JP5803792B2 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
JP5803792B2
JP5803792B2 JP2012094271A JP2012094271A JP5803792B2 JP 5803792 B2 JP5803792 B2 JP 5803792B2 JP 2012094271 A JP2012094271 A JP 2012094271A JP 2012094271 A JP2012094271 A JP 2012094271A JP 5803792 B2 JP5803792 B2 JP 5803792B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
pressure
fuel injection
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012094271A
Other languages
English (en)
Other versions
JP2013221462A (ja
Inventor
小林 辰夫
辰夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012094271A priority Critical patent/JP5803792B2/ja
Publication of JP2013221462A publication Critical patent/JP2013221462A/ja
Application granted granted Critical
Publication of JP5803792B2 publication Critical patent/JP5803792B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は燃料噴射装置に関する。
近年、内燃機関に関し、CO低減及びエミッション低減のため、過給リーン、大量EGR及び予混合自着火燃焼の研究が盛んに行われている。これらの研究によると、CO低減及びエミッション低減の効果を最大限に引き出すには、より燃焼限界近傍において安定した燃焼状態を得る必要がある。また、石油燃料の枯渇化が進む中、バイオ燃料など多種の燃料でも安定して燃焼させることができるロバスト性が要求される。このような安定した燃焼を得るのに最も重要な点は混合気の着火ばらつきを低減することや膨張行程で燃料を燃やしきる速やかな燃焼が必要とされる。
また、内燃機関の燃料供給において、過渡応答性の向上、気化潜熱による体積効率向上や低温での触媒活性化用の大幅な遅角燃焼のために燃焼室内へ燃料を直接噴射する筒内噴射方式が採用されている。ところが、筒内噴射方式を採用することにより、噴霧燃料が液滴のまま燃焼室壁に衝突して起こるオイル希釈や、液状燃料で燃料噴射弁の噴孔周りに生成されるデポジットによる噴霧悪化により燃焼変動が助長されていた。
このような筒内噴射方式の採用により生じるオイル希釈や噴霧悪化の対策をするとともに、着火ばらつきを低減し安定した燃焼を実現するには、燃焼室内の燃料が速やかに気化するように、噴霧を微粒化することが重要となる。
特許文献1では、良好な燃焼を実現させるために、燃料中にマイクロバブルやナノバブルを発生させている。燃料中に存在するこれらの微細な気泡が破裂したり、表面張力による自己加圧作用による圧壊したりすることにより、燃料の微粒化が図られる。
特開2010−37966号公報
ところで、燃料中に存在する気泡は、燃料の温度(燃温)に応じてその気泡径が変化する。気泡径が大きくなると、気泡が分裂し、破壊や圧壊するまでの時間が長くなることがわかっている。このため、燃温が高くなり、気泡径が大きくなると、燃料の破壊や圧壊がおきにくくなり、燃料の微粒化が阻害されることが考えられる。
そこで本明細書開示の燃料噴射装置は、燃温が燃料に混入された気泡の気泡径を拡大させる燃温となるときに、安定して燃料を微粒化することを課題とする。
上記課題を解決するために本明細書開示の燃料噴射装置は、気泡含有燃料を噴射する燃料噴射弁と、前記燃料噴射弁から噴射される燃料の温度を取得する燃温取得部と、前記燃温取得部により取得した燃料の温度に基づいて、前記燃料噴射弁における燃圧を変更する燃圧変更部と、を備え、前記燃圧変更部は、前記気泡含有燃料が該気泡含有燃料中の気泡の気泡径を拡大させる温度であるときに燃圧を上昇させる。
燃料が含有する気泡の気泡径が小さければ、これら気泡が破裂(圧壊)する間での時間が短縮され、その結果、燃料の微粒化が促進される。ここで、燃料が含有する気泡の気泡径は、燃温が高くなると大きくなるが、燃圧が高くなると小さくなる。したがって、本明細書開示の燃料噴射装置のように、気泡含有燃料の温度が気泡含有燃料中の気泡の気泡径を拡大させる温度であるときに燃圧を上昇させることによって、燃料の微粒化が図られることとなる。
