書 半還元焼結鉱およびその製造方法 技術分野
本発明は、 鉄鉱石、 炭材、 C a O系副原料等の原料を焼結してなり、 高炉 原料等として使用される半還元焼結鉱およびその製造方法に関する。 背景技術
高炉製銑法の主原料である焼結鉱は、 一般的には、 以下のようにして製造 される。 まず、 約 8mm以下で、 平均径 2. 0〜3. Ommの粉鉄鉱石に、 石灰石、 生石灰、 ドロマイ ト等の C a Oを含んだ C a O系副原料 (石灰系副 原料とも称する) や、 硅石、 ニッケルスラグ等の含 S i O2原料、 製鉄所内 で発生し回収された粉状リサイクル物、 粒度が小さく再焼成を要する 3〜5 mmより小さい焼結粉、 およぴコータス粉、 無煙炭などの炭材を加え、 さら に適量の水を加えて調湿し、 これらを混合 ·造粒して平均径が 3. 0〜5. Ommの擬似粒子とする。 次いで、 この擬似粒子を無端移動式焼結機のパレ ット上に 400〜6 0 Omm程度の高さに充填し、 充填べッドの表層の炭材 に点火し、 下方に向けて空気を吸引しながら炭材を燃焼させて、 その際の燃 焼熱によって原料である擬似粒子を焼結する。 焼結によって得られた焼結ケ —キを破砕 ·整粒して 3ないし 5 mm以上の塊成鉱とし、 これを成品焼結鉱 とする。
このような焼結鉱は高炉に装入され、 主に COによりガス還元されて銑鉄 となる。
通常、 高炉製銑法は、 COガスによる間接還元を主に利用するため、 ガス 還元平衡の制約を受け、 多くの還元材を必要とすること、 また、 高炉内通気 性の確保の面から強度の高い高品質の塊コ一タスが必要とされる。 これに対 して、 近年、 C〇2排出抑制による地球温暖化対策および老朽化が進んでい るコータス炉の炉命延長の観点から、 製銑プロセスとして炭素 (以下、 じと 記す) による酸化鉄の直接還元を主に利用するプロセスが開発され実用化さ れ始めている。 この場合は、 ガス還元平衡の制約を受けることがなくなるた め、 還元材の原単位を削減することができ、 co2排出抑制おょぴコークス 炉稼働率の低下を可能とする。
直接還元を利用する還元鉄製造方法としては、 例えば溶融還元法、 .回転炉 床法、 およびロータリーキルン法が挙げられるが、 いずれの方法も大規模な 設備投資をともなうこと、 生産性が著しく低い等の理由から、 高炉法の補完 プロセスとなっているのが現状である。
一方で、 既存焼結機を利用し、 焼結機上で塊成化と同時に還元反応も行わ せ、 金属 F eまで還元された組織を一部含む焼結鉱を製造する方法が提案さ れている。
例えば、 特許文献 1では、 粉鉱石に 5〜 20 w t %の粉コークス、 無煙炭 を配合造粒して内層とし、 外層に粉鉱石、 副原料および 2〜 5 w t %の粉コ —タス、 無煙炭を混合コーティングして 2層擬似粒を形成し、 これを焼結原 料の一部として混合 ·造粒した後、 焼結過程でその原料の外層から生成する 融液と内層の粉コークス ·無煙炭中の直接還元により、 焼結鉱の一部を還元 することを特徴とする半還元焼結鉱の製造方法が開示されている。 この技術 では、 内部に粉コークス ·無煙炭を閉じこめると、 焼結工程において昇温過 程前半では粉コークス ·無煙炭が空気中の酸素と接触しないので反応せず、 1 1 00°Cの高温になって初めて F e O + C = F e +CO- 36350 k c a 1 /kmo 1の還元反応を起こし、 焼結鉱の一部に金属 F eを生成させる 。 そして、 この反応は吸熱反応であるので、 熱過剰になるのを防ぐことがで きるとしている。 また、 特許文献 2によれば、 鉄鉱石に炭材を 1 5〜 1 8 %加えて造粒した 擬似粒子の表層部に C a Oを被覆して、 あるいは造粒した擬似粒子を C a O が溶解された溶液に浸漬して擬似粒子表面に C a Oを添加することで、 焼成 後の再酸化が防止され、 還元率の高い半還元焼結鉱を製造することができる としている。
このような既存焼結機において粉鉄鉱石に対して還元に必要な炭材を加え 、 直接還元反応を利用して半還元焼結鉱を製造する方法は、 新規の大規模な 設備投資を伴うことなく大量に半還元焼結鉱を製造す.る方法として実現可能 性の高い方法である。 そして、 このように既存焼結機で得られる半還元焼結 鉱は、 焼結鉱に含まれる金属 F eの比率が低くても、 大量に高炉で使用する ものであり、 かつ還元鉱製造に使われる炭材は Cをある程度含有していれば 品質に対しての制約が殆どなく、 集塵ダスト等も利用できるため、 高炉還元 材比削減ゃコークス炉への負荷軽減といったトータルでの効果は大きい。
しかしながら、 上記特許文献 1および 2に示された技術では、 通常焼結鉱 プロセスの 2〜 4倍程度の炭材を燃焼させることが必要となるため、 上記還 元反応が吸熱反応であっても熱過剰になりやすく、 原料の粉鉱石が F e 2 0 3 F e 3 0 4から高温で F e Oに還元された段階で、 鉱石中の脈石や添加し たフラックスと反応して大量の融液を発生させる。 この融液は、 副原料とし て添加される C a O系副原料と鉱石との反応により発生するカルシウムフエ ライ ト融液および還元により生成した F e Oと鉱石中の脈石 S i 0 2との反 応によって発生するオリビン系融液である。 このようにして大量に発生した 融液は、 その周囲の粒子同士を急速に融着させると同時に、 擬似粒子の外部 から内部に向かって溶融を進行させる。 原料充填層である焼結べッド内には 擬似粒子の溶融 ·収縮によって巨大な空隙が形成され、 焼結機における吸引 ガスは、 その部分のみを通過するようになる。 その結果として、 通常 4 0 0 〜6 0 0 m mある原料充填層の上層から下層に徐々に燃焼帯が移動すべき焼 結反応は妨げられ、 焼結ベッドの下層部に未焼部が大量に残り、 還元反応の 進行が阻止されるとともに生産性が極度に低下するといつた問題がある。
このため、 既存の焼結機を用いて高炉の主原料として少なくとも日産数千 トンの規模で大量に一部が還元された焼結鉱を製造するには問題がある。
特許文献 1 :特開平 4一 2 1 0 4 3 2号公報
特許文献 2 :特開 2 0 0 0— 1 9 2 1 5 4号公報 発明の開示
本発明はかかる事情に鑑みてなされたものであって、 現状の焼結機の操業 を悪化させることなく製造可能な、 鉄鉱石の一部が還元され、 かつ金属 F e を含有した半還元焼結鉱を提供することを目的とする。
また、 現状の焼結機の操業を悪化させることなく直接還元を進行させて、 鉄鉱石の一部が還元され、 かつ金属 F eを含有した半還元焼結鉱を大量に製 造することができる半還元焼結鉱の製造方法を提供することを目的とする。
さらに、 焼結過程での反応を安定化し、 高い還元率および高い金属鉄含有 率を達成することができる半還元焼結鉱の製造方法を提供することを目的と する。 上記課題を解決するため、 本発明は、 第 1に、 焼結原料として鉄鉱石と炭 材と C a O系副原料とを用い、 焼結原料を焼結機に装入して原料層を構成し 、 この原料層を焼成してなり、 鉄鉱石の一部が還元された半還元焼結鉱であ つて、 少なくとも鉄鉱石と炭材とを成形してなる複数の還元鉄製造用粒子が 前記原料層の一部を構成し、 焼成により鉄鉱石の一部が還元され、 かつ金属 F eを含有することを特徴とする半還元焼結鉱を提供する。
上記本発明の第 1において、 前記還元鉄製造用粒子は、 前記原料層の 5〜 5 O m a s s %であることが好ましい。 また、 前記還元鉄製造用粒子の 1個 あたりの容積が 1 0 c m 3以下であることが好ましい。 本発明は、 第 2に、 焼結原料として鉄鉱石と炭材と C a O系副原料とを用 い、 焼結原料を焼結機に装入して原料層を構成し、 この原料層を焼成して鉄 鉱石の一部が還元された半還元焼結鉱を製造する方法であって、 鉄鉱石と鉄 鉱石に対して外数で 5 m a s s %以上の炭材とを成形してなる複数の還元鉄 製造用粒子を前記原料層にその一部として混合して焼成することにより鉄鉱 石の一部を還元し、 金属 F eを含有する半還元焼結鉱とすることを特徴とす る半還元焼結鉱の製造方法を提供する。 本発明は、 第 3に、 焼結原料として鉄鉱石と炭材と C a O系副原料とを用 い、 焼結原料を焼結機に装入して原料層を構成し、 この原料層を焼成して半 還元焼結鉱を製造する半還元焼結鉱の製造方法であって、 鉄鉱石に C a O系 副原料を加えた混合粉と混合粉に対して外数で 1 0〜 2 O m a s s %の炭材 とを成形して複数の還元鉄製造用粒子とし、 その際に前記 C a O系副原料は 、 還元鉄製造用粒子の灼熱減量を除いた成分で C a O / S i〇2の質量比が
1以上となるように配合し、 これら還元鉄製造用粒子を、 前記原料層にその 一部として混合して焼成することにより鉄鉱石の一部を還元し、 金属 F eを 含有する半還元焼結鉱とすることを特徴とする半還元焼結鉱の製造方法を提 供する。
上記本発明の第 2、 第 3において、 前記還元鉄製造用粒子としては、 原料 をロール成形機により圧縮成形したもの、 または原料を転動造粒したものを 用いることができる。 本発明は、 第 4に、 焼結原料として鉄鉱石と炭材と C a O系副原料とを用 い、 焼結原料を焼結機に装入して原料層を構成し、 この原料層を焼成して鉄 鉱石の一部が還元された半還元焼結鉱を製造する方法であって、 鉄鉱石と鉄 鉱石に対して外数で 1 0〜2 Oma s s %の炭材とを配合し、 さらに水と必 要に応じてバインダ一を加えて混合し、 この混合物をロール成形機で圧縮成 形して成形粒子とし、 この成形粒子を内数で 5〜 5 0 m a s s %配合したも のを焼結原料として用い、 焼成により鉄鉱石の一部を還元して、 焼結鉱全体 の平均値として、 3 ma s s %以上の金属 F eを含有させることを特徴とす る半還元焼結鉱の製造方法を提供する。
上記本発明の第 4において、 成形粒子を製造する原料が、 鉄鉱石で 8 mm 以下、 炭材で 5mm以下であることが好ましい。 この場合に、 前記成形粒子 を製造するための原料は 1 2 5 /i m以下の粒子を 4 Oma s s %以上含むこ とが好ましい。 本発明は第 5に焼結原料として鉄鉱石と炭材と C a O系副原料とを用い、 焼結原料を焼結機に装入して原料層を構成し、 この原料層を焼成して鉄鉱石 の一部が還元された半還元焼結鉱を製造する方法であって、 鉄鉱石に C a O 系副原料を加えた混合粉と混合粉に対して外数で 1 0〜 2 Oma s s %炭材 とを配合し、 さらに水と必要に応じてバインダーを加えて混合し、 この混合 物をロール成形機で圧縮成形して成形粒子とし、 その際に前記 C a O系副原 料は、 成形粒子の灼熱減量を除いた成分で C a O/S i 02が 1以上となる ように配合し、 この成形粒子を内数で 5〜 5 Oma s s %配合したものを焼 結原料として用い、 焼成により鉄鉱石の一部を還元して、 焼結鉱全体の平均 値として、 3ma s s %以上の金属 F eを含有させることを特徴とする半還 元焼結鉱の製造方法を提供する。
上記本発明の第 5において、 成形粒子を製造するための原料が、 鉄鉱石で 8 mm以下、 炭材で 5 mm以下、 C a O系副原料で 5 mm以下であることが 好ましい。 この場合に、 前記成形粒子を製造するための原料は 1 2 5 m以 下の粒子を 4 O m a s s %以上含むことが好ましい。
上記本発明の第 4、 第 5において、 前記口一ル成形機での圧縮成形した成 形粒子として、 ロール成形機で所定形状に成形された複数のプリケット、 ま たはロール成形機で板状、 シ一ト状もしくは棒状に成形した後に所定の大き さに粉砕したものを用いることができる。 また、 前記成形粒子の 1個あたり の容積が 1 0 c m 3以下で.あることが好ましい。 本発明は、 第 6に、 焼結原料として鉄鉱石と炭材と副原料とを焼結機に装 入して焼成し、 鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造 するにあたり、 焼結原料のうち鉄鉱石の一部およぴ炭材の一部、 または焼結 原料のうち鉄鉱石の一部、 炭材の一部および副原料の一部を予め圧縮成形し て圧縮成形体とし、 焼結原料の残部を造粒物とし、 これらを混合して焼成す ることを特徴とする半還元焼結鉱の製造方法を提供する。
上記本発明の第 6において、 前記圧縮成形体は、 体積が 1 0 c m 3以下で あることが好ましい。 また、 前記圧縮成形体を焼結機に装入するに際し、 原 料層下部 3 4以下の領域に装入することが好ましい。 さらに、 前記圧縮成 形体の混合割合を 5 0 m a s s %以下とすることが好ましい。 本発明は、 第 7に、 鉄鉱石と炭材と副原料とを焼結原料として使用し、 焼 結原料のうち鉄鉱石の一部、 炭材の一部および副原料の一部を予め均一に混 合後、 圧縮成形して圧縮成形体とし、 焼結原料の残部を造粒物とし、 これら を混合して焼成することにより鉄鉱石の一部を炭材により還元してなる半還 元焼結鉱を製造するにあたり、 圧縮成形体を構成する原料としての鉄鉱石と 炭材が、 これら全体として 1 2 5 m以下の粒径のものが 4 0 m a s s %以 上となるようにすることを特徴とする半還元焼結鉱の製造方法を提供する。 上記本発明の第 7において、 前記圧縮成形体を構成する原料としての鉄鉱 石と炭材が、 これら全体として 1 2 5 m以下の粒径のものが 7 O m a s s %以上となるようにすることが好ましい。 本発明は、 第 8に、 鉄鉱石と炭材と副原料とを焼結原料として使用し、 焼 結原料のうち鉄鉱石の一部、 炭材の一部および副原料の一部を予め均一に混 合後、 圧縮成形して圧縮成形体とし、 焼結原料の残部を造粒物とし、 これら を混合して焼成することにより鉄鉱石の一部を炭材により還元してなる半還 元焼結鉱を製造するにあたり、 前記副原料を C a O源を含有するものとし、 C a O源のうち一部または全部として生石灰を用い、 前記圧縮 形体は生石 灰を含有するとともにバインダーを使用せずに成形されることを特徴とする 半還元焼結鉱の製造方法を提供する。 本発明は、 第 9に、 鉄鉱石と炭材と副原料とを焼結原料として使用し、 焼 結原料のうち鉄鉱石の一部、 炭材の一部および副原料の一部を予め均一に混 合後、 圧縮成形して圧縮成形体とし、 焼結原料の残部を造粒物とし、 これら を混合して焼成することにより鉄鉱石の一部を炭材により還元してなる半還 元焼結鉱を製造するにあたり、 前記副原料を C a O源を含有するものとし、 前記圧縮成形体中の C a O源の配合量を、 圧縮成形体中の C a O / S i 0 2 が 1以上になるような配合量とすることを特徴とする半還元焼結鉱の製造方 法を提供する。 なお、 本発明において、 バインダーとは、 鉄鉱石粒子を結合させる機能を 有するものをいい、 例えばデンプン、 タール、 糖蜜等が挙げられるが、 上記 機能を有すれば原則として特に限定されるものではない。 ただし、 C a O系 副原料は鉄鉱石粒子を結合させる機能を有するものの本発明の趣旨より本発 明でいうバインダーには含まれない。 上記本発明の第 1〜第 5によれば、 鉄鉱石および炭材等を成形して還元鉄 製造用粒子または成形粒子とし、 これを原料層の一部として装入するので、 鉄鉱石と炭材との接触が強固で接触面積が大きく、 かつ直接還元反応が部分 的にのみ生じるため大量の融液を発生させるおそれが少なく、 また、 還元鉄 製造用粒子は鉄鉱石および炭材が強固に密着しており、 金属 F eの酸化が抑 制されて高い金属 F e含有率を得ることができる。 このため、 現状の焼結機 の操業を悪化させることなく直接還元を進行させて、 鉄鉱石の一部が還元さ れ、 かつ金属 F eを含有した半還元焼結鉱を大量に製造することができる。 したがって、 この半還元焼結鉱を高炉で使用することにより、 製銑プロセス 全体としての還元材使用量を削減することができ、 ひいてば製銑プロセスか らの C O 2排出量も削減することができる。
特に、 本発明の第 4、 第 5のように、 鉄鉱石および炭材等をロール成形機 で圧縮成形して成形粒子としてこれを焼結原料の一部として焼結機に装入し 、 さらに条件を限定することにより、 鉄鉱石と炭材との接触がより強固で接 触面積を大きくでき、 焼結がより適正化されるので、 上記効果をより高める. ことができる。
