以下、本発明の実施形態を、図面を参照して説明する。
この実施形態の物品分別装置1は、図1に示すように、大きくは機械装置部2と制御システム部3とから構成される。この制御システム部3は、後述するように機械装置部2に組み込まれた圧電素子71、72、73の制御を行うことで、機械装置部2にX、Y、Zの各方向の周期的加振力を与えて振動を生じさせるように構成している。
なお、X、Y、Zの各方向は図中左下に示した座標軸に示したとおりに定義することとし、以下においてもこの座標軸に沿って説明を進めていく。
機械装置部2は、図2および図3に示すように、大きくは床面に固定した基体4と、基体4に対して振動することで上に載せた物品9を移動する可動台6と、可動台6を基体4に対して弾性的に支持する弾性支持手段5とから構成している。基体4はX方向に長辺を向けた長方形の平板形状をしており、その上面4aにはY方向に長辺を向けた直方体状の取付ブロック41が2個X方向に間隔を空けて平行に固設してある。基体4の下に、図示しない防振ゴム等のバネ定数の小さい弾性体を取り付ければ、設置する床に対する反力を低減させることができて好適である。
弾性支持手段5は、基体4と連結される4本の棒状バネである第1バネ部材52と、当該第1バネ部材によって基体4に対して水平方向に弾性的に支持される中間台51と、当該中間台51と連結され可動台6を垂直方向に弾性的に支持する4枚の板状バネである第2バネ部材53とからなる。
Y方向に平行に配置された一対の第1バネ部材52は、それぞれ平板状に構成した下端部52bで上記取付ブロック41のX軸と直交する側面のうち外側の側面41aに連結しており、当該下端部52bより鉛直上方(Z方向)に向かって延出する形状としている。そして、合計4本の第1バネ部材52がそれぞれ基体4の外縁をなす長方形の四隅のやや内側より起立するように配置してあり、上端部52aによって中間台51の一部を構成する上側ブロック51aを側面から支持するように連結している。第1バネ部材52のうち上端部52aと下端部52bの間の中間部52cは、断面が四角形となるように構成してあり、それぞれの側面がX軸、Y軸に直交する平面となるようにしている。このように4本の第1バネ部材52によって支持することによって、中間台51は水平方向に弾性的に支持され、X、Y方向に変位が生じる際にもほぼ水平状態を維持することができる。
中間台51は、4枚の平板状の側板51dを縦横に組んだ矩形状の枠を構成し、これをX方向に一対配置した上側ブロック51aで吊り下げるような形で固定するように構成している。上述したように、上側ブロック51aは4本の第1バネ部材52によって支持しているため、中間台51は全体として空中で水平方向に弾性的に支持される。さらに、側板51dの内側には、4枚の板状バネである第2バネ部材53を、2枚を一組としてX方向に直列にかつ水平面に平行となるように配置し、これを上下2段として取付けている。
側板51dは、第2バネ部材53に対して十分な強度を有しているために、強度メンバとして第2バネ部材53のねじれ方向の変形を抑制するとともに、第1バネ部材52が等しく変形するように変形方向を拘束するように機能する。上記の4枚の第2バネ部材53は、それぞれ片端側を上記上側ブロック51aと中間ブロック51b、あるいは中間ブロック51bと下側ブロック51cによって上下に挟みこむようにして固定している。そして、他端側を可動台6の下部に設けられた支持ブロック上部62aと支持ブロック中間部62b、あるいは支持ブロック中間部62bと支持ブロック下部62cとによって上下に挟みこむようにして固定している。このように構成することで、可動台6は中間台51に対して垂直方向に弾性的に支持され、Z方向に変位が生じる際にも水平状態を維持することが可能となっている。
可動台6は下側に、上述したような支持ブロック上部62aと支持ブロック中間部62bと支持ブロック下部62cとを備えており、一体として動作を行う。そして、上面61は平面状に構成してあり物品9を積載することが可能となっている。上述したように中間台51は、基体4に対して同一の4本の第1バネ部材52で連結されることによって水平方向に弾性支持されており、さらに可動台6は中間台51に対して第2バネ部材53で連結されることによって垂直方向に弾性支持されている。その結果、可動台6は、基体4に対してX、Y、Zの各方向に弾性的に支持されるように構成されており、X、Y、Zの各方向に変位が生じた場合でも可動台6の上面はほぼ水平の状態を維持することが可能となっている。
そして、この可動台6をX、Y、Zの各方向に振動させるための駆動部として、以下のように圧電素子71、72、73を設けている。
まず、X方向の振動を付与する第1の水平加振手段として、第1バネ部材52の中間部52cの長手方向中央以下の側面でX軸に直交する面に、直方体状の第1圧電素子71を貼りつけてある。また、Y方向の振動を付与する第2の水平加振手段としてとして、第1バネ部材52の中間部52cの長手方向中央以下の側面でY軸に直交する面に、直方体状の第2圧電素子72を貼りつけてある。これらの圧電素子71、72は電圧を付与することにより全長に伸びを生じさせることができるため、これに伴って圧電素子71、72を貼りつけた第1バネ部材52を図5に示すようにたわませ、可動台6に水平方向の変位を生じさせることが可能となっている。
本実施形態においては、図4(a)に示すように、それぞれの第1バネ部材52に対して第1圧電素子71a、71bと第2圧電素子72a、72bとをそれぞれ対向する面に一対ずつ設けたバイモルフ型として構成した。本実施形態のように圧電素子の伸びを利用してバネ部材にたわみを生じさせようとする場合、対向面に設けた圧電素子の片方を伸び側に設定するときには他方を縮み側に設定する必要があるため、片方を伸び側とした際に、他方が縮み側になるように電圧印加及び貼り付け方向を設定してある。以下、圧電素子に対して付与する電圧に関しては、単純にX方向制御電圧、Y方向制御電圧として説明を行い、X方向およびY方向に正の制御電圧を付与するということは、それぞれ可動台6をX、Yの正方向に移動させる向きに第1バネ部材52に曲げを生じさせるように、第1圧電素子71、第2圧電素子72を伸び縮みさせる電圧を付与することを意味するものする。
4箇所に設けられた第1バネ部材52は、それぞれ同じように第1圧電素子71、第2圧電素子72が貼りつけられ同時にたわみが制御されるため、常時同じ方向に同じ量の変形を行う。そのため、これらによって四隅を支持した中間台51は、水平を維持しながらX方向、Y方向に並進移動するようになっている。
また、第1バネ部材52は変形を行う場合、図5に示すように中間部52cの長手方向中央を境に、一つの面内の上下で伸び側と縮み側が逆転する。よって、第1圧電素子71、第2圧電素子72を長手方向中央付近を超えて広い範囲に貼りつけることは、却って変形を阻害することになり好ましくない。そのため、本実施形態のように長手方向中央付近より片端部側に寄せた位置に貼りつけることが効率的である。
次に、Z方向の振動を付与する垂直加振手段として、図3に示すように、板状バネである第2バネ部材53の長手方向中央より外側となる位置の裏表に第3圧電素子73を貼りつけてある。なお、図中では4枚の第2バネ部材53のうち上段の2枚にのみ第3圧電素子73を貼りつけてあるが、これに代わって下段の第2バネ部材53に対して第3圧電素子73を取り付けても良いし、双方ともに第3圧電素子73を取り付けても良い。ただし、第1バネ部材52に貼りつけたある第1圧電素子71、第2圧電素子72と同様に、第2バネ部材53の長手方向中央付近にまたがって貼りつけることは却って効率を損ない不適当である。当該圧電素子73に電圧を付与することによって、伸び縮みを生じさせ、第2バネ部材53をたわませ、可動台6を垂直方向に移動させることができる。
第2バネ部材53の変形は、図6に示すような形で生じ、表裏に貼られた第3圧電素子73、73はそれぞれ伸びと縮みが逆転する。そのため、これを駆動する電圧は具体的に表裏に加える電圧を区別することなく、X、Y方向の制御電圧と同様に、単に可動台6をZ軸の正方向に移動させるものを正の制御電圧として表すことにする。
第2バネ部材53および第3圧電素子73は、可動台6に対して左右対称に設けられているため、可動台6は上面61を水平に保ったままで垂直方向に移動することになる。
このようにして構成した機械装置部2に対して制御システム部3は、第1圧電素子71、第2圧電素子72および第3圧電素子73に各々正弦波状の制御電圧を付与することによって、X、Y、Zの各方向の振動を発生させるための周期的加振力を生じさせる。
そのため、制御システム部3は、図1に示すように、正弦電圧を生じさせる発振機34を備えており、この正弦電圧をアンプ35により増幅した上で、各圧電素子71、72、73に出力する。さらに、上記制御システム部3はX、Y、Zの各方向の制御電圧を詳細に調整するための振動制御手段31を有している。なお、発振機34により生じさせる振動の周波数は、X、Y、Z方向のいずれかの振動系と共振する周波数とすることで、振動を増幅して省電力化を図るようにしてある。なお、全ての方向の振動系の振動が干渉することを避けるためには、各方向の固有振動数を離してもよい。この時、各方向の固有振動数は例えば−10%〜+10%程度離すようにする。
振動制御手段31は大きくは、X、Y、Zの各方向の制御電圧の振幅を調整する振幅調整回路31aと、それぞれの位相差を調整するための位相調整回路31bとからなる。本実施形態では、X、Y、Zの各制御電圧にそれぞれ対応した振幅調整回路31aを有するとともに、Z方向の制御電圧の位相を基準として、これと所定の位相差となるように制御電圧の位相を調整する位相調整回路31bをX、Yの制御電圧についてそれぞれ設けるように構成している。
そして、制御システム部3は複数の物品9を分別する基準として、上記のように設定する位相差を入力する位相差入力部32を有している。位相差入力部32ではZ方向の制御電圧の位相を基準としたX方向、Y方向のそれぞれの位相差を入力し、当該位相差に設定するようにX、Y方向に対応する各位相調整回路31bに命令を出す。
上記のように構成した物品分別装置1では、具体的には次のような原理に従って物品の分別を行う。
ここで、図7の模式図に示すように簡略化して、可動台6が基体4に対してX、Y、Zの各方向に弾性体54、55、56により弾性的に支持するとともに、各方向の加振手段74、75、76を設けている場合を想定する。このように構成することで、X、Y、Zの三方向に設けた加振手段74、75、76によって可動台6を三方向に動作させることが可能とされている。図7の模式図における弾性体54、55は、図2における第1バネ部材52に該当するとともに、弾性体56は第2バネ部材53に該当する。また、図7の模式図における加振手段74、75、76はそれぞれ第1の水平加振手段71、第2の水平加振手段72、垂直加振手段73に該当する。
図7に示すモデルの可動台6に対して、Z方向にZ=Z0×sinωtで表される周期的な振動変位を与える。ここで、Z0はZ方向の振幅を、ωは角周波数を、tは時間を示す。さらに、X、Y方向にもそれぞれZ方向と同一周波数の振動を、X=X0×sin(wt+φx)、Y=Y0×sin(wt+φy)の式のように与えることとする。ここで、X0、Y0はそれぞれX方向、Yの振幅を、φx、φyはそれぞれX方向、Z方向の振動のZ方向の振動に対する位相差を示す。
このように、X、Y、Zの各方向に正弦波状の周期的な振動変位を加えることにより、可動台6にはこれらが合成された三次元的な振動を生じさせることができる。例えば、図7に示すように、Z方向の振動成分に対してφx、φyの位相差を持たせてX、Y方向の振動を生じさせたとき、二次元的にはXZ平面上で右側を上にした楕円軌道を有する振動が生じ、YZ平面上で右側を下にした楕円軌道を有する振動が生じる。そして、さらにこの2つを合成することで、図中右下に示すように三次元空間上での楕円軌道が生じる。
そして、各方向の振動変位の振幅および位相を変えることにより、XZ平面、YZ平面内の二次元の楕円軌道の大きさや向きを変更することができ、対応して三次元空間上の楕円軌道の大きさや向きを自由に変更することができる。なお、このように各方向への周期的な振動変位を付与するために、制御上は各方向への周期的加振力を付与することで対応を行っている。
以上のように、可動台6が楕円軌道を描きつつ振動することによって、可動台6の上に載せられた物品9は移動を行う。そして、この移動のうちX方向への移動速度成分は上記XZ平面内の楕円軌道によって制御でき、Y方向への移動速度成分は上記YZ平面内の楕円軌道によって制御できる。すなわち、Z方向への振動成分を基準としてX方向、Y方向のそれぞれの振動の振幅と位相差を変化させることで、X、Y方向への移動速度成分を変化させ、任意の方向に物品9を移動することが可能となる。
具体的には移動速度の変更は次のようにして行う。
発明者らの知見によれば、図7を参照しつつ図8を用いて説明すると、位相差φx(φy)によって物品9の移動速度Vx(Yy)は正弦波に類似したカーブを描くように変化するとともに、物品9と可動台6との間の摩擦係数によっても変化する。すなわち、3種類の物品W1、W2、W3と可動台6との間の摩擦係数をそれぞれμ1、μ2、μ3としてμ1<μ2<μ3の関係があるとき、W2の時の移動速度のグラフは、W1の時の移動速度のカーブを位相差が正となる方向にずらした形状となり、W3の時の移動速度のグラフはそれをさらに位相差が正となる方向にずらした形状になる。そのため、楕円振動を行う可動台6の上に同時に摩擦係数の異なる物品9を置いた場合には、移動速度及び移動方向が異なることになる。
具体的には、図8に示す位相差φ1に設定しているときには、W1は正の方向に進み、W2とW3とは同じ負の方向に進むがW3のほうがW2よりも移動速度が大きくなる。さらに位相差φ2に設定すると、W1は正方向に、W2はW1よりも小さな速度で正方向に進み、W3は負の方向に進む。位相差をφ3に設定すると、W1は負の方向に進み、W2は正方向に、W3はW2よりも大きな速度で正方向に進む。位相差をφ4に設定すると、W1を負の方向に、W2はW1よりも小さな速度で負の方向に進み、W3は正の方向に進む。このようなφ1〜φ4以外にも位相は任意に設定可能であり、W1からW3を全て正方向または逆方向に移動させることや、移動速度の大きさの順番を変更することも可能である。
また、発明者らの知見によれば、図7を参照しつつ図9を用いて説明すると、位相差φx(φy)と物品9の移動速度Vx(Yy)との関係は、振幅X0(Y0)を変えることによっても変化する。すなわち、位相差φx(φy)に対する物品9の移動速度Vx(Yy)である正弦波類似のカーブは、概ね振動変位の振幅X0(Y0)に比例して変化する。このことから、物品9の移動速度Vx(Yy)を2倍にしたい場合には、概ねX(Y)方向の振動変位の振幅を2倍にすればよい。そのためには、それに応じた加振力を与えるべく、制御電圧の振幅を変化させればよい。
このような一方向に対する振動制御を、直交するX、Y方向に同時に付与することによって、複数の種類の物品9を可動台6上で分別し異なる方向に移動することができる。
以下、図10に示すように、可動台上にW1、W2、W3の三種の物品が載っていることを想定して説明を行う。なお、それぞれの摩擦係数はμ1、μ2、μ3としこれらの間にμ1<μ2<μ3の関係があるものとする。
このような物品を可動台6上で移動させる速度は、X方向移動速度成分Vx、Y方向移動速度成分Vxに分解して考えることができ、上述したようにVx、VyはそれぞれXZ平面内の楕円軌道、YZ平面内の楕円軌道によって制御でき、それぞれZ方向の振動成分に対する位相差との関係で、上述の図8の関係を有する。
ここで、摩擦係数の異なる物品W1、W2、W3を移動する方向として、図10のように上下左右で領域を分け、それぞれA、B、C、D領域とする。X、Yの振動成分のZ方向振動成分に対する位相差φx、φyを変化させることで、移動方向をこれらの領域のいずれかに設定することが可能となる。
例えば、φx、φyをそれぞれ、図8に示すφ1、φ2に設定したとき、図11(a)の表に示したように、W1、W2、W3のX方向移動速度成分Vxは、それぞれ正(+)、負(−)、負(−)の値となり、Y方向移動速度成分Vyは、それぞれ正(+)、正(+)、負(−)の値となる。すなわち、図10に示す領域においては、W1はD領域に、W2はC領域に、W3はA領域に移動しようとすることになり、その結果、図13(a)に示すようにW1〜W3はそれぞれの領域に分別されつつ移動する。
これと同様に図11(b)の表に示すように、φx=φ1、φy=φ4のときはW1、W2、W3はそれぞれB、A、C領域に向かい、その結果、図13(b)に示すようにW1〜W3はそれぞれの領域に分別されつつ移動する。
さらに、図11(c)、(d)および図12(e)〜(h)に示すように、φx=φ2、φy=φ1のときはW1、W2、W3はそれぞれD、B、A領域に、φx=φ2、φy=φ3のときはW1、W2、W3はそれぞれB、D、C領域に、φx=φ3、φy=φ2のときはW1、W2、W3はそれぞれC、D、B領域に、φx=φ3、φy=φ4のときはW1、W2、W3はそれぞれA、B、D領域に、φx=φ4、φy=φ1のときはW1、W2、W3はそれぞれC、A、B領域に、φx=φ4、φy=φ3のときはW1、W2、W3はそれぞれA、C、D領域に分別されつつ移動することになる。
このように摩擦係数の異なる物品9であればそれぞれ別の方向に移動することができるとともに、それぞれを任意の移動方向に変更することも可能である。
上記のような原理を用いて、具体的には、次のように本物品分別装置1を用いて物品9の分別を行う。以下、図1および図8を用いて説明を行う。
まず、位相差入力部32よりZ方向の振動成分に対するX方向、Y方向の振動成分のそれぞれの位相差φx、φyを入力する。この入力値に従って位相差入力部32は、X、Y方向の振動の位相をφxまたはφyずらすように、それぞれに対応する位相調整回路31b、31bに命令する。そして、位相調整回路31bは、もともとの発振機34の信号より位相をφxまたはφyずらして制御電圧として第1圧電素子71、第2圧電素子72に加えることでZ方向の振動成分との位相差を与える。このようにして、例えば位相差入力部32よりφx=φ3、φx=φ2と設定するものとして入力すると、上記のW1、W2、W3の性質を有する物品9は、それぞれ図12(e)のケースと同様にして、図10のC、D、B領域に分別することができる。
また、位相差入力部32より図11、図12に示すような位相差を設定すれば、それぞれの表中に記載の通り物品9を分別することができる。
ここで、本発明においては、上記分別を行うための位相差に設定したときに、移動速度が0になる摩擦係数を基準摩擦係数として定義する。すなわち、図8における位相差φ1、φ3に対応する基準摩擦係数はμaであり、φ2、φ4に対応する基準摩擦係数はμbである。この図より分かるように基準摩擦係数μbは基準摩擦係数μaよりも大きく設定されている。すなわち、位相差をφ3に設定することは、分別を行う境界として基準摩擦係数をμaに設定しつつ、これより摩擦係数が大きな物品9は正の方向に、摩擦係数が小さな物品9は負の方向に進ませるように設定することと同義である。同様に、位相差をφ2に設定することは、分別を行う境界として基準摩擦係数をμbに設定しつつ、これより摩擦係数が大きな物品9は負の方向に、摩擦係数が小さな物品9は正の方向に進ませるように設定することと同義である。
よって、上記の位相差入力部32を、X、Yの各方向に分別する基準として位相差そのものを入力するものではなく、X、Yの各方向に対する基準摩擦係数と、当該基準摩擦係数に対する摩擦係数の大小に応じて物品が進行する正負のいずれかの方向とを入力するものとして、これらの情報から内部に保存しておいた図8のグラフを基にして自動的に位相差を設定して出力するように構成することも可能である。
上記のような複数の物品9を分別し、それぞれ別の方向に向かって移動させる作用を利用して、本物品分別装置1を基点として、混在した複数の種類の物品を分別して異なるラインに向けて移動させていくことも可能である。そのためには、図14に例として示したように、可動台6の中央付近の上側に混在した物品9を投入する投入口91を設け、ここから放射線状に搬送口92を設けるようにすれば、自動的に分別された物品9が4方向に分かれたそれぞれのラインに向けて搬送されるようにすることが可能となる。上述のように、位相差の設定を変えることでそれぞれ物品の搬送先を変えることも可能である。
さらに、図8から分かるように、Z方向の振動に対して振動の位相差を変えることで、摩擦係数の異なる物品9の移動方向を変更できると同時に、速度差を設けることも可能である。そのため、本物品分別装置1は可動台上6の四隅に対応する領域に分別していくだけでなく、それらの領域の中間などのさらに細かな領域設定を行った上で、4種類以上に分別させることも可能である。
また、上記のように摩擦係数の異なる物品9を分別させるように制御することによって、厳密には摩擦係数が同じものであっても表面形状が異なるなど、見かけ上摩擦係数が異なっているようにとらえられるものについても分別することができる。例えば、同一部材の表面と裏面であっても、面の凹凸が異なり可動台6との接触面積が大きく異なるような場合が該当する。
以上のように本実施形態に係る物品分別装置1は、基体上に弾性支持手段5を介して設けられた可動台6を具備し、当該可動台6が振動することで可動台6上に載せられた複数の物品9を分別するものであって、前記可動台6に対して垂直方向の周期的加振力を付与する垂直加振手段73と、前記可動台6に対して水平方向の周期的加振力を付与する第1の水平加振手段71と、前記可動台6に対して水平方向でかつ前記第1の水平加振手段による周期的加振力と交差する方向に周期的加振力を付与する第2の水平加振手段72と、前記各加振手段71、72、73による周期的加振力を位相差を有しつつ同一の周波数で同時に発生させ前記可動台6に三次元の振動軌跡を生じさせるように前記各加振手段71、72、73を制御する振動制御手段31とを備え、前記第1の水平加振手段71による周期的加振力と前記垂直加振手段73による周期的加振力との位相差、および前記第2の水平加振手段72による周期的加振力と前記垂直加振手段73による周期的加振力との位相差を、それぞれ所定の基準摩擦係数を境界として個々の物品9が有する摩擦係数の前記基準摩擦係数に対する大小関係に基づき各物品9が異なる方向に移動するように設定することで、前記可動台6上に載せられた複数の物品9を同時に分別するように構成したものである。
このように構成しているため、可動台6に生じる三次元の振動軌跡を任意の形状や大きさに変更させることで、摩擦係数の異なる複数種類の物品9を同時に分別してそれぞれ別の方向に移動することが可能であるとともに、それらの移動方向を任意の方向に変更することができる。また、当該分別は摩擦係数の相違によって自動的に行われるために、カメラや画像処理機などの検査機器や分別のための特殊な機器を要することなく、簡単な構成で実現することができる。また、可動台6の上面61は平面に構成できるため大型のものから小型のものまで幅広い大きさ・形状の物品に対応できる。
さらに、前記第1の水平加振手段71による周期的加振力と前記垂直加振手段73による周期的加振力との位相差、および前記第2の水平加振手段72による周期的加振力と前記垂直加振手段73による周期的加振力との位相差を、それぞれ分別する物品9の摩擦係数に応じて設定するための位相差入力部32を備えるように構成しているため、物品9の分別を行うための基準を簡便に設定できる。
なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではない。
例えば、上述の実施形態においては、各方向への加振手段71、72、73をそれぞれX、Y、Zの互いに直交する方向に加振力を与えるように構成したが、可動台6に三次元的に合成した振動軌跡を生成・変更できるかぎり必ずしも直交させることは必要でなく、単にそれぞれの方向が交差しているだけでもよい。また、各加振手段71、72、73は厳密に垂直、水平方向に設定することも必要ではないし、基体4を傾けて設置する等の種々の利用の態様も可能である。
また、上述の実施形態においては、第1バネ部材52の側面に貼りつける第1圧電素子71と第2圧電素子72とは裏表に貼りつけた2個を一組としたバイモルフ型としていたが、図4(b)のようにそれぞれを1個ずつとしたユニモルフ型とすることも可能である。
また、本実施形態においては、図2および図3に示すように、第1圧電素子71および第2圧電素子72は第1バネ部材52の下側半分に貼りつけてあるが、これを上側半分に貼りつける構成とすることも可能であるし、上側半分と下側半分のそれぞれに設けるように構成することも可能である。同様に、第3圧電素子73を第2バネ部材53の外側半分ではなく内側半分に設けることも、内側と外側の双方に設けることも可能である。
さらに、本実施形態では第2バネ部材53を合計4枚設けてあり、一対の第2バネ部材53を直列に配置したものを上下の二段として設けているが、直列に配置した2枚を連続した1枚の板状バネとして形成し、これを上下段に配置することにより合計2枚で構成することも可能である。本実施形態のように4枚構成とする場合には、組立が容易となり精度が向上するという利点があるとともに、2枚構成とした場合には部品点数が削減できて管理が容易になるという利点がある。
また、上述の実施形態では、Z方向の周期的加振力の位相を基準として、X方向の周期的加振力とY方向の周期的加振力の位相を調整するような制御回路としていたが、Z方向の周期的加振力とX方向及びY方向の各周期的加振力との間の位相差を所定の値とすることができる限り、どの方向の周期的加振力の位相を変更するように構成しても良い。例えば、図15に示すように、X方向の周期的加振力の位相を基準として、これに対する位相差が所定のものになるように、Z方向、Y方向の各周期的加振力の位相を変更するように制御システム部3を構成しても良い。
また、上述の実施形態では、加振手段として板状のバネ部材52、53に貼り付けた圧電素子71、72、73を使用していたが、可動台6に対してX、Y、Z方向にそれぞれ独立した振動を生じさせることができる限りこの形態を採ることは必須ではない。例えば、可動台3に対してX、Y、Z方向にそれぞれ吸引力を作用させる電磁石を設け、それらに対して上記と同様の正弦電圧を付与するようにして位相差を設けつつ制御しても、上記と同様の効果を得ることができる。
また、上述したように加振周波数を可動台6の共振周波数近くに設定することも好適であるが、分別する物品9が載った状態では共振周波数がずれる場合があるため、実際の加振台6の振動の振幅を検知しながら、加振周波数の補正を行うことも好適である。そのためには、図16に示すように、可動台6の下部に張り出した支持ブロック下部62cのX、Y、Z方向の振幅を検知するため、各方向に対応した変位センサ81、82、83をそれぞれブラケット81a、82a、83aと、変位センサ台42を介して基体4上に固定し、これらより得られる検知データを基にして発振機37からの周波数信号を共振点追尾制御回路31eや、定振幅制御回路31cを用いて周波数及び振幅を適切に変換するようにして制御することで、安定した振動を得ることができる。
さらに、上述した実施形態では、個々の物品9の摩擦係数に着目して、摩擦係数を基準に物品9の分別を行うように構成したが、前述の通り物品9の表面形状によっては局所的な摩擦係数は同一であっても見かけ上は摩擦係数が異なるものと扱っても支障がない場合もある。また、物品9の表面形状を大きく変えることにより可動台6の上で転動や揺動を行うようになり、摩擦による推力の伝達を効果的に行うことができなくなる場合もある。さらには、可動台6の表面の硬さと、物品9の重量及び硬さとの関係から生じる幾何学的な形状変化も物品9に与える推力に影響を与える。そのため、通常の意味での摩擦係数に加えて、物品9および可動台6の表面形状や表面粗度、さらには重量や硬さによる形状変化等の影響を含めて、現実に物品9に対して水平方向に作用する推力を広い意味での摩擦力として捉え、当該広い意味での摩擦力を基準として各方向の振動成分の制御を行い、物品9の分別を行わせるように構成することも可能である。こうした考えを採る限りにおいては、物品9の分別を行うために基準として用いる摩擦係数の中に、上記広い意味での摩擦力の考えを取り込ませることも可能である。すなわち、上記広い意味での摩擦力を物品9に対する可動台6の垂直抗力で除した係数を広い意味での摩擦係数として、これを一般の摩擦係数と置き換えて基準として用いることでより多様な物品9の分別ができるようになるのであり、本発明における意図はこうした内容をも含むものである。また、上述の実施形態では摩擦係数を基準として制御を行うことで個々の物品9に対する推力を変化させて物品9の分別を行わせているが、上述のように広い意味での摩擦力を変化させることによって推力を変化させることが可能である限り、摩擦係数と置き換えて異なるパラメータを基準として用いても同様の作用効果を生じる物品分別装置として構成することもできるのであり、こうした構成についても本発明の均等の範囲に含まれる。
その他の構成も、本発明の趣旨を逸脱しない範囲で種々変形が可能である。