JP5758028B1 - 歩数計測器、歩行補助装置および歩数計測プログラム - Google Patents

歩数計測器、歩行補助装置および歩数計測プログラム Download PDF

Info

Publication number
JP5758028B1
JP5758028B1 JP2014126168A JP2014126168A JP5758028B1 JP 5758028 B1 JP5758028 B1 JP 5758028B1 JP 2014126168 A JP2014126168 A JP 2014126168A JP 2014126168 A JP2014126168 A JP 2014126168A JP 5758028 B1 JP5758028 B1 JP 5758028B1
Authority
JP
Japan
Prior art keywords
angle
walking
hip joint
joint angle
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014126168A
Other languages
English (en)
Other versions
JP2016004522A (ja
Inventor
遠藤 洋介
洋介 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2014126168A priority Critical patent/JP5758028B1/ja
Priority to US14/739,015 priority patent/US10143613B2/en
Priority to DE102015211261.6A priority patent/DE102015211261B4/de
Priority to CN201510347841.4A priority patent/CN105277209B/zh
Application granted granted Critical
Publication of JP5758028B1 publication Critical patent/JP5758028B1/ja
Publication of JP2016004522A publication Critical patent/JP2016004522A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers
    • G01C22/006Pedometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus ; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • A61H1/0244Hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/1628Pelvis
    • A61H2201/163Pelvis holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/164Feet or leg, e.g. pedal
    • A61H2201/1642Holding means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5069Angle sensors

Abstract

【課題】 加速度センサを用いた歩数計測器、あるいは足裏の接地を検出する歩数計測器は、使用者が健常者であれば比較的良好に歩数を計測できても、使用者の足取りに不規則性があるような場合には、その歩数を正確に計測することができなかった。【解決手段】使用者の右股関節角度を示す右股関節角度信号を出力する右用角度センサと、使用者の左股関節角度を示す左股関節角度信号を出力する左用角度センサと、右股関節角度信号と左股関節角度信号とから、右股関節角度と左股関節角度の角度差の時系列的な変化を示す角度差信号を生成する生成部と、角度差信号に少なくとも2つの互いに異なるフィルタを適用して得られるそれぞれの濾波信号の差から生成される差分信号に基づいて使用者の歩数を演算する演算部とを備える歩数計測器を提供する。【選択図】図5