また、 本発明の第 6〜 9によれば、 焼結原料のうち鉄鉱石の一部および炭 材の一部、 または焼結原料のうち鉄鉱石の一部、 炭材の一部および副原料の 一部を予め圧縮成形して圧縮成形体とじて焼結機に装入するので、 鉄鉱石と 炭材との接触面積が増加して焼結過程での反応が安定化するとともに還元率 を上昇させることができ、 しかも圧縮成形体は緻密化しているので外気と遮 断され、 金属鉄の酸化が抑制されて高い金属鉄含有率を得ることができる。 そして、 本発明の第 7のように、 鉄鉱石およぴ炭材の粒度をこれら全体と して 1 2 5 μ m以下の粒径のものが 4 O m a s s %以上と微細にすることに より、 より高い還元率を得ることができる。 さらに、 本発明の第 8のように 、 圧縮成形体に含有させる C a O源として生石灰を用いることにより、 C a o源とバインダ一の機能を兼備することとなり、 圧縮成形体の製造時にパイ ンダーを使用せずに成形可能となるため、 低コスト化を図ることができる。 さらにまた、 本発明の第 9のように、 圧縮成形体の C a O源の配合量を灼熱 減量を除く圧縮成形体中の C a O / S i 0 2が 1以上になるような配合量と することにより、 C a O系副原料は圧縮成形体の強度を維持するための骨材 としての機能あるいは焼結鉱の溶融組織として難還元性の F e 0 - S i 0 2 系スラグの生成を防止する機能を有効に発揮させることができる。 さらに、 これらを適宜組み合わせることにより、 これらの効果を複合した効果を発揮 させることができる。 図面の簡単な説明
図 1は、 焼結鉱の還元率と高炉還元材比との関係を示す図である。
図 2は、 焼結鉱の高炉装入時の平均還元率と製銑工程からの C排出量と の関係を、 均一に部分還元した焼結鉱と金属 F eが優先的に発生した焼結鉱 とで比較して示す図である。
図 3は、 焼結の際の還元率と焼結後の金属鉄の含有率の関係を、 転動造 粒による擬似粒子の場合とプリケット粒子の場合とで比較して示す図である 図 4は、 本発明の第 1の実施形態に係る半還元焼結鉱の製造方法を実施 するための設備の一例を示す模式図である。
図 5は、 本発明の第 1の実施形態に係る半還元焼結鉱の製造方法におけ る原料層の構造を示す模式図である。
図 6は、 本発明の第 2の実施形態に係る半還元焼結鉱の製造方法におけ る焼結中の成形粒子の状態を説明するための模式図である。
図 7は、 成形粒子の成形圧力と落下試験後の + 5 m mの歩留りとの関係 を示す図である。 図 8は、 本発明の第 2の実施形態に係る半還元焼結鉱の製造方法を実施 するための設備の一例を示す模式図である。
図 9は、 本発明の第 2の実施形態に係る半還元焼結鉱の製造方法におけ る原料層の構造を示す模式図である。
図 1 0は、 本発明の第 3の実施形態に係る半還元焼結鉱の製造方法にお ける焼結原料の装入方法の一例を説明するための図である。
発明を実施するための形態
以下、 本発明について詳細に説明する。 第 1の実施形態
本実施形態では、 基本的に、 焼結原料として鉄鉱石と炭材と C a O系副原 料とを用い、 これを焼結機に装入して原料層を構成し、 焼成して半還元焼結 鉱を製造する。
この際に、 ] ^料層の一部として、 鉄鉱石と鉄鉱石に対して外数で通常 5 m a s s %以上、 好ましくは 1 0〜 2 0 m a s s %以上の炭材とを成形してな る複数の還元鉄製造用粒子を装入する。 この状態の原料層を焼結機で焼成す ることにより、 鉄鉱石の一部が主に直接還元により還元され、 金属 F eを含 有した半還元焼結鉱が得られる。
このような構成は、 本発明者らの以下の知見に基づいている。
( 1 ) Cによる鉄鉱石の直接還元反応を効果的に進行させるためのボイン トは、 C源である炭材と被還元物質である鉄鉱石との接触状態であり、 これ らが強固に接触し、 かつ接触面積が大きいことが重要であること。
( 2 ) このような成形粒子は還元反応を進めるための炭材が多量に存在し ており過剰に溶融するおそれがあるが、 その部分が過剰に溶融しても成形粒 子は焼結原料の一部であるから、 大量の融液を発生させるおそれは少なく、 焼結べッド全体の通気へは実質的に影響を与えずに、 焼結鉱の生産性はほと んど低下しないこと。
( 3 ) 還元された粒子は、 吸引ガス中の酸素により再酸化されるおそれが あるが、 鉄鉱石および炭材等を成形した粒子は、 これらが強固に密着してい るため、 還元後もその形態を保ち、 表面は酸化されても内部は酸化され難く 、 良好な還元状態を保っていること。 以下、 具体的に説明する。
鉄鉱石の還元反応は、 高炉内と同様に、 (1) 式で示されるコ一クス等の 炭材中の炭素との反応 (直接還元) と、 (2) 式で示される COガスとの反 応 (間接還元) により進行する。 間接還元で発生した co2ガスはソリュー シヨン · ロス反応と呼ばれる (3) 式で示される反応により COガスとなる
F e 203+ 3/2 C= 2 F e + 3 /2 C02 (1)
F e 203+ 3 CO= 2 F e + 3 C02 (2)
C O 2 + C = 2 CO (3) これらの還元反応は、 温度が 900〜1 1 00°Cでは間接還元が支配的で あり、 1 200°C以上では直接還元が支配的である。 本発明では半還元焼結 鉱の製造に際し、 原料層温度を 1400°C程度に到達させ、 1 200°C以上 の滞留時間を長く して直接還元を進行させることを指向する。
この場合に、 還元鉄製造用粒子は、 被還元物質である鉄鉱石と還元剤であ る炭材とが強固に接触し、 かつ接触面積が大きいので、 還元鉄製造用粒子に おいて鉄鉱石の直接還元反応を効果的に進行させることができる。 また、 還 元鉄製造用粒子は原料層の一部として装入するので、 上記反応は局部的に生 じ、 過剰に溶融するのは還元鉄製造用粒子の部分のみであり大量の融液を発 生させるおそれが少ない。 さらに、 還元鉄製造用粒子は鉄鉱石および炭材と が強固に密着しており、 還元後もその形態を保っているため、 吸引ガス中の 酸素によっても内部の再酸化が妨げられ、 良好な還元状態を保っている。 こ のため、 現状の焼結機の操業を悪化させることなく直接還元を進行させるこ とができ、 鉄鉱石の一部が還元され、 金属 F eを含有した半還元焼結鉱を大 量に製造することができる。
このような鉄鉱石の一部が還元され、 かつ金属 F eを含有した半還元焼結 鉱を高炉で使用することにより、 製銑プロセス全体としての還元材使用量 ( 還元材比) を削減することができ、 ひいては製銑プロセスからの co2排出 量も削減することができる。 特に、 金属 F eを優先的に析出させることによ り、 製銑プロセスからの CO 2排出量削減効果を大きくすることができる。 この点について、 さらに詳細に説明する。
図 1は、 横軸に焼結鉱の還元率をとり、 縦軸に高炉還元材比をとつて、 こ れらの関係を示す図であり、 微粉炭吹き込み量を l S l k g/ t hm (溶銑 1 トンあた i 3 l k g) とした場合を示す。 この図に示すように、 焼結鉱 の還元率が上昇することにより、 高炉の還元材比が低下し、 還元率が 30% を超えることによりその低下率が急激になることがわかる。 通常の焼結鉱は 還元率が 2%程度であるから、 本実施形態に従って還元率が 30%以上の半 還元焼結鉱を得ることにより、 高炉の還元材比を大幅に低下させることがで さる。
高炉の還元材比はこのように焼結鉱の還元率を上げることにより低下させ ることができるが、 上述したように、 C02排出量をより効果的に低減する 観点からは、 焼結鉱全体の還元率を一様に上げるより、 金属 F eを析出させ るほうが好ましレ、。 このことを図 2を参照して説明する。 図 2は、 横軸に焼 結鉱の高炉装入時の平均還元率をとり、 縦軸に製銑工程からの C排出量をと つて、 均一に部分還元した焼結鉱と金属 F eが優先的に発生した焼結鉱とで C排出量を比較して示す図である。 ライン (a ) は均一に部分還元した焼結 鉱の場合であり、 ライン (b) はメタルが優先的に発生した焼結鉱の場合で あって、 実際の半還元焼結鉱は、 ライン (a) とライン (b) の間に存在す ることになる。 なお、 図中の 「ベース」 は部分還元していない焼結鉱を使用 した場合の C排出量を示す。 この図から明らかなように、 均一に部分還元す るよりも、 金属 F eを多く含有させたほうが C排出量、 すなわち C02排出 量をより低減することができることがわかる。 また、 均一に部分還元した半 還元焼結鉱の場合には、 還元率が 3 0 %まではむしろ C排出量が増加してお り、 ある程度金属 F eが存在していても同様の傾向があると考えられること から、 C02排出量を削減するためには、 還元率が 3 0 %以上であることが 好ましいことがわかる。
半還元焼結鉱に含有する金属 F eの量は、 全体の平均値として 3 m a s s %以上であることが好ましい。 これにより、 高炉における還元材比削減、 製 銑工程全体での C O 2排出量の低減や、 コークス炉への負荷軽減の効果を有 効に発揮することができる。
本実施形態の半還元焼結鉱を得るに際して、 還元鉄製造用粒子の炭材配合 量は 5 m a s s %以上であることが好ましい。 これは、 5 m a s s未満であ ると直接還元反応が有効に生じないおそれがあるためである。 炭材配合量が 1 0 m a s s %以上であれば、 直接還元反応の促進のためにさらに好ましい が、 炭材が 2 0 m a s s %を超えると過剰な溶融が生じやすくなるため、 炭 材配合量は 1 0〜 2 O m a s s %が好ましい。 炭材としては粉コータスが好 適であるが、 無煙炭またはコークス冷却設備の集塵粉等他の炭材を用いるこ とができる。
焼成後の還元鉄製造用粒子には、 灼熱減量を除いだ成分で C a O/S i O 2の質量比が 1以上となるように C a O系副原料を配合してもよい。 C a O 系副原料は、 還元鉄製造用粒子の強度を維持するための骨材としての機能あ るいは焼結鉱の溶融組織として難還元性の F e 0- S i O 2系スラグの生成 を防止する機能を有する。 C a OZS i 02の質量比が 1より小さい場合に は、 低融点で難還元性の F e O— S i 02系融液が発生しやすくなる。 一方 で、 C a Oが過剰になっても C a O - F e 2 O 3系の低融点融液を発生しや すく し、 融液を大量に発生した場合には、 粒子自体がその形状も残さないほ ど過剰に溶融する可能性がある。 通常の鉄鉱石には 0. 6〜 5. 5 m a s s %程度の S i O,が含まれており、 現状の焼結操業では複数銘柄 (通常 5〜 1 0銘柄) を配合するので、 結果として鉄鉱石原料の S i 02は 3. 7〜4 . 8 111 3 3 3 %となる。 骨材として機能するためには、 C a O系副原料の含 有量は C a O換算で 2 ma s s %以上であることが好ましい。 また、 難焼結 性の S i Oa-C a〇系融液の生成を防止し、 かつじ a O_F e 203系の低 融点融液の大量発生防止のためには、 C a O副原料の含有量は C a O換算で 8 m a s s %以下とすることが好ましい。 C a O系副原料 (石灰系副原料と も称する) としては C a O分を含有していれば特に限定されないが、 代表的 なものとして石灰石や生石灰、 ドロマイ トを挙げ^)ことができる。
還元鉄製造用粒子を構成する原料のうち、 鉄鉱石の粒径は 8 mm以下、 炭 材の粒径は 5 mm以下、 C a O系副原料の粒径は 5 mm以下であることが好 ましい。 このように原料の粒径を小さくすることにより、 鉄鉱石と炭材との 接触面積を高めて還元反応を有効に生じさせ、 密度の高い還元粒子を得るこ とができる。
また、 還元鉄製造用粒子は、 少なく ともその中の鉄鉱石および炭材が 1 2 5 μ m以下の粒子を 40 m a s s %以上とすることが好ましい。 このように 鉄鉱石および炭材を微粒化することにより、 これらの間の還元反応の反応性 が高まり、 鉄鉱石の還元率をより高くすることができる。 より好ましくは 7 Oma s s %以上である。 還元鉄製造用粒子に C a O系副原料を含有させる 場合には、 C a O系副原料を含めて還元鉄製造用粒子の全体について 1 2 5 μ m以下の粒子を 40 m a s s %以上とすることが好ましく、 70 m a s s %以上がより好ましい。
還元鉄製造用粒子の大きさは 1 0 c m 3以下であることが好ましい。 これ は、 還元反応は吸熱反応であるため、 焼結鉱製造時のコークスの燃焼熱量で その熱を補償するが、 還元鉄製造用粒子が大きすぎると内部に十分熱が供給 されずに未反応になりやすいからである。 1 0 c m 3以下とすることにより 、 還元反応が十分に進行するとともに、 原料層の通気性を改善する効果を奏 する。 しかし、 還元鉄製造用粒子の大きさが 0 . 0 6 5 c m 3 (直径 5 m m の球に相当) より小さい場合には、 周りの造粒物よりも小さくなり、 焼成時 に造粒物と同化溶融してしまい小さすぎると通気性改善効果が有効に発揮さ れ難くなるため、 0 . 0 6 5〜 1 0 c m 3が好ましい。 通気性改善効果をよ り重視する場合には、 0 . 3 c m 3以上が好ましい。
上記還元鉄製造用粒子は、 原料層全体の 5〜 5 0 m a s s %であることが 好ましく、 1 0〜5 O ni a s s %がより好ましい。 成形後の還元鉄製造用粒 子は、 比較的高い強度を有しており、 焼結機に装入した時点での崩壊は少な く、 原料層の中では通気を確保するための粗粒粒子として機能し、 適量配合 することにより焼結鉱の生産性を向上させる機能を有する。 しかし、 その配 合量が原料層全体の 5 O m a s s %を超えると、 還元鉄製造用粒子の集中し た層ができ、 通気が過剰になるため未焼成部が発生しやすくなる。 一方、 還 元鉄製造用粒子が 5 m a s s %未満であると、 得られた半還元焼結鉱中の金 属 F eの量が少なくなるので、 高炉での還元材比低減や C 0 2排出量の削減 の効果が充分に得られなくなる傾向にある。
還元鉄製造用粒子は、 鉄鉱石および炭材、 または鉄鉱石、 炭材および C a O系副原料を適宜の方法で成形して製造する。 この場合の製造方法としては 、 従来から焼結原料である擬似粒子を製造する方法として知られているドラ ムミキサーやディスクペレタイザ一等による転動造粒や、 プリケットマシン でプリケット化する方法に代表されるロール成形機等で圧縮成形 (加圧成形 ともいう) する方法を挙げることができる。 この中では圧縮成形する方法が 好適である。
鉄鉱石および炭材、 または鉄鉱石、 炭材および C a O系副原料を圧縮成形 する方法は、 転動造粒により擬似粒子化する方法に比べて、 鉄鉱石と炭材と の接触をより強固にしてこれらの接触面積を大きくすることができるので、 鉄鉱石の還元反応がより進行しやすくなり、 還元率および金属鉄の含有率を より高めることができる。
このことを図 3に基づいて説明する。 図 3は、 横軸に焼結鉱の還元率をと り、 縦軸に焼結後の金属鉄の含有率をとつて、 これらの関係を転動造粒によ る擬似粒子の場合とプリケット粒子の場合とで比較して示す図である。 この 図から明らかなように、 擬似粒子よりもプリケット粒子のほうが焼結した際 の還元率が高く、 かつ焼結後の金属 F eの含有率が高くなることがわかる。 また、 ブリゲット粒子のような圧縮成形した粒子を用いることにより、 原 料充填層中での空隙率が大きくなり、 焼結ベッドの通気性も改善される。 プリケット化に代表される圧縮成形によって還元鉄製造用粒子を製造する 場合には、 上記原料に、 水および Zまたはバインダーを適宜の量添加し、 混 合した後に圧縮成形を行うことが好ましい。 また、 転動造粒に'よって成形す るこの場合にも、 上記原料に、 水および Zまたはバインダーを適宜の量添加 し、 混合した後に転動造粒を行うことが好ましい。