前記燃圧変更部は、前記燃温取得部により取得された燃料の温度が予め定められた高温側温度閾値よりも高いときに燃圧を上昇させてもよい。
高温側温度閾値を越える状況として、例えば、デッドソーク後の高温再始動時が想定される。デッドソーク時はエンジンが停止し、燃温が高温となり、気泡径が大きくなる。このような場合、燃圧を高めることにより、気泡径の拡大を抑制し、燃料の微粒化を図ることができる。
前記高温側温度閾値は、前記燃料噴射弁から噴射される燃料中に混入された気泡の圧壊時間として許容される時間閾値を超過することとなる燃料の温度としてもよい。
気泡の破裂、圧壊の遅れを起因とする燃料の微粒化が妨げられる場合に燃圧を上昇させれば、効率よく燃料の微粒化を図ることができる。
前記燃圧変更部は、前記燃温取得部により取得された燃料の温度が高いほど、燃圧の上昇幅を大きく設定してもよい。燃料の温度が高いほど気泡径が拡大し、圧壊までの時間が延びることを考慮し、これに対処すべく、燃圧を上昇させて、気泡径を所望の大きさに維持するためである。
前記燃圧変更部は、前記燃温取得部により取得された燃料の温度が、予め定められた低温側温度閾値よりも低いときに、燃圧を低下させもよい。
燃料の温度が高いときに気泡径が拡大する一方で、燃料の温度が低いときは気泡径の拡大も生じにくい。このため、燃料の温度が低温側温度閾値よりも低いときは、例えば、暖機完了後の燃圧よりも低下させてもよい。これにより、燃料ポンプによる燃圧の昇圧時間を短縮することができ、始動、完爆を早めることができ、始動性を向上させることができる。
前記燃圧変更部は、前記燃料噴射弁に供給される燃料が貯留される蓄圧室と、該蓄圧室内を移動することによって該蓄圧室の容積を変化させる移動壁を備え、前記蓄圧室内に導入される燃料の温度に応じて前記移動壁に前記蓄圧室内を移動させることによって前記燃料噴射弁における燃圧を上昇させ或いは低下させてもよい。
たとえば、蓄圧室に感温部を露出させ、この感温部が高温となると内部のワックスが膨張するサーモスタットを装着することができる。サーモスタットに移動壁を支持させることにより、蓄圧室の容積を変化させることができる。蓄圧室内に導入される燃料の温度が高くなり、移動壁が移動して蓄圧室内の容積が縮小すると、蓄圧室内の圧力が高まる。すなわち、燃圧が上昇する。この結果、燃料中に存在する気泡の気泡径の拡大を抑制することができる。
本明細書に開示された燃料噴射装置によれば、燃温が燃料に混入された気泡の気泡径を拡大させる燃温となるときに、安定して燃料を微粒化することができる。
図1は実施形態1の燃料噴射装置を搭載したエンジンシステムの一構成例を示す説明図である。 図2は実施形態1の燃料噴射装置に含まれる燃料噴射弁の要部を断面として示す説明図である。 図3は燃料温度(燃温)と、気泡径および圧壊時間との関係を示すグラフの一例である。 図4は燃料圧力(燃圧)と気泡の圧壊時間との関係を示すグラフの一例である。 図5は燃料温度と冷却水温の時間推移を示すグラフの一例である。 図6は実施形態1の燃料噴射装置が行う燃圧制御の一例を示すフロー図である。 図7は補正燃圧マップの一例である。 図8は実施形態1の燃料噴射装置が行う燃圧制御の一例を示すフロー図である。 図9(A)は燃料デリバリ内の蓄圧室の容積が広がった状態を示し、図9(B)は燃料デリバリ内の蓄圧室の容積が狭められた状態を示す説明である。
以下、本発明を実施するための形態を図面と共に詳細に説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されている場合もある。
(実施形態1)
本発明の実施形態1について図面を参照しつつ説明する。図1は、実施形態1の燃料噴射装置1を搭載したエンジンシステム100の一構成例を示した図である。なお、図1にはエンジン本体1000の一部の構成のみが示されている。
図1に示すエンジンシステム100は、動力源であるエンジン本体1000を備えており、エンジン本体1000の運転動作を総括的に制御するエンジンECU(Electronic Control Unit)10を備えている。エンジンシステム1は、エンジン本体1000の燃焼室11内へ燃料を噴射する燃料噴射弁30を備えている。エンジンECU10は、制御部の機能を備える。エンジンECU10は、演算処理を行うCPU(Central Processing Unit)と、プログラム等を記憶するROM(Read Only Memory)と、データ等を記憶するRAM(Random Access Memory)やNVRAM(Non Volatile RAM)と、を備えるコンピュータである。