Description

本発明は、歩数計測器、歩行補助装置および歩数計測プログラムに関する。
加速度センサを搭載した歩数計測器が知られている(例えば、特許文献1)。また、歩数を計測できる歩行補助装置が知られている(例えば、特許文献2)。
[先行技術文献]
[特許文献]
[特許文献1]特開2010−71779号公報
[特許文献2]特開2012−205826号公報
加速度センサを用いた歩数計測器、あるいは足裏の接地を検出する歩数計測器は、使用者が健常者であれば比較的良好に歩数を計測できても、使用者の足取りに不規則性があるような場合には、その歩数を正確に計測することができなかった。例えば、歩行補助装置により歩行補助を受けるリハビリ患者の歩行について、正確に歩数を計測することが困難であった。
本発明の第1の態様における歩数計測器は、使用者の右股関節角度を示す右股関節角度信号を出力する右用角度センサと、使用者の左股関節角度を示す左股関節角度信号を出力する左用角度センサと、右股関節角度信号と左股関節角度信号とから、右股関節角度と左股関節角度の角度差の時系列的な変化を示す角度差信号を生成する生成部と、角度差信号に少なくとも2つの互いに異なるフィルタを適用して得られるそれぞれの濾波信号の差から生成される差分信号に基づいて使用者の歩数を演算する演算部とを備える。
本発明の第2の態様における歩行補助装置は、使用者の歩行動作に補助力を付与する付与部と、上記の歩数計測器とを備える。
本発明の第3の態様における歩数計測プログラムは、右用角度センサが出力する、使用者の右股関節角度を示す右股関節角度信号と、左用角度センサが出力する、使用者の左股関節角度を示す左股関節角度信号とから、右股関節角度と左股関節角度の角度差の時系列的な変化を示す角度差信号を生成する生成ステップと、角度差信号に少なくとも2つの互いに異なるフィルタを適用して得られるそれぞれの濾波信号の差から生成される差分信号に基づいて使用者の歩数を演算する演算ステッとをコンピュータに実行させる。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
歩行補助装置の使用状況を説明する説明図である。 歩行補助装置の外観斜視図である。 使用者の動作と回転角の定義を説明する説明図である。 歩行補助装置を構成する各制御要素を説明する要素ブロック図である。 歩数計測に係る各処理を説明する機能ブロック図である。 信号波形の変化を説明する説明図である。 典型的な歩行の種類と、それぞれの検出信号を説明する説明図である。 歩数計測処理の全体の流れを示すフロー図である。 極値判定処理の流れを示すサブフロー図である。 歩行モード判定処理の流れを示すサブフロー図である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、本実施形態に係る歩行補助装置100の使用状況を説明する説明図である。使用者900は、歩行補助装置100を腰部と脚部に装着して固定する。人間の歩行動作は、一般的に、軸足の蹴り出し動作と、反対の足の振り出し動作を交互に繰り返す。例えば図示するように、右足を軸足として左足を振り出す場合は、歩行補助装置100は、右大腿902に後方への補助力を作用させて蹴り出し補助を行い、左大腿901に前方への補助力を作用させて振り出し補助を行う。逆に、左足を軸足として右足を振り出す場合は、歩行補助装置100は、左大腿901に後方への補助力を作用させて蹴り出し補助を行い、右大腿902に前方への補助力を作用させて振り出し補助を行う。歩行補助装置100がこのような補助動作を繰り返すことにより進行方向への推進力を補助し、使用者900は、軽快に歩行することができる。
歩行補助装置100は、健常者に使用される場合に限らない。正常な歩容を取り戻す訓練を行うリハビリ患者にも使用される。例えば、脳卒中後の片麻痺を呈するリハビリ患者の歩行においては、足を振り出す時期である遊脚期の膝屈曲角度が低下してつまずきやすくなるために、骨盤の引き上げなどの歩容異常が発生することが知られている。歩行補助装置100は、振り出し補助によって膝屈曲角度を増加させることができるので、脳卒中後のリハビリにも適する。したがって、歩行補助装置100は、リハビリ患者の状態に合わせて適切かつ早期に歩容を矯正することができる。また、一側面としては、歩行補助装置100は、これまで理学療法士がリハビリ患者の足を支えて行ってきたリハビリ処置において、理学療法士の肉体的作業を軽減することができる。
さらには、歩行補助装置100は、人間への適用に限らず、動物、機械へ適用することもできる。また、補助力をアシストとして作用させるに限らず、レジストとして作用させることもできる。すなわち、歩行補助装置100は、使用者900の振り出し動作に対して後方へ補助力を作用させ、蹴り出し動作に対して前方へ補助力を作用させる抵抗力を発生させる。このように歩行補助装置100を動作させれば、例えばアスリートが筋力増強のトレーニング器具として利用できる。
本実施形態においては、補助力をアシストとして作用させる場合について説明する。以下に歩行補助装置100を具体的に説明する。
図2は、歩行補助装置100の外観斜視図である。歩行補助装置100は、使用者900の腰部背面から腰部側面にかけて押し当てられる腰フレーム103を備える。腰フレーム103は、アルミニウム等の軽量合金、ポリカーボネート等の樹脂、カーボンファイバといった剛性の高い素材によって形成されている。腰フレーム103の背面中央付近には起動スイッチ101が設けられており、使用者900は、このスイッチを押圧操作すると、歩行補助装置100を起動させることができる。また、再度このスイッチを押圧操作すると、歩行補助装置100を停止させることができる。
また、腰フレーム103の背面部には、歩行補助装置100に電力を供給するバッテリ102が、着脱可能に配置されている。バッテリ102は、例えば20V程度の出力電圧を有するリチウムイオン電池が適用される。
腰フレーム103の両端部には腰ベルト104が接続されている。腰ベルト104は、腰フレーム103と共に使用者900の腰部を取り巻いて、腹面側で繋止される。腰ベルト104のベルト部は、繊維素材等の柔軟素材によって形成されている。このように、腰フレーム103と腰ベルト104により、歩行補助装置100は、使用者900に対して安定的に装着される。
腰フレーム103の腰部両側面側には、それぞれ左用モータ121と右用モータ122が配置されている。左用モータ121および右用モータ122は、同一仕様のモータであり、例えば最大トルク4N・m程度の出力能力を有するDCモータである。左用モータ121は、腰フレーム103に対して左用大腿フレーム141を回転動作させる。左用大腿フレーム141には、左用モータ121の出力回転軸の回転角を検出する左用角度センサ131が設けられている。同様に、右用モータ122は、腰フレーム103に対して右用大腿フレーム142を回転動作させる。右用大腿フレーム142には、右用モータ122の出力回転軸の回転角を検出する右用角度センサ132が設けられている。左用角度センサ131および右用角度センサ132は、例えば、ロータリエンコーダである。
左用大腿フレーム141および右用大腿フレーム142は、腰フレーム103と同様に、アルミニウム等の軽量合金、ポリカーボネート等の樹脂、カーボンファイバといった剛性の高い素材によって形成されている。左用大腿フレーム141は、左用モータ121と連結される一端側とは反対の他端側に左用大腿ベルト151が取り付けられている。使用者900は、左用大腿ベルト151を左足の大腿部のうち膝の近傍に巻き付けて固定する。同様に、右用大腿フレーム142は、右用モータ122と連結される一端側とは反対の他端側に右用大腿ベルト152が取り付けられている。使用者900は、右用大腿ベルト152を右足の大腿部のうち膝の近傍に巻き付けて固定する。左用大腿ベルト151および右用大腿ベルト152は、繊維素材等の柔軟素材によって形成されている。
このように構成された歩行補助装置100によれば、左用モータ121が通電されていない場合には、左用角度センサ131は、使用者900による自力の歩行動作における左大腿901の回転角を検出することができる。左用モータ121が通電されて順回転した場合には、左用モータ121は、左用大腿フレーム141を振り出し方向に回転させ、その結果、左足の大腿部を前側へ持ち上げる補助力を発生させる。左用モータ121が通電されて逆回転した場合には、左用モータ121は、左用大腿フレーム141を蹴り出し方向に回転させ、その結果、左足の大腿部を後側へ押し下げる補助力を発生させる。左用角度センサ131は、左用モータ121が通電されている場合にも左大腿901の回転角を検出する。
同様に、右用モータ122が通電されていない場合には、右用角度センサ132は、使用者900による自力の歩行動作における右大腿902の回転角を検出することができる。右用モータ122が通電されて逆回転した場合には、右用モータ122は、右用大腿フレーム142を振り出し方向に回転させ、その結果、右足の大腿部を前側へ持ち上げる補助力を発生させる。右用モータ122が通電されて順回転した場合には、右用モータ122は、右用大腿フレーム142を蹴り出し方向に回転させ、その結果、右足の大腿部を後側へ押し下げる補助力を発生させる。右用角度センサ132は、右用モータ122が通電されている場合にも右大腿902の回転角を検出する。
図3は、使用者900の動作と、回転角の定義を説明する説明図である。図示するように、使用者900が前進する場合の変位方向を正とする。振り出し動作の場合、大腿部が相対的に上体910に接近する関係となり、これを屈曲運動と言う。屈曲運動の場合、変位方向としては正方向である。また、上体910の重力方向に沿う中心線を基本線とすると、股関節を一端として大腿部に沿う線分は基本線に対して正の回転角を成す。図においては左足が振り出し動作中であり、基本線に対して左大腿901に沿う線分が成す角である左股関節角θは正値である。
蹴り出し動作の場合、大腿部が相対的に上体910から離れる関係となり、これを伸展運動と言う。伸展運動の場合、変位方向としては負方向である。また、股関節を一端として大腿部に沿う線分は基本線に対して負の回転角を成す。図においては右足が蹴り出し動作中であり、基本線に対して右大腿902に沿う線分が成す角である右股関節角θは負値である。
次に、歩行補助装置100を構成する各制御要素を説明する。図4は、歩行補助装置100を構成する各制御要素を説明する要素ブロック図である。図示するように、歩行補助装置100を構成する各制御要素は、システム制御部201に対して直接的あるいは間接的に入出力の少なくともいずれかを行う。すなわち、予め設定されたプログラムを実行するCPUとしてのシステム制御部201は、これらの制御要素を統括的に制御する。
システム制御部201は、左用制御回路221を介して左用モータ121を制御する。同様に、右用制御回路222を介して右用モータ122を制御する。具体的には、システム制御部201は、左足を補助する補助力を算出したら、当該補助力を発生させるタイミングで算出結果を左用制御回路221に引き渡し、右足を補助する補助力を算出したら、当該補助力を発生させるタイミングで算出結果を右用制御回路222に引き渡す。左用制御回路221および右用制御回路222は、引き渡された算出結果に従ってアナログの駆動電圧を生成し、それぞれ左用モータ121および右用モータ122に印加する。すなわち、左用制御回路221および右用制御回路222は、DA変換器を含む増幅回路を有する。
システム制御部201は、左用検出回路231を介して左用角度センサ131の検出結果を受け取る。同様に、右用検出回路232を介して右用角度センサ132の検出結果を受け取る。具体的には、左用角度センサ131は、左大腿901の回転角度に応じて電圧パルスを連続的に発生させる。左用検出回路231は、当該電圧パルスをカウントして単位時間当たりの回転角度に変換し、当該回転角度をデジタル値として単位時間ごとにシステム制御部201へ引き渡す。システム制御部201は、引き渡された単位時間ごとの回転角度を起動時およびリセット時から継続的に積算することにより、図3で示した左股関節角θを継続的に把握することができる。同様に、右用角度センサ132は、右大腿902の回転角度に応じて電圧パルスを連続的に発生させる。右用検出回路232は、当該電圧パルスをカウントして単位時間当たりの回転角度に変換し、当該回転角度をデジタル値として単位時間ごとにシステム制御部201へ引き渡す。システム制御部201は、引き渡された単位時間ごとの回転角度を起動時およびリセット時から継続的に積算することにより、図3で示した右股関節角θを継続的に把握することができる。本実施形態においては、ここで得られる左股関節角θおよび右股関節角θを加工することにより、使用者900の歩行動作における左足の歩数および右足の歩数を算出する。
操作部211は、起動スイッチ101を含む、使用者900から指示を受けるための操作部材である。図2においては起動スイッチ101を表すに留めたが、補助力の調整を受け付ける調整つまみ等の操作部材を備えても良い。システム制御部201は、操作部211が検出する操作部材の変化に従って制御を実行する。
メモリ212は、例えばSSDなどのフラッシュメモリを用いた記憶装置であり、システム制御部201が実行するプログラム、各種パラメータ値等を、電源オフ時にも消失しないように記憶している。また、システム制御部201が行う演算で生成される諸値を一時的に記憶させるワークメモリとしての機能も担う。本実施形態においては、システム制御部201が算出した、使用者900の歩行動作における左足の歩数および右足の歩数を記憶する。メモリ212は、それぞれの用途に合わせて、物理的に分離された複数種類のメモリから構成されても良い。
入出力インタフェース213は、外部機器との入出力を実現する通信部を含む。例えば、歩行補助装置100が外部機器としてのスマートフォンと連携する場合、入出力インタフェース213は、スマートフォンで設定された設定内容を受信し、システム制御部201で算出した歩数データをスマートフォンへ送信する。
次に本実施形態に係る歩数計測について説明する。図5は、歩数計測に係る各処理を模式的に説明する機能ブロック図である。
上述のように、右用角度センサ132から出力された出力信号は、右用検出回路232で単位時間当たりの右大腿902の回転角度に変換されてシステム制御部201に送られる。同様に、左用角度センサ131から出力された出力信号は、左用検出回路231で単位時間当たりの左大腿901の回転角度に変換されてシステム制御部201に送られる。両信号に対するこれ以降の各処理はシステム制御部201が実行するが、システム制御部201が実行する各処理を機能ブロックとして順次説明する。
右用積分器332は、右用検出回路232から受けた回転信号を起動時およびリセット時から継続的に積分して、右股関節角θを出力する。同様に、左用積分器331は、左用検出回路231から受けた回転信号を起動時およびリセット時から継続的に積分して、左股関節角θを出力する。
第1差分回路301は、右用積分器332および左用積分器331から互いに同一時刻に出力された右股関節角θと左股関節角θを入力して、θ−θである差分角θを出力する。つまり、第1差分回路301は、右股関節角度と左股関節角度の角度差を刻々と出力する。この意味において、左用角度センサ131、左用検出回路231、左用積分器331、右用角度センサ132、右用検出回路232、右用積分器332および第1差分回路301は、使用者900の右股関節角度と左股関節角度の角度差を検出する検出部230として機能している。
第1差分回路301から出力された差分角θは、2つに分岐してそれぞれ第1ローパスフィルタ311と第2ローパスフィルタ312へ入力される。第1ローパスフィルタ311と第2ローパスフィルタ312は、互いにカットオフ周波数の異なるデジタルローパスフィルタであり、共にフィルタ部310を構成する。第1ローパスフィルタ311のカットオフ周波数をω、第2ローパスフィルタ312のカットオフ周波数をωとすると、ω>ωの関係を有する。後述する通常歩行時におけるカットオフ周波数は、例えばωは0.1Hzから10Hzの間で設定される値であり、ωは0.01Hzから1Hzの間で設定される値である。第1ローパスフィルタ311および第2ローパスフィルタ312のそれぞれに適用されるローパスフィルタの種類は任意であるが、後述するようにこれらの出力に対して互いに差分が演算されるので、適用されるローパスフィルタの種類は同一であることが好ましい。
例えば、第1ローパスフィルタ311に適用するデジタルローパスフィルタを一次ローパスフィルタとすると、その伝達関数H(s)は、
(s)=VOUT/VIN=k/(1+(s/ω)) (1)
と表される。同様に、第2ローパスフィルタ312に適用するデジタルローパスフィルタを一次ローパスフィルタとすると、その伝達関数H(s)は、
(s)=VOUT/VIN=k/(1+(s/ω)) (2)
と表される。ここで、通過域での利得であるkおよびkは、それぞれの出力に対して差分が演算される後処理の都合により、同一値であることが好ましい。k=k=1であっても良い。
第1ローパスフィルタ311は、濾波信号として第1濾波角θS1を出力する。第2ローパスフィルタ312は、濾波信号として第2濾波角θS2を出力する。
第2差分回路313は、第1ローパスフィルタ311および第2ローパスフィルタ312から互いに同一時刻に出力された第1濾波角θS1と第2濾波角θS2を入力して、θS1−θS2である修正差分角θを出力する。つまり、第2差分回路313は、両股関節の整形された角度差を刻々と出力する。このような一連の信号処理により、具体的にどのように波形が整形されるかについては後述する。
極値判定部314は、修正差分角θを入力して、対象とする入力値が極値であるかを判定する。詳しくは後述するが、簡単には、正の極値(θの波形としては上に凸を示す)であれば右足の一歩と認識し、負の極値(θの波形としては下に凸を示す)であれば左足の一歩と認識する。極値判定部314は、判定結果を歩行モード判定部315と歩数カウント部316に引き渡す。極値判定部314は、さらに、極値間の時間間隔として得られる周期を歩行モード判定部315に引き渡す。
歩行モード判定部315は、極値判定部314から受け取った判定結果と周期、および第2ローパスフィルタ312から受け取った第2濾波角θS2を利用して、歩行モードを判定する。本実施形態においては、歩行モードとして通常歩行、引き摺り歩行、低速歩行のいずれであるかを判定する。この判定結果をフィルタ部310と極値判定部314へ引き渡す。フィルタ部310は、歩行モード判定部315の判定結果に応じて第1ローパスフィルタ311および第2ローパスフィルタ312のカットオフ周波数を変更する。極値判定部314は、歩行モード判定部315の判定結果に応じて極値を判定するパラメータである閾値を変更する。具体的な処理については後述する。
歩数カウント部316は、極値判定部314からの判定結果を起動時およびリセット時から継続的に受け付けて累積カウントすることにより、一連の歩行動作における右足の歩数および左足の歩数を識別する。差分角θを受けて右足の歩数および左足の歩数を識別するまでの処理に関わる、第1ローパスフィルタ311、第2ローパスフィルタ312、第2差分回路313、極値判定部314、歩行モード判定部315および歩数カウント部316は、使用者900の歩数を演算する演算部350として機能している。
そして、歩数カウント部316は、右足の歩数を右足歩数データとして右歩数メモリ322に格納し、左足の歩数を左足歩数データとして左歩数メモリ321に格納する。右歩数メモリ322および左歩数メモリ321は、メモリ212の一部領域を占める。歩数カウント部316は、識別した歩数が更新されるたびに、右歩数メモリ322または左歩数メモリ321に格納された右足歩数データまたは左足歩数データを更新しても良いし、起動スイッチ101が再度押圧操作されて終了指示を受けたタイミングで更新しても良い。
次に、以上で説明した各処理によって信号波形がどのように変化するかについてと、その技術的な意義についてを説明する。図6は、信号波形の変化を説明する説明図である。いずれの図も、横軸は時間経過を表し、縦軸は角度を表す。
図6(a)は、右股関節角θの一例であり、図6(b)は、左股関節角θの一例である。本実施形態においては、歩数計測を行うための観察対象を両股関節の角度差である差分角としている。差分角は物理的な変位量として大きく、特にセンサとして高度に発達したロータリエンコーダを用いれば、加速度センサの出力信号よりもはるかに安定した出力信号を取得することができる。また、例えばスマートフォンに内蔵されている加速度センサを用いた歩数計測アプリによれば、使用者がスマートフォンを保持する位置での3軸方向における振動を観察しているに過ぎず、歩行動作ではない振動までも取得してしまい、カウントされた歩数に大きな誤差が含まれる場合があった。また、そもそも右足の歩数と左足の歩数を識別することができなかった。本実施形態においては、観察対象を差分角とすることで安定した出力信号を得つつ、さらにフィルタ処理を施すことにより、右足の歩数と左足の歩数を別々にかつ正確に認識する。
右股関節角θおよび左股関節角θは、加速度センサの出力信号に比較すれば非常に安定した信号であるが、それでも若干のノイズ成分およびオフセット成分を含んでいる。図6(c)に示す差分角θは、右股関節角θから左股関節角θを引いた波形であるので、やはりノイズ成分およびオフセット成分を含んだままである。
そこで、差分角θからまず高周波のノイズ成分を除去すべくカットオフ周波数ωの第1ローパスフィルタをかけた第1濾波角θS1の波形が、図6(d)に示す波形である。図からもわかるように、細かい高周波ノイズが除去され、かつある程度の振幅が保存されている。ただし、低周波成分は通過するので、オフセット成分は維持されている。
そして、差分角θからオフセット成分以外の信号をできる限り除去すべく、ωよりも低いカットオフ周波数ωの第2ローパスフィルタをかけた第2濾波角θS2の波形が、図6(e)に示す波形である。さらに高周波成分が除去され、振幅も圧縮されてほぼオフセット成分が残った波形となっている。
第1濾波角θS1から第2濾波角θS2を引いた修正差分角θの波形が図6(f)に示す波形である。第1濾波角θS1および第2濾波角θS2は、それぞれ同等のオフセット成分を包含していたので、第1濾波角θS1から第2濾波角θS2を引けばオフセット成分が相殺される。また、それぞれがローパスフィルタを通過した信号であるので、ノイズ成分も除去されている。すなわち、修正差分角θの波形は、差分角θの波形に対して非常に整った波形であると言える。このように整えられた波形によれば、後の極値判定処理、歩行モード判定処理等を非常に正確に行うことができる。
なお、上記のそれぞれの処理を経ても出力される信号の次元は「角度」であるので、本実施形態の説明においては、得られる波形を、例えば「修正差分角」のように角度として扱っている。しかし、ローパスフィルタを通過した後の第1濾波角θS1、第2濾波角θS2および修正差分角θについては、その振幅が示す絶対値としての角度は、適用するローパスフィルタの特性によっていかようにも変化する。したがって、整形された修正差分角θを使って判定処理を行う場合は、これを信号波形として利用するものであり、絶対値としての角度情報として利用するものではない。
次に、いくつかの典型的な歩行の種類について説明する。図7は、典型的な歩行の種類と、それぞれの検出信号を説明する説明図である。歩行モード判定部315は、これらの種別を判定する。具体的には、図7(a)は、通常歩行における修正差分角θの波形を表し、図7(b)は、引き摺り歩行における修正差分角θの波形を表し、図7(b')は、引き摺り歩行における第2濾波角θの波形を表し、図7(c)は、低速歩行における修正差分角θの波形を表す。図6の各図と同様に、横軸は時間経過を表し、縦軸は角度を表す。いずれの波形においても、正の値である場合には左股関節角θよりも右股関節角θが大きいことを表し、左足よりも右足が前へ出ている状態を示している。特に、増加傾向にある場合には右足を振り出している状態であり、およそ右足の着床と共にピーク値(正の極値)を迎え、その後左足が右足に追従する減少傾向を示す。この一連の歩容を右足の一歩とする。逆に、負の値である場合には右股関節角θよりも左股関節角θが大きいことを表し、右足よりも左足が前へ出ている状態を示している。特に、減少傾向にある場合には左足を振り出している状態であり、およそ左足の着床と共にピーク値(負の極値)を迎え、その後右足が左足に追従する増加傾向を示す。この一連の歩容を左足の一歩とする。
図7(a)で示す通常歩行の波形は、健常者が時速3.6kmの速度で歩行したときに得られる波形(修正差分角θ)の例である。システム制御部201は、通常歩行の修正差分角θに対して、プラス側に閾値ThR_normal、マイナス側に閾値ThL_normalを設定する。極値判定部314は、θがThR_normalを超えて(ThR_normalを上回って)上に凸のピークを示したときに右足の一歩と判定する。同様に、θがThL_normalを超えて(ThL_normalを下回って)下に凸のピークを示したときに左足の一歩と判定する。つまり、ThR_normalとThL_normalに挟まれた範囲でピークを示しても一歩と判定しない。このような不感帯を設けることにより、例えば歩行以外の突発的な足運びがあったとしても、誤判定を避けることができる。
図7(b)で示す引き摺り歩行の波形は、リハビリ患者が右足を引き摺って歩行したときに得られる波形(修正差分角θ)の例である。引き摺り歩行の場合は、引き摺る足の股関節角が小さくなる分、通常歩行に対して相対的に差分角θが小さくなる。また、引き摺り歩行と判定された場合に適用されるカットオフ周波数も変更されることにも影響されて、修正差分角θの振幅は、通常歩行の場合に比べて小さくなる。そこで、システム制御部201は、このような引き摺り歩行の修正差分角θに対して、プラス側に閾値ThR_drag、マイナス側に閾値ThL_dragを、ThR_drag<ThR_normal、ThL_drag>ThL_normalの関係を満たすように設定する。もちろん、システム制御部201は、右足を引き摺っていると判定した場合のThR_drag、ThL_dragの値と、左足を引き摺っていると判定した場合のThR_drag、ThL_dragの値とを異ならせても良い。
また、閾値ThR_dragおよび閾値ThL_dragは、引き摺り歩行に対して予め設定された固定値であっても良いし、得られた修正差分角θの波形に応じて動的に変更しても良い。動的に変更する場合は、例えば、正負のピーク値の差に応じて変更することができる。具体的には、連続する3つの正の極値の平均値と、3つの負の極値の平均値とから算出される中央値に対して予め定められた固定値を足した値を閾値ThR_dragとし、引いた値を閾値ThL_dragとすることができる。
歩数の判定は、通常歩行における判定方法と同様である。すなわち、極値判定部314は、θがThR_dragを超えて上に凸のピークを示したときに右足の一歩と判定する。同様に、θがThL_dragを超えて下に凸のピークを示したときに左足の一歩と判定する。
このように、股関節角度の角度差から演算すれば、引き摺り側の足であっても正確に歩数を識別することができる。一方、足裏の接地を検出する歩数計測器によれば、引き摺り側の足の歩数を識別することは不可能である。
図7(b)で示すように、オフセット成分が相殺された修正差分角θは、右足を引き摺っている場合でも、振幅0に対して対照的な波形を示す。しがって、通常歩行であるか引き摺り歩行であるかは、振幅の違いからだけでは判定が難しい。一方、ローパスフィルタを通過させた直後の波形には、引き摺り歩行の特徴が比較的顕著に顕れる。図7(b')で示す引き摺り歩行の波形は、リハビリ患者が右足を引き摺って歩行したときに得られる、第2ローパスフィルタ312通過後の波形(第2濾波角θS2)の例である。図から観察されるように、θS2は、歩行の初期段階において負方向へなだらかな傾斜を示し、その後、振幅0の横軸から負側に一定のオフセットをもって推移する波形を示す。図には示していないが、左足を引き摺った場合には、θS2は、歩行の初期段階において正方向へなだらかな傾斜を示し、その後、振幅0の横軸から正側に一定のオフセットをもって推移する波形を示す。
したがって、システム制御部201は、歩行初期段階の数歩の波形に対して直線を当てはめ、その成す角度αが、実験結果等から予め設定されている閾値αよりも大きければ引き摺り歩行と判定することができる。システム制御部201は、特に、当てはめ直線が負方向へ傾斜していれば右足を引き摺っていると判定でき、正方向へ傾斜していれば左足を引き摺っていると判定できる。あるいは、システム制御部201は、歩行初期段階が過ぎた後であれば、数歩の波形に対して直線を当てはめ、そのオフセット量dOSが、実験結果等から予め設定されている閾値dよりも大きければ引き摺り歩行と判定することができる。システム制御部201は、特に、当てはめ直線が負側へオフセットしていれば右足を引き摺っていると判定でき、正側へオフセットしていれば左足を引き摺っていると判定できる。
なお、本実施形態においては、第1ローパスフィルタ311のカットオフ周波数ωと第2ローパスフィルタ312のカットオフ周波数ωは、ω>ωの関係を有するので、引き摺り歩行判定には、低周波成分がよりフラットに表われる第2ローパスフィルタ312通過後の波形(第2濾波角θS2)を利用することが好ましい。しかし、上述の閾値αおよびオフセット量dOSの少なくともいずれかがある程度正確に算出できれば、第1ローパスフィルタ311通過後の波形(第2濾波角θS1)を利用しても良い。あるいは、第1ローパスフィルタ311および第2ローパスフィルタ312とは別に、引き摺り歩行判定のためにカットオフ周波数を異ならせた別のローパスフィルタを適用しても良い。
図7(c)で示す低速歩行の波形は、時速0.6kmの速度で歩行したときに得られる波形(修正差分角θ)の例である。右足の歩容を表す正方向の振幅も、左足の歩容を表す負方向の振幅も、図7(a)の例に比較して小さくなっている。また、一歩の周期を表すDも、通常歩行における周期であるDに比較して相当長くなっている。これは、一歩一歩の動作に時間がかかっていること、両足共に振り出し角度が小さい(したがって一歩の歩幅が小さい)ことを示している。システム制御部201は、このような低速歩行の修正差分角θに対して、プラス側に閾値ThR_slow、マイナス側に閾値ThL_slowを設定する。具体的には、ThR_normal>ThR_slow、ThL_normal<ThL_slowとなる値を設定する。
閾値ThR_slowおよび閾値ThL_slowは、低速歩行に対して予め設定された固定値であっても良いし、得られた修正差分角θの波形に応じて動的に変更しても良い。特に、低速歩行時には、左右の歩容の対称性が失われがちであるので、波形に応じて閾値を設定することが好ましい。低速歩行の場合も、引き摺り歩行の場合に説明した方法により正負のピーク値の差に応じて変更することができる。
次に、システム制御部201が行う制御を、一連の処理手順の観点で説明する。図8は、歩数計測処理の全体の流れを示すフロー図である。フローは、起動スイッチ101が使用者900に押圧操作されて、システム制御部201が、制御プログラムをメモリ212から読み出して初期化作業を完了した時点から開始する。
システム制御部201は、ステップS100で、検出部230を機能させて、右股関節角θと左股関節角θを取得し、第1差分回路301により、両股関節の角度差信号である差分角θを生成する。そして、ステップS200へ進み、生成した差分角θをフィルタ部310へ入力して第1濾波角θS1と第2濾波角θS2を生成する。さらに、第2差分回路313により、これらの差分を取って濾波信号としての修正差分角θを生成する。
システム制御部201は、ステップS300へ進み、極値判定部314により、第2差分回路313が生成した修正差分角θを用いて極値判定処理を実行する。極値判定処理は、歩数カウントの対象となる極値を判定し、また判定された極値を用いて歩行の周期を算出する処理である。具体的な処理については後述する。極値判定処理によって得られた判定結果はステップS400へ引き継がれ、システム制御部201は、歩数カウント部316により、右足の歩数および左足の歩数を更新するカウント処理を実行する。
また、極値判定処理によって得られた判定結果および周期はステップS500へ引き継がれ、システム制御部201は、歩行モード判定部315により、歩行モードの判定処理を実行する。歩行モード判定処理は、使用者900が行っている歩行が通常歩行、引き摺り歩行、低速歩行のいずれであるかを判定し、その判定結果に応じて各種パラメータを変更する処理である。具体的な処理については後述する。なお、ステップS400とステップS500の順番は逆であっても良い。
システム制御部201は、ステップS600へ進み、使用者900から終了指示を受けたか否かを判断する。具体的には、起動スイッチ101が再度押圧操作されたか否かを検出する。なお、操作の主体は使用者900に限らず、補助者等であっても良い。
システム制御部201は、ステップS600で終了指示をまだ受けていないと判断したら、ステップS100へ戻って一連の処理を繰り返す。終了指示を受けたと判断したらステップS700へ進む。
システム制御部201は、ステップS700で終了処理を実行する。具体的には、歩数カウント部316で累積カウントした左足の歩数および右足の歩数をそれぞれ左歩数メモリ321および右歩数メモリ322へ歩数データとして格納する。また、入出力インタフェース213を介して、外部機器へ歩数データを送信する。使用者900を含む利用者は、例えば外部機器としてのスマートフォンで、右足歩数および左足歩数を確認することができる。利用者は、外部機器から要求することにより、入出力インタフェース213を介して、右歩数メモリ322および左歩数メモリ321から歩数データを任意のタイミングで外部機器に読み込むこともできる。
システム制御部201は、終了処理が完了したら一連の処理を終了して、バッテリ102の電力供給を停止させる。
図9は、ステップS300の極値判定処理の詳細を示すサブフロー図である。上述のように極値判定処理は、システム制御部201の機能ブロックとしての極値判定部314が実行する。
極値判定部314は、ステップS301で、右足用のフラグ変数であるcおよび左足用のフラグ変数であるcにそれぞれ0を代入して初期化する。そして、ステップS302へ進み、入力された修正差分角θが極大値であるか否かを判断する。極大値の判定手法については多くが知られているが、例えば、判定対象のθ値と、これに前後する数点の値とから、判定対象のθ値が上に凸の頂点か否かにより判断する。この場合、極値判定部314は、判定対象のθ値と前後して連続する数点のθ値も取り込んで一時的に保管し、判断に供する。
ステップS302で判定対象のθ値が極大値であると判断したら、このθ値および、このθ値を取得した時刻と前回の極大値であるθ値を取得した時刻との差である周期Dを歩行モード判定部315へ引き渡す。そして、極値判定部314は、ステップS303へ進み、当該θ値がプラス側の閾値Thを上回っているか否かを判断する。上回っていないと判断した場合には、当該θ値は不感帯に属する極大値であるので、特に追加的な処理を行うことなくメインフローへ戻る。上回っていると判断した場合には、ステップS304へ進む。
極値判定部314は、ステップS304で、前回の歩数カウントが左足であったか否かを確認する。極大値に対する判断は右足の歩数カウントであるか否かの判断なので、前回の歩数カウントが左足であれば、今回の極大値が正常な右足の一歩であると判定できる。一方、前回の歩数カウントが左足でなければ(右足ならば)、例えば振り出し動作中の揺れを拾うなどした結果と推測でき、右足の一歩とは判定しない。したがって、極値判定部314は、前回の歩数カウントが左足でなかったと確認したら、特に追加的な処理を行うことなくメインフローへ戻る。前回の歩数カウントが左足であると確認したら、ステップS305へ進む。極値判定部314は、ステップS305で、cに1を代入したら、メインフローへ戻る。
ステップS302で判定対象のθ値が極大値でないと判断したら、極値判定部314は、ステップS306へ進み、判定対象のθ値が極小値であるか否かを判断する。極小値の判定手法も、極大値の場合と同様であり、例えば、判定対象のθ値と、これに前後する数点の値とから、判定対象のθ値が下に凸の頂点か否かにより判断する。
ステップS306で判定対象のθ値が極小値であると判断したら、このθ値および、このθ値を取得した時刻と前回の極小値であるθ値を取得した時刻との差である周期Dを歩行モード判定部315へ引き渡す。そして、極値判定部314は、ステップS307へ進み、当該θ値がマイナス側の閾値Thを下回っているか否かを判断する。下回っていると判断した場合には、ステップS308へ進む。
極値判定部314は、ステップS308で、前回の歩数カウントが右足であったか否かを確認する。極小値に対する判断は左足の歩数カウントであるか否かの判断なので、前回の歩数カウントが右足であれば、今回の極小値が正常な左足の一歩であると判定できる。一方、前回の歩数カウントが右足でなければ(左足ならば)、左足の一歩とは判定しない。前回の歩数カウントが右足であると確認したら、ステップS309へ進む。極値判定部314は、ステップS309で、cに1を代入したら、メインフローへ戻る。
極値判定部314は、ステップS306で極小値でないと判断した場合、ステップS307で閾値Thを下回っていないと判断した場合、ステップS308で前回の歩数カウントが右足でないと確認した場合は、いずれの場合も特に追加的な処理を行うことなくメインフローへ戻る。
なお、ステップS400のカウント処理では、歩数カウント部316は、cおよびcの値を取得し、cが1であれば右足の歩数をインクリメントし、cが1であれば左足の歩数をインクリメントする。
図10は、ステップS500の歩行モード判定処理の詳細を示すサブフロー図である。上述のように歩行モード判定処理は、システム制御部201の機能ブロックとしての歩行モード判定部315が実行する。
歩行モード判定部315は、ステップS501で、第2ローパスフィルタ312から受け取ったθS2を解析して、当てはめ直線の成す角αの絶対値が閾値αの絶対値より小さいか否かを判断する。小さいと判断したら、引き摺り歩行をしていないと判定してステップS505へ進み、そうでないと判断したら、引き摺り歩行をしていると判定してステップS502へ進む。なお、本サブフローでは当てはめ直線の成す角αにより引き摺り歩行の判定を行うが、上述のように、当てはめ直線のオフセット量dOSにより判定を行っても良い。
歩行モード判定部315は、ステップS502で、αが0未満であるか否かを判断する。αが0未満であると判断したら、右足を引き摺っていると判定してステップS503へ進み、そうでないと判断したら、左足を引き摺っていると判定してステップS504へ進む。
歩行モード判定部315は、ステップS503で、各種パラメータを右足の引き摺り歩行に適した値に変更する。具体的には、第1ローパスフィルタ311のカットオフ周波数ω、第2ローパスフィルタ312のカットオフ周波数ω、プラス側の閾値Th、マイナス側の閾値Thを、それぞれ右足引き摺り用の値ωH_drag、ωL_drag、ThR_drag、ThL'_dragに変更する。なお、引き摺り側の足は右であるが、上述の通り、フィルタ処理においては左足の処理にも影響が及ぶので、Thもその影響に適したThL'_dragに変更している。パラメータの変更が完了したらメインフローへ戻る。
歩行モード判定部315は、ステップS504で、各種パラメータを左足の引き摺り歩行に適した値に変更する。具体的には、第1ローパスフィルタ311のカットオフ周波数ω、第2ローパスフィルタ312のカットオフ周波数ω、プラス側の閾値Th、マイナス側の閾値Thを、それぞれ左足引き摺り用の値ωH_drag、ωL_drag、ThR'_drag、ThL_dragに変更する。なお、引き摺り側の足は左であるが、上述の通り、フィルタ処理においては右足の処理にも影響が及ぶので、Thもその影響に適したThR'_dragに変更している。なお、引き摺り側の足が右である場合も左である場合も、カットオフ周波数については共に同一のωH_drag、ωL_dragを用いて良い。パラメータの変更が完了したらメインフローへ戻る。
歩行モード判定部315は、ステップS505で、極値判定部314から受け取った周期Dが予め定められたDより小さいか否かを判断する。小さいと判断した場合には、通常歩行であると判定し、ステップS506へ進む。
歩行モード判定部315は、ステップS506で、各種パラメータを通常歩行に適した値に変更する。具体的には、第1ローパスフィルタ311のカットオフ周波数ω、第2ローパスフィルタ312のカットオフ周波数ω、プラス側の閾値Th、マイナス側の閾値Thを、それぞれ通常歩行用の値ωH_normal、ωL_normal、ThR_normal、ThL_normalに変更する。パラメータの変更が完了したらメインフローへ戻る。
歩行モード判定部315は、ステップS505で、周期DがDより小さくないと判断した場合には、低速歩行であると判定し、ステップS507へ進む。
歩行モード判定部315は、ステップS507で、各種パラメータを低速歩行に適した値に変更する。具体的には、第1ローパスフィルタ311のカットオフ周波数ω、第2ローパスフィルタ312のカットオフ周波数ω、プラス側の閾値Th、マイナス側の閾値Thを、それぞれ通常歩行用の値ωH_slow、ωL_slow、ThR_slow、ThL_slowに変更する。パラメータの変更が完了したらメインフローへ戻る。
以上本実施形態を説明したが、各機能ブロックおよび処理ステップは、歩行補助装置100をどのように構成するかにより、適宜変更あるいは除去することができる。例えば、歩行補助装置100を健常者が利用することを前提とすれば、演算部350から歩行モード判定部315とこれに関する処理を取り除いても良い。また、本実施形態においては、腰部の両側面にそれぞれ左用角度センサ131と右用角度センサ132を配置したが、内股側に両股関節の角度差を出力するひとつの角度センサを配置することもできる。この場合は、ひとつの検出用回路を介して直接的に差分角θを得ることができる。
また、本実施形態においては、互いにカットオフ周波数の異なる2つのローパスフィルタを適用したが、整形された修正差分角θが得られるのであれば、他のフィルタを適用しても良い。例えば、2つのフィルタをそれぞれローパスフィルタとハイパスフィルタで構成しても良いし、1つのバンドパスフィルタに纏めても良い。
また、歩行パターンの判定は、通常歩行、引き摺り歩行および低速歩行に限らず、さらに他の歩行パターンを判定するように構成しても良い。特徴的な歩容を呈するリハビリ患者に対しては、当該歩容に対して歩行パターンを判定するステップを設ければ良い。なお、上述の本実施形態においては、通常歩行、低速歩行、右足の引き摺り歩行、左足の引き摺り歩行の区別なく、右足の一歩および左足の一歩として歩数カウントを行った。しかし、全体の歩数カウントの内訳として、あるいは通常歩行とは分離して、それぞれの歩行パターンの歩数カウントを独立に保持する歩数データ構造を採用しても良い。
また、入出力インタフェース213が、歩数データ以外のデータを出力するように構成しても良い。例えば、差分角θを逐次的に外部機器へ出力するように構成すれば、外部機器で歩数計測を実行することもできる。また、修正差分角θのデータ列を外部機器へ出力するように構成すれば、例えばリハビリ経過を観察するための履歴情報として活用できる。
また、本実施形態においては、対象装置を歩行補助装置100としたが、使用者900の歩行に対して補助力を発生させる機構は除去して、使用者900の歩数を計測する機能に特化した歩数計測器として構成しても良い。また、本実施形態において説明した歩数計測を実行する歩数計測器を、歩行に対して補助力を発生させる歩行補助装置に装着して使用するように構成しても良い。さらには、このような歩数計測器を例えばモーションキャプチャ装置などの入力デバイスと組み合わせて使用することもできる。
また、計測した歩数データを歩行補助装置100の蹴り出し補助、振り出し補助の補助力制御に応用することもできる。例えば、歩数が増えるほど補助力を増加させれば、使用者900の疲労に合わせたアシストを実現できる。また、電源のオフでもリセットさせずに歩数を累積させれば、リハビリ患者の訓練において、その訓練段階に応じて補助力を変更することもできる。例えば、初期段階においては、すなわち累積歩数が少ない段階においては補助力を強くし、段階を経るごとに、すなわち累積歩数が増すごとに補助力を弱くするような制御を行うことができる。また、左右の足の回復度合いの違いにより、それぞれの歩数で補助力を変更するように制御しても良い。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 歩行補助装置、101 起動スイッチ、102 バッテリ、103 腰フレーム、104 腰ベルト、121 左用モータ、122 右用モータ、131 左用角度センサ、132 右用角度センサ、141 左用大腿フレーム、142 右用大腿フレーム、151 左用大腿ベルト、152 右用大腿ベルト、201 システム制御部、211 操作部、212 メモリ、213 入出力インタフェース、221 左用制御回路、222 右用制御回路、230 検出部、231 左用検出回路、232 右用検出回路、301 第1差分回路、310 フィルタ部、311 第1ローパスフィルタ、312 第2ローパスフィルタ、313 第2差分回路、314 極値判定部、315 歩行モード判定部、316 歩数カウント部、321 左歩数メモリ、322 右歩数メモリ、331 左用積分器、332 右用積分器、350 演算部、900 使用者、901 左大腿、902 右大腿、910 上体

Claims (14)

  1. 使用者の右股関節角度を示す右股関節角度信号を出力する右用角度センサと、
    前記使用者の左股関節角度を示す左股関節角度信号を出力する左用角度センサと、
    前記右股関節角度信号と前記左股関節角度信号とから、前記右股関節角度と前記左股関節角度の角度差の時系列的な変化を示す角度差信号を生成する生成部と、
    前記角度差信号に少なくとも2つの互いに異なるフィルタを適用して得られるそれぞれの濾波信号の差から生成される差分信号に基づいて前記使用者の歩数を演算する演算部と
    を備える歩数計測器。
  2. 前記フィルタは、互いにカットオフ周波数が異なる2つのローパスフィルタである請求項1に記載の歩数計測器。
  3. 前記演算部は、前記角度差信号に基づいて前記フィルタに適用するカットオフ周波数を変更する請求項1または2に記載の歩数計測器。
  4. 前記演算部は、前記角度差信号を処理することにより、左右の脚いずれか一方を引き摺りつつの引き摺り歩行、および歩行の周期が予め定められた周期以下である低速歩行の少なくともいずれかを判定する判定部を含み、前記判定部の判定結果に基づいて前記カットオフ周波数を変更する請求項3に記載の歩数計測器。
  5. 前記演算部は、前記差分信号において予め定められた閾値を超えたピークの数をカウントすることにより前記歩数を演算する請求項1から4のいずれか1項に記載の歩数計測器。
  6. 前記演算部は、前記差分信号に基づいて前記閾値を変更する請求項5に記載の歩数計測器。
  7. 前記演算部は、前記差分信号の正負の前記ピークの差に基づいて前記閾値を変更する請求項6に記載の歩数計測器。
  8. 前記演算部は、前記角度差信号を処理することにより、左右の脚いずれか一方を引き摺りつつの引き摺り歩行、および歩行の周期が予め定められた周期以下である低速歩行の少なくともいずれかを判定する判定部を含み、前記判定部の判定結果に基づいて前記閾値を変更する請求項6または7に記載の歩数計測器。
  9. 前記演算部は、左右の脚いずれか一方を引き摺りつつの引き摺り歩行、および歩行の周期が予め定められた周期以下である低速歩行の少なくともいずれかを区別して前記歩数を演算する請求項1から8のいずれか1項に記載の歩数計測器。
  10. 前記演算部は、前記角度差信号にローパスフィルタを適用して得られる濾波信号の、振幅0の直線に対する傾きおよびオフセットの少なくともいずれかに基づいて前記引き摺り歩行を判定する請求項9に記載の歩数計測器。
  11. 前記演算部は、前記使用者の左足歩数と右足歩数とを区別して演算する請求項1から10のいずれか1項に記載の歩数計測器。
  12. 前記演算部は、前記左足歩数または前記右足歩数が連続した場合には、前記歩数から除外する請求項11に記載の歩数計測器。
  13. 前記使用者の歩行動作に補助力を付与する付与部と、
    請求項1から12のいずれか1項に記載の歩数計測器と
    を備える歩行補助装置。
  14. 右用角度センサが出力する、使用者の右股関節角度を示す右股関節角度信号と、左用角度センサが出力する、前記使用者の左股関節角度を示す左股関節角度信号とから、前記右股関節角度と前記左股関節角度の角度差の時系列的な変化を示す角度差信号を生成する生成ステップと、
    前記角度差信号に少なくとも2つの互いに異なるフィルタを適用して得られるそれぞれの濾波信号の差から生成される差分信号に基づいて前記使用者の歩数を演算する演算ステッと
    をコンピュータに実行させる歩数計測プログラム。
JP2014126168A 2014-06-19 2014-06-19 歩数計測器、歩行補助装置および歩数計測プログラム Active JP5758028B1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014126168A JP5758028B1 (ja) 2014-06-19 2014-06-19 歩数計測器、歩行補助装置および歩数計測プログラム
US14/739,015 US10143613B2 (en) 2014-06-19 2015-06-15 Step counter, step assist device, and computer-readable medium having stored thereon a step count program
DE102015211261.6A DE102015211261B4 (de) 2014-06-19 2015-06-18 Schrittzähler, schritt-unterstützungsvorrichtung und computerlesbares medium mit einem darauf gespeicherten schrittzähler-programm
CN201510347841.4A CN105277209B (zh) 2014-06-19 2015-06-19 测步器和行走辅助装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126168A JP5758028B1 (ja) 2014-06-19 2014-06-19 歩数計測器、歩行補助装置および歩数計測プログラム

Publications (2)

Publication Number Publication Date
JP5758028B1 true JP5758028B1 (ja) 2015-08-05
JP2016004522A JP2016004522A (ja) 2016-01-12

Family

ID=53887546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126168A Active JP5758028B1 (ja) 2014-06-19 2014-06-19 歩数計測器、歩行補助装置および歩数計測プログラム

Country Status (4)

Country Link
US (1) US10143613B2 (ja)
JP (1) JP5758028B1 (ja)
CN (1) CN105277209B (ja)
DE (1) DE102015211261B4 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065089A1 (ja) * 2015-10-15 2017-04-20 アルプス電気株式会社 歩数計測装置及び歩数計測プログラム
CN108633255A (zh) * 2017-01-19 2018-10-09 松下知识产权经营株式会社 步行跌倒防止装置、控制装置、控制方法和程序
US10709632B2 (en) 2015-09-14 2020-07-14 Honda Motor Co., Ltd. Pedometer, walking assist device and pedometric computer program product

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9757254B2 (en) * 2014-08-15 2017-09-12 Honda Motor Co., Ltd. Integral admittance shaping for an exoskeleton control design framework
KR102342072B1 (ko) * 2014-10-14 2021-12-22 삼성전자주식회사 보행 보조를 제어하기 위한 장치 및 그 방법
KR102485718B1 (ko) * 2015-08-11 2023-01-06 삼성전자주식회사 보행 보조 장치의 토크 계산 방법 및 장치
KR102452632B1 (ko) * 2015-08-17 2022-10-07 삼성전자주식회사 운동 보조 장치 및 그 제어 방법
KR102503910B1 (ko) * 2015-11-09 2023-02-27 삼성전자주식회사 기립 보조 방법 및 장치
JP7065369B2 (ja) * 2017-10-13 2022-05-12 パナソニックIpマネジメント株式会社 アシスト装置、アシスト装置の作動方法及びプログラム
JP6859312B2 (ja) * 2018-11-21 2021-04-14 本田技研工業株式会社 プログラムおよび情報提供装置
CN109556627B (zh) * 2018-11-29 2024-04-05 东华理工大学 一种用于土木测距的装置
CN113133761A (zh) * 2020-01-17 2021-07-20 宝成工业股份有限公司 左右步态的判断方法及其分析装置
CN112597898B (zh) * 2020-12-24 2021-11-23 珠高电气检测有限公司 基于实时计步的电力人员安全状态智能识别方法及介质
CN113599781B (zh) * 2021-06-25 2022-05-03 浙江大学 基于外骨骼的穿戴式走步健身系统及控制方法与存储介质
CN114043461B (zh) * 2021-12-02 2023-07-07 安徽三联机器人科技有限公司 一种髋关节外骨骼装置控制系统的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285046A (ja) * 1993-03-31 1994-10-11 Res Dev Corp Of Japan 生活活動性モニタ装置
JP2005230099A (ja) * 2004-02-17 2005-09-02 Yoshiyuki Yamaumi 装着式動作補助装置、及び装着式動作補助装置における駆動源の制御方法、及びプログラム
JP2009039454A (ja) * 2007-08-10 2009-02-26 Univ Nagoya 生体運動支援装置
US20120065550A1 (en) * 2004-12-29 2012-03-15 Disilvestro Mark R System and Method for Determining Patient Follow-Up Subsequent to an Orthopaedic Procedure
JP2012081124A (ja) * 2010-10-13 2012-04-26 Honda Motor Co Ltd 歩行補助装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797010A (en) 1972-07-31 1974-03-12 R Adler Jogging computer
US4962469A (en) 1988-04-18 1990-10-09 Casio Computer Co., Ltd. Exercise measuring instrument
EP1616196A4 (en) * 2003-04-03 2009-05-20 Univ Virginia METHOD AND SYSTEM FOR CHARACTERIZING HUMAN APPROACH AND PASSIVE DETERMINATION OF FALLS FROM FLOOR VIBRATION
JP3950149B2 (ja) 2005-09-02 2007-07-25 本田技研工業株式会社 運動補助装置
JP4666644B2 (ja) * 2006-07-12 2011-04-06 本田技研工業株式会社 歩行補助装具の制御装置
JP4885665B2 (ja) 2006-09-21 2012-02-29 セイコーインスツル株式会社 歩数計
JP5245669B2 (ja) 2008-09-18 2013-07-24 富士通モバイルコミュニケーションズ株式会社 歩数計装置
DE112010005453B4 (de) 2009-10-21 2022-09-01 Honda Motor Co., Ltd. Bewegungsunterstützungseinrichtung
JP5588724B2 (ja) 2010-04-23 2014-09-10 本田技研工業株式会社 歩行運動補助装置
JP5588738B2 (ja) * 2010-05-20 2014-09-10 本田技研工業株式会社 歩行運動補助装置
US9682006B2 (en) * 2010-09-27 2017-06-20 Vanderbilt University Movement assistance devices
WO2012072961A2 (fr) * 2010-12-01 2012-06-07 Commissariat à l'énergie atomique et aux énergies alternatives Procede et systeme de determination de valeurs de parametres representatifs d'un mouvement d'au moins deux membres d'une entite representee sous la forme d'une chaine articulee
US8784274B1 (en) * 2011-03-18 2014-07-22 Thomas C. Chuang Athletic performance monitoring with body synchronization analysis
JP2012205826A (ja) 2011-03-30 2012-10-25 Equos Research Co Ltd 歩行支援装置、及び歩行支援プログラム
US9119762B2 (en) 2011-05-30 2015-09-01 Honda Motor Co., Ltd. Walking assist device, walking assist method, walking state estimating device and walking state estimating method
JP5501325B2 (ja) * 2011-11-30 2014-05-21 本田技研工業株式会社 歩行補助装置
JP2014126168A (ja) 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd トルクコンバータ
CA2911275A1 (en) * 2013-05-31 2014-12-04 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
KR102163284B1 (ko) * 2013-09-26 2020-10-08 삼성전자주식회사 착용형 로봇 및 그 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285046A (ja) * 1993-03-31 1994-10-11 Res Dev Corp Of Japan 生活活動性モニタ装置
JP2005230099A (ja) * 2004-02-17 2005-09-02 Yoshiyuki Yamaumi 装着式動作補助装置、及び装着式動作補助装置における駆動源の制御方法、及びプログラム
US20120065550A1 (en) * 2004-12-29 2012-03-15 Disilvestro Mark R System and Method for Determining Patient Follow-Up Subsequent to an Orthopaedic Procedure
JP2009039454A (ja) * 2007-08-10 2009-02-26 Univ Nagoya 生体運動支援装置
JP2012081124A (ja) * 2010-10-13 2012-04-26 Honda Motor Co Ltd 歩行補助装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709632B2 (en) 2015-09-14 2020-07-14 Honda Motor Co., Ltd. Pedometer, walking assist device and pedometric computer program product
DE102016217307B4 (de) 2015-09-14 2022-02-03 Honda Motor Co., Ltd. Pedometer, Gehassistenzvorrichtung und Computerprogrammprodukt
WO2017065089A1 (ja) * 2015-10-15 2017-04-20 アルプス電気株式会社 歩数計測装置及び歩数計測プログラム
JPWO2017065089A1 (ja) * 2015-10-15 2018-07-05 アルプス電気株式会社 歩数計測装置及び歩数計測プログラム
US10863929B2 (en) 2015-10-15 2020-12-15 Alps Alpine Co., Ltd. Step count measuring apparatus and medium
CN108633255A (zh) * 2017-01-19 2018-10-09 松下知识产权经营株式会社 步行跌倒防止装置、控制装置、控制方法和程序

Also Published As

Publication number Publication date
US20150366739A1 (en) 2015-12-24
US10143613B2 (en) 2018-12-04
CN105277209B (zh) 2018-05-29
DE102015211261A1 (de) 2015-12-24
DE102015211261B4 (de) 2021-09-16
CN105277209A (zh) 2016-01-27
JP2016004522A (ja) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5758028B1 (ja) 歩数計測器、歩行補助装置および歩数計測プログラム
CN106667727B (zh) 站立辅助方法和设备
JP4541867B2 (ja) 外力制御方法、外力制御システム及び外力制御プログラム
JP5889367B2 (ja) 歩行補助装置および歩行補助プログラム
US10463561B2 (en) Wearable device and control method thereof
JP6272735B2 (ja) 歩行補助装置および歩行制御プログラム
CN108013999B (zh) 用于控制平衡的方法和设备
JPWO2016006432A1 (ja) 脚相移行タイミング判定方法、脚相移行タイミング判定装置、歩行支援制御方法及び歩行支援装置
JPWO2011049171A1 (ja) 運動補助装置およびその制御方法ならびにリハビリテーション方法
CN108577854A (zh) 步态识别方法和步态辅助设备
JP6168488B2 (ja) 体動検出装置及びこれを備える電気刺激装置
JP6453190B2 (ja) 歩数計測器、歩行補助装置及び歩数演算プログラム
JP2016168191A (ja) 関節運動補助装置
JP6964279B2 (ja) 歩行転倒防止装置、の制御装置、制御方法、並びに、プログラム
US11633320B2 (en) Method of controlling walking assistance device and electronic device performing the method
JP5675021B2 (ja) 歩行補助装置
EP3572060B1 (en) Device for preventing falls when walking, control device, control method, and program
JP2018134724A (ja) 動作推定装置及び動作補助装置
JP2016043092A (ja) 運動測定装置
JP2013123532A (ja) 体動検出装置
JP6712596B2 (ja) 膝関節の制御方法および下肢装具
Saito et al. Assessment of walking quality by using Inertial Measurement Units
WO2017187658A1 (ja) 動作補助装置
KR101775480B1 (ko) 보행주기를 기반으로 하는 모션 캡쳐 장치 및 그 방법
JP2018114277A (ja) 歩行転倒防止装置、歩行転倒防止装置の制御装置及び制御方法、並びに、歩行転倒防止装置用制御プログラム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

R150 Certificate of patent or registration of utility model

Ref document number: 5758028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150