原料層の残部としては、 通常の焼結鉱に用いる擬似粒子を用いる。 すなわ ち、 鉄鉱石と炭材と C a O系副原料を主体とする焼結原料を、 ドラムミキサ 一やディスクペレタイザ一等により転動造粒して成形したものを用いる。 こ の場合に、 鉄鉱石としては通常の粉鉄鉱石を用い、 炭材としては粉コ一クス を用い、 C a O系副原料としては石灰石または生石灰を用いる。 配合割合は 、 鉄鉱石および C a O系副原料を 1 0 O m a s s %とした場合に炭材を外数 で 2〜 6 m a s s %が好ましい。 また、 C a O系副原料は、 鉄鉱石および C a O系副原料の合計量の内数で 4〜 1 0 m a s s %程度が好ましい。
焼結機として、 一般的には下方吸引式無端移動型焼結機を用いる。 この下 方吸引式無端移動型焼結機は、 無端移動式の移動グレートを有しており、 そ の移動グレート上に、 上記還元鉄製造用粒子と通常の擬似粒子とが供給され て原料層が形成され、 この原料層が連続的に焼結されて本実施形態の半還元 焼結鉱が製造される。 次に、 本実施形態に係る半還元焼結鉱の製造方法の具体例について説明す る。
図 4は、 本実施形態に係る半還元焼結鉱を製造する設備の一例を示す模式 図である。 この設備は、 原料製造設備 4 0と、 下方吸引式無端移動型焼結機 5 0とを備えている。
原料製造設備 4 0は、 通常擬似粒子の原料である鉄鉱石、 炭材および C a O系副原料等が供給可能な通常擬似粒子用原料源 1を有し、 この通常擬似粒 子用原料源 1からの原料がドラムミキサーやディスクペレタイザ一等からな る転動造粒装置 2で造粒され、 通常擬似粒子となる。 また、 原料製造設備 4 0は、 還元鉄製造用粒子の原料である鉄鉱石および炭材、 または鉄鉱石、 炭 材、 および C a O系副原料が供給可能な還元鉄製造用粒子用原料源 3を有し 、 この還元鉄製造用粒子用原料源 3からの原料が上述した口一ル成形機また は転動造粒装置のような成形装置 4で成形され、 還元鉄製造用粒子となる。 ごれら通常擬似粒子と還元鉄製造用粒子とは、 例えば、 所定の割合で混合逢 5により混合され、 ホッパー 6に貯留されるようになつている。
下方吸引式無端移動型焼結機 5 Όは、 無端移動式の移動グレート 1 1を有 しており、 その移動グレート 1 1上に、 装入システムであるロールフィーダ 一 1 0により通常擬似粒子と還元鉄製造用粒子との混合物が供給され、 原料 層 1 3が形成されるようになっている。 なお、 混合機 5を用いずに通常擬似 粒子と還元鉄製造用粒子とを別個に移動グレート 1 1上に供給してもよい。 移動グレート 1 1の移動経路には点火炉 1 2が設けられており、 移動ダレ ート 1 1上の擬似粒子がその点火炉 1 2を通過する際に点火されて原料層 1 3の焼結が開始され、 焼結ケーキ 1 3 aが形成される。 移動グレート 1 1の 出口側には、 図示しない破砕機が設けられており、 この破砕機により移動グ レート 1 1から落下した焼結鉱が粉砕されてコンベア 1 4に供給され、 高炉 へ供給される。
移動グレート 1 1の直下には、 移動グレート 1 1の進行方向に沿って、 複 数の風箱 1 5が配列されており、 各風箱 1 5には垂直ダク ト 1 6が接続され ている。 これにより、 原料層 1 3の上方のガスが風箱 1 5および垂直ダク 卜 1 6により原料層 1 3を通過して吸引されるようになっている。
上記垂直ダク ト 1 6は、 水平に配置された主排ガスダク ト 1 7に接続され 、 排ガスが主排ガスダク ト 1 7を経て排出されるようになっている。 主排ガ スダク ト 1 7には、 電気集塵機 2 0、 メインブロア 2 1が接続されており、 メインブロア 2 1により原料層 1 3の上方のガスを吸引し、 風箱 1 5、 垂直 ダク ト 1 6、 主排ガスダク ト 1 7、 電気集塵機 2 0等を経て煙突 2 2から排 出される。
なお、 原料層 1 3上方の点火炉 1 2の下流側部分にガス供給フードを設け 、 垂直ダク ト 1 6からこのフ一ドに繋がる排ガス循環ダク トを設けて排ガス 循環を行うようにしてもよい。 このよ うな排ガス循環方式を採用することに よって原料層 1 3中の雰囲気 (酸素濃度) を適正に制御することが容易とな り、 金属 F eの生成および再酸化防止にさらに効果的である。
このように構成される設備においては、 通常擬似粒子用原料源 1からの原 料を転動造粒装置 2で造粒して通常擬似粒子を製造し、 かつ還元鉄製造用粒 子用原料源 3からの原料を成形装置 4で成形して還元鉄製造用粒子を製造し 、.混合機 5によりこれら通常擬似粒子と還元鉄製造用粒子とを混合し、 この 混合物をホッパー 6およびロールフィーダ一 1 0を介して下方吸引式無端移 動型焼結機 5 0の移動グレート 1 1上に供給して原料層 1 3を形成する。 こ のとき、 原料層 1 3は、 図 5に示すように、 通常擬似粒子のマトリックス 3 1中に還元鉄製造用粒子 3 2が分散した状態となっている。
そして、 点火炉 1 2により原料層 1 3表面に点火し、 風箱 1 5を介して下 向きにガスを吸引しながら焼成し、 原料層 1 3を構成する擬似粒子を焼結さ せ、 焼結鉱とする。 このようにして焼結して得られた焼結鉱は、 移動グレー ト 1 1から落下し、 出口側の解砕機により落下した焼結鉱が粉砕されてコン ベア 1 4に供給され、 さらに高炉へ供給される。 この場合に、 上述したよう に、 原料層 1 3の還元鉄製造用粒子 3 2の中では、 鉄鉱石と炭材とで直接還 元が生じ、 鉄鉱石が部分的に還元され、 一部金属 F eとなった半還元焼結鉱 が製造される。 第 2の実施形態
本実施形態では、 焼結原料として少なくとも鉄鉱石と炭材と C a O系副原 料とを用い、 これを焼結機に装入して原料層を構成し、 焼成して半還元焼結 鉱を製造するに際し、 上記第 1の実施形態のより具体的な範囲について規定 する。
本実施形態においては、 粉鉄鉱石と粉鉄鉱石に対して外数で 1 0〜 2 0 m a s s %の炭材とを配合し、 さらに水と必要に応じてバインダーを加えて混 合し、. この混合物をロール成形機で圧縮成形して成形粒子とし、 この成形粒 子を内数で 5〜 3 0 m a s s %配合したものを焼結原料として用いて焼結機 に装入する。 そして、 この成形粒子が 5〜 5 0 m a s s %、 好ましくは 5〜 3 0 m a s s %配合された焼結原料を焼成し、 鉄鉱石 一部を還元して、 焼 結鉱全体の平均値として、 3 m a s s %以上の金属 F eを含有させた半還元 焼結鉱を得る。
本実施形態においては、 上記第 1の実施形態と同様に、 焼結鉱の製造に際 し、 原料層温度を 1 4 0 0 °C程度に到達させ、 1 2 0 0 °C以上の滞留時間を 長く して直接還元を支配的とする。
本実施形態では、 第 1の実施形態の還元鉄製造用粒子に対応するものとし て、 ロール成形機で圧縮成形された成形粒子を用いる。 このような圧縮成形 された成形粒子は、 通常の焼結原料である造粒した擬似粒子に比べて高密度 であり、 第 1の実施形態において説明したように、 擬似粒子よりも焼結した 際の還元率が高く、 かつ焼結後の金属 F eの含有率が高くなる。
つまり、 ロール成形機で圧縮成形された成形粒子は、 その表面においては 、 被還元物質である鉄鉱石と還元剤である炭材とが強固に接触しかつ接触面 積が大きいため、 直接還元が進み金属 F eまで急速に還元される。 一方、 内 部は高密度のために酸素の拡散速度が遅く、 Cの燃焼は起こらず、 伝熱によ り昇温された時点で直接還元反応が進行する。 そして、 図 6に示すように、 焼結充填層 (原料層) 6 1において通常の擬似粒子 6 2中に分散している成 形粒子 6 3の表面には、 F e O— S i 0 2系または F e O— C a O系融液に より、 溶融組織を有する皮膜 6 4が形成され、 この皮膜 6 4により内部での 直接還元で発生する C Oガスあるいは C O 2ガスによるバーストを防止する 。 そのため、 還元後 (焼成後) も皮膜 6 4が残って形状を保持し、 今度は還 元された F eまたは F e Oの再酸化防止に有効に働く。 このように、 成形粒 子は鉄鉱石の直接還元反応を効果的に進行させることができる。 また、 成形 粒子は焼結原料の一部であり、 焼結機内において原料層に分散された状態と なるので、 上記反応は局部的に生じ、 過剰に溶融するのは還元鉄製造用粒子 の部分のみであり大量の融液を発生させるおそれが少ない。 さらに、 成形粒 子は、 上述のように還元後もその形態を保っており、 吸引ガス中の酸素によ つても内部の再酸化が妨げられ、 良好な還元状態を保っているので、 現状の 結機の操業を悪化させることなく直接還元を進行させることができ、 金属 F eを 3 %以上含有した半還元焼結鉱を大量に製造することができる。 これ により、 第 1の実施形態と同様、 製造プロセス全体としての還元材使用量 ( 還元材比) を削減することができ、 ひいては製造プロセスからの C〇2排出 量も削減することができる。 特に、 金属 F eを優先的に析出させることによ り、 製造プロセスからの C O 2排出量削減効果を大きくすることができる。 上記成形粒子は、 上記のように鉄鉱石を有効に還元するとともに、 高い強 度を有していることから焼結機に装入した時点での崩壊は少なく、 原料層の 中では通気を確保するための粗粒粒子として機能し、 適量配合することによ り焼結鉱の生産性を向上させる機能を有する。 しかし、 その配合量が焼結原 料全体の 3 Oma s s %を超えると還元鉄製造用粒子の集中した層ができ、 通気が過剰になるため未焼成部が発生しやすくなる。 一方、 還元鉄製造用粒 子が 5 m a s s %未満であると得られた焼結鉱中の金属 F eを 3 m a s s以 上にすることが困難となる。 このため、 本実施形態では、 成形粒子の焼結原 料中の配合量を 5〜 30ma s s %とする。
焼結鉱に含有する金属 F eの量を全体の平均値として 3ma s s %以上と したのは、 これにより、 高炉における還元材比削減ゃコークス炉への負荷軽 減の効果を有効に発揮することができるからである。
本実施形態において、 成形粒子の炭材配合量を 1 0〜 20 m a S s %以上 としたのは、 以下の理由からである。 鉄鉱石中のトータル F eは 5 6〜 6 5 ma s s %であり、 鉄鉱石 1 tあたり F eは 5 60〜6 5 0 k gである。 そ の中の F eはほぼ F e 3+と考えられるから、 上記 (1 ) 式の直接還元反応 により F e 23を 1 0 0 %還元するに必要な Cの量は 1 8 0〜 2 1 0 k g となり、 代表的な炭材である粉コ一クス中の固定 Cを 8 8ma s s %とすれ ば、 F e 203を 1 00 %還元するに必要な粉コ一クス量は 2 0 5〜 2 3 9 k g/ t一鉄鉱石となる'。 実際の成形粒子に必要な還元率は約 50%以上で あるから、 必要な粉コータスの量はほぼ 1 00 k g/ t—鉄鉱石以上、 すな わち 1 Oma s s %以上となる。 成形粒子の金属 F e含有量は 3 Oma s s %が好ましく、 その際の還元率は約 6 0%であるから、 それに必要な炭材 ( 粉コークス) は 1 2 3〜 1 43 k g/ t—鉄鉱石となり理論量の 1. 2〜 1 . 3倍必要とすれば、 炭材の好ましい範囲は 1 5〜 1 9 m a s s %程度とな る。 また、 炭材が 2 Oma s s %を超えると過剰な溶融が生じやすくなるた め、 上限を 2 Oma s s %とする。 炭材としては粉コータスが好適であるが 、 無煙炭またはコークス冷却設備の集塵粉等他の炭材を用いることができる 通常、 鉄鉱石には、 脈石として S i O2が 1〜 5 m a s s %程度含まれ、 A 1 203は 1〜 2. 5 m a s s %程度含まれる。 一方、 C a O系副原料は 脈石をほとんど含まない。 また、 炭材としての粉コータスのアッシュ主要成 分は S i 02と A 1 203である。 したがって、 鉄鉱石と炭材のみで焼結によ り焼結鉱を製造すると、 そのスラグ成分は、 F e 203が還元されてできた F e Oと S i 〇2からなる F e O— S i 〇2系スラグ、 いわゆるファイアラ イ トが生成してしまう。 このファイアライ トは還元性が極めて悪いが、 C a O系副原料を添加するととにより、 カルシウム一フェライ ト系スラグを形成 し、 還元性を改善することができる。 また、 C a O系副原料成形粒子の強度 を維持するための骨材あるいはバインダ一としての機能も有する。 したがつ て、 成形粒子には、 成形粒子の灼熱減量を除いた成分で C a O/S i 〇2が 1以上、 好ましくは C a O/S i 02> 1. 5となるように C a O系副原料 を含有することが好ましい。 一方で、 C a O系副原料は低融点融液を発生し やすく し、 融液が大量に発生した場合には、 粒子自体がその形状も残さない ほど過剰に溶融する可能性がある。 したがって、 粒子の過剰溶融の防止のた めには、 C a O系副原料の含有量は C a O換算で 8 m a s s %以下であるこ とが好ましい。 C a O系副原料としては C a O分を含有していれば特に限定 されないが、 代表的なものとして石灰石や生石灰、 ドロマイ トを挙げること ができる。
成形粒子を構成する原料は、 鉄鉱石で 8 mm以下、 炭材で 5 mm以下、 C a O系副原料で 5 mm以下であることが好ましい。 このように原料の粒径を 小さくすることにより、 鉄鉱石と炭材との接触面積を高めて還元反応を有効 に生じさせ、 密度の高い還元粒子を得ることができる。
また、 成形粒子は、 少なく ともその中の鉄鉱石および炭材が全体として 1 2 5;/ m以下の粒子を 4 Oma s s %以上とすることが好ましい。 このよう に鉄鉱石および炭材を微粒化することにより、 これらの間の還元反応の反応 性が高まり、 鉄鉱石の還元率をより高くすることができる。 ここで鉄鉱石と 炭材が全体として 1 2 5 μ m以下の粒径のものが 4 Oma s s %以上とは、 鉄鉱石および炭材を個々ではなく、 これら全体を基準として、 鉄鉱石および 炭材の 1 25 /2 m以下の粒径のものの合計が 40 m a s s %以上であること を意味する。 より好ましくは 7 Oma s s %以上である。 また、 鉄鉱石およ ぴ炭材のみならず、 C a O系副原料を含めて成形粒子の全体について 1 2 5 μ m以下の粒子を 40 m a s s %以上とすることが好ましく、 70 m a s s %以上がより好ましい。
成形粒子の大きさは 1 0 c m3以下であることが好ましい。 これは、 還元 反応は吸熱反応であるため、 焼結鉱製造時のコ一タスの燃焼熱量でその熱を 補償するが、 還元鉄製造用粒子が大きす.ぎると内部に十分熱が供給されずに 未反応になりやすいからである。 1 0 c m3の場合には直径が 2 6. 8 mm であり伝熱性の面から限界であり、 1 0 c m3以下とすることにより、 還元 反応が十分に進行するとともに、 原料層の通気性を改善する効果を奏する。 しかし、 還元鉄製造用粒子の大きさが 0. 06 5 c m3 (直径 5 mmの球に 相当) 未満となると、 通気性改善効果が有効に発揮され難くなるため、 0. 06 5〜 1 0 c m3が好ましい。 通気性改善効果 より重視する場合には、 0. 3 c m3以上が好ましい。 また、 伝熱性の観点からは 6 c m3以下が好 ましい。
成形粒子は、 鉄鉱石および炭材、 または鉄鉱石、 炭材および C a O系副原 料を口ール成形機等で圧縮成形することにより得られる。 口ール成形機によ る成形は、 プリケッティングとコンパクティングに分類される。 前者は、 成 形物の母型となるポケットが複数形成されている 2個のロールが互いに食い 込み勝手に同速で回転するように設けられ、 これら口ール間に原料を供給し 、 連続して所定形状の成形体であるプリケットを得るものであり、 後者はポ ケットが形成されていない 2個のロールを同様に同速で回転させ、 板状の成 形物を得、 次いでこれを粉砕して成形粒子とするものである。 この場合には 、 上記原料にさらに水と必要に応じてバインダーを適量加えて混合した後に 圧縮成形を行う。
成形粒子の成形圧力は、 9 80 kN/ni以上であることが好ましい。 これ により、 成形粒子を十分な強度とすることができる。 このことを確認した実 験について説明する。 ここでは、 8 mm以下の鉄鉱石に外数で 20質量%の 粉コータス (一 5 mm) を加え、 さらに水を外数で 3 %、 バインダーとして
40 m a s s %濃度の c化デンプン水溶液を外数で 1. 4 m a s s %加え、 成形圧力を 245〜: 1 4 70 k N/mの間で変化させて長さ 3 5 mm、 幅 2
5 mm, 厚さ 1 6 mmのアーモンド状のブリゲットを作成した。 各成形圧力 のブリケット 20 k gを用いて、 2mの高さから 2 5回繰り返し落下試験を 行い、 + 5 mmの歩留りを調査した。 その結果を図 7に示す。 この図に示す ように、 9 8 0 k ΝΖπι以上で良好な結果が得られることが確認された。 9 8 0 k N/m以上で歩留りは飽和する。 なお、 2111 2 5回= 50111は、 輸 送ラインの乗り継ぎ部の落下距離に相当する。
原料層の残部としては、 第 1の実施形態と同様、 通常の焼結鉱に用いる擬 似粒子を用いる。 すなわち、 鉄鉱石と炭材と C a O系副原料を主体とする焼 結原料を、 ドラムミキサーやディスクペレタイザ一等により転動造粒して成 形したものを用いる。 この場合に、 鉄鉱石としては通常の粉鉄鉱石を用い、 炭材としては粉コークスを用い、 C a O系副原料としては石灰石または生石 灰を用いる。 配合割合は、 鉄鉱石および C a O系副原料を 1 0 Oma s s % とした場合に炭材を外数で 4〜 6 m a s s %が好ましい。 また、 C a O系副 原料は、 鉄鉱石および C a O系副原料の合計量の内数で 4〜 1 0 m a s s % 程度が好ましい。 焼結機として、 一般的には、 第 1の実施形態と同様、 下方吸引式無端移動 型焼結機を用いる。 この下方吸引式無端移動型焼結機は、 無端移動式の移動 グレートを有しており、 その移動グレート上に、 上記還元鉄製造用粒子と通 常の擬似粒子とが供給されて原料層が形成され、 この原料層が連続的に焼結 されて本実施形態の半還元焼結鉱が製造される。
次に、 本実施形態に係る半還元焼結鉱の製造方法の具体例について説明す る。
図 8は、 本実施形態に係る半還元焼結鉱を製造する設備の一例を示す模式 図である。 この設備は、 成形粒子製造設備 1 0 0と、 擬似粒子製造設備 2 0 0と、 下方吸引式無端移動型焼結機 3 0 0とを備えている。
成形粒子製造設備 1 0 0は、 鉄鉱石、 炭材および C a O系副原料等が供給 可能な原料ホッパー群 1 0 1と、 原料とバインダー (例えば、 デンプン、 タ ール、 糖蜜) を混合する攪拌機 1 0 2と、 混合物から成形粒子を得るための ロール成形機 1 0 3とを有し、 原料ホクパ一群 1 0 1からの原料はコンベア 1 0 4、 1 0 5にて攪拌機 1 0 2に搬送され、 攪拌機 1 0 2で攪拌された混 合物はコンベア 1 0 6にてロール成形機 1 0 3に搬送され、 ロール成形機 1 0 3で製造された成形粒子はコンベア 1 0 7で焼結機 3 0 0に向かうコンペ ァ 4 0 1に搬送される。
擬似粒子製造設備 2 0 0は、 鉄鉱石、 炭材および C a O系副原料等が供給 可能な原料ホッパー群 2 0 1と、 これらを混合するとともに、 水を添加して 調湿するための混合 ·調湿機 (ドラム) 2 0 2と、 原料を造粒するための造 粒機 (ドラム) 2 0 3とを有し、 原料ホッパー群 2 0 1からの原料はコンペ ァ 2 0 4、 2 0 5にて混合 ·調湿機 (ドラム) 2 0 2に搬送され、 混合 ·調 湿機 (ドラム) 2 0 2から排出された混合物はコンベア 2 0 6にて造粒機 ( ドラム) 2 0 3に搬送され、 造粒機 (ドラム) 2 0 3で製造された擬似粒子 はコンベア 2 0 7で焼結機 3 0 0に向かうコンベア 4 0 1に搬送される。 これにより、 コンベア 4 0 1上で成形粒子と擬似粒子とが混合されること となる。 コンベア 4 0 1上の混合物は、 コンベア 4 0 2に移し替えられて焼 結機 3 0 0に搬送される。
下方吸引式無端移動型焼結機 3 0 0は、 無端移動式の移動グレート 3 1 1 を有しており、 その移動グレート 3 1 1上に、 適宜の装入システムにより通 常擬似粒子と成形粒子との混合物が供給され、 原料層 3 1 3が形成されるよ うになつている。
移動グレート 3 1 1の移動経路には点火炉 3 1 2が mけられており、 移動 グレート 3 1 1上の擬似粒子がその点火炉 3 1 2を通過する際に点火されて 原料層 3 1 3の焼結が開始され、 焼結ケーキ 3 1 3 aが形成される。 移動グ レート 3 1 1の出口側には、 図示しない塊砕機が設けられており、 この塊砕 機により移動グレート 3 1 1から落下した焼結鉱が粉砕されてコンベア 3 1 4に供給され、 高炉へ供給される。
移動ダレ一ト 3 1 1の直下には、 移動グレート 3 1 1の進行方向に沿って 、 複数の風箱 3 1 5が配列されており、 各風箱 3 1 5には垂直ダク ト 3 1 6 が接続されている。 これにより、 原料層 3 1 3の上方のガスが風箱 3 1 5お ょぴ垂直ダク ト 3 1 6により原料層 3 1 3を通過して吸引されるようになつ ている。
上記垂直ダク ト 3 1 6は、 水平に配置された主排ガスダク ト 3 1 7に接続 され、 排ガスが主排ガスダク ト 3 1 7を経て排出されるようになっている。 主排ガスダク ト 3 1 7には、 電気集塵機 3 2 0、 メインブロア 3 2 1が接続 されており、 メインブロア 3 2 1により原料層 3 1 3の上方のガスを吸引し 、 風箱 3 1 5、 垂直ダク ト 3 1 6、 主排ガスダク ト 3 1 7、 電気集塵機 3 2 0等を経て煙突 3 2 2から排出される。
なお、 原料層 3 1 3上方の点火炉 3 1 2の下流側部分にガス供給フードを 設け、 垂直ダク ト 3 1 6からこのフードに繋がる排ガス循環ダク トを設けて 排ガス循環を行うようにしてもよい。 このような排ガス循環方式を採用する ことによって原料層 3 1 3中の雰囲気 (酸素濃度) を適正に制御することが 容易となり、 金属 F eの生成および再酸化防止に更に効果的である。
このように構成される設備においては、 成形粒子製造設備 1 0 0により成 形粒子を製造し、 擬似粒子製造設備 2 0 0により擬似粒子を製造し、 これを コンベア 4 0 1上で適宜の手段により混合し、 コンベア 4 0 2を経てこの混 合物を下方吸引式無端移動型焼結機 3 0 0の移動グレート 3 1 1上に供給し て原料層 3 1 3を形成する。 このとき、 厚料層 3 1 3は、 図 9に示すように 、 通常擬似粒子のマトリックス 3 3 1中に成形粒子 3 3 2が分散した状態と なっている。
そして、 点火炉 3 1 2により原料層 3 1 3表面に点火し、 風箱 3 1 5を介 して下向きにガスを吸引しながら焼成し、 原料層 3 1 3を構成する擬似粒子 を焼結させ、 焼結鉱とする。 このようにして焼結して得られた焼結鉱は、 移 動グレート 3 1 1から落下し、 出口側の塊砕機により落下した焼結鉱が粉砕 されてコンベア 3 1 4に供給され、 さらに高炉へ供給される。 この場合に、 上述したように、 原料層 3 1 3の成形粒子 3 3 2の中では、 鉄鉱石と炭材と で直接還元が生じ、 鉄鉱石が部分的に還元され、 一部金属 F eとなった半還 元焼結鉱が製造される。 第 3の実施形態
本実施形態においては、 第 1および第 2の実施形態と同様に、 焼結鉱の製 造に際し、 原料層温度を 1 4 0 0 °C程度に到達させ、 1 2 0 0 °C以上の滞留 時間を長く して直接還元を支配的とするが、 そのために、 焼結原料として鉄 鉱石と炭材と副原料とを焼結機に装入して焼成し、 鉄鉱石の一部を炭材によ り還元してなる半還元焼結鉱を製造するにあたり、 焼結原料のうち鉄鉱石の 一部およぴ炭材の一部、 または焼結原料のうち鉄鉱石の一部、 炭材の一部お よび副原料の一部を予め圧縮成形 (加圧成形とも称する) して圧縮成形体と し、 焼結原料の残部を造粒物とし、 これらを混合して焼成する。
このように、 焼結原料のうち鉄鉱石の一部および炭材の一部、 または焼結 原料のうち鉄鉱石の一部、 炭材の一部および副原料の一部を圧縮成形するこ とにより、 鉄鉱石と炭材とが圧密されてこれらの接触面積が大きくなるので 、 このような圧縮成形体を原料の一部として焼結機に装入することにより焼 結鉱の還元を促進させることができる。 このため、 焼結鉱の還元率および金 属 F eの含有率を高めることができ、 このような焼結鉱を高炉で使用するこ とにより、 第 1の実施形態と同様、 製造プロセス全体としての還元材使用量 (還元材比) を削減することができ、 ひいては製造プロセスからの C 0 2排 出量も削減することができる。
また、 圧縮成形体は原料が加圧により緻密化しているため、 焼結鉱となつ た場合にも造粒物と比較して原料が緻密に存在している。 このとき、 圧縮成 形により緻密化した部分は外気と遮断され、 直接還元により発生した金属鉄 の酸化が抑制される。
すなわち、 焼結原料のうち鉄鉱石の一部および炭材の一部、 または焼結原 料のうち鉄鉱石の一部、 炭材の一部および副原料の一部を圧縮成形した圧縮 成形体を焼結原料の造粒物とともに焼結機に投入して半還元焼結鉱を製造す ることにより、 高い還元率おょぴ高い金属鉄含有率が実現される。
本実施形態において、 鉄鉱石としては、 反応性を良好に維持する観点から 、 粒径 8 m m以下の粉鉄鉱石が好ましく、 炭材としては、 粒径 5 m m以下の 粉コークス、 さらには粒径 3 m m以下の粉コークスが好ましい。 また、 副原 料としては C a O系副原料、 例えば石灰石、 生石灰が用いられる。 造粒物のコア部分 (後述の凝結材を除いた部分) の組成および圧縮成形体 の組成は、 鉄鉱石および副原料 1 0 0質量%に対し還元材としての炭材が 1 0〜 20質量%のものが好適である。 副原料の含有量は、 コア部分の塩基度 (C a O/S i 02) が 1以上になるよう配合することが好ましい。 具体的に は、 4〜 1 0質量%であることが好ましい。 造粒物のコア部分は、 単一層で あってもよいし、 例えば、 鉄鉱石、 副原料および炭材からなる内層の外側に 鉄鉱石からなる外層を形成した 2層構造のものであってもよい。 造粒物は、 上記コア部分の外側に燃料 (凝結材) としての炭材が被覆されて構成される 。 また、 圧縮成形体として外側に炭材が被覆されたものを用いてもよい。 被 覆される炭材は、 鉄鉱石および副原料のトータル 1 00質量%に対し 1〜4 質量%であることが好ましい。
ここで、 コア部分の炭材量を鉄鉱石および副原料 1 00質量%に対し 1 0 〜20質量%としたのは、 この範囲であれば、 擬似粒子中の鉄鉱石を有効に 還元することができ、 しかも未反応のコ一タスが残存レ難いからである。 ま た、 コア部分に外装される炭材量を鉄鉱石および副原料のトータル 1 0 0質 量%に対し 1〜4質量%とすることにより、 鉄鉱石の焼結を適切に進行させ ることができる。
本実施形態において、 圧縮成形体とは、 ロール成形機における圧縮成形手 段により所定形状に成形されたブリケット、 またはロール成型機で板状、 シ ート状、 もしくは棒状に成形した後に所定の大きさに粉砕し.たもので、 単一 粒子の圧潰強度が 3 9. 2 N以上とされたものをいう。
圧縮成形体は、 体積が 1 0 c m3以下であることが好ましい。 この範囲と することにより最適な通気性が得られる。 これよりもサイズが拡大すると通 気性が過剰となる傾向となり、 また未焼成部分が発生しやすくなる。 しかし 、 圧縮成形体粒子の大きさが 0. 0 6 5 c m3より小さい場合には、 周りの 造粒物よりも小さくなり、 焼成時に造粒物と同化溶融してしまい、 還元率も 十分に上がらない。 したがって、 圧縮成形体の体積は 0. 0 6 5〜 1 0 c m 3がより好ましい。 さらに、 圧縮成形体の最薄部分の幅を 8mm 以上 2 Om m以下とすることにより良好な通気性が得られる。
圧縮成形体を構成する原料としての鉄鉱石と炭材は、 これら全体として 1 2 5 m以下の粒径のものが 4 0 m a s s %以上となるようにすることが好 ましい。 このように鉄鉱石および炭材を微粒化することにより、 これらの間 の還元反応の反応性が高まり、 鉄鉱石の還元率をより高くすることができる 。 ここで鉄鉱石と炭材が全体として 1 2 5 μ m以下の粒径のものが 4 O m a s s %以上とは、 鉄鉱石および炭材を個々ではなく、 これら全体を基準とし て、 鉄鉱石および炭材の 1 2 5 μ m以下の粒径のものの合計が 4 0 m a s s %以上であることを意味する。 より好ましくは 7 0 m a s s %以上である。 また、 鉄鉱石および炭材のみならず、 C a O系副原料を含めて成形粒子の全 体について 1 2 5 / m以下の粒子を 4 0 m a s s %以上とすることが好まし く、 7 0 m a s s %以上がより好ましい。
焼結機としては、 上記第 1および第 2の実施形態と同様、 下方吸引式無端 移動型焼結機を用いることが好ましい。 具体的には、 その無端移動式の移動 グレート上に、 焼結原料を造粒した造粒物である擬似粒子および圧縮成形体 を供給し、 原料層を形成し、 移動グレートの移動経路に設けられた点火炉に より、 原料層が点火されて焼結が行われる。 移動グレートの直下には、 複数 の風箱が配列されており、 焼結の際に各風箱を介して原料層上方のガスが下 方に吸引される。
. 圧縮成形体を焼結機に装入するに際しては、 焼結機の原料層下部 3 4以 下の領域に装入することが好ましい。 原料層の表面に近い領域では、 焼結時 の温度が比較的低く、 高温の保持時間も短い。 また、 この領域へ圧縮成形体 を装入することにより通気性が改善されるため、 この傾向はさらに顕著とな る。 その結果、 成形体の還元反応は、 充填層の下層と比べ不十分な状態で終 了してしまう。 このように装入するためには、 例えば、 図 1 0に示すように 、 造粒物である擬似粒子 7 1を搬送手段例えばベルトコンベア 7 9により上 方から供給するとともに、 原料層 7 2の適宜の位置に圧縮成形体用ホッパー 7 7から装入位置を調整可能なシユート 7 3を介して圧縮成形体 7 4を供給 するようにすればよい。 なお、 符号 7 5は床敷鉱、 7 6は焼結パレット、 7 8は圧縮成形体用定量切出装置、 8 0は偏析装入装置である。
焼結機に装入される造粒物に対する圧縮成形体の混合比、 つまり原料層に おける圧縮成形体の混合割合は 5 〜 5 O m.a s s %以下であることが好まし い。 この混合割合が 5 0 m a s s %を超えると、 すなわち圧縮成形体が造粒 物と同じ割合よりも高い割合となると、 通気性が過剰となる傾向となり、 未 焼成部分が発生しやすくなる。 一方、 5 m a s s %未満では、 圧縮成形体を 混合装入する効果が小さい。 好ましくは 1 0 〜 5 0 m a s s %である。 第 4の実施形態
本実施形態においては、 第 1〜第 3の実施形態と同様に、 焼結鉱の製造に 際し、 原料層温度を 1 4 0 0 °C程度に到達させ、 1 2 0 0 °C以上の滞留時間 を長く.して直接還元を支配的とするが、 そのために、 焼結原料として鉄鉱石 と炭材と副原料とを焼結機に装入して焼成し、 鉄鉱石の一部を炭材により還 元してなる半還元焼結鉱を製造するにあたり、 焼結原料のうち鉄鉱石の一部 、 炭材の一部および副原料の一部を予め均一に混合後、 圧縮成形して圧縮成 形体とし、 焼結原料の残部を造粒物とし、 これらを混合して焼成する。 . このように、 焼結原料のうち鉄鉱石の一部、 炭材の一部および副原料の一 部を圧縮成形することにより、 鉄鉱石と炭材とが圧密されてこれらの接触面 積が大きくなるので、 このような圧縮成形体を原料の一部として焼結機に装 入することにより焼結鉱の還元を促進させることができる。
また、 圧縮成形体は原料が圧縮により緻密化しているため、 焼結鉱となつ た場合にも造粒物と比較して原料が緻密に存在している。 このとき、 圧縮成 形により緻密化した部分は外気と遮断され、 直接還元により発生した金属鉄 の酸化が抑制される。
すなわち、 焼結原料のうち鉄鉱石の一部、 炭材の一部および副原料の一部 を圧縮成形した圧縮成形体を焼結原料の造粒物とともに焼結機に投入して半 還元焼結鉱を製造することにより、 高い還元率おょぴ高い金属鉄含有率が実 現される。 このような焼結鉱を高炉で使用することにより、 第 1の実施形態 と同様、 製造プロセス全体としての還元材使用量 (還元材比) を削減するこ とができ、 ひいては製造プロセスからの CO 2排出量も削減することができ る。
本実施形態において、 鉄鉱石としては、 反応性を良好に維持する観点から
、 第 3の実施形態と同様、 粒径 8 mm以下のものが 80%以上の粉鉄鉱石が 好ましく、 炭材としては、 粒径 5mm以下のものが 8 0%以上、 さらには粒 径 3 mm以下のものが 80 %以上である粉コータスが好ましい。 また、 副原 料としては C a O源を含むものが好適であり、 C a O源としては、 例えば石 灰石、 生石灰を挙げることができる。
本実施形態においても第 3の実施形態と同様、 圧縮成形体とは、 第 3の実 施形態と同様、 口一ル成形機における圧縮成形手段により所定形状に成形さ れたプリケット、 またはロール成形機で板状、 シート状、 もしくは棒状に成 形した後に所定の大きさに粉砕したもので、 単一粒子の圧潰強度が 3 9. 2 N以上とされたものをいう。
この実施形態においても、 第 3の実施形態と同様、 最適な通気性を得る観 点おょぴ反応性の観点から、 圧縮成形粒子の体積が 1 0 c m3以下であるこ とが好ましい。 また、 圧縮成形体粒子の大きさが 0. 0 6 5 c m3より小さ い場合には、 焼成時に造粒物と同化溶融してしまい、 還元率も十分に上がら ないおそれがあることから、 圧縮成形体の体積は 0. 0 6 5〜 1 0 c m3が より好ましい。 さらに、 圧縮成形体の最薄部分の幅を 8 mm 以上 20 mm以 下とすることにより良好な通気性が得られる。 圧縮成形体を構成する原料としての鉄鉱石と炭材は、 第 3の実施形態と同 様、 これら全体として 1 2 5 m以下の粒径のものが 4 0 m a s s %以上と なるようにすることが好ましい。 このように鉄鉱石および炭材を微粒化する ことにより、 これらの間の還元反応の反応性が高まり、 鉄鉱石の還元率をよ り高くすることができる。 ここで鉄鉱石と炭材が全体として 1 2 5 z ni以下 の粒径のものが 4 0 m a s s %以上とは、 鉄鉱石および炭材を個々ではなく 、 これら全体を基準として、 鉄鉱石およぴ炭材の 1 2 5 m以下の粒径のも のの合計が 4 O m a s s %以上であることを意味する。 より好ましくは 7 0 m a s s %以上である。 また、 鉄鉱石および炭材のみならず、 C a O系副原 料を含めて成形粒子の全体について 1 2 5 m以下の粒子を 4 0 m a s s % 以上とすることが好ましく、 7 0 m a s s %以上がより好ましい。
副原料として用いる C a O源のうち一部または全部として生石灰を用い、 圧縮成形体に副原料として生石灰を含有させた場合には、 圧縮成形体はパイ ンダーを使用せずに成形することが好ましい。 圧縮成形体に含有させる C a O源として生石灰を用いることにより、 生石灰が C a O源として機能すると ともにパインダ一の機能をも兼備することとなり、 圧縮成形体の製造時には 、 通常用いている有機バインダーを使用せずに成形可能となる。 したがって 、 圧縮成形体を形成する際に通常用いているバインダーを省略して低コスト 化を図ることができる。
副原料として用いる C a O源は、 圧縮成形体中の配合量よりも造粒物の中 の配合量のほうが多いほうが好ましい。 具体的には、 圧縮成形体中の C a O 源の配合量を前記造粒物中の C a O源配合量の 4 0〜 7 0 m a s s %とする ことが好ましい。 C a O源は、 通常、 焼結に必要な融液を生成するために添 加されるが、 本発明における圧縮成形体は、 鉄鉱石と炭材との間で有効に還 元反応が生じるように圧縮したものであるから、 残部の造粒物ほど C a O源 の量は多くなくてよく、 残部の造粒物に含まれている C a O源配合量の 4 0 〜 7 0 m a s s %で十分である。 そして、 このように圧縮成形体の C a O源 配合量を減らしても焼結鉱の品質が適切に維持され、 圧縮成形体の還元率は むしろ上昇し、 かつじ a O源配合量が少なくなった分低コスト化を図ること ができる。
圧縮成形体中の C a O系副原料の配合量は、 灼熱減量を除く圧縮成形体中 の C a O / S i 0 2が 1以上になるような配合量とすることが好ましい。 こ れにより、 C a O系副原料を圧縮成形体の強度を維持するための骨材として の櫸能あるいは焼結鉱の溶融組織として難還元性の F e 0 - S i 0 2スラグ の生成を防止する機能を有効に発揮させることができる。
造粒物のコア部分の組成および圧縮成形体の組成は、 鉄鉱石および副原料 1 0 0質量%に対し還元材としての炭材が 1 0〜 2 0質量%のものが好適で ある。 副原料の含有量は、 コア部分の塩基度 (C a O / S i〇2 ) が 1以上に なるよう配合することが好ましい。 具体的には 4〜 1 0質量%であることが 好ましい。 造粒物のコア部分は、 単一層であってもよいし、 例えば、 鉄鉱石 、 副原料および炭材からなる内層の外側に鉄鉱石からなる外層を形成した 2 層構造のものであってもよい。 造粒物は、 上記コア部分の外側に燃料 (凝結 材) としての炭材が被覆されて構成される。 また、 圧縮成形体として外側に 炭材が被覆されたものを用いてもよい。 被覆される炭材は、 鉄鉱石および副 原料のト一タル 1 0 0質量%に対し1〜4質量%でぁることが好ましぃ。
ここで、 コア部分の炭材量を鉄鉱石おょぴ副原料 1 0 0質量,%に対し 1 0 〜2 0質量%としたのは、 この範囲であれば、 擬似粒子中の鉄鉱石を有効に 還元することができ、 しかも未反応のコータスが残存し難いからである。 ま た、 コア部分に外装される炭材量を鉄鉱石および副原料のトータル 1 0 0質 量%に対し 1〜4質量%とすることにより、 鉄鉱石の焼結を適切に進行させ ることができる。
焼結機としては、 上記第 1〜第 3の実施形態と同様、 下方吸引式無端移動 型焼結機を用いることが好ましい。 具体的には、 その無端移動式の移動ダレ 一ト上に、 焼結原料を造粒した造粒物である擬似粒子および圧縮成形体を供 給し、 原料層を形成し、 移動グレートの移動経路に設けられた点火炉により 、 原料層が点火されて焼結が行われる。 移動グレートの直下には、 複数の風 箱が配列されており、 焼結の際に各風箱を介して原料層上方のガスが下方に 吸引される。
焼結機への焼結原料の装入は、 圧縮成形体と造粒物とを混合してから行つ てもよいし、 両方別々に装入し、 原料層を形成する際に混合するようにして もよい。 圧縮成形体の装入に分布を持たせるような場合には、 例えば上述し た図 1 0の装置を用いて別々に装入するようにすることが好ましい。
圧縮成形体を焼結機に装入するに際しては、 焼結機の原料層下部 3 4以 下の領域に装入することが好ましい。 原料層の表面に近い領域では、 焼結時 の温度が比較的低く、 高温の保持時間も短い。 また、 この領域へ圧縮成形体 を装入することにより通気性が改善されるため、 この傾向はさらに顕著とな る。 その結果、 成形体の還元反応は、 充填層の下層と比べ不十分な状態で終 了してしまう。
焼結機に装入される造粒物に対する圧縮成形体の混合比、 つまり原料層に おける圧縮成形体の混合割合は 5〜5 O rn a s s %以下であることが好まし い。 この混合割合が 5 ひ m a s s %を超えると、 すなわち圧縮成形体が造粒 物と同じ割合よりも高い割合となると、 通気性が過剰となる傾向となり、 未 焼成部分が発生しやすくなる。 一方、 5 m a s s %未満では、 圧縮成形体を 混合装入する効果が小さい。 好ましくは 1 0〜5 0 m a s s %である。 実施例
以下に本発明の実施例について比較例と比較しつつ説明する。
1. 第 1の実施例
第 1の実施例は上記第 1の実施形態に対応するものであり、 以下の比較例 1, 実施例 1〜4、 比較例 2、 実施例 5〜9が該当する。
(比較例 1 )
粒径 8 mm以下で平均粒径が 2. 3 mm、 S i 02含有量が 3. 5 m a s s %の粉鉄鉱石、 リサイクルダス ト、 粒径 3 mm以下の蛇紋岩、 粒径 5 mm 以下の石灰石、 バインダ一としての生石灰および 5 mm以下の篩下焼結粉を 表 1の割合で配合した原料に外数で 4. 4ma s s %の粉コータスを加えた 焼結混合原料を、 ドラムミキサーで加湿しながら 3分間混合後、 3分間造粒 した平均粒径 4. 0 mmの通常擬似粒子を直径 φ 30 Ommの試験用のバッ チ式焼成炉に一定層厚になるように装入した。 ここで、 リサイクルダス トは 高炉ダストおよびミルスケール、 所内回収物を使用した (以下の実施例も同 様) 。 ここで、 平均粒径は質量基準の算術平均粒径である。 以下の実施例も 同様である。 算術平均粒径 Dは、 粒子を複数の粒子径範囲に分級し、 各粒子 径範囲の代表粒径 (範囲の中間値) を d、 各粒子径範囲の粒子の合計質量を Wとした場合に、 以下の式で表すことができる。
D =∑ (W - d) /∑W
擬似粒子の装入量は 4 5 k gであった。 焼成炉を排風圧 2 k P aで吸引しな がら、 プロパンガスを燃料とした点火バーナーで 2分間、 充填した原料層表 面に着火した後、 排風圧を 1 0 k P aまで上げて焼成し焼結鉱を製造した。 このときの、 焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品歩留ま り、 シャッター強度を測定した結果を表 3に示す。 これらに示すように、 生 産率、 5 mm以上の製品歩留まり、 シャッター強度は許容範囲であつたが、 得られた焼結鉱は金属 F eを含有していなかった。 (実施例 1 )
粒径 8 mm以下で平均粒径が 2. 3 mmの粉鉄鉱石と、 粉鉄鉱石に対し外 数で 1 0 m a s s %の炭材 (粉コ一タス) をドラムミキサーで加湿しながら 3分間混合した後、 直径 Φ 1 3 0 0 mm、 深さが 1 5 0 mmのディスクペレ タイザ一で 5分間加湿しながら造粒した後、 目開き 5 mmの篩いを通し、 直 径 5〜1 2 mmの還元鉄製造用粒子を製造した。 この還元鉄製造用粒子 1 3 . 5 k gと、 比較例 1と同じ条件で製造した擬似粒子 3 1. 5 k gをドラム ミキサーで 1分間混合した後、 比較例 1で使用した直径. φ 3 0 0 mmのバッ チ式焼成炉に一定層厚になるように装入し、 同じ条件で焼成した。 比較例 1 と同様、 このときの焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品 歩留まり、 シャッタ一強度を測定した結果を表 3に示す。 これらに示すよう に、 得られた焼結鉱は、 金属 F eの含有量が 8. 5 m a s s %と高く、 生産 率、 5 mm以上の製品歩留まり、 シャッター強度も良好であった。
(実施例 2 )
還元鉄製造用粒子の炭材配合量を粉鉄鉱石に対し外数で 1 5 m a s s %と した以外は、 実施例 1と同じ方法で製造した還元鉄製造用粒子 1 3. 5 k g と、 比較例 1と同じ条件で製造した擬似粒子 3 1. 5 k gを実施例 1と同様 に混合した後、 比較例 1で使用した直径 φ 3 0 0 mmのバッチ式焼成炉にー 定層厚になるように装入し、 同じ条件で焼成した。 比較例 1 と同様、 このと きの焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品歩留まり、 シャ ッター強度を測定した結果を表 3に示す。 これらに示すように、 得られた焼 結鉱は、 金属 F eの含有量が 1 5. 5 m a s s %と高く、 生産率、 5 mm以 上の製品歩留まり、 シャッター強度も良好であった。
(実施例 3 )
還元鉄製造用粒子の炭材配合量を粉鉄鉱石に対し外数で 2 O m a s s %と した以外は、 実施例 1と同じ方法で製造した還元鉄製造用粒子 1 3. 5 k g と、 比較例 1と同じ条件で製造した擬似粒子 3 1. 5 k gを実施例 1と同様 に混合した後、 比較例 1で使用した直径 ψ 30 Ommのバッチ式焼成炉にー 定層厚になるように装入し、 同じ条件で焼成した。 比較例 1と同様、 このと きの焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品歩留まり、 シャ ッター強度を測定した結果を表 3に示す。 この場合は、 金属 F eの含有量が 1 9. 7 m a s s %と高かったが、 還元鉄製造用粒子の周囲に一部過溶融状 態が見られたため、 生産率が 1. 4 1 t /m2/hと若干低下した。 5 mm 以上の製品歩留まり、 シャツタ一強度は良好であった。
(実施例 4)
還元鉄製造用粒子の炭材配合量を粉鉄鉱石に対し外数で 5 ma s s %とし た以外は、 実施例 1と同じ方法で製造した還元鉄製造用粒子 1 3. 5 k gと 、 比較例 1と同じ条件で製造した擬似粒子 3 1. 5 k gを実施例 1と同様に 混合した後、 比較例 1で使用した直径 ψ 300 mmのバッチ式焼成炉に一定 層厚になるように装入し、 同じ条件で焼成した。 比較例 1と同様、 このとき の焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品歩留まり、 シャツ タ一強度を測定した結果を表 3に示す。 この場合は、 金属 F e含有率が 0. 8 m a s s %であり、 金属 F eが得られたものの他の実施例よりも低く、 高 炉還元材比の低減効果は他の実施例より小さかった。 生産率は高かったが、 5 mm以上の製品歩留まり、 シャッター強度は他の実施例よりも低い値とな つた。
(比較例 2 )
還元鉄製造用粒子の炭材配合量を粉鉄鉱石に対し外数で 2 Oma s s %と した以外は、 実施例 1と同じ方法で製造した還元鉄製造用粒子のみを、 比較 例 1で使用した直径 φ 3 00 mmのバッチ式焼成炉に一定層厚になるように 装入し、 同じ条件で焼成した。 比較例 1と同様、 このときの焼結鉱の成分を 表 2に示し、 生産率、 5 mm以上の製品歩留まり、 シャッター強度を測定し た結果を表 3に示す。 この場合は、 金属 F e含有.率は 2 3. 2ma s s %と 高かったものの、 バッチ焼成炉の上部より 3 5 c m下側では過溶融が著し く、 中層より下層にかけては未焼成粒子が大量に残っており、 生産率、 5 m m以上の製品歩留まりが著しく低下した。
(実施例 5)
還元鉄製造用粒子の配合を粉鉄鉱石に対して内数で 6 ma s s %の生石灰 および外数で 1 5m a s s %の炭材とした以外は、 実施例 1と同じ方法で製 造した還元鉄製造用粒子 1 3. 5 k gと、 比較例 1と同じ条件で製造した擬 似粒子 3 1. 5 k gを実施例 1と同様に混合した後、 比較例 1で使用した直 径 φ 30 Ommのバッチ式焼成炉に一定層厚になるように装入し、 同じ条件 で焼成した。 比較例 1と同様、 このときの焼結鉱の成分を表 2に示し、 生産 率、 5 mm以上の製品歩留まり、 シャッター強度を測定した結果を表 3に示 す。 これらに示すように、 得られた焼結鉱は、 金属 F eの含有量が 1 7. 9 ma s s %と高く、 生産率、 5 mm以上の製品歩留まりは許容範囲であり、 シャッタ一強度は良好であった。
(実施例 6)
粉鉄鉱石に対し内数で 8 ma s s %の粒径 5 mm以下の石灰石および外数 で 1 5m a s s %の炭材を配合し、 ヘンシェル式ミキサーで澱粉と水を加え ながら 5分間混合した後、 1 6. 2 mmX 1 2 mmX 8. 8 mmのァーモン ド型カップを切り込んだ直径 40 Ommのダブルロール成型機を用いて 2 0 tの成型荷重で容積 1 c m3のプリケットを製造し、 これを還元鉄製造用粒 子とした。 この還元鉄製造用粒子 1 3. 5 k gと、 比較例 1と同じ条件で製 造した擬似粒子 3 1. 5 k gを実施例 1と同様に混合した後、 比較例 1で使 用した直径 φ 3 00 mmのバッチ式焼成炉に一定層厚になるように装入し、 同じ条件で焼成した。 比較例 1と同様、 このときの焼結鉱の成分を表 2に示 し、 生産率、 5 mm以上の製品歩留まり、 シャッター強度を測定した結果を 表 3に示す。 これらに示すように、 得られた焼結鉱は、 金属 F eの含有量が 2 1. 2 m a s s %と高く、 生産率、 5 mm以上の製品歩留まり、 シャツタ 一強度も良好であった。 特にシャッタ一強度は最も高い値を示した。
(実施例 7)
還元鉄製造用粒子の生石灰の配合を粉鉄鉱石に対して内数で 3. 8 m a s s %とし、 炭材配合量を粉鉄鉱石に対し外数で 1 5 m a s s %とした以外は 、 実施例 1と同様に混合した後、 比較例 1で使用した直径 3 0 O mmのパッ チ式焼成炉に一定層厚になるように装入し、 同じ条件で焼成した。 同じ方法 で製造した還元鉄製造用粒子のみを、 比較例 1で使用した直径 φ 3 0 O mm のバッチ式焼成炉に一定層厚になるように装入し、 同じ条件で焼成した。 比 較例 1と同様、 このときの、 焼結鉱の成分を表 2に示し、 生産率、 5 mni以 上の製品歩留まり、 シャッター強度を測定した結果を表 3に示す。 これらに 示すように、 得られた焼結鉱は、 金属 F eの含有量が 5. 2 m a s s %であ つた。 生産率、 5 mm以上の製品歩留まり、 シャッター強度は、 いずれも若 千低い値を示した。 また、 得られた焼結鉱には、 過剰に溶融した形跡が認め られた。
(実施例 8)
還元鉄製造用粒子の炭材配合量を粉鉄鉱石に対し外数で 5 m a s s %とし た以外は、 実施例 1と同じ方法で製造した還元鉄製造用粒子 2 0. O k gと 比較例 1と同じ条件で製造した擬似粒子 2 5. 0 k gを実施例 1と同様に 混合した後、 比較例 1で使用した直径 φ 3 0 O mmめバッチ式焼成炉に一定 層厚になるように装入し、 同じ条件で焼成した。 比較例 1と同様、 このとき の焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品歩留まり、 シャツ ター強度を測定した結果を表 3に示す。 これらに示すように、 得られた焼結 鉱は、 金属 F eの含有量が 2. 2 m a s s %であった。 また、 生産率、 5 m m以上の製品歩留まり、 シャッタ一強度も良好であった。 (実施例 9)
還元鉄製造用粒子の炭材配合量を粉鉄鉱石に対し外数で 2 0 ma s s %と した以外は、 実施例 1と同じ方法で製造した還元鉄製造用粒子 2. 4 k gと 、 比較例 1と同じ条件で製造した擬似粒子 4 2. 6 k gを実施例 1と同様に 混合した後、 比較例 1で使用した直径 φ 30 Ommのバッチ式焼成炉に一定 層厚になるように装入し、 同じ条件で焼成した。 比較例 1と同様、 このとき の焼結鉱の成分を表 2に示し、 生産率、 5 mm以上の製品歩留まり、 シャツ ター強度を測定した結果を表 3に示す。 この場合は、 金属 F eの含有量が 3 . 2ma s s %で還元的製造用粒子の周囲に一部過溶融状態が見られたもの の、 生産率、 5 mm以上の製品歩留まり、 シャッター強度は良好であった。 以上より、 本発明の範囲内の実施例では、 得られた焼結鉱は、 一部が還元 され、 金属 F eを含有していた。 したがって、 これらの焼結鉱を高炉で使用 すると、 前述したように、 高炉での還元剤比低減や CO 2削減効果が得られ ることとなる。 なお、 生産率、 歩留まりや、 シャッター強度も通常の焼結鉱 (比較例 1) と同等レベル以上であることが確認された。
表 1 配合割合(mass%)
銘柄 比較例 実施例 実施例 実施例 実施例 比較例 実施例 実施例 実施例 実施例 実施例
1 1 2 3 4 2 5 6 7 8 9 粉鉄鉱石 68.0 47.6 47.6 47.6 47.6 0.0 47.6 . 47.6 47.6 38.1 64.6 高炉ダスト 1.3 0.9 0.9 0.9 0.9 0.0 0.9 0.9 0.9 0.7 1.2 ミルスケール 1.9 1.3 1.3 1.3 1.3 0.0 1.3 1.3 1.3 1.0 1.8 所内回収物 4.3 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 2.4 4.1 篩下焼結鉱 9.6 6.7 6.7 6.7 6.7 0.0 6.7 6.7 6.7 5.4 9.1 焼結原料
蛇紋岩 1.4 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.8 1.3 石灰石 7.8 5.4 5.4 5.4 5.4 0.0 5.4 5.4 5.4 4.3 7.3 生石灰 1.5 1.1 1.1 1.1 1.1 0.0 1.1 1.1 1.1 0.9 1.5 計 95.8 67.0 67.0 67.0 67.0 0.0 67.0 67.0 67.0 53.6 90.9 粉コークス添加 4.2 3.0 3.0 3.0 3.0 0.0 3.0 3.0 3.0 2.4 4.1 粉鉄鉱石 0.0 27.3 26.1 25.0 28.5 83.3 24.5 24.0 25.1 41.8 4.2
JS兀鉄 生石灰 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 1.0 0.0 0.0 製造用粒
子 石灰石 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 粉コークス添加 0 2.7 3.9 5.0 1.5 16.7 3.9 3.9 3.9 2.2 1.8 兀鉄
製造用
CaO/Si02 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.1 0.9 0.0 0.0 粒子塩
基度
表 2
(mass%) 比較 実施 実施 実施 実施 比較 実施 実施 実施 実施 実施 例 1 例 1 例 2 例 3 例 4 例 2 例 5 例 6 例 7 例 8 例 9 トータル
59.3 62.1 65.0 68.1 60.3 67.9 64.6 65.2 61.80 62.2 60.4
Fe 金属 Fe 0 8.5 15.5 19.7 0.8 23.2 21.2 17.9 5.2 2.2 3.2
比較 実施 実施 実施 実施 比較 実施 実施 実施 実施 実施 例 1 例 1 例 2 例 3 例 4 例 2 例 5 例 6 例 7 例 8 例 9
1.42 1.45 1.44 1.41 1.46 0.63 1.42 1.44 1.40 1.48 1.43
+5mm
78.3 79.2 80.1 82.3 77.2 49.2 83.8 85.3 76.0 80.0 80.5
(%)
S.I. + 10
84.2 86.3 88.2 85.7 80.1 86.4 86.7 88.5 82.2 85.4 84.7
(%)
2. 第 2の実施例
第 2の実施例は上記第 2の実施形態に対応するものであり、 以下の比較例 1 1, 実施例 1 1〜: 1 4、 比較例 1 2、 実施例 1 5、 比較例 1 3, 1 4が該 当する。
(比較例 1 1 )
粒径 8 mm以下で平均粒径が 2. 3 mm、 S i 02を 3. 5 m a s s %含 有する粉鉄鉱石、 高炉ダストやミルスケール等のリサイクル粉、 粒径 3 mm 以下の蛇紋岩、 粒径 5 mm以下の石灰石、 造粒バインダ一としての生石灰お よび 5 mm以下の篩下焼結粉を表 4の割合で配合した、 1 2 5 ;z m以下の粒 子を 4 5 m a s s %含有する原料に外数で 4. 0 m a s s %の粉コークスを 加えた焼結混合原料を、 ドラムミキサーで加湿しながら 3分間混合後、 さら に 3分間造粒した平均粒径 4. 0 mmの通常擬似粒子を直径 φ 30 Ommの 試験用のバッチ式焼成炉に一定層厚になるように装入した。 擬似粒子の装入 量は乾燥重量で 45 k gであった。 焼成炉を排風圧 2 k P aで吸引しながら 、 プロパンガスを燃料とした点火バーナーで 2分間、 充填した原料層表面に 着火した後、 排風圧を 1 0 k P aまで上げて焼成し焼結鉱を製造した。 この ときの、 焼結鉱の成分を表 5に示し、 生産率、 5mm以上の製品歩留まり、 シャッター強度を測定した結果を表 6に示す。 これらに示すように、 生産率 , 1 0 mm以上の製品歩留まり、 シャッター強度は許容範囲であつたが、 得 られた焼結鉱は金属 F eを含有していなかった。
(実施例 1 1)
同様の粉鉄鉱石に粉コークスを外数で 1 5ma s s %加え、 ドラムミキサ 一で水分を加えながら 3分間混合した後、 攪拌スク リユーを有するミキサー で、 40ma s s %濃度の α化デンプン水溶液をバインダーとして添加しな がら 2分間混合し、 ダブルロール成形機により 1 4 70 kNZrnの成形圧を かけながら、 長さ 3 5mmX幅 2 5mmX厚さ 1 6mmのァ一モンド型ブリ ケット粒子を製造した。 このプリケット粒子を内数で 1 Oma s s %となる ように比較例 1 1で製造した擬似粒子と混合した後、 40 k gを試料として 比較例 1 1と同様の方法で焼成した。 このときの、 焼結鉱の成分を表 5に示 し、 生産率、 5 mm以上の製品歩留まり、 シャッター強度を測定した結果を 表 6に示す。 これらに示すように、 得られた焼結鉱は、 金属 F eの含有量が 3. 4 m a s s %であり、 生産率、 1 0 mm以上の製品歩留まり、 シャツタ 一強度も良好であった。
(実施例 1 2)
粉コークス配合量を粉鉄鉱石に対し外数で 2 Oma s s %とした以外は、 実施例 1 1と同じ方法でプリケット粒子を製造し、 このプリケット粒子を内 数で 1 0 m a s s %となるように比較例 1 1で製造した擬似粒子と混合した 後、 40 k gを試料として比較例 1 1と同様の方法で焼成した。 このときの 、 焼結鉱の成分を表 5に示し、 生産率、 5 mm以上の製品歩留まり、 シャツ ター強度を測定した結果を表 6に示す。 これらに示すように、 得られた焼結 鉱は、 金属 F eの含有量が 5. 6 m a s s %であり、 生産率、 1 0 mm以上 の製品歩留まり、 シャッター強度も良好であった。
(実施例 1 3)
ブリゲット粒子の配合量を.内数で 5 ma s s %とした以外は、 実施例 1 2 と全く同様の方法で焼成を行い、 焼結鉱を製造した。 このどきの焼結鉱の成 分を表 5に示し、 生産率、 5 mm以上の製品歩留まり、 シャッター強度を測 定した結果を表 6に示す。 これらに示すように、 得られた焼結鉱は、 金属 F eの含有量が 3. 0 m a s s %であり、 生産率、 1 0 mm以上の製品歩留ま り、 シャツタ一強度も良好であった。
(実施例 1 4)
ブリケット粒子のサイズを 1 9 mmX 1 4 mmX 8 mmとした以外は、 実 施例 1 1と同じ方法でプリケットを製造し、 このプリケット粒子を内数で 3 Oma s s %となるように比較例 1 1で製造した擬似粒子と混合した後、 実 施例 1 1と同様に焼成した。 このときの焼結鉱の成分を表 5に示し、 生産率 、 5 mm以上の製品歩留まり、 シャツタ一強度を測定した結果を表 6に示す 。 これらに示すように、 得られた焼結鉱は、 金属 F eの含有量が 1 0. 2 m a s s %であり、 生産率、 1 0 mm以上の製品歩留まり、 シャッター強度も 良好であった。
(実施例 1 5)
ブリケット粒子に配合する粉コークス量を 2 5 ma s s %にした以外は、 実施例 1 2と同様にしてプリケット粒子を製造し、 擬似粒子と混合して実施 例 1 2と同様に焼成した。 このときの焼結鉱の成分を表 5に示し、 生産率、 5 mm以上の製品歩留まり、 シャッター強度を測定した結果を表 6に示す。 この場合は、 ブリゲットは相当程度溶融したが、 金属 F eの含有量が 2. 1 m a s s %であつ f 。
(実施例 1 6)
粉鉄鉱石に対しバインダーおよび C a O源として生石灰を 6. Oma s s %混合した原料に、 粉コ一クスを外数で 2 Om a s s %配合した以外は、 実 施例 1 1と同じ方法でプリケット粒子を製造し、 このプリケット粒子を内数 で 1 Oma s s %となるように比較例 1 1で製造した擬似粒子と混合した後 、 40 k gを試料として比較例 1 1と同様の方法で焼成した。 のときの、 焼結鉱の成分を表 5に示し、 生産率、 5 mm以上の製品歩留まり、 シャツタ 一強度を測定した結果を表 6に示す。 これらに示すように、 得られた焼結鉱 は、 金属 F eの含有量が 7. 3 m a s s %であり、 生産率、 1 0 mm以上の 製品歩留まり、 シャッター強度も良好であった。
(実施例 1 7)
粉鉄鉱石に対しバインダ一および C a O源として生石灰を 2. Oma s s %混合した原料に、 粉コータスを外数で 2 Oma s s %配合した以外は、 実 施例 1 1と同じ方法でプリケット粒子を製造し、 このプリケット粒子を内数 で 1 Oma s s %となるように比較例 1 1で製造した擬似粒子と混合した後 、 40 k gを試料として比較例 1 1と同様の方法で焼成した。 このときの、 焼結鉱の成分を表 5に示し、 生産率、 5 mm以上の製品歩留まり、 シャツタ 一強度を測定した結果を表 6に示す。 これらに示すように、 得られた焼結鉱 は、 金属 F eの含有量が 4. 8 m a s s %であり、 生産率、 1 0 mm以上の 製品歩留まり、 シャッター強度も許容範囲の値であった。
(実施例 1 8)
プリケット粒子を直径 5 mmの球形とした以外は、 実施例 1 1と同じ方法 でプリケットを製造し、 このプリケット粒子を内数で 5 Oma s s %になる ように比較例 1 1で製造した擬似粒子と混合した後、 実施例 1 1と同様に焼 成した。 このときの、 焼結鉱の成分を表 5に示し、 生産率、 5mm以上の製 品歩留まり、 シャッター強度を測定した結果を表 6に示す。 これらに示すよ うに、 得られた焼結鉱は、 金属 F eの含有量が 3. 8 m a s s %であり、 焼 成後の焼結鉱には、 プリケットが過剰溶融してできたと考えられる空孔も見 られた。 また、 生産率、 1 Omm以上の製品歩留まり、 シャッター強度は許 容範囲の値であった。 以上より、 本発明の範囲内の実施例では、 得られた焼結鉱は、 一部が還元 され、 金属 F eを含有していた。 したがって、 これらの焼結鉱を高炉で使用 すると、 前述したように、 高炉での還元剤比低減や CO 2削減効果が得られ ることとなる。 なお、 生産率、 歩留まりや、 シャッター強度も通常の焼結鉱 (比較例 1 1) と同等レベル以上であることが確認された。 表 4
(Dry mass%)
Figure imgf000052_0001
表 5
(mass%)
Figure imgf000052_0002
表 6
比較 実施 実施 実施 実施 実施 実施 実施 実施 例 11 例 11 例 12 例 13 例 14 例 15 例 16 例 17 例 18 生産率
1.5 1.48 1.46 1.53 1.51 1.46 1.55 1.49 1.48
(t/m2/h)
+5mm
78 82 85 82.3 81.4 76.3 83.8 83.2 76.0
(%)
S.I. + 10
82 85 87.3 81.8 85.3 83.2 88.9 84.2 82.2
(%) 3 . 第 3の実施例
第 3の実施例は上記第 3の実施形態に対応するものであり、 ここでは、 鉄 鉱石としてペレツトフイードを用い、 C a O系副原料として石灰石および生 石灰を用い、 炭材として粉コークスを用いた。 これらの組成を表 7に示す。 上記焼結原料を用い造粒物および圧縮成形体を作製した。 表 8および表 9 に、 それぞれ造粒物のコァ部分の原料配合および圧縮成形体の原料配合を示 す。 なお、 造粒物としては表 8に示すコア部分の外側に凝結剤として装入原 料の 3 m a s s %となるように粉コークスを被覆したものを用いた。 また、 圧縮成形体としては表 1 0の A、 B、 Cに示すような寸法および体積のもの を用いた。
これら造粒物おょぴ圧縮成形体を用いて焼結鍋試験を行った。 焼結鍋試験 では、 原料の事前処理は同一の混合 ·造粒条件で行い、 原料充填層は直径 2 7 0 m m X高さ 3 0 0 m mとし、 吸引負圧 6 k P aにて実施した。 その結果 を表 1 1に示す。
表 1 1のうち比較例 2 1は、 圧縮成形体を用いず、 造粒物のみを使用して 焼結鉱を製造した場合である。 実施例 2 1は、 比較例 2 1の焼結原料配合に 対して表 1 0の Aに示す圧縮成形体を焼結機装入原料として 3 3 m a s s % 添加し、 焼結原料充填層内の全体に装入して焼成した場合である。 生産率、 成品歩留は比較例 2 1と同等であり、 造粒物部分の還元率も 4 0 %で比較例 2 1と同等であるが、 圧縮成形体部分の還元率が 6 0 %と高く、 焼結鉱全体 の還元率は 4 6 . 6 %で基準 1よりも著しく高い値となった。
実施例 2 2は、 実施例 2 1に対して、 圧縮成形体を焼結原料充填層内の下 部 3 / 4に装入して焼成した場合である。 生産率、 成品歩留は比較例 2 1お よび実施例 2 1と同等であり、 造粒物部分の還元率も 4 0 %で比較例 2 1お よび実施例 2 1と同等であるが、 圧縮成形体部分の還元率が 6 7 %と高く、 焼結鉱全体の還元率は 4 9 %で比較例 2 1よりも著しく高い値となった。 実施例 2 3は、 実施例 2 2に対して、 圧縮成形体のサイズを拡大し、 表 1 0の Bとした場合である。 圧縮成形体のサイズが増大したことで焼成時の充 填層の通気性が改善し、 成品歩留まりは悪化したものの焼成時間の短縮によ り生産率は 1. 2 TZm2/h rに改善した。 また、 圧縮成形体部分の還元 率が高く、 焼結鉱全体の還元率は 4 7. 3%と、 やはり比較例 2 1よりも著 しく高い値となった。
実施例 24は、 実施例 2 3に対して、 圧縮成形体を焼結原料充填層内で下 部 1/2に装入して焼成した場合である。 生産率、 成品歩留は比較例 2 1と 同等であり、 造粒物部分の還元率も 40 %で比較例 2 1と同等であるが、 圧 縮成形体部分の還元率が 6 9%と高く、 焼結鉱全体の還元率は 49. 6%で 比較例 2 1よりも著しく高い値となった。
実施例 2 5は、 実施例 2 3に対して、 圧縮成形体を焼結機装入原料として 5 Om a s s %添加して焼成した場合である。 生産率、 成品歩留は比較例 2 1と同等であり、 造粒物部分の還元率も 40%で比較例 2 1と同等であるが 、 圧縮成形体部分の還元率が 60 %と高く、 焼結鉱全体の還元率は 50%で 比較例 2 1よりも著しく高い値となった。
実施例 26は、 実施例 2 3に対して、 圧縮成形体の含有量を焼結機装入原 料全体の 4ma s s %に変えて焼成した場合である。 生産率、 成品歩留は比 較例 2 1と同等であった。 焼結鉱全体の還元率は 4 1 %と実施例 2 3よりも 低いが、 比較例 2 1よりも若干高い値となった。
実施例 2 7は、 実施例 2 3に対して、 圧縮成形体の含有量を焼結機装入原 料全体の 5 5ma s s %に変えた場合である。 成品歩留は比較例 2 1と同等 であり、 生産率は比較例 2 1よりも高かった。 しかし、 通気性が上がりすぎ 、 圧縮成形体の還元率が低下し、 焼結鉱全体の還元率は 46 %と比較例 2 1 よりも高いが実施例 2 3よりも低い値となった。
実施例 28は、 実施例 2 3に対して、 圧縮成形体の大きさを小さく して焼 成した場合である。 生産率、 成品歩留は比較例 2 1と同等であった。 しかし 、 焼成が不安定化する傾向があり、 焼結鉱全体の還元率は 44%と比較例 2 1より高かったが実施例 2 3よりも低い値となった。
実施例 2 9は、 実施例 2 3に対し、 圧縮成形粒子の C a O/S i 02の値 を 0. 9と低くした場合である。 生産率、 成品歩留は比較例 2 1と同等であ つた。 しかし、 C a Oノ S i 02が低いため、 圧縮成形体の還元率が低下し 、 焼結鉱全体の還元率は 4 3 %と基準 1よりも若干高いが実施例 2 3よりも 低い値となった。
表 7
(mass%)
Figure imgf000056_0001
表 8
(mass%)
Figure imgf000056_0002
表 9
(mass )
Figure imgf000056_0003
表 10
A B C
法 (mm) 19 X 14 X 8 36 x 26 x 20 6 X4X4
体積 (cm3) 1.2 10 0.05 表 1 1 比較例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 21 21 22 23 24 25 26 27 28 29 圧縮成形体使用率(mass%) 0 33 33 33 33 50 4 55 33 33 造粒物使用率 (masso^) 100 67 67 67 67 50 96 45 67 67 造粒物に対する成形品の割
0 0.5 0.5 0.5 0.5 1.0 0.04 1.2 0.2 0.5 合 (-)
圧縮成形粒子の配合 (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1) (2)
()内:成形粒子の CaO/Si02 (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (2.6) (0.9) 圧縮成形体サイズ 一 A A B B B B B C B 圧縮成形体装入位置 - 全体 3/4 3/4 1 /2 3/4 3/4 3/4 3/4 3/4 生産率 (T/m2/hr) 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.4 1.0 1.2 成品歩留(+5mm) (%) 87 87 88 87 87 86 87 87 87 87 還元率 (圧縮成形体部分) - 60 67 62 69 60 65 50 一 49
(%)
還元率 (造粒物部分)(%) 40 40 40 40 40 40 40 41 - 40 還元率(全体)(%) 40 46.6 49 47.3 49.6 50 41 46 44 43
4 . 第 4の実施例
第 4の実施例は上記第 4の実施形態に対応するものであり、 ここでは、 鉄 鉱石としてペレツトフイードを用い、 C a O系副原料として石灰石および生 石灰を用い、 炭材として粉コ一クスを用いた。 これらの組成を表 1 2に示す 上記焼結原料を用い造粒物および圧縮成形体を作製した。 表 1 3に造粒物 のコア部分の原料配合および圧縮成形体の原料配合を示す。 なお、 造粒物と しては表 2に示すコア部分の外側に凝結剤として装入原料の 3 m a s s %と なるように粉コークスを被覆したものを用いた。 また、 圧縮成形体としては 表 1 4に示すような寸法および体積のものを用いた。
これら造粒物および圧縮成形体を用いて焼結鍋試験を行った。 焼結鍋試験 では、 原料の事前処理は同一の混合 ·造粒条件で行い、 原料充填層は直径 2 7 0 tn m X高さ 3 0 0 m mとし、 吸引負圧 6 k P aにて実施した。 圧縮成形 体の配合および特性を表 1 5に示し、 試験結果を表 1 6に示す。
表 1 5、 1 6のうち実施例 3 1、 3 2は、 圧縮成形体を焼結機装入原料と して 3 3 m a s s %添加したものであり、 実施例 3 1は C a O源として石灰 石を用い、 実施例 3 2は生石灰を用いたものである。 また、 これら実施例 3 1、 3 2とも圧縮成形体の F e / C a Oの値が造粒物の値と同じであり、 バ インダ一としてデンプンを 1 . 4 m a s s %添加している。 j¾縮成形体の圧 潰強度および落下強度は、 実施例 3. 1よりも実施例 3 2のほうが高く、 造粒 物と混合して焼成試験を行った結果では、 生産率、 成品歩留、 および還元率 は実施例 3 1と実施例 3 2とで同等であった。
実施例 3 3は、 実施例 3 1に対しては、 バインダーであるデンプンおよび C a O源である石灰石の代わりに、 バインダー効果のある生石灰を配合した 場合であり、 実施例 3 2に対してはバインダ一であるデンプンを添加しない 場合であり、 本発明の範囲内である。 圧縮成形体の圧潰強度および落下強度 は実施例 3 2より低いが、 実施例 3 1と同等であった。 また、 造粒物と混合 して焼成試験を行った結果では、 生産率、 成品歩留は実施例 3 1と同等であ り、 還元率は実施例 3 1よりも若干低い程度で問題のないレベルであった。 実施例 3 4は、 実施例 3 1に対して配合原料として微細な原料を使用した 場合であり、 混合後の原料について、 粒径が 1 2 5 μ πι以下の割合が、 実施 例 3 1の 5 5 m a s s %に対して 7 5 m a s s %であり成品の圧潰強度およ び落下強度は実施例 3 1より低いが、 取り扱う際には問題のない程度であつ た。 また、 造粒物と混合して焼成試験を行った結果では、 生産率、 成品歩留 は実施例 3 1と同等であつたが、 圧縮成形体部分の還元率は 6 8 %であり、 実施例 3 1の 6 0 %より向上した。
実施例 3 5は、 実施例 3 1に対して C a Oを低減させた配合であり、 F e / C a Oは実施例 3 1に対して 0 . . 7で、 本発明の範囲内である。 造粒物と 混合して焼成試験を行った結果では、 生産率、 成品歩留は実施例 3 1と同等 であるが、 圧縮成形体部分の還元率は 6 5 %であり、 実施例 3 1の 6 0 %よ り向上した。
実施例 3 6は、 実施例 3 1に対して C a Oを低減させた配合であり、 F e Z C a Oは基準 1に対して 0 . 4で、 本発明の範囲内である。 造粒物と混合 して焼成試験を行った結果では、 生産率、 成品歩留は実施例 3 1と同等であ るが、 圧縮成形体部分の還元率は 6 3 %であり、 実施例 3 1の 6 0 %より向 上した。
実施例 3 7は、 実施例 3 2に対して C a Oを低減させた配合であり、 F e / C a Oは実施例 3 2に対して 0 . 7で、 本発明の範囲内である。 造粒物と 混合して焼成試験を行った結果では、 生産率、 成品歩留は実施例 3 2と同等 であるが、 圧縮成形体部分の還元率は 6 8 %であり、 実施例 3 2の 6 2 %よ り向上した。
実施例 3 8は、 実施例 3 2に対して C a Oを低減させた配合であり、 F e /C a Oは実施例 3 2に対して 0. 4で、 本発明の範囲内である。 造粒物と 混合して焼成試験を行った結果では、 生産率、 成品歩留は実施例 3 2と同等 であるが、 圧縮成形体部分の還元率は 6 5 %であり、 実施例 3 2の 6 2%よ り向上した。
実施例 39は、 実施例 3 1, 3 2のペレツ トフィードに変えて 3 mm以下 の鉄鉱石粉を圧縮成形体の原料として使用した場合である。 生産率、 成品歩 留は実施例 3 1, 3 2と同程度であるが、 圧縮成形体部分の還元率が 48% と実施例 3 1, 3 2よりも低かった。
実施例 40は、 実施例 3 9に対し、 鉄鉱石粉を混合前に粉砕し 1 mm以下 とした場合であり、 混合原料全体で 1 2 5 μ m以下の割合が 40 m a s s % であり本発明の範囲内のものである。 造粒物と混合して焼成試験を行った結 果では、 生産率、 成品歩留は実施例 3 9と同等であるが、 圧縮成形体部分の 還元率は 5 6 %であり、 実施例 3 9の 48 %より向上した。
実施例 4 1は、 実施例 3 9に対し、 鉄鉱石粉を混合前に粉砕し 1 mm以下 とした場合であり、 混合原料全体で 1 2 5 μ m以下の割合が 5 8 m a s s % であり本発明の範囲内のものである。 造粒物と混合して焼成試験を行った結 果では、 生産率、 成品歩留は実施例 3 9と同等であるが、 圧縮成形体部分の 還元率は 6 2%であり、 実施例 3 9の.48%より向上した。
実施例 4 2は、 上記実施例 34の圧縮成形体部分の C a OZS i 02を 1 .. 1に変化させたものである。 生産率、 成品歩留は実施例 34と同等である が、 圧縮成形体部分の還元率は 5 5 %であり、 実施例 34よりは低い値とな つた。 表 1 2
(mass%)
Figure imgf000061_0001
表 1 3
(mass%)
Figure imgf000061_0002
表 1 4
寸法、 mm) 36 X 26 X 20 体積 (cm3) 6 表 1 5 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 31 32 33 34 35 36 37 38 39 40 41 42
78.5 81.6 81.6 78.5 78.5 へ'レットフ ド 75.6 69.1 79.4 77.0 0 0 0
(-i mm) (-1 mm) (-1 mm) (微細) (微細)
78.5 78.5 78.5 (- 鉄鉱石粉 0 0 0 0 0 0 0 0 0
(-3mm) (-1 mm) 0.5mm)
5.4 5.4
生石灰 0 0 0 0 7.9 10.8 0 0 0 0
(-1 mm) (-1 mm)
9.0 9.0 9.0 9.0 9.0 7.4 成形品 石灰石 0 0 12.4 19.8 0 0
(-5mm) (微細) (-5mm) (-5mm) (-5mm) (-5mm) の配合
kmass%) 1.6 珪石 0 0 0 0 0 0 0 0 0 0 0
(-1 mm)
12.5 13.0 13.0 12.5 12.5 12.5 12.5 12.5 粉〕 -クス 12.1 1 1.0 12.7 12.3
(-1 mm; (-1 mm) (-1 mm) (微細) (-1 mm (-1 mm; (-1 mm) (-1 mm)
Λ·インダー添加量
1.4 1.4 0 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 (テ'ン: 7'ン.外数? 4)
成形品中の
2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 1.1 CaO/Si02
造粒粒子の Fe/CaOに対する
1.0 1.0 1.0 1.0 0.7 0.4 0.7 0.4 1.0 1.0 1.0 1.4 成形粒子の Fe/CaOの割合
混合後粒径 125 ju m以下の割
55 58 58 75 - 』 一 - - 24 40 58 77 合 (%)
圧潰強度 (kg) 92.9 125.3 95.6 88.2 - - - - 82.2 89.8 92.5 91.2 落下強度 (+10mm) (%) 93.2 96.6 93.0 84.3 一 - - - 91.0 92.4 92.6 93.0 落下強度 (+5mm) (%) 95.5 97.8 95.7 86.6 一 - - - 93.4 94.8 95.1 95.4
表 1 6
実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 実施例 31 32 33 34 35 36 37 38 39 40 41 42 圧縮成形体使用率(mass%) 33 33 33 33 33 33 33 33 33 33 33 33 造粒物使用率 (masS%) 67 67 67 67 67 67 67 67 67 67 67 67 生産率(T/m2/hr) 1.18 1.22 1.18 1.20 1.19 1.18 1.18 1.17 1.19 1.20 1.22 1.18 成品歩留(+5mm) (%) 87 88 79 88 89 87 88 89 87 88 87 89 還元率 (圧縮成形体部分)(%) 60 62 45 68 65 63 68 65 48 56 62 55 還元率 (造粒物部分)(%) 40 39 40 41 42 42 42 40 40 40 41 42 還元率 (全体)(%) 46.7 46.7 41.7 50.0 49.7 49.0 50.7 49.0 42.6 45.3 47.9 46.3

Claims

請求の範囲
1 . 焼結原料として鉄鉱石と炭材と C a O系副原料とを用い、 焼結原料を焼 結機に装入して原料層を構成し、 この原料層を焼成してなり、 鉄鉱石の一部 が還元された半還元焼結鉱であって、
少なくとも鉄鉱石と炭材とを成形してなる複数の還元鉄製造用粒子が前記 原料層の一部を構成し、 焼成により鉄鉱石の一部が還元され、 かつ金属 F e を含有することを特徴とする半還元焼結鉱。
2 . 前記還元鉄製造用粒子は、 前記原料層の 5〜 5 0 m a s s %であること を特徴とする請求の範囲 1に記載の半還元焼結鉱。
3 . 前記還元鉄製造用粒子の 1個あたりの容積が 1 0 c m 3以下であること を特徴とする請求の範囲 1または請求の範囲 2に記載の半還元焼結鉱。
4 . 焼結原料として鉄鉱石と炭材と C a O系副原料とを用い、 焼結原料を焼 結機に装入して原料層を構成し、 この原料層を焼成して半還元焼結鉱を製造 する半還元焼結鉱の製造方法であって、
鉄鉱石と鉄鉱石に対して外数で 5 m a s s %以上の炭材とを成形してなる 複数の還元鉄製造用粒子を前記原料層にその一部として混合して焼成するこ とにより鉄鉱石の一部を還元し、 金属 F eを含有する半還元焼結鉱とするこ とを特徴とする半還元焼結鉱の製造方法。
5 . 焼結原料として鉄鉱石と炭材と C a O系副原料とを用い、 焼結原料を焼 結機に装入して原料層を構成し、 この原料層を焼成して鉄鉱石の一部が還元 された半還元焼結鉱を製造する方法であって、 鉄鉱石に C a O系副原料を加えた混合粉と混合粉に対して外数で 5 m a s s %以上の炭材とを成形して複数の還元鉄製造用粒子とし、 その際に前記 C a O系副原料は、 還元鉄製造用粒子の灼熱減量を除いた成分で C a O Z S i O 2の質量比が 1以上となるように配合し、 これら還元鉄製造用粒子を、 前 記原料層にその一部として混合して焼成することにより鉄鉱石の一部を還元 し、 金属 F eを含有する半還元焼結鉱とすることを特徴とする半還元焼結鉱 の製造方法。
6 . 前記還元鉄製造用粒子は、 原料をロール成形機により圧縮成形したもの 、 または原料を転動造粒したものであることを特徴とする請求の範囲 4また は請求の範囲 5に記載の半還元焼結鉱の製造方法。
7 . 焼結原料として鉄鉱石と炭材と C a O系副原料とを用い、 焼結原料を焼 結機に装入して原料層を構成し、 この原料層を焼成して鉄鉱石の一部が還元 された半還元焼結鉱を製造する方法であって、
鉄鉱石と鉄鉱石に対して外数で 1 0〜 2 O m a s s %の炭材とを配合し、 さらに水と必要に応じてバインダ一を加えて混合し、 この混合物をロール成 形機で圧縮成形して成形粒子とし、 この成形粒子を内数で 5〜 5 0 m a s s %配合したものを焼結原料として用い、
焼成により鉄鉱石の一部を'還元して、 焼結鉱全体の平均値として、 3 m a s s %以上の金属 F eを含有させることを特徴とする半還元焼結鉱の製造方 法。
8 . 成形粒子を製造するための原料が、 鉄鉱石で 8 m m以下、 炭材で 5 m m 以下であることを特徴とする請求の範囲 7に記載の半還元焼結鉱の製造方法
9. 前記成形粒子を製造するための原料は 1 2 5 μ πι以下の粒子を 4 Om a s s %以上含むことを特徴とする請求の範囲 8に記載の半還元焼結鉱の製造 方法。
1 0. 焼結原料として鉄鉱石と炭材と C a O系副原料とを用い、 焼結原料を 焼結機に装入して焼成して半還元焼結鉱を製造する半還元焼結鉱の製造方法 であって、
鉄鉱石に C a O系副原料を加えた混合粉と混合粉に対して外数で 1 0〜 2 Oma s s %炭材とを配合し、 さらに水と必要に応じてバインダーを加えて 混合し、 この混合物をロール成形機で圧縮成形して成形粒子とし、 その際に 前記 C a O系副原料は、 成形粒子の灼熱減量を除いた成分で C a O/S i O 2が 1以上となるように配合し、 この成形粒子を内数で 5〜 5 0 m a s s % 配合したものを焼結原料として用い、
焼成により鉄鉱石の一部を還元して、 焼結鉱全体の平均値として、 3 m a s s %以上の金属 F eを含有させることを特徴とする半還元焼結鉱の製造方 法。
1 1. 成形粒子を製造するための原料が、 鉄鉱石で 8 mm以下、 炭材で 5 m m以下、 C a O系副原料で 5 mm以下であることを特徴とする請求の範囲 1 0に記載の半還元焼結鉱の製造方法。
1 2. 前記成形粒子を製造するための原料は 1 2 5 μ m以下の粒子を 40 m a s s %以上含むことを特徴とする請求の範囲 1 1に記載の半還元焼結鉱の 製造方法。
1 3. 前記ロール成形機での圧縮成形した成形粒子として、 ロール成形機で 所定形状に成形された複数のブリケット、 またはロール成形機で板状、 シー ト状もしくは棒状に成形した後に所定の大きさに粉砕したものを用いること を特徴とする請求の範囲 7から請求の範囲 1 2のいずれか 1項に記載の半還 元焼結鉱の製造方法。
1 4. 前記成形粒子の 1個あたりの容積が 1 0 c m3以下であることを特徴 とする請求の範囲 7から請求の範囲 1 3のいずれか 1項に記載の半還元焼結 鉱の製造方法。
1 5. 焼結原料として鉄鉱石と炭材と副原料とを焼結機に装入して焼成し、 鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造するにあたり、 焼結原料のうち鉄鉱石の一部および炭材の一部、 または焼結原料のうち鉄鉱 石の一部、 炭材の一部および副原料の一部を予め圧縮成形して圧縮成形体と し、 焼結原料の残部を造粒物とし、 これらを混合して焼成することを特徴と する半還元焼結鉱の製造方法。
1 6. 前記圧縮成形体は、 体積が 1 O.c m3以下であることを特徴とする請 求の範囲 1 5に記載の半還元焼結鉱の製造方法。
1 7. 前記圧縮成形体を焼結機に装入するに際し、 原料層下部 3/4以下の 領域に装入することを特徴とする請求の範囲 1 5または請求の範囲 1 6に記 載の半還元焼結鉱の製造方法。
1 8. 前記圧縮成形体の混合割合を 5 Oma s s %以下とすることを特徴と する請求の範囲 1 5から請求の範囲 1 7のいずれか 1項に記載の半還元焼結 鉱の製造方法。
1 9 . 鉄鉱石と炭材と副原料とを焼結原料として使用し、 焼結原料のうち鉄 鉱石の一部および炭材の一部、 または焼結原料のうち鉄鉱石の一部、 炭材の 一部および副原料の一部を予め均一に混合後、 圧縮成形して圧縮成形体とし 、 焼結原料の残部を造粒物とし、 これらを混合して焼成することにより鉄鉱 石の一部を炭材により還元してなる半還元焼結鉱を製造するにあたり、 圧縮 成形体を構成する原料としての鉄鉱石と炭材が、 これら全体として 1 2 5 μ m以下の粒径のものが 4 O m a s s %以上となるようにすることを特徴とす る半還元焼結鉱の製造方法。
2 0 . 前記圧縮成形体を構成する原料としての鉄鉱石と炭材が、 これら全体 として 1 2 5 μ m以下の粒径のものが 7 0 m a s s %以上となるようにする ことを特徴とする請求の範囲 1 9に記載の半還元焼結鉱の製造方法。
2 1 . 鉄鉱石と炭材と副原料とを焼結原料として使用し、 焼結原料のうち鉄 鉱石の一部、 炭材の一部および副原料の一部を予め均一に混合後、 圧縮成形 して圧縮成形体とし、 焼結原料の残部を造粒物とし、 これらを混合して焼成 することにより鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造 するにあたり、 前記副原料を C a O源を含有する.ものとし、 C a O源のうち 一部または全部として生石灰を用い、 前記圧縮成形体は生石灰を含有すると ともにバインダ一を使用せずに成形されることを特徴とする半還元焼結鉱の 製造方法。
2 2 . 鉄鉱石と炭材と副原料とを焼結原料として使用し、 焼結原料のうち鉄 鉱石の一部、 炭材の一部および副原料の一部を予め均一に混合後、 圧縮成形 して圧縮成形体とし、 焼結原料の残部を造粒物とし、 これらを混合して焼成 することにより鉄鉱石の一部を炭材により還元してなる半還元焼結鉱を製造 するにあたり、 前記副原料を C a O源を含有するものとし、 前記圧縮成形体 中の C a O源の配合量を、 圧縮成形体中の C a O / S i 0 2が 1以上になる ような配合量とすることを特徴とする半還元焼結鉱の製造方法。
PCT/JP2005/009504 2004-05-19 2005-05-18 半還元焼結鉱およびその製造方法 WO2005111248A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05743528A EP1749894A4 (en) 2004-05-19 2005-05-18 SINTERED SEMI-REDDED ORE AND METHOD OF PRODUCTION THEREOF

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-148856 2004-05-19
JP2004148856 2004-05-19
JP2004170388 2004-06-08
JP2004-170388 2004-06-08
JP2004-203248 2004-07-09
JP2004203248 2004-07-09
JP2005059191 2005-03-03
JP2005-059191 2005-03-03

Publications (1)

Publication Number Publication Date
WO2005111248A1 true WO2005111248A1 (ja) 2005-11-24

Family

ID=35394169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009504 WO2005111248A1 (ja) 2004-05-19 2005-05-18 半還元焼結鉱およびその製造方法

Country Status (2)

Country Link
EP (1) EP1749894A4 (ja)
WO (1) WO2005111248A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102010986B (zh) * 2010-12-13 2012-09-05 昆明理工大学 一种蛇纹石种类矿物的综合回收工艺
JP5790966B2 (ja) * 2013-07-10 2015-10-07 Jfeスチール株式会社 炭材内装焼結鉱の製造方法
EP3778937A1 (en) 2016-04-22 2021-02-17 Sumitomo Metal Mining Co., Ltd. Method for smelting oxide ore
AU2017257842B2 (en) 2016-04-27 2020-07-09 Sumitomo Metal Mining Co., Ltd. Oxide ore smelting method
JP7424339B2 (ja) * 2021-03-31 2024-01-30 Jfeスチール株式会社 塊成物製造用の原料粒子、塊成物製造用の原料粒子の製造方法、塊成物、塊成物の製造方法および還元鉄の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620129A (en) * 1979-07-25 1981-02-25 Nippon Steel Corp Manufacture of sintered ore
JPS59232238A (ja) * 1983-06-14 1984-12-27 Nippon Kokan Kk <Nkk> 焼結鉱製造法
JPS6046330A (ja) * 1983-08-25 1985-03-13 Nippon Steel Corp 焼結操業法
JPH01162729A (ja) * 1987-12-18 1989-06-27 Nkk Corp 燒結用ブリケットの製造方法
JPH0328331A (ja) * 1989-06-26 1991-02-06 Kawasaki Steel Corp 焼結原料の事前処理方法
JPH04198427A (ja) * 1990-11-29 1992-07-17 Kawasaki Steel Corp 焼結鉱の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1488334A1 (ru) * 1986-03-27 1989-06-23 Dn Metall Inst Способ агломерации
JP2704673B2 (ja) * 1990-12-06 1998-01-26 新日本製鐵株式会社 半還元焼結鉱の製造方法
JP4470490B2 (ja) * 2003-12-26 2010-06-02 Jfeスチール株式会社 半還元塊成鉱の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620129A (en) * 1979-07-25 1981-02-25 Nippon Steel Corp Manufacture of sintered ore
JPS59232238A (ja) * 1983-06-14 1984-12-27 Nippon Kokan Kk <Nkk> 焼結鉱製造法
JPS6046330A (ja) * 1983-08-25 1985-03-13 Nippon Steel Corp 焼結操業法
JPH01162729A (ja) * 1987-12-18 1989-06-27 Nkk Corp 燒結用ブリケットの製造方法
JPH0328331A (ja) * 1989-06-26 1991-02-06 Kawasaki Steel Corp 焼結原料の事前処理方法
JPH04198427A (ja) * 1990-11-29 1992-07-17 Kawasaki Steel Corp 焼結鉱の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1749894A4 *

Also Published As

Publication number Publication date
EP1749894A4 (en) 2008-07-02
EP1749894A1 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
CN101717854B (zh) 利用冶金焙烧炉生产金属化球团的方法
JP6414493B2 (ja) 焼結鉱製造用の炭材内装造粒粒子とその製造方法
US10683562B2 (en) Reduced iron manufacturing method
JP5303727B2 (ja) 製鋼用還元鉄塊成鉱の製造方法
WO2005111248A1 (ja) 半還元焼結鉱およびその製造方法
JP6102463B2 (ja) 焼結鉱の製造方法
JP4918754B2 (ja) 半還元焼結鉱およびその製造方法
JP5512205B2 (ja) 塊成化状高炉用原料の強度改善方法
AU2017388174B2 (en) Sintered ore manufacturing method
JP4984488B2 (ja) 半還元焼結鉱の製造方法
CN106414778A (zh) 粒状金属铁的制造方法
JP6273983B2 (ja) 還元鉄を用いた高炉操業方法
JP2006152432A (ja) 溶鉄の製造方法
JP5786668B2 (ja) 非焼成含炭塊成鉱の製造方法
JPH1150119A (ja) 還元鉄の製造方法
JP6333770B2 (ja) フェロニッケルの製造方法
JP6264517B1 (ja) 炭材内装焼結鉱の製造方法
JP5729256B2 (ja) 非焼成溶銑脱りん材および非焼成溶銑脱りん材を用いた溶銑の脱りん方法
JP2008019455A (ja) 半還元焼結鉱の製造方法
JP5463571B2 (ja) 鉄原料の塊成方法およびその塊成設備
JP4797388B2 (ja) 半還元焼結鉱の製造方法
JP6988778B2 (ja) 炭材内装焼結鉱の製造方法および炭材内装焼結鉱の製造設備
JP2015101740A (ja) 還元鉄の製造方法
JP2017172020A (ja) 焼結鉱製造用の炭材内装造粒粒子およびそれを用いた焼結鉱の製造方法
JP3864506B2 (ja) 半還元鉄塊成鉱およびその製造方法ならびに銑鉄の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005743528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005743528

Country of ref document: EP