エンジン本体1000は、車両に搭載されるエンジンであって、燃焼室11を画成するピストン12を備えている。ピストン12は、エンジン本体1000のシリンダに摺動自在に嵌合されている。そして、ピストン12は、コネクティングロッドを介して出力軸部材であるクランクシャフトに連結されている。
吸気ポート13から燃焼室11内へ流入した吸入空気は、ピストン12の上昇運動により燃焼室11内で圧縮される。エンジンECU10は、クランク角センサからのピストン12の位置情報に基づき、燃料噴射タイミングを決定し燃料噴射弁30に信号を送る。燃料噴射弁30は、エンジンECU10の信号に従って、指示された噴射タイミングで燃料を噴射する。燃料噴射弁30より噴射された燃料は、霧化して圧縮された吸入空気と混合される。そして、吸入空気と混合された燃料は、点火プラグ18によって点火されることで燃焼し、燃焼室11内を膨張させてピストン12を下降させる。この下降運動がコネクティングロッドを介してクランクシャフトの軸回転に変更されることにより、エンジン本体1000は動力を得る。
各気筒の燃焼室11には、それぞれ燃焼室11と連通する吸気ポート13と、吸気ポート13に連結し、吸入空気を吸気ポート13から燃焼室11へと導く吸気通路14とが接続されている。更に、各気筒の燃焼室11には、それぞれ燃焼室11と連通する排気ポート15と、燃焼室で発生した排気ガスをエンジン本体1000の外部へと導く排気通路16が接続されている。吸気通路14には、サージタンク22が配置されている。
吸気通路14には、エアフロメータ、スロットルバルブ17およびスロットルポジションセンサが設置されている。エアフロメータおよびスロットルポジションセンサは、それぞれ吸気通路14を通過する吸入空気量、スロットルバルブ17の開度を検出し、検出結果をエンジンECU10に送信する。エンジンECU10は、送信された検出結果に基づいて燃焼室11へ導入される吸入空気量を認識し、スロットルバルブ17の開度を調整することで吸入空気量を調節する。
排気通路16には、ターボチャージャ19が設置されている。ターボチャージャ19は、排気通路16を流通する排気ガスの運動エネルギーを利用してタービンを回転させ、エアクリーナーを通過した吸入空気を圧縮してインタークーラーへと送り込む。圧縮された吸入空気は、インタークーラーで冷却された後に一旦サージタンク22に貯留され、その後、吸気通路14へと導入される。この場合、エンジン本体1000は、ターボチャージャ19を備える過給機付エンジンに限られず、自然吸気(Natural Aspiration)エンジンであってもよい。
ピストン12は、その頂面にキャビティを有する。キャビティは、燃料噴射弁30の方向から点火プラグ18の方向へと連続するなだらかな曲面によってその壁面が形成されており、燃料噴射弁30から噴射された燃料を当該キャビティの壁面に沿って点火プラグ18近傍へと導く。この場合、ピストン12には、その頂面の中央部分に円環状にキャビティが形成されるリエントラント型燃焼室等が形成されるように、エンジン本体1000の仕様に応じて任意の位置や形状でキャビティを形成することができる。
燃料噴射弁30は、その先端が燃焼室11に露出するように吸気ポート13下部に設置されている。燃料噴射弁30は、エンジンECU10の指示に基づいて、燃料ポンプ25から燃料流路および燃料デリバリ26を通じて高圧供給された燃料をノズルボディ31先端部に設けられた噴孔35より燃焼室11内へ直接噴射する。噴射された燃料は、燃焼室11内で霧化し吸入空気と混合されつつキャビティの形状に沿って点火プラグ18近傍へと導かれる。燃料噴射弁30のリーク燃料は、リリーフ弁からリリーフ配管を通じて燃料タンクへと戻される。
なお、この燃料噴射弁30は、吸気ポート13下部に限られず燃焼室11の任意の位置に当該燃料噴射弁30の先端が露出するように設置されてもよい。例えば、燃料噴射弁30は、燃焼室11の中央上側から噴射するように配置されてもよい。
なお、エンジン本体1000は、ガソリンを燃料とするガソリンエンジン、軽油を燃料とするディーゼルエンジン、ガソリンとアルコールとを任意の割合で混合した燃料を使用するフレキシブルフューエルエンジンのいずれでもよい。また、エンジン本体1000は、その他、燃料噴射弁によって噴射可能などのような燃料を用いるエンジンであってもよい。エンジンシステム1は、エンジン本体1000と複数の電動モータとを組み合わせたハイブリッドシステムであってもよい。
次に、燃料噴射弁30の内部構成について詳細に説明する。図2は、実施形態1の燃料噴射装置1に含まれる燃料噴射弁30の要部を断面として示す説明図である。燃料噴射弁30は気泡含有燃料を噴射する。
燃料噴射弁30は、ノズルボディ31、ニードルガイド32およびニードル弁33を備える。
ノズルボディ31は、筒状の部材であり、内側に、シート面31aを有する。シート面31aには、後述するシート部33aが着座する。シート面31aの上流側には、圧力室34が形成されている。また、ノズルボディ31は、シート面31aの下流側に噴孔35を備える。シート面31aから噴孔35へは、内周径が徐々に狭くなっている。
ニードルガイド32は、ノズルボディ31内に装着されている。ニードルガイド32は、筒状の部材であり、先端部に螺旋溝32aが設けられている。螺旋溝32aは、噴孔35から噴射される燃料を旋回させる旋回流生成部である。すなわち、ノズルボディ31の内周壁と、ニードルガイド32の基端側外周面との間に形成された燃料流路40を通じて一旦圧力室34に導入された燃料が螺旋溝32aへ導入される。これにより、燃料に旋回成分が付与され、旋回流が生成される。
ニードル弁33は、ニードルガイド32の内周壁面32bに摺動自在に装着されている。ニードル弁33は、軸線AX方向に沿って往復動する。ニードル弁33の先端側には、シート部33aが設けられている。このシート部33aがシート面31aに着座することにより、燃料噴射弁30は、閉弁状態となる。
燃料噴射弁30は、駆動機構を備えている。駆動機構はニードル弁33の摺動動作を制御する。駆動機構は、圧電素子、電磁石などを用いたアクチュエータやニードル弁33へ適切な圧力を付与する弾性部材など、ニードル弁33が動作するのに適する部品を備えた従来から知られる機構である。
つぎに、以上のような燃料噴射弁30による、燃料噴射の様子について説明する。ニードル弁33がリフトし、シート部33aがシート面31aから離座すると、燃料通路40を通過した燃料は、一旦、圧力室34に導入され、その後、螺旋溝32aへ流入する。これにより、燃料が旋回流となる。そして、旋回流は、シート面31aに沿って、その旋回半径を縮小されることによって旋回速度を早めつつ噴孔35内に導かれる。噴孔35内で旋回する燃料は、噴孔35内で気柱を発生させ、微細な気泡を生成することができる。燃料噴射弁30は、このようにして生成された気泡を包含する気泡含有燃料を噴射する。
ここで、燃料噴射弁30によって実現される噴霧の状態について説明する。燃料噴射弁30は、ニードルガイド32を備え、噴射される燃料に旋回流を付与する。旋回流を付与する目的として、燃料の良好な拡散や燃料の微粒化を挙げることができる。燃料の微粒化の原理は以下の如くである。燃料噴射弁30内で旋回速度の速い旋回流が形成され、その旋回流が噴孔に導入されると、その強い旋回流の旋回中心に負圧が発生する。負圧が発生すると燃料噴射弁30の外部の空気が噴孔35内に吸引される。これにより噴孔35内に気柱が発生する。こうして発生した気柱と燃料との界面において気泡が生成される。生成され気泡は気柱の周囲を流れる燃料に混入し、噴孔35の外周側を流れる燃料流とともに気泡含有燃料として噴射される。噴射された燃料は、中空コーン状に広がり、噴孔35から離れるにつれて液膜部分が薄くなる。そして、気泡同士が分離し、分離した気泡は、表面張力による自己加圧作用によって圧壊する。このように気泡が崩壊することにより、燃料の微粒化が達成される。
燃料噴射装置1は、エンジン本体1000に装着された水温センサ27を含む。水温センサ27はエンジン本体1000内を循環する冷却水の温度を測定する。水温センサ27は、ECU10に電気的に接続されている。水温センサ27は制御部であるECU10と協働して燃温取得部として機能する。冷却水温と燃温とは相関関係を有する。すなわち、冷却水温が上昇していれば燃温も上昇している。従って、水温センサ27の測定値に基づいて、燃料噴射弁30から噴射される燃料の温度に関する情報を取得することができる。なお、燃温を直接測定することができるセンサ等を備えてもよいし、燃温と相関関係を有する値を取得する他のセンサ、例えば、ノズルボディ31の温度を測定するセンサを追加して、その測定値から燃温を算出することもできる。しかしながら、水温センサ27を用いることにより、新たなセンサ類の追加を必要とせず、コスト面で有利となる。
燃料噴射装置1は、上述のように燃料ポンプ25により燃料を燃料噴射弁30へ供給する。燃料ポンプ25は電気式であり、ECU10の指令に基づいて燃料の圧送量を変更し、燃圧を変化させることができる。このような燃料ポンプ25は、ECU10と協働して燃圧変更部として機能する。すなわち、燃料ポンプ25は、水温センサ25の測定値に基づいて算出された燃料の温度に基づいて、燃料噴射弁30における噴射燃圧を変更することができる。より具体的には、気泡含有燃料が気泡の気泡径を拡大させる温度であるときに燃圧を上昇させることができる。
気泡含有燃料を噴射する場合、燃料に対する気体混入率であるボイド率で決まる音速によって、燃料の流速が律則される。そして、燃圧がある値以上となると、燃料流量、気泡径および圧壊時間が一定となる。そこで、本実施例形態では、暖機が完了した後の温間時設定燃圧を飽和燃圧(例えば、6MPa)よりも低い3MPaに設定し、燃温に応じた燃圧の補正代を持たせている。
つぎに、燃料噴射装置1による燃料噴射制御の一例について説明する。まず、図3乃至図5を参照して、制御方針の概略について説明する。図3は燃料温度(燃温)と、気泡径および圧壊時間との関係を示すグラフの一例である。図4は燃料圧力(燃圧)と気泡の圧壊時間との関係を示すグラフの一例である。図5は燃料温度と冷却水温の時間推移を示すグラフの一例である。
図3を参照すると、燃温が高くなるほど、燃料が含有する気泡径が大きくなり、これに伴って圧壊時間が長くなることがわかる。圧壊時間が長くなると、燃料の微粒化が遅れ、液滴噴霧の燃焼室壁面やピストン頂面への付着の可能性が高まる。これに対し、図4を参照すると、燃圧を高めることにより、圧壊時間を短縮することができる。図4に示すグラフ中、T1およびT2はそれぞれ異なる燃温における燃圧と圧壊時間との関係を示している。ここで、T1<T2である。例えば、燃圧P1であるとき、燃温が高い方(T2)の圧壊時間が長いことが分かる。燃温T2の燃料中の気泡を、燃圧P1のときに燃温T1の燃料中の気泡が圧壊する時間で圧壊させるためには、燃圧をP2に上昇させればよい。
つぎに、図5を参照すると、燃温と冷却水温とが相関関係を有することが分かる。ここで、燃温と冷却水との時間推移について説明する。エンジン本体1000が始動すると、エンジン本体1000における燃焼熱により冷却水温が上昇する。そして、冷却水温がサーモスタット弁の開弁設定温度に達すると、サーモスタット弁が開弁し、ラジエータから冷却水が供給される。このとき、冷却水温は、サーモスタット弁の開弁設定温度に保たれる。その後、エンジン本体1000が停止すると、冷却水の循環も停止するため、エンジン本体1000や排気マニホールドからの熱の流入により、冷却水温はサーモスタット弁の開弁設定温度以上となる。その後、徐々に外部に熱が放出されることにより、冷却水温も低下する。
一方、エンジン本体1000の運転中、燃料は、燃料系内を流通して燃料噴射弁30により噴射されるので、燃料系の熱が持ち去られ、このため、燃温は、冷却水温よりも若干低くなる。エンジン本体1000が停止した後は、噴射される燃料による熱の持ち去りがなくなるため、冷却水温とほぼ同等の値を示すようになる。このように、燃温と冷却水温とは相関関係を有する。そして、燃温は、エンジン本体1000が停止した後、デッドソーク時の高温再始動のときに非常に高くなっており、これに伴って、燃料に含まれる気泡の気泡径の拡大、ひいては、気泡の圧壊時間の長期化が顕著となる。
燃料噴射装置1は、このような燃温の上昇時に図6にそのフロー図の一例を示す燃圧制御を行う。燃料噴射装置1における制御はECU10によって主体的に行われる。
まず、ステップS1では、水温センサ27により取得された冷却水温に関する値を読み込む。そして、ステップS2において、冷却水温がエンジン停止後冷却水温よりも高いか否かを判断する。エンジン停止後冷却水温とは、予め定められた閾値であり、サーモスタット弁の開弁設定温度よりも高い値であり、エンジン本体1000が停止したときに発現する温度に設定されている。ステップS2でYesと判断したときは、ステップS3へ進む。なお、ステップS2におけるYesとの判断は、燃料が予め定められた高温側温度閾値よりも高い状態にあるとの判断と同等の判断である。すなわち、直接的に燃温を測定する場合は、測定された燃温が高温側温度閾値よりも高い状態にあるか否かを判断すればよい。ところが、本実施形態では、水温センサ27を用いた燃温の推定、算出を行っているため、このような措置となる。すなわち、冷却水温が、エンジン停止後冷却水温よりも高い状態が、燃温が高温側温度閾値よりも高い状態に相当するとして処理を進める。
ステップS3では、燃温として冷却水温の値が代入される。図5を参照して説明したように、エンジン本体1000が停止した後は、冷却水温と燃温とはほぼ同値となる。そこで、水温センサ27により測定された値をそのまま燃温として採用する。一方、ステップS2でNoと判断したときは、ステップS4へ進む。
ステップS4では、燃温として水温センサ27により測定された値に補正係数を掛けた値が代入される。図5を参照して説明したように、エンジン本体1000が稼動している状態のときには、燃温は冷却水温よりも僅かに低い値を示す。この燃温と冷却水温とのギャップを埋めるために補正係数が掛けられる。
ステップS3、ステップS4に引き続いて行われるステップS5では、補正燃圧を算出する。補正燃圧は図7に示す補正燃圧マップを参照することによって算出される。図7を参照すると、燃圧は、燃料の温度が高いほど、上昇幅が大きくなる。燃料の温度が高いほど気泡径が拡大し、圧壊までの時間が延びることを考慮し、これに対処すべく、燃圧を上昇させて、気泡径を所望の大きさに維持するためである。
ステップS5に引き続き行われるステップS6では、燃圧として、設定燃圧に補正燃圧が加えられた値が代入される。そして、ECU10は、その燃圧となるように燃料ポンプ25へ駆動指令を発する。ここで、設定燃圧とは、エンジン本体1000の稼動状態に基づいて要求される燃圧であり、上述の温間時設定燃圧(3MPa)に相当する。
以上のように燃圧が制御されることにより、燃料に混入された気泡の気泡径を所望の大きさに維持し、安定して燃料を微粒化することができる。
つぎに、エンジン本体1000が冷間始動となるときの燃料噴射装置1の制御について、図8を参照しつつ説明する。図8は燃料噴射装置1が行う燃圧制御の一例を示すフロー図である。
ステップS11では、水温センサ27により取得された冷却水温に関する値を読み込む。そして、ステップS12において、冷却水温が低温始動判別水温よりも高いか否かを判断する。低温始動判別水温とは、予め定められた閾値であり、エンジン本体1000の暖機完了を判断する値としている。本実施形態では、低温始動判別水温として、20℃の値が設定されている。ステップS12でYesと判断したときは、ステップS13へ進む。
ステップS13では、開始燃圧として設定燃圧、すなわち、温間時設定燃圧(3MPa)が代入される。一方、ステップS12でNoと判断したときは、ステップS14へ進む。なお、ステップS12におけるNoとの判断は、燃料が予め定められた低温側温度閾値よりも低いときであるとの判断と同等の判断である。すなわち、直接的に燃温を測定する場合は、測定された燃温が低温側温度閾値よりも低い状態にあるか否かを判断すればよい。ところが、本実施形態では、水温センサ27を用いた燃温の推定、算出を行っているため、このような措置となる。すなわち、冷却水温が、低温始動判別水温よりも低い状態が、燃温が低温側温度閾値よりも低い状態に相当するとして処理を進める。
ステップS14では、開始燃圧として低温時燃圧(1MPa)が代入される。このように、低温時燃圧を設定しても、燃温が低いため、気泡径の拡大による圧壊時間の長期化は回避される。
ステップS13、ステップS14に引き続いて行われるステップS15では、現在の燃圧が、ステップS13又はステップS14で設定された燃圧よりも高いか否かを判断する。ステップS15でYesと判断したときは、ステップS16へ進む。ステップS16では、噴射許可フラグをONとする。これにより、噴射指令が発せられる。一方、ステップS15でNoと判断したときは、ステップS17へ進む。ステップS17では、噴射許可フラグをOFFとする。そして、処理はリターンとなり、ステップS11からの処理が繰り返し行われる。すなわち、燃圧が上昇してステップS15でYesと判断されるまで、噴射待機状態となる。
このように開始燃圧を低下させることにより、燃料ポンプ25による燃圧の昇圧時間を短縮することができ、始動、完爆を早めることができる。この結果、エンジン本体1000の始動性を向上させることができる。ハイブリッド車、特にプラグインハイブリッド車では、エンジン本体1000が停止する時間が長くなる傾向にある。長時間のエンジン本体1000の停止後に、再始動するときに、エンジン本体1000が冷却された状態となっていることがある。このような場合に、設定燃圧への到達時間を短縮することができるため、エンジン本体1000の速やかな始動を実現することができる。
実施形態1の特徴をまとめると以下の如くである。燃温の上昇に伴って気泡径が拡大するため、燃圧を上昇させることによってこれを抑制し、気泡の気泡径を所望の大きさに維持する。この結果、気泡の圧壊時間の長期化が回避され、安定して燃料を微粒化することができる。
(実施形態2)
つぎに、実施形態2について説明する。実施形態1では、エンジン停止後冷却水温よりも冷却水温が高くなったときに燃圧を上昇させる制御を行っている。これに対し、実施形態2では、高温側温度閾値として、燃料噴射弁30から噴射される燃料中に混入された気泡の圧壊時間として許容される時間閾値を超過することとなる燃料の温度を設定している。上述のように、図4を参照すると、燃温がT1からT2のように上昇すると、気泡の圧壊時間が長期化する。このとき、図4に示すように時間閾値を設定し、これに対応する燃温Taを閾値とする。従って、燃温がTaよりも低いT1であれば、圧壊時間は、時間閾値以内であるため、燃圧制御は行われない。一方、燃温がT2のようにTaよりも高い状態となったときに、燃圧を上昇させる制御を行う。燃圧制御は、このように行われてもよい。
(実施形態3)
つぎに、実施形態3について図9を参照して説明する。実施形態3は、実施形態1における燃料デリバリ26を変形した例である。図9(A)は燃料デリバリ36内の蓄圧室37の容積が広がった状態を示し、図9(B)は燃料デリバリ36内の蓄圧室37の容積が狭められた状態を示す説明である。
燃料デリバリ36は、燃料ポンプ45の下流側に接続されている。燃料ポンプ45は、実施形態1における燃料ポンプ25と異なりエンジン本体1000のカム軸の回転を駆動源とする機械式である。燃料デリバリ36は、有底の中空筒状部材36aを備えている。燃料デリバリ36には、燃料噴射弁30が接続されている。中空筒状部材36aには、空気孔36bが設けられている。燃料デリバリ36と燃料ポンプ45との接続部には、逆止弁38が設けられている。燃料デリバリ36の内部には、サーモスタット39が内蔵されている。サーモスタット39は、感温部39a、移動壁39bおよび出力ロッド39cを備えている。感温部39aの内部には、パラフィンワックスが封入されている。パラフィンワックスは、温度が上昇すると膨張する。感温部39aは、燃料ポンプ45から燃料が導入される側に位置している。移動壁39bには、Oリング39b1が装着され、中空筒状部材36a内を二つの領域に区分けするように中空筒状部材36a内に装着されている。移動壁39bにより区分けされた領域のうち、逆止弁38が装着された側の領域が蓄圧室37となる。感温部39aは、移動壁39bと一体に設けられている。感温部39aは、蓄圧室37側に露出した状態となり、蓄圧室37内の燃料の温度を検知することができる。出力ロッド39cの一端側は、感温部39a内に挿入されている。出力ロッド39cの他端側は、逆止弁38が装着された側と対向する側の中空筒状部材36aの側壁部36a1に固定されている。図9(A)に示す状態のサーモスタット39の蓄圧室37内の燃料の温度が高くなると、感温部39a内のパラフィンワックスが膨張し、図9(B)に示すように出力ロッド39cが押し出される。これにより、相対的に移動壁39bが逆止弁38側に移動し、蓄圧室37の容積が変更される。すなわち、蓄圧室37の容積が狭くなる。蓄圧室37の容積が狭くなると、蓄圧室37内の圧力が高まる。一方、図9(B)に示す状態のサーモスタット39の蓄圧室37内の燃料の温度が低くなると、感温部39a内のパラフィンワックスが収縮し、図9(A)に示すように出力ロッド39cが感温部39a内に収容される。これにより、相対的に移動壁39bが出力ロッド39c側に移動し、蓄圧室37の容積が変更される。すなわち、蓄圧室37の容積が広くなる。蓄圧室37の容積が広くなると、蓄圧室37内の圧力が低下する。このように、燃料デリバリ36を用いれば、燃温に応じて燃圧を調整することができる。
上記実施形態は本発明を実施するための一例にすぎない。よって本発明はこれらに限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。例えば、上記実施形態では、燃料の微粒化のメカニズムとして、気泡の自己加圧作用を利用しているが、気泡の破裂のメカニズムは、上記実施形態に限定されない。要は、燃料に気泡を含有させて噴射し、どのようなメカニズムであれ、気泡を破裂させて燃料の微粒化を図る燃料噴射弁であれば、本明細書開示の燃料噴射装置に組み合わせることができる。
1 燃料噴射装置
25、45 燃料ポンプ
26、36 燃料デリバリ
30 燃料噴射弁
31 ノズルボディ
31a シート面
32 ニードルガイド
32a 螺旋溝
33 ニードル弁
33a シート部
35 噴孔
100 エンジンシステム
1000 エンジン本体

Claims (6)

  1. 気泡含有燃料を噴射する燃料噴射弁と、
    前記燃料噴射弁から噴射される燃料の温度を取得する燃温取得部と、
    前記燃温取得部により取得した燃料の温度に基づいて、前記燃料噴射弁における燃圧を変更する燃圧変更部と、
    を備え、
    前記燃圧変更部は、前記気泡含有燃料が該気泡含有燃料中の気泡の気泡径を拡大させる温度であるときに燃圧を上昇させる燃料噴射装置。
  2. 前記燃圧変更部は、前記燃温取得部により取得された燃料の温度が予め定められた高温側温度閾値よりも高いときに燃圧を上昇させる請求項1に記載の燃料噴射装置。
  3. 前記高温側温度閾値は、前記燃料噴射弁から噴射される燃料中に混入された気泡の圧壊時間として許容される時間閾値を超過することとなる燃料の温度である請求項2に記載の燃料噴射装置。
  4. 前記燃圧変更部は、前記燃温取得部により取得された燃料の温度が高いほど、燃圧の上昇幅を大きく設定する請求項1乃至3のいずれか1項に記載の燃料噴射装置。
  5. 前記燃圧変更部は、前記燃温取得部により取得された燃料の温度が、予め定められた低温側温度閾値よりも低いときに、燃圧を低下させる請求項1に記載の燃料噴射装置。
  6. 前記燃圧変更部は、前記燃料噴射弁に供給される燃料が貯留される蓄圧室と、該蓄圧室内を移動することによって該蓄圧室の容積を変化させる移動壁を備え、前記蓄圧室内に導入される燃料の温度に応じて前記移動壁前記蓄圧室内移動させることによって前記燃料噴射弁における燃圧を上昇させ或いは低下させる請求項1乃至のいずれか一項に記載の燃料噴射装置。
JP2012094271A 2012-04-17 2012-04-17 燃料噴射装置 Expired - Fee Related JP5803792B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012094271A JP5803792B2 (ja) 2012-04-17 2012-04-17 燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012094271A JP5803792B2 (ja) 2012-04-17 2012-04-17 燃料噴射装置

Publications (2)

Publication Number Publication Date
JP2013221462A JP2013221462A (ja) 2013-10-28
JP5803792B2 true JP5803792B2 (ja) 2015-11-04

Family

ID=49592621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012094271A Expired - Fee Related JP5803792B2 (ja) 2012-04-17 2012-04-17 燃料噴射装置

Country Status (1)

Country Link
JP (1) JP5803792B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293397A (ja) * 1994-04-28 1995-11-07 Hitachi Ltd 燃料供給装置および燃料供給制御方法
JP5593796B2 (ja) * 2010-04-08 2014-09-24 トヨタ自動車株式会社 燃料噴射ノズルおよび直接噴射式燃料噴射弁

Also Published As

Publication number Publication date
JP2013221462A (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5678966B2 (ja) 燃料噴射弁
JP2017194065A (ja) 内部冷却式高圧縮リーン・バーン内燃エンジン
KR100916737B1 (ko) 내연 기관의 제어 장치
JP5614459B2 (ja) 燃料噴射弁
CN108798888B (zh) 内燃机
JP2010037968A (ja) 内燃機関の燃料噴射制御装置
JP5725150B2 (ja) 燃料噴射弁
JP6113044B2 (ja) 内燃機関の燃料噴射制御装置および燃料噴射制御方法
CN109328263B (zh) 控制装置
JP5803792B2 (ja) 燃料噴射装置
JP2013204455A (ja) 燃料噴射弁
JP2012137053A (ja) 燃料噴射弁
JP2013024054A (ja) 始動制御装置
JP2011247172A (ja) 燃料噴射装置
US20190107041A1 (en) Internal Combustion Engine Control Device
JP5780294B2 (ja) 燃料噴射装置
JP6032797B2 (ja) 内燃機関
JP6156204B2 (ja) 直噴ガソリンエンジンの制御装置
JP2011236834A (ja) 燃料噴射装置
JP2012172673A (ja) 燃料噴射弁及び燃料噴射装置
JP2012132366A (ja) 燃料噴射弁
JP4968174B2 (ja) 内燃機関の燃料噴射装置
JP2012132332A (ja) 燃料噴射弁及び燃料噴射装置
JP2008008192A (ja) 筒内噴射型内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees