JP5817711B2 - 酸化第二銅微粉末及びその製造方法 - Google Patents

酸化第二銅微粉末及びその製造方法 Download PDF

Info

Publication number
JP5817711B2
JP5817711B2 JP2012268381A JP2012268381A JP5817711B2 JP 5817711 B2 JP5817711 B2 JP 5817711B2 JP 2012268381 A JP2012268381 A JP 2012268381A JP 2012268381 A JP2012268381 A JP 2012268381A JP 5817711 B2 JP5817711 B2 JP 5817711B2
Authority
JP
Japan
Prior art keywords
powder
electrolytic copper
fine powder
copper
cupric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012268381A
Other languages
English (en)
Other versions
JP2014114472A (ja
JP2014114472A5 (ja
Inventor
雄 山下
雄 山下
岡田 浩
浩 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012268381A priority Critical patent/JP5817711B2/ja
Priority to PCT/JP2013/072467 priority patent/WO2014087707A1/ja
Priority to TW102137471A priority patent/TWI580643B/zh
Publication of JP2014114472A publication Critical patent/JP2014114472A/ja
Publication of JP2014114472A5 publication Critical patent/JP2014114472A5/ja
Application granted granted Critical
Publication of JP5817711B2 publication Critical patent/JP5817711B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Description

本発明は、酸化第二銅微粉末及びその製造方法に関する。
酸化第二銅微粉末は、顔料、塗料、触媒、陶磁器の着色剤や銅めっき液の補給用銅源等に用いられ、その製造方法は、湿式法と乾式法に大別される。
湿式法の一例として、塩化第二銅や硫酸銅の水溶液に水酸化ナトリウムを加えて水酸化銅を生成させた後、この水酸化銅を加熱することが挙げられる(特許文献1参照)。より詳しくは、塩化第二銅を含むプリント基板のエッチング廃液を苛性アルカリ(NaOH)で中和し、その中和した銅溶液と苛性アルカリ水溶液とを、温度40〜50℃に保持した水溶液中に同時に滴下混合して、その混合した水溶液のpHを弱酸性から弱アルカリ性の範囲に維持しながら銅の水和物を生成させる。次いで、pHを12〜13に調製し、70〜80℃の温度に30分間保持した後、水洗、固液分離して酸化第二銅を製造することが挙げられる。
湿式法の他の一例として、硫酸銅水溶液と水酸化ナトリウム水溶液とを30℃以下の温度で反応させて水酸化第二銅を生成し、この水酸化第二銅を60〜80℃の温度に加熱、熟成して酸化第二銅を形成することが挙げられる(特許文献2参照)。一般に、湿式法で製造された酸化第二銅粉末は、銅めっき液への溶解性が速いという利点を有する。
しかしながら、酸化第二銅粉末を湿式法で製造すると、Naのほか、硫酸イオンに由来するS等の残留濃度が比較的高くなりがちであるという課題を有する。不純物を多く含む酸化第二銅粉末をめっき液に加えると、不純物に起因してめっきの不具合を生じ得る。例えば、特許文献1に記載の方法では、使用するエッチング廃液中において、プリント基板をエッチングするときに溶解する銅以外の不純物が含まれることのほか、中和のときに不純物として塩化ナトリウム(NaCl)が副生すること等から、不純物除去のために水洗工程が必要となる。さらには水洗しても完全に除去することは困難であるといった課題もあり、引用文献1に記載の方法で製造した酸化銅は、不純物をめっき液中に添加することになるため、添加とともにめっき皮膜特性が劣化してめっき液を更新しなければならないという課題がある。
また、スラリー状の酸化第二銅微粉末を乾燥する手法として、容器を加熱することで溶媒を気化して乾燥する方法や容器内を撹拌しながら加熱して乾燥する方法や熱風によって流動しているアルミナ等の媒体中にスラリーを投入し、媒体表面で乾燥した粉がはがれて熱風とともに排気されてサイクロン、バグフィルター等で乾燥粉体として回収する媒体流動式乾燥方法等が知られている。これらの方法は、乾燥方法としては工業的に確立された効率の良い方法である。しかしながら、乾燥された酸化第二銅微粉末の2次粒子を凝集形状に制御することが難しく、溶解性やハンドリング性を一定にコントロールすることが難しいという課題がある。
一方、乾式法の一例として、硝酸銅、硫酸銅、炭酸銅、水酸化銅等を空気中で600℃程度の温度に加熱して熱分解する方法が挙げられる(非特許文献1参照)。一般に、乾式法は、湿式法に比べ、得られる酸化第二銅の純度が高く、めっき液への溶解性に優れる。
しかしながら、乾式法では、酸化第二銅粉末どうしで焼結しやすく、酸化第二銅粉末が粗大化してめっき液への溶解速度が極めて遅くなることがあり得る。溶解性を向上させるためには、得られた酸化銅粉が微細な粉末状態であることが要求されるが、乾式法で得られる酸化第二銅粉は焼結によって粒子が大きくなるため、大きくなった酸化第二銅粉を粉砕することが必要となる。特に、金属銅を原料に用いた場合、熱処理前に粉砕すると、金属銅は柔らかく延性を持つため、細かく粉砕することは難しい。このため、完全に酸化銅まで熱処理を行うためには、より高温に加熱する必要があるが、高温での熱処理によって再び銅粒子の焼結が発生するため、熱処理後再度粉砕する必要が生じる等の点で乾式法が効率的な方法であるとはいえなかった。
乾式法の効率を高めるため、硫酸銅溶液中で作製した電解銅粉をジェットミル粉砕法で粉砕することが提案されている(特許文献3〜5参照)。特許文献3〜5によると、電解銅粉を微細に粉砕するためには、粉砕原料となる電解銅粉の粒子径が重要な要素であるといえる。例えば、特許文献3では、10μm以下の銅粉を得るためには、原料となる電解銅粉の大きさが比表面積で2000cm/g以上の大きさでなければならないことが示されている。また、特許文献5においても、ジェットミルでの粉砕法を、粒子相互を衝突させる方式から衝突板に衝突させる衝突板方式のジェットミルに変更しても、粉砕原料である電解銅粉の平均粒径が20〜35μmであるとされる。
電解銅粉の形成形態は樹脂状に成長した構造であるため、粒子を衝突させて粉砕する場合、樹脂状の枝の部分より折れることによって細かく粉砕されるために、粉砕後の粒子を細かくするためには、粉砕原料である電解銅粉の形状を細かくしておく必要がある。樹脂状の枝よりも更に細かく粉砕するためには、ジェットミル方式では限界がある。しかしながら、別な粉砕機であるクラッシャー、ボールミル、振動ミルで粉砕すると、金属銅の延性などの特性によって、粉砕後の電解銅粉が凝集したもの、あるいは平板状のものとなるため、やはり、電解銅粉を微細化することは難しい。
特開平5−319825号公報 特開平3−80116号公報 特開昭62−199705号公報 特開平2−182809号公報 特開2000−80408号公報
第4版 実験化学講座 無機化合物,日本化学会編,丸善株式会社,1993年12月
そこで、本発明は、電解銅粉を微細化し、めっき液への溶解性を高めることに着目してなされたものであり、その課題とするところは、乾式法の従来の利点である、高純度であることを生かしつつ、めっき液への溶解性を高めることである。
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、表面に酸化皮膜を有する電解銅粉を乾式で粉砕し、この粉砕によって得られる電解銅微粉末を酸化することで上記の目的を達成できることを見出し、本発明を完成するに至った。
具体的には、本発明では、以下のようなものを提供する。
(1)本発明は、表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、この乾式粉砕工程によって得られる電解銅微粉末を酸化する酸化工程とを含む、酸化第二銅微粉末の製造方法である。
(2)また、本発明は、前記酸化皮膜が、銅イオン含有溶液の電気分解によって得られる電解銅粉を水洗した後、酸素含有雰囲気において70℃〜150℃の温度で乾燥することによって形成される、(1)に記載の酸化第二銅微粉末の製造方法である。
(3)また、本発明は、前記乾式粉砕工程が酸素含有雰囲気で行われる、(1)又は(2)に記載の酸化第二銅微粉末の製造方法である。
(4)また、本発明は、前記酸化工程が前記電解銅微粉末を300℃〜700℃で熱することによって行われる、(1)から(3)のいずれかに記載の酸化第二銅微粉末の製造方法である。
(5)また、本発明は、(1)から(4)のいずれかに記載の製造方法によって得られる酸化第二銅微粉末が溶解された硫酸銅水溶液を電解銅めっき装置の電解液として使用する、銅めっき方法である。
(6)また、本発明は、平均粒子径が5μm以下であり、最大粒子径が15μm以下であり、10gの酸化第二銅微粉末を、25℃における、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する硫酸含有溶液1Lに浸漬して行う溶解試験において、溶解時間が1分以下である、酸化第二銅微粉末である。
本発明によると、酸化銅の純度が高く、かつ、めっき液への溶解性が高い酸化第二銅微粉末を提供できる。この酸化第二銅微粉末は、工業的に用いる銅めっき液の補給用銅源として好適に使用される。
本発明に係る製造方法を説明するための図である。 表面に酸化皮膜を有する酸化銅粉の走査電子顕微鏡画像(SEM画像)を示す。 実施例1に係る電解銅微粉末のSEM画像を示す。 比較例1に係る電解銅微粉末のSEM画像を示す。 比較例2に係る電解銅微粉末のSEM画像を示す。 実施例1に係る酸化第二銅微粉末のX線回折パターンを示す。
以下、本発明の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
<酸化第二銅微粉末の製造方法>
本発明の製造方法は、表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程S1と、この乾式粉砕工程S1によって得られる電解銅微粉末を酸化する酸化工程S2とを含む。なお、本明細書では、電解銅ないし酸化銅の状態を明確に区別するため、乾式粉砕前の電解銅を「電解銅粉」といい、乾式粉砕後であるが酸化前である電解銅を「電解銅微粉末」といい、酸化後の酸化銅を「酸化第二銅微粉末」という。
〔酸化皮膜形成工程S0〕
本発明において、乾式粉砕工程S1で用いる電解銅粉は、表面に酸化皮膜を有するものであれば、酸化皮膜の形成手法はどのようなものであってもよいが、一例として、硫酸銅溶液中で銅の電気分解を行うことによって電極表面に電解銅粉を析出させ、回収した後、この電解銅粉の表面に酸化皮膜を形成する酸化皮膜形成工程S0を経たものが挙げられる。
電解銅粉は、例えば、CuSO・5HO:5〜50g/L、遊離HSO:50〜250g/Lの浴組成で、電流密度5〜30A/dm、浴温20〜60℃の条件で電解し、陰極上に電析させることによって製造できる。
得られた電解銅粉は、水洗によって洗浄した後、水分を除去するため、酸素含有雰囲気において70〜150℃の温度で乾燥させることが好ましい。
酸素含有雰囲気とは、少なくとも大気の程度に酸素を含有する状態であることをいい、空気雰囲気であってもよいし、人工的に酸素を供給する状態下であってもよいが、量産コストを考慮すると空気雰囲気であることが好ましい。
上記の乾燥を行うことによって、電解銅粉と、気体中の酸素とが反応し、電解銅粉の表面に酸化皮膜が形成される。酸化皮膜の形成の程度を制御する必要は特になく、大気中において一般的な乾燥器の中で水洗後の電解銅粉を乾燥させることで足りるが、電解銅粉の全てが完全に酸化第二銅に酸化した場合の理論重量に対して20%以上酸化していることが好ましく、30%以上進行していることがより好ましく、40%以上進行していることがさらに好ましい。
〔乾式粉砕工程S1〕
本発明は、表面に酸化皮膜を有する電解銅粉を乾式で粉砕し、電解銅微粉末を得る乾式粉砕工程S1を含む。
電解銅粉は柔かく延性をもつため、細かく粉砕することは難しい。そこで、電解銅粉の粉砕は、酸素含有雰囲気で行うことが好ましい。酸素含有雰囲気で粉砕することにより、粉砕によって現れる金属表面を酸化できるため、結果として新たな酸化皮膜が形成される。そのため、電解銅粉の延性を抑えることができ、電解銅粉を効率よく微細化できる。
粉砕方法は特に限定されるものではないが、製造コストや効率を考慮すると、流体中で電解銅粉どうしを衝突、又は電解銅粉を衝突板に衝突させて粉砕させる方式が好ましく、具体的には、ジェットミル、サイクロンミル等の名称で市販されている装置が挙げられる。
また、粉砕装置と分級装置とを組み合わせることにより、より効率的に電解銅微粉末を得ることができる。
電解銅微粉末の粒子径は特に限定されるものでないが、続いて説明する酸化工程S2を効率的に行うことができるようにするため、平均粒子径は5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下にすることがさらに好ましい。また、最大粒子径は15μm以下であることが好ましく、10μm以下であることがより好ましい。なお、本明細書では、特に断りのない限り、粒子径は、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定したときの体積球相当径によるものとする。
〔酸化工程S2〕
本発明は、乾式粉砕工程S1によって得られる電解銅微粉末を酸化する酸化工程S2を含む。
酸化工程S2は、電解銅微粉末を300℃〜700℃で熱することによって行われることが好ましい。この温度範囲であれば、熱処理する温度は特に限定されるものでないが、電解銅微粉末の粒子径によって設定することが好ましい。例えば、電解銅微粉末の平均粒子径が5μm以下である場合、比較的低温での熱処理で電解銅微粉末を酸化第二銅微粉末にすることができる。一方、電解銅微粉末の平均粒子径が5μmを超える場合、電解銅微粉末の表面のみならず、中心まで酸化するには、比較的高温での熱処理を要する。
しかしながら、熱処理を高温で行うと、せっかく電解銅粉を粉砕して電解銅微粉末を得たにもかかわらず、電解銅微粉末どうしが焼結して粒子径が大きくなってしまう。そうすると、酸化第二電解銅微粉末のめっき液への溶解特性が低くなる。
酸化第二電解銅微粉末のめっき液への溶解特性が低くなることを回避するため、たとえ電解銅微粉末どうしが焼結した場合であっても、焼結した酸化第二銅粉を再度粉砕し、酸化第二電解銅微粉末にすればよいが、再度の粉砕は製造コストの高騰につながるため、粉砕の回数は1回に留めることが好ましい。この観点から、電解銅微粉末の平均粒子径は10μm以下であることが好ましく、最大粒子径は15μm以下であることが好ましい。
また、熱処理の時間は熱処理温度に依存し、熱処理温度が300℃〜500℃である場合、熱処理時間を5時間以下にすることが好ましく、熱処理温度が500℃〜700℃である場合、熱処理時間を3時間以下にすることが好ましい。
電解銅微粉末どうしの焼結により、酸化第二電解銅微粉末の粒子径は、電解銅微粉末のそれよりも大きくなるが、硫酸銅めっき液への溶解性を高めるため、この焼結はできるだけ抑えることが好ましい。そのため、酸化第二電解銅微粉末の粒子径は、電解銅微粉末のそれと同程度であることが好ましく、具体的に、平均粒子径は5μm以下であることが好ましく、4μm以下であることがより好ましく、3μm以下にすることがさらに好ましい。また、最大粒子径は15μm以下であることが好ましく、10μm以下であることがより好ましい。
ところで、上記の製造方法によって得られる酸化第二銅微粉末は、電解銅めっき装置の電解液の原料として好適に使用される。めっき液に投入される酸化第二銅微粉末は、溶解残渣を生じるものであってはならない。特に、酸化第一銅は、めっき液に溶解せずに残渣となることから、酸化第一銅微粉末が生成することを避ける必要がある。そのため、酸化第二銅微粉末における酸化第二銅微粉末の純度は高いことが好ましく、99%以上であることが好ましく、99.5%以上であることがより好ましい。本発明の製造方法によって得られる酸化第二銅微粉末は、粉砕した電解銅微粉末を熱処理によって酸化したものであるため、電解銅を酸化第二銅にまで完全に酸化することができる。その結果、酸化第一銅が生じることを抑えることができる。
また、めっき液への銅源の供給は、めっき液に含まれる銅源が減少する都度、速やかに行う必要がある。そのため、酸化第二銅微粉末のめっき液への溶解度は高いことが好ましい。上記の製造方法によって得られる酸化第二銅微粉末10gを、25℃における、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する硫酸含有溶液1Lに浸漬すると、1分以内に溶解する。この点で、上記の製造方法によって得られる酸化第二銅微粉末は、電解銅めっき装置の電解液の原料として好適に使用される。
<酸化第二銅微粉末を用いた銅めっき方法>
上記の製造方法によって得られる酸化第二銅微粉末は、電解銅めっき装置の電解液の原料として好適に使用される。
銅を電解めっきする際に用いる銅めっき液(硫酸銅水溶液)は、硫酸銅、硫酸及び塩化物イオンを含有し、pHは1よりも低いものが用いられることが多い。そして、この銅めっき液には、銅めっきの品質向上のため公知の添加剤が加えられている。
一方、銅の電解めっきを行うと、めっき液中の銅が析出し、めっき液の銅濃度が低下する。そこで、めっき液の銅濃度の低下を防ぐ為、陽極に銅を用いて陽極を溶解しながら銅電解めっきを行う方法と、陽極に導電性酸化物セラミック等で覆われたチタン等からなる不溶性陽極を用いるとともに、めっき液へ銅を供給する機構を備えた方法とが知られている。
ところで、後者の方法である場合、めっき液に銅を供給する機構をどのようにするかが課題となる。めっき液へ銅を供給するには、(ア)めっき液に銅源(銅又は銅を含む化合物)が速やかに溶解すること、(イ)銅源が溶解することでめっき液中の硫酸イオン等の割合が大きく変化しないこと、(ウ)めっき液に含まれる添加剤が分解しないことが求められる。
上記の製造方法によって得られる酸化第二銅微粉末は、上記(ア)〜(ウ)のいずれにも応じることができる。
電解めっき装置を用いて酸化第二銅微粉末を硫酸銅水溶液に供給するには、電解めっき装置のめっきを行うめっき槽とは別に酸化第二銅微粉末を溶解する酸化第二銅溶解槽を設け、めっき槽と酸化第二銅溶解槽の間で水溶液(めっき液)を循環させればよい。
この酸化第二銅溶解槽は、めっき槽から供給された水溶液に酸化第二銅微粉末を溶解させて形成した水溶液を、めっき槽へ送り返す。使用する酸化第二銅溶解槽には、プロペラなどの攪拌機構を付属させることが好ましい。また、めっき槽と酸化第二銅溶解槽の間には、ゴミや異物等の除去のため公知の各種フィルターを備えてもよい。
以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの記載に何ら制限を受けるものではない。
Figure 0005817711
<実施例1>
まず、32g/LのCuSO・5HOと、55g/Lの遊離HSOとを含有する硫酸銅水溶液を用いて、通電電流密度10A/dm、浴温25℃の条件で電解銅粉を調製した。この電解銅粉を十分に水洗した後、乾燥器を用いて105℃の温度で一晩乾燥した。
続いて、この酸化銅粉をジェットミル(装置名:ナノグラインディングミルNJ−50,徳寿工作所社製)を用いて空気雰囲気下で乾式粉砕した。乾式粉砕は、粉砕圧力:1MPa,供給速度:300g/hの条件で行った。
続いて、粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度500℃、3時間保持して電解銅粉を酸化し、実施例1に係る酸化第二銅微粉末を得た。
<実施例2>
乾式粉砕する際の供給速度を500g/hにしたこと、及び粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度700℃、2時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で実施例2に係る酸化第二銅微粉末を得た。
<実施例3>
乾式粉砕を3回繰り返したこと、及び粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度300℃、5時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で実施例3に係る酸化第二銅微粉末を得た。
<比較例1>
市販の電解銅粉(商品名:MF−D2,三井金属鉱業(株)社製)を用いたこと、及び粉砕した電解銅粉を電気炉内で、空気雰囲気下で加熱温度700℃、3時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で比較例1に係る酸化第二銅微粉末を得た。
<比較例2>
電解銅粉の乾燥を真空で行ったこと、及び粉砕した電解銅微粉末を電気炉内で、空気雰囲気下で加熱温度700℃、3時間保持して電解銅粉を酸化したこと以外は、実施例1に記載の方法と同じ方法で比較例2に係る酸化第二銅微粉末を得た。
<評価>
〔電解銅粉について〕
[表面の色相]
電解銅粉を乾燥した後における電解銅粉の表面の色相を目視で観察した。結果を表2に示す。実施例1〜3における電解銅粉の表面は褐色に変色していた。その結果、表面に酸化皮膜が形成されていることが目視で確認された。一方、比較例1及び2における電解銅粉は赤色を有していた。このことから、表面に酸化皮膜がほとんど形成されていないことが目視で確認された。
[酸化の程度]
乾燥後の電解銅粉について、乾燥後の電解銅粉の重量と、電解銅粉の全てが完全に酸化第二銅に酸化した場合の理論重量とを対比することで、酸化の程度を推定した。結果を表2に示す。実施例1〜3における電解銅粉は、理論重量に対して約40%の酸化が進行していた。このことから、実施例1〜3における電解銅粉は、表面に酸化皮膜が形成されていることが定量的に確認された。一方、比較例1における電解銅粉は、理論重量に対して約0.4%の酸化しか進行しておらず、比較例2における電解銅粉は、理論重量に対して約0.5%の酸化しか進行していなかった。このことから、比較例1及び2における電解銅粉は、表面に酸化皮膜がほとんど形成されていないことが定量的に確認された。
[酸化銅粉のSEM画像]
乾燥後の電解銅粉の走査電子顕微鏡画像(以下、「SEM画像」ともいう。)を撮影した。結果の一例を図2に示す。図2は、実施例1に係る乾燥後の電解銅粉のSEM画像である。
[平均粒子径]
乾燥後の電解銅粉の平均粒子径(体積球相当径)を、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定した。結果を表2に示す。
〔乾式粉砕後の電解銅微粉末について〕
[形状]
乾式粉砕後の電解銅微粉末について、SEM画像を撮影した。そして、このSEM画像から実施例及び比較例における電解銅微粉末の形状を観察した。SEM画像の一例を図3〜図5に示す。図3は、実施例1に係る電解銅微粉末のSEM画像であり、図4は、比較例1に係る電解銅微粉末のSEM画像であり、図5は、比較例2に係る電解銅微粉末のSEM画像である。また、形状を観察した結果を表2に示す。実施例1〜3における電解銅微粉末は粒状の状態で粉砕されていた。一方、比較例1及び2における電解銅微粉末は粒状のものだけでなく、扁平状の粒子も含んでいた。これは、表面が酸化皮膜を有するものでないため、金属銅の延性が作用して電解銅粉を細かく粉砕できなかったためであると推測される。
[平均粒子径及び最大粒子径]
電解銅微粉末の平均粒子径及び最大粒子径を測定した。これらの粒子径は、レーザー粒度分布測定器マクロトラック(日機装社製)を用いて測定した、体積球相当径によるものである。結果を表2に示す。実施例1〜3における電解銅微粉末は、平均粒子径が3.5μm以下であり、最大粒子径が10μm以下であった。このことから、実施例1〜3における電解銅微粉末が粒状の状態で粉砕されていることを定量的に確認できた。一方、比較例1及び2における電解銅微粉末は、平均粒子径が5.2μm以上であり、最大粒子径が20μm以上であった。このことから、比較例1及び2における電解銅微粉末が適切に粉砕されていない粒子を含むものであることを定量的に確認できた。
〔酸化後の酸化第二銅微粉末について〕
[形状]
酸化後の酸化第二銅微粉末について、SEM画像を撮影して確認したが、酸化によって状態に変化が無く、図3〜図5に示す酸化前の状態と同じであった。
[色]
実施例及び比較例に係る酸化第二銅微粉末の色を目視で観察した。結果を表3に示す。いずれの試料も黒色を呈していた。
[相]
実施例及び比較例に係る酸化第二銅微粉末の相状態を確認するため、酸化第二銅微粉末に対し、X線回折を行った。結果の一例を図6及び表3に示す。図6は、実施例1に係る酸化第二銅微粉末のXRDパターンである。このXRDパターンから、実施例1に係る酸化第二銅微粉末は、CuO単一相であることが確認された。なお、図示は省略するが、他の実施例及び比較例に係る酸化第二銅微粉末も同様のXRDパターンを示し、いずれもCuO単一相であることが確認された。
[純度]
実施例及び比較例に係る酸化第二銅微粉末について、電解重量分析を行った。結果を表3に示す。いずれの酸化第二銅微粉末についても、酸化第二銅の濃度が99.6重量%であることが確認された。
[平均粒子径及び最大粒子径]
酸化第二銅微粉末の平均粒子径及び最大粒子径を測定した。粒子径の測定方法は、電解銅微粉末における測定方法と同じである。結果を表3に示す。粒子径の測定結果から、実施例1〜3における酸化第二銅微粉末が粒状であること、及び比較例1、2における酸化第二銅微粉末が粒状以外の粒子を含むものであることを定量的に確認できた。
[めっき液に対する溶解性の評価]
めっき液に対する溶解性は、実施例及び比較例に係る酸化第二銅微粉末10gを25℃にてスターラーで撹拌しながら1Lのめっき液に添加し、この添加をしたときから上記酸化第二銅微粉末が完全に溶解するまでの時間を測定することによって評価した。めっき液は、228g/LのCuSO・5HOと、68g/Lの遊離HSOと、60mg/Lの塩化物イオンとを含有する溶液とした。結果を表3に示す。実施例に係る酸化第二銅微粉末は、35秒以内でめっき液に溶解することができた。このことから、乾式法であってもめっき液への高い溶解性を有する酸化第二銅微粉末を提供できることが確認された。一方、比較例に係る酸化第二銅微粉末は、20分を経過してもめっき液に完全に溶解させることはできなかった。
Figure 0005817711
Figure 0005817711
上記のとおり、表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、この乾式粉砕工程によって得られる電解銅微粉末を酸化する酸化工程とを経て製造される酸化第二銅微粉末は、乾式法の従来の利点である、高純度であることと、湿式法の従来の利点である、めっき液への高い溶解性との両方を併せ持つことが確認された。その結果、工業的に用いる銅めっき液の補給用銅源として極めて好適に使用できることが確認された。
一方、表面に酸化皮膜を有する電解銅粉を用いない場合、20分を経過してもめっき液に完全に溶解させることができなかった(比較例1、2)。この点で、銅めっき液の補給用銅源としては支障を生じ得ることが確認された。

Claims (5)

  1. 表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、
    この乾式粉砕工程によって得られる、平均粒子径が5μm以下である電解銅粉末を酸化する酸化工程とを含み、
    前記酸化皮膜は、銅イオン含有溶液の電気分解によって得られる電解銅粉を水洗した後、酸素含有雰囲気において70℃〜150℃の温度で乾燥することによって形成される、酸化第二銅粉末の製造方法。
  2. 表面に酸化皮膜を有する電解銅粉を乾式で粉砕する乾式粉砕工程と、
    この乾式粉砕工程によって得られる、最大粒子径が15μm以下である電解銅粉末を酸化する酸化工程とを含み、
    前記酸化皮膜は、銅イオン含有溶液の電気分解によって得られる電解銅粉を水洗した後、酸素含有雰囲気において70℃〜150℃の温度で乾燥することによって形成される、酸化第二銅粉末の製造方法。
  3. 前記乾式粉砕工程は酸素含有雰囲気で行われる、請求項1又は2に記載の酸化第二銅粉末の製造方法。
  4. 前記酸化工程は、前記電解銅粉末を300℃〜700℃で熱することによって行われる、請求項1から3のいずれかに記載の酸化第二銅粉末の製造方法。
  5. 請求項1からのいずれかに記載の製造方法によって得られる酸化第二銅粉末が溶解された硫酸銅水溶液を電解銅めっき装置の電解液として使用する、銅めっき方法。
JP2012268381A 2012-12-07 2012-12-07 酸化第二銅微粉末及びその製造方法 Expired - Fee Related JP5817711B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012268381A JP5817711B2 (ja) 2012-12-07 2012-12-07 酸化第二銅微粉末及びその製造方法
PCT/JP2013/072467 WO2014087707A1 (ja) 2012-12-07 2013-08-22 酸化第二銅微粉末及びその製造方法
TW102137471A TWI580643B (zh) 2012-12-07 2013-10-17 Copper oxide (II) oxide powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268381A JP5817711B2 (ja) 2012-12-07 2012-12-07 酸化第二銅微粉末及びその製造方法

Publications (3)

Publication Number Publication Date
JP2014114472A JP2014114472A (ja) 2014-06-26
JP2014114472A5 JP2014114472A5 (ja) 2015-03-12
JP5817711B2 true JP5817711B2 (ja) 2015-11-18

Family

ID=50883138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268381A Expired - Fee Related JP5817711B2 (ja) 2012-12-07 2012-12-07 酸化第二銅微粉末及びその製造方法

Country Status (3)

Country Link
JP (1) JP5817711B2 (ja)
TW (1) TWI580643B (ja)
WO (1) WO2014087707A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303022B2 (ja) * 2014-10-03 2018-03-28 三井金属鉱業株式会社 銅粉
WO2018062527A1 (ja) * 2016-09-29 2018-04-05 Jx金属株式会社 レーザー焼結用表面処理金属粉

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199705A (ja) * 1986-02-25 1987-09-03 Fukuda Kinzoku Hakufun Kogyo Kk 微細粒状銅粉の製造方法
JP2008122030A (ja) * 2006-11-15 2008-05-29 Mitsui Mining & Smelting Co Ltd ヒートパイプ構成原料
JP2009047383A (ja) * 2007-08-22 2009-03-05 Mitsui Mining & Smelting Co Ltd ヒートパイプ構成原料
JP2012193068A (ja) * 2011-03-16 2012-10-11 Sumitomo Metal Mining Co Ltd 高純度酸化第二銅微粉末の製造方法、および硫酸銅水溶液の銅イオンの供給方法
CN102441381A (zh) * 2011-10-28 2012-05-09 昆山德泰新材料科技有限公司 一种用氧化铜粉生产的催化剂及其制造方法

Also Published As

Publication number Publication date
JP2014114472A (ja) 2014-06-26
WO2014087707A1 (ja) 2014-06-12
TW201422535A (zh) 2014-06-16
TWI580643B (zh) 2017-05-01

Similar Documents

Publication Publication Date Title
TW202105823A (zh) 自廢鋰離子電池中回收鋰和其他金屬之方法
JP2021530838A (ja) 使用済みリチウムイオン電池のリサイクルプロセス
TW202107764A (zh) 自廢鋰離子電池中回收鋰之方法
JP5648803B2 (ja) 酸化第二銅微粉末および硫酸銅水溶液の銅イオン供給方法
JP2022504864A (ja) 銅不純物を除去するための浸出液の電気分解による電池リサイクル
JP6011992B2 (ja) 電解銅粉末の製造方法
JP6168000B2 (ja) 硫酸ニッケル溶液の製造方法
JP5817711B2 (ja) 酸化第二銅微粉末及びその製造方法
JP2015183255A (ja) 銅微粒子、導電ペースト組成物及びこれらの製造方法
JP5568977B2 (ja) 電池からのマンガンの回収方法
JP5874910B2 (ja) 高純度酸化第二銅微粉末の製造方法、および硫酸銅水溶液の銅イオンの供給方法
JP5622108B2 (ja) 高純度酸化第二銅微粉末とその製造方法、および高純度酸化第二銅微粉末を用いた硫酸銅水溶液の銅イオン供給方法
US11939221B2 (en) Method for the manufacture of reduced graphene oxide from electrode graphite scrap
JP2003166100A (ja) 銅メッキ方法に使用される銅粉及び銅粉の使用方法
WO2014109088A1 (ja) 酸化第二銅微粉末及びその製造方法
US10718058B2 (en) Reduced iron production method using electrowinning method, and reduced iron produced thereby
JP5858267B2 (ja) 易溶性酸化第二銅微粉末および硫酸銅水溶液への銅イオン供給方法
JP2015160780A (ja) 酸化ニッケルの製造方法および得られる酸化ニッケル微粉末
JP2012193068A (ja) 高純度酸化第二銅微粉末の製造方法、および硫酸銅水溶液の銅イオンの供給方法
JP6056709B2 (ja) 酸化第二銅粉及び酸化第二銅微粉末の製造方法
CN110184628A (zh) 一种利用工业废钛制备低氧高纯钛粉的方法
JP6222067B2 (ja) 陽極の再生方法、水酸化インジウム粉の製造方法、酸化インジウム粉の製造方法、及びスパッタリングターゲットの製造方法
JP6142848B2 (ja) 不溶性電極の付着物除去方法
JP5720651B2 (ja) 酸化第二銅粉及びその製造方法
JP7279540B2 (ja) ガリウムの回収方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150126

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R150 Certificate of patent or registration of utility model

Ref document number: 5817711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees