JP5755527B2 - Anisotropic conductive membrane and conductive connector - Google Patents

Anisotropic conductive membrane and conductive connector Download PDF

Info

Publication number
JP5755527B2
JP5755527B2 JP2011174072A JP2011174072A JP5755527B2 JP 5755527 B2 JP5755527 B2 JP 5755527B2 JP 2011174072 A JP2011174072 A JP 2011174072A JP 2011174072 A JP2011174072 A JP 2011174072A JP 5755527 B2 JP5755527 B2 JP 5755527B2
Authority
JP
Japan
Prior art keywords
conductive film
anisotropic conductive
conductive
particle size
conductive particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011174072A
Other languages
Japanese (ja)
Other versions
JP2013037944A (en
Inventor
木村 潔
潔 木村
Original Assignee
木村 潔
潔 木村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 木村 潔, 潔 木村 filed Critical 木村 潔
Priority to JP2011174072A priority Critical patent/JP5755527B2/en
Publication of JP2013037944A publication Critical patent/JP2013037944A/en
Application granted granted Critical
Publication of JP5755527B2 publication Critical patent/JP5755527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Measuring Leads Or Probes (AREA)

Description

本発明は、弾性高分子材料中に導電性粒子が分散され、厚み方向に異方導電性を示すシート状の異方導電性膜、およびそれを用いた導電性コネクタに関する。   The present invention relates to a sheet-like anisotropic conductive film in which conductive particles are dispersed in an elastic polymer material and exhibit anisotropic conductivity in the thickness direction, and a conductive connector using the same.

集積回路(Integrated Circuit;以下、ICと称する)の製造工程では、シリコンウエハ(以下、単にウエハと称する)上に回路を形成した後に、回路が正常に動作するかを確認するウエハテストが行われる。ウエハテストは半導体試験装置を用いて行われる。詳細には、半導体試験装置では、テスタヘッドに設けられたプローブをウエハに接触させ、テスタヘッドが接続されているテスタとウエハとにおいて電気信号の送受信を行うことにより電気的特性を検査している。   In the manufacturing process of an integrated circuit (hereinafter referred to as an IC), after a circuit is formed on a silicon wafer (hereinafter simply referred to as a wafer), a wafer test is performed to check whether the circuit operates normally. . The wafer test is performed using a semiconductor test apparatus. More specifically, in a semiconductor test apparatus, electrical characteristics are inspected by bringing a probe provided on a tester head into contact with a wafer and transmitting and receiving electrical signals between the tester to which the tester head is connected and the wafer. .

通常ウエハ上には数百個分のICの回路が形成され、ウエハテストではこれらを分離する前の状態で一括あるいは分割してテストを行う。ICがRAMやROMなどのメモリであれば電極の数は1つのICにつき数十〜数百であるが、CPU、GPU、MPUなどの場合には1つにつき電極の数が数百〜数千にもなるため、ウエハ単位で試験するときは、数万もの電極に一度にプローブを接続する必要がある。   Usually, several hundreds of IC circuits are formed on a wafer, and in a wafer test, tests are performed in a batch or divided before being separated. If the IC is a memory such as RAM or ROM, the number of electrodes is several tens to several hundreds per IC, but if the IC is a CPU, GPU, MPU, the number of electrodes is one hundreds to several thousands. Therefore, when testing in wafer units, it is necessary to connect probes to tens of thousands of electrodes at once.

上記のプローブとしては、カンチレバーに代表される水平型プローブや、MEMS(Micro Electro-Mechanical System)プローブやスプリングプローブ等の垂直型プローブが従来用いられていた。これらのプローブは金属製であるが、近年では異方導電性膜(いわゆる導電ゴム)が用いられるようになってきている。異方導電成膜とは、金属粒子(主にNiの導電性粒子)をエラストマー(弾性高分子材料)に分散させて磁場中で硬化させることにより、厚み方向に導電性を持たせ、面方向の導電性は持たせていない異方性材料である。   As the probe, a horizontal probe typified by a cantilever, a vertical probe such as a MEMS (Micro Electro-Mechanical System) probe or a spring probe has been conventionally used. These probes are made of metal, but in recent years, anisotropic conductive films (so-called conductive rubber) have been used. Anisotropic conductive film formation means that metal particles (mainly Ni conductive particles) are dispersed in an elastomer (elastic polymer material) and cured in a magnetic field, thereby providing conductivity in the thickness direction and in the surface direction. This is an anisotropic material that does not have the conductivity.

異方導電性膜によれば、金属製プローブに比較して検査電極の変形による損傷が少なく、また電極間隔の微細化に有利である。またプローブの薄型化が図れるため、電気抵抗を低下させて高周波特性を向上させることができる。さらに、プローブと電極が金属同士である場合には微視的にも1点のみで接触するのに対し、異方導電成膜からなるプローブでは試験装置の電極とウエハの回路の電極との間に異方導電性膜に分散された金属が複数の導電路を形成するため(多点接触)、接触安定性の向上を図ることが可能であり、且つ抵抗値が低いことから高周波特性も良好である。   According to the anisotropic conductive film, damage due to deformation of the inspection electrode is less than that of the metal probe, and it is advantageous for miniaturization of the electrode interval. Further, since the probe can be thinned, the electrical resistance can be reduced and the high frequency characteristics can be improved. Further, when the probe and the electrode are made of metal, the probe is microscopically contacted at only one point, whereas in the probe made of anisotropic conductive film, it is between the electrode of the test apparatus and the electrode of the circuit of the wafer. In addition, since the metal dispersed in the anisotropic conductive film forms a plurality of conductive paths (multi-point contact), the contact stability can be improved and the resistance value is low, so the high frequency characteristics are also good. It is.

しかしながら、異方導電成膜のような薄膜であると、テスタヘッド側に固定的に設けられている突起電極(バンプ)に当接した際に、かかる電極からの圧力によって異方導電性膜の変形が生じる。すると、試験を繰り返すうちに異方導電性膜が疲労によって破れてしまうことがあった。そこで、特許文献1では、被検査回路装置の電気的検査に用いられる異方導電性コネクタ(プローブ)として、2つの異方導電性エラストマーシート(異方導電性膜)の間に、複合導電性シートを配置した構成が開示されている。この複合導電性シートは、複数の貫通孔を有する絶縁性シートと、かかる貫通孔各々に柱状の剛性導体(以下、可動電極と称する)を移動可能に配置して構成されている。   However, in the case of a thin film such as an anisotropic conductive film, when the anisotropic conductive film is brought into contact with a protruding electrode (bump) fixedly provided on the tester head side, the pressure from the electrode is caused by the pressure from the electrode. Deformation occurs. Then, the anisotropic conductive film might be broken by fatigue while repeating the test. Therefore, in Patent Document 1, as an anisotropic conductive connector (probe) used for electrical inspection of a circuit device to be inspected, a composite conductive material is provided between two anisotropic conductive elastomer sheets (anisotropic conductive films). A configuration in which sheets are arranged is disclosed. This composite conductive sheet is configured by disposing an insulating sheet having a plurality of through holes and a columnar rigid conductor (hereinafter referred to as a movable electrode) in each of the through holes.

特開2008−101931号公報JP 2008-101931 A

特許文献1の構成によれば、可動電極による圧力はその上下に配置された異方導電性膜に分散されるため、各々の異方導電性膜の変形が抑制され、その耐久性を向上させることができる。しかしながら、ICは今後さらに小型化し、かつ接点数が増加する傾向にある。このため、異方導電性膜にもさらなる低抵抗化による高周波特性の向上および高分解能化が求められていて、それを達成するための1つの手段として異方導電性膜の更なる薄膜化が要求される。ところが、異方導電性膜を更に薄膜化すると当然にして一層破断が生じやすくなる。そこで、異方導電性膜において薄膜化に際して低下する耐久性を確保する必要があった。   According to the configuration of Patent Document 1, since the pressure generated by the movable electrode is dispersed in the anisotropic conductive films disposed above and below, the deformation of each anisotropic conductive film is suppressed and the durability thereof is improved. be able to. However, ICs tend to be further downsized and the number of contacts will increase in the future. For this reason, the anisotropic conductive film is also required to improve the high-frequency characteristics and increase the resolution by further reducing the resistance. As one means for achieving this, the anisotropic conductive film can be further thinned. Required. However, if the anisotropic conductive film is further thinned, naturally, the breakage is more likely to occur. Therefore, it has been necessary to ensure durability that decreases when the anisotropic conductive film is thinned.

本発明は、このような問題に鑑み、十分な耐久性を確保することができ、薄膜化電気特性の改善ひいては高周波特性の向上を図ることが可能な異方導電性膜、およびそれを用いた導電性コネクタを提供することを目的としている。   In view of such a problem, the present invention uses an anisotropic conductive film capable of ensuring sufficient durability, improving thin film electrical characteristics, and thus improving high-frequency characteristics, and the same. An object is to provide a conductive connector.

上記課題を解決するために、本発明にかかる異方導電性膜の代表的な構成は、弾性高分子材料中に導電性粒子が分散され、厚み方向に異方導電性を示すシート状の異方導電性膜において、導電性粒子の粒度累積分布の累積10%の粒径であるd10は、累積90%の粒径であるd90の半分以下であって、導電性粒子のd90は弾性高分子材料の平均厚さの70%〜90%であることを特徴とする。   In order to solve the above-described problems, a typical configuration of the anisotropic conductive film according to the present invention is a sheet-like material in which conductive particles are dispersed in an elastic polymer material and exhibits anisotropic conductivity in the thickness direction. In the directionally conductive film, d10 which is a cumulative particle size distribution of 10% of conductive particles is less than half of d90 which is a cumulative particle size of 90%, and d90 of the conductive particles is an elastic polymer. 70% to 90% of the average thickness of the material.

粒度累積分布においてd90が膜厚に対して概ね80%であるということは、換言すれば当該異方導電性膜を構成する弾性高分子材料に、その膜厚の80%程度の粒径を有する導電性粒子(以下、大粒径導電性粒子と称する)が含まれていることである。これにより、検査装置(厳密にはテスタヘッド)の電極基盤を検査対象の回路に圧接する際、異方導電性膜が20%程度圧縮された状態で、大粒径導電性粒子が電極基盤および回路に接触し、スペーサとして機能する。したがって、異方導電性膜に過剰な圧力がかからなくなるため、その過度な変形を抑制することができる。故に、異方導電性膜の耐久性を極めて好適に向上させ、ひいては高周波特性の向上を図ることが可能となる。   In the cumulative particle size distribution, d90 is approximately 80% of the film thickness. In other words, the elastic polymer material constituting the anisotropic conductive film has a particle size of about 80% of the film thickness. That is, conductive particles (hereinafter referred to as large particle size conductive particles) are included. As a result, when the electrode substrate of the inspection apparatus (strictly, the tester head) is pressed against the circuit to be inspected, the large conductive particle is formed in the state in which the anisotropic conductive film is compressed by about 20%. It contacts the circuit and functions as a spacer. Therefore, excessive pressure is not applied to the anisotropic conductive film, so that excessive deformation can be suppressed. Therefore, it is possible to improve the durability of the anisotropic conductive film very suitably and to improve the high frequency characteristics.

また上記構成では、粒度累積分布のd10(以下、小粒径導電性粒子と称する)は、d90(累積90%の粒径)の半分以下である。すなわち小粒径導電性粒子は弾性高分子材料の膜厚の40%程度の粒径であるため、磁場をかけることによって硬化させると、弾性高分子材料の厚み方向に鎖状に配列する。これにより、検査装置の電極基盤を検査対象の回路に圧接すると、異方導電性膜が20%程度に圧縮される際に電極間が小粒径導電性粒子によって複数の経路(パス)で電気的に接続される。したがって、異方導電性膜の接続安定性が十分に確保され、高電気特性(低電気抵抗)ひいては高い高周波特性が得られる。   In the above configuration, the particle size cumulative distribution d10 (hereinafter referred to as small particle size conductive particles) is less than or equal to half of d90 (90% cumulative particle size). That is, since the small particle size conductive particles have a particle size of about 40% of the film thickness of the elastic polymer material, they are arranged in a chain shape in the thickness direction of the elastic polymer material when cured by applying a magnetic field. As a result, when the electrode substrate of the inspection apparatus is pressed against the circuit to be inspected, when the anisotropic conductive film is compressed to about 20%, the electrodes are electrically connected by a plurality of paths with small particle size conductive particles. Connected. Accordingly, the connection stability of the anisotropic conductive film is sufficiently ensured, and high electrical characteristics (low electrical resistance) and thus high frequency characteristics can be obtained.

上記課題を解決するために、本発明にかかる導電性コネクタの代表的な構成は、検査装置において検査対象である回路の端子に接触させて通電するための導電性コネクタにおいて、回路から検査装置の電極基板に向かって、第1異方導電性膜と、複合導電性シートと、第2異方導電性膜とを備え、第1異方導電性膜および第2異方導電性膜は上述した異方導電性膜であって、複合導電性シートは、複数の貫通孔が形成された絶縁性シートと、貫通孔に組み合わされ厚み方向に移動自在な複数の可動電極とを有することを特徴とする。   In order to solve the above-described problems, a typical configuration of the conductive connector according to the present invention is a conductive connector for contacting a terminal of a circuit to be inspected in the inspection apparatus and supplying the current from the circuit to the inspection apparatus. A first anisotropic conductive film, a composite conductive sheet, and a second anisotropic conductive film are provided toward the electrode substrate, and the first anisotropic conductive film and the second anisotropic conductive film are described above. An anisotropic conductive film, wherein the composite conductive sheet has an insulating sheet having a plurality of through holes and a plurality of movable electrodes combined with the through holes and movable in the thickness direction. To do.

上述したように本発明にかかる異方導電性膜は、大粒径導電性粒子がスペーサとして機能するため20%程度の圧縮が可能である。換言すれば、上述した異方導電性膜からなる第1異方導電性膜および第2異方導電性膜は各々20%程度のストロークを持つ。したがって、検査装置の電極基板のランド(電極)および回路の端子(電極)の寸法公差を十分に吸収することができる。   As described above, the anisotropic conductive film according to the present invention can be compressed by about 20% because the large particle size conductive particles function as spacers. In other words, the first anisotropic conductive film and the second anisotropic conductive film made of the anisotropic conductive film described above each have a stroke of about 20%. Therefore, the dimensional tolerance of the land (electrode) of the electrode substrate of the inspection apparatus and the terminal (electrode) of the circuit can be sufficiently absorbed.

上記課題を解決するために、本発明にかかる導電性コネクタの他の構成は、請求項2に記載の導電性コネクタにおいて、第2異方導電性膜に代えて第3異方導電性膜を備え、第3異方導電性膜は、弾性高分子材料中に混入した導電性粒子の最大粒径が弾性高分子材料の平均厚さの半分以下であって、導電性粒子を可動電極と対応する位置に集合させて偏在させ、厚み方向に導電路を形成したものであることを特徴とする。かかる構成によれば、導電性粒子が可動電極と対応する位置に集合して偏在しているため、それらの導電経路を増強させることが可能となる。   In order to solve the above-described problem, another structure of the conductive connector according to the present invention is the conductive connector according to claim 2, wherein a third anisotropic conductive film is used instead of the second anisotropic conductive film. The third anisotropic conductive film has a maximum particle size of conductive particles mixed in the elastic polymer material that is less than half the average thickness of the elastic polymer material, and the conductive particles correspond to the movable electrode. The conductive path is formed in the thickness direction by being gathered at a position where it is unevenly distributed. According to such a configuration, since the conductive particles are gathered and unevenly distributed at positions corresponding to the movable electrodes, it is possible to enhance their conductive paths.

本発明によれば、十分な耐久性を確保することができ、薄膜化ひいては高周波特性の向上を図ることが可能な異方導電性膜、およびそれを用いた導電性コネクタを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide an anisotropic conductive film that can ensure sufficient durability and can improve the high-frequency characteristics by reducing the thickness, and a conductive connector using the anisotropic conductive film. It becomes.

第1実施形態にかかる導電性コネクタを説明する図である。It is a figure explaining the conductive connector concerning a 1st embodiment. 本実施形態にかかる異方導電性膜を説明する図である。It is a figure explaining the anisotropically conductive film concerning this embodiment. 異方導電性膜における導電性粒子の粒度分布を例示する図である。It is a figure which illustrates the particle size distribution of the electroconductive particle in an anisotropic conductive film. 第2実施形態にかかる導電性コネクタを説明する図である。It is a figure explaining the conductive connector concerning 2nd Embodiment.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(第1実施形態)
以下、理解を容易にするために、まず第1実施形態の導電性コネクタについて説明した後に、それに用いられる異方導電性膜について説明する。図1は、第1実施形態にかかる導電性コネクタを説明する図であり、図1(a)は第1実施形態の導電性コネクタの概略図であり、図1(b)は図1(a)の可動電極近傍の拡大図である。図1(a)に示す第1実施形態の導電性コネクタ200は、ICの製造工程でのウエハテストにおいて、検査対象であるシリコンウエハ(以下、ウエハ300と称する)上に形成された回路302の動作を確認する検査装置すなわち半導体試験装置(不図示)のテストヘッド400に設けられるプローブに用いられる。ウエハテストでは、ウエハ300の回路302の端子304と、テストヘッド400の電極基板402の電極404とを、導電性コネクタ200を介して接触させて通電させることにより電気信号の送受信を行い、ウエハ300の電気的特性を検査する。
(First embodiment)
Hereinafter, for ease of understanding, the conductive connector according to the first embodiment will be described first, and then the anisotropic conductive film used therefor will be described. FIG. 1 is a diagram illustrating a conductive connector according to the first embodiment, FIG. 1A is a schematic view of the conductive connector of the first embodiment, and FIG. 2) is an enlarged view of the vicinity of the movable electrode. A conductive connector 200 according to the first embodiment shown in FIG. 1A includes a circuit 302 formed on a silicon wafer (hereinafter referred to as a wafer 300) to be inspected in a wafer test in an IC manufacturing process. It is used for a probe provided in a test head 400 of an inspection apparatus for confirming operation, that is, a semiconductor test apparatus (not shown). In the wafer test, electrical signals are transmitted and received by bringing the terminals 304 of the circuit 302 of the wafer 300 and the electrodes 404 of the electrode substrate 402 of the test head 400 into contact with each other via the conductive connector 200 to conduct electricity. Inspect the electrical characteristics of the.

導電性コネクタ200は、ウエハ300の回路302から半導体試験装置(不図示)の電極基板402に向かって、第1異方導電性膜100a、複合導電性シート202、および第2異方導電性膜100bを順に備える。複合導電性シート202は、絶縁性シート210と、複数の可動電極220とを有する。   The conductive connector 200 includes a first anisotropic conductive film 100a, a composite conductive sheet 202, and a second anisotropic conductive film from the circuit 302 of the wafer 300 toward the electrode substrate 402 of the semiconductor test apparatus (not shown). 100b in order. The composite conductive sheet 202 includes an insulating sheet 210 and a plurality of movable electrodes 220.

絶縁性シート210には、液晶ポリマー、ポリイミド樹脂、ポリエステル樹脂、ポリアラミド樹脂、ポリアミド樹脂等の樹脂材料や、ガラス繊維補強型エポキシ樹脂、ガラス繊維補強型ポリエステル樹脂、ガラス繊維補強型ポリイミド樹脂等の繊維補強型樹脂材料、アルミナやポロンナイトライド等の無機材料からなるフィラーをエポキシ樹脂等の樹脂材料に含有させた複合樹脂材料などを好適に用いることができる。   The insulating sheet 210 includes a resin material such as a liquid crystal polymer, a polyimide resin, a polyester resin, a polyaramid resin, and a polyamide resin, and a fiber such as a glass fiber reinforced epoxy resin, a glass fiber reinforced polyester resin, and a glass fiber reinforced polyimide resin. A reinforced resin material, a composite resin material in which a filler made of an inorganic material such as alumina or poron nitride is contained in a resin material such as an epoxy resin can be suitably used.

上記の絶縁性シート210には、ウエハ300の回路302の端子304およびテストヘッド400の電極基板402の電極404のパターンに対応する位置に、厚み方向に延びる複数の貫通孔212が形成されている。そして、貫通孔212には、絶縁性シート210の厚み方向に移動自在な複数の可動電極220が組み合わされている。   A plurality of through holes 212 extending in the thickness direction are formed in the insulating sheet 210 at positions corresponding to the patterns of the terminals 304 of the circuit 302 of the wafer 300 and the electrodes 404 of the electrode substrate 402 of the test head 400. . The through-hole 212 is combined with a plurality of movable electrodes 220 that are movable in the thickness direction of the insulating sheet 210.

可動電極220には、剛性を有する金属材料を好適に用いることができ、例えばニッケル、コバルト、金、アルミニウムなどの単体金属やそれらの合金などを例示することができる。   A metal material having rigidity can be suitably used for the movable electrode 220, and examples thereof include simple metals such as nickel, cobalt, gold, and aluminum, and alloys thereof.

図1(b)に示すように、可動電極220は、貫通孔212内に配置される円柱状の胴部222と、胴部222の両端各々にそれと一体に形成されて貫通孔212外、換言すれば絶縁性シート210の表面に配置される頭部224aおよび224bとから構成される。可動電極220の胴部222の長さLは、絶縁性シート210の厚みtよりも大きい。また可動電極220において、胴部222の径R2は貫通孔212の径R1よりも小さく、頭部224aおよび224bの径R3は貫通孔212の径R1よりも大きい。かかる構成により、可動電極220を絶縁性シート210の厚み方向に移動自在としつつ、可動電極220の頭部224aおよび224bを確実に貫通孔212外に配置できる。   As shown in FIG. 1B, the movable electrode 220 includes a cylindrical body portion 222 disposed in the through hole 212, and is formed integrally with each end of the body portion 222 so as to be outside the through hole 212. In this case, the heads 224a and 224b are arranged on the surface of the insulating sheet 210. The length L of the body portion 222 of the movable electrode 220 is larger than the thickness t of the insulating sheet 210. In the movable electrode 220, the diameter R2 of the body portion 222 is smaller than the diameter R1 of the through hole 212, and the diameter R3 of the head portions 224a and 224b is larger than the diameter R1 of the through hole 212. With this configuration, the heads 224 a and 224 b of the movable electrode 220 can be reliably disposed outside the through hole 212 while allowing the movable electrode 220 to move in the thickness direction of the insulating sheet 210.

より詳細には、可動電極220の胴部222の長さLと絶縁性シート210の厚みtとの差(L−t)、すなわち絶縁性シート210の厚み方向における可動電極220の移動可能距離は、3〜150μmであることが好ましく、より好ましくは5〜100μm、更に好ましくは10〜50μmであるとよい。可動電極220の移動可能距離が過小であると、当該導電性コネクタ200において十分な凹凸吸収能を得ることが困難となることがある。一方、可動電極220の移動可能距離が過大であると、絶縁性シート210の貫通孔212から露出する可動電極220の胴部222の長さが大きくなり、検査に使用したときに、可動電極220の胴部222が座屈または損傷するおそれがある。また、可動電極220の頭部224aおよび224bの厚みは、5〜50μmであることが好ましく、より好ましくは8〜40μmであるとよい。   More specifically, the difference (L−t) between the length L of the body 222 of the movable electrode 220 and the thickness t of the insulating sheet 210, that is, the movable distance of the movable electrode 220 in the thickness direction of the insulating sheet 210 is 3 to 150 μm, preferably 5 to 100 μm, and more preferably 10 to 50 μm. If the movable distance of the movable electrode 220 is too small, it may be difficult to obtain sufficient unevenness absorption capability in the conductive connector 200. On the other hand, if the movable distance of the movable electrode 220 is excessive, the length of the body portion 222 of the movable electrode 220 exposed from the through hole 212 of the insulating sheet 210 becomes large, and the movable electrode 220 is used when used for inspection. There is a risk that the body portion 222 of the body is buckled or damaged. Further, the thickness of the heads 224a and 224b of the movable electrode 220 is preferably 5 to 50 μm, and more preferably 8 to 40 μm.

なお、高温環境下では絶縁性シート210の熱膨張によって、貫通孔212に配置された可動電極220の位置ずれが生じることが想定される。故に、当該導電性コネクタ200を高温環境下において使用することが想定される場合には、絶縁性シート210の熱膨張係数が3×10−5/K以下であることが好ましく、より好ましくは1×10−6〜2×10−5/K、更に好ましくは1×10−5/K〜6×10−6/Kであるとよい。 In a high temperature environment, it is assumed that the displacement of the movable electrode 220 disposed in the through hole 212 is caused by the thermal expansion of the insulating sheet 210. Therefore, when it is assumed that the conductive connector 200 is used in a high temperature environment, the thermal expansion coefficient of the insulating sheet 210 is preferably 3 × 10 −5 / K or less, more preferably 1 × 10 −6 to 2 × 10 −5 / K, more preferably 1 × 10 −5 / K to 6 × 10 −6 / K.

また絶縁性シート210の厚みtは、10〜200μmであることが好ましく、より好ましくは15〜100μmであるとよく、絶縁性シート210が有する貫通孔212の径R1は、20〜300μmであるとよく、より好ましくは30〜150μmであるとよい。可動電極220の十分な強度を得るために、胴部222の径R2は、18μm以上であることが好ましく、より好ましくは25μm以上であるとよい。   The thickness t of the insulating sheet 210 is preferably 10 to 200 μm, more preferably 15 to 100 μm, and the diameter R1 of the through hole 212 included in the insulating sheet 210 is 20 to 300 μm. More preferably, it is good in it being 30-150 micrometers. In order to obtain sufficient strength of the movable electrode 220, the diameter R2 of the body portion 222 is preferably 18 μm or more, and more preferably 25 μm or more.

更に、絶縁性シート210の厚み方向に対する可動電極220の移動を円滑にするために、絶縁性シート210の貫通孔212の径と可動電極220の胴部222の径との差(R1−R2)は、1μm以上であることが好ましく、より好ましくは2μm以上であるとよい。また絶縁性シート210の貫通孔212からの可動電極220の脱落を防ぐために、可動電極220の頭部224aおよび224bの径と絶縁性シート210の貫通孔212の径との差(R3−R1)は、5μm以上であることが好ましく、より好ましくは10μm以上であるとよい。   Further, in order to smoothly move the movable electrode 220 in the thickness direction of the insulating sheet 210, the difference between the diameter of the through hole 212 of the insulating sheet 210 and the diameter of the body portion 222 of the movable electrode 220 (R1-R2). Is preferably 1 μm or more, and more preferably 2 μm or more. Further, in order to prevent the movable electrode 220 from falling off the through hole 212 of the insulating sheet 210, the difference between the diameters of the heads 224a and 224b of the movable electrode 220 and the diameter of the through hole 212 of the insulating sheet 210 (R3-R1). Is preferably 5 μm or more, and more preferably 10 μm or more.

次に、上述した複合導電性シート202の上下に配置される第1異方導電性膜100aおよび第2異方導電性膜100bについて説明する。なお、本実施形態において第1異方導電性膜100aおよび第2異方導電性膜100bは同一の組成であるため、以下、それらを異方導電性膜100と総称して説明する。   Next, the first anisotropic conductive film 100a and the second anisotropic conductive film 100b arranged above and below the composite conductive sheet 202 will be described. In the present embodiment, since the first anisotropic conductive film 100a and the second anisotropic conductive film 100b have the same composition, they will be collectively referred to as the anisotropic conductive film 100 hereinafter.

図2は、本実施形態にかかる異方導電性膜を説明する図であり、図2(a)は本実施形態の異方導電性膜の構成を例示する断面図であり、図2(b)は図2(a)の異方導電膜を圧縮した状態を例示する図である。本実施形態にかかる異方導電性膜100は、シート状であり、厚み方向に異方導電性を有する。図2(a)に示すように、かかる異方導電性膜100は、弾性高分子材料110中に導電性粒子120を分散させた構成である。弾性高分子材料110は、絶縁性と、耐久性の観点から架橋構造とを有する高分子材料を用いることが好ましく、具体的にはシリコーンゴムを好適に用いることができる。   FIG. 2 is a diagram illustrating the anisotropic conductive film according to this embodiment. FIG. 2A is a cross-sectional view illustrating the configuration of the anisotropic conductive film according to this embodiment. ) Is a diagram illustrating a state in which the anisotropic conductive film of FIG. 2A is compressed. The anisotropic conductive film 100 according to the present embodiment has a sheet shape and has anisotropic conductivity in the thickness direction. As shown in FIG. 2A, the anisotropic conductive film 100 has a configuration in which conductive particles 120 are dispersed in an elastic polymer material 110. The elastic polymer material 110 is preferably a polymer material having a crosslinked structure from the viewpoints of insulation and durability, and specifically, silicone rubber can be suitably used.

上述したように本実施形態の異方導電性膜100を構成する弾性高分子材料110には導電性粒子120が分散されている。これにより、絶縁性の弾性高分子材料110に導電性が付与される。導電性粒子120としては、鉄、コバルト、ニッケル等、磁性を有する金属粒子や、それらの合金粒子(それらの金属を含有する粒子)を好適に用いることができる。また、それらの金属粒子や合金粒子を芯粒子(コア)として、かかる芯粒子の表面に、金、銀、パラジウム、ロジウム等、高導電性を有する金属のめっきを施したものを用いてもよい。更に、ガラスビーズ等の無機物質粒子やポリマー粒子、非磁性金属粒子を芯粒子として、その表面にコバルト、ニッケル等の導電性磁性金属をめっきしたものを用いることも可能である。なお、めっき方法としては、化学めっき、電界めっき法、スパッタリング法、蒸着法等を例示することができるが、他の方法を用いてもよい。   As described above, the conductive particles 120 are dispersed in the elastic polymer material 110 constituting the anisotropic conductive film 100 of the present embodiment. Thereby, conductivity is imparted to the insulating elastic polymer material 110. As the conductive particles 120, magnetic metal particles such as iron, cobalt, nickel, and alloy particles thereof (particles containing these metals) can be suitably used. Alternatively, those metal particles or alloy particles may be used as core particles (core), and the surface of the core particles may be plated with a metal having high conductivity such as gold, silver, palladium, rhodium or the like. . Furthermore, it is also possible to use inorganic particles such as glass beads, polymer particles, and nonmagnetic metal particles as core particles, and the surfaces thereof plated with a conductive magnetic metal such as cobalt or nickel. Examples of the plating method include chemical plating, electric field plating, sputtering, and vapor deposition, but other methods may be used.

図3は、異方導電性膜100における導電性粒子の粒度分布を例示する図であり、図3(a)は導電性粒子の粒度累積分布を例示する図であり、図3(b)は導電性粒子の粒度頻度分布を例示する図である。本実施形態では、導電性粒子120は大粒径導電性粒子122および小粒径導電性粒子124を含み、特に弾性高分子材料110に大粒径導電性粒子122を分散させている点において特徴を有する。   FIG. 3 is a diagram illustrating the particle size distribution of the conductive particles in the anisotropic conductive film 100, FIG. 3 (a) is a diagram illustrating the particle size cumulative distribution of the conductive particles, and FIG. It is a figure which illustrates the particle size frequency distribution of electroconductive particle. In the present embodiment, the conductive particles 120 include large particle size conductive particles 122 and small particle size conductive particles 124, and are particularly characterized in that the large particle size conductive particles 122 are dispersed in the elastic polymer material 110. Have

詳細には、弾性高分子材料110に分散されている導電性粒子120を累積すると、導電性粒子120の粒度累積分布は図3(a)に示すような曲線を描く。図3(a)の粒度累積分布において、導電性粒子120を10%まで累積したときの粒径すなわちd10の粒子が小粒径導電性粒子124であり、導電性粒子120を90%まで累積したときの粒径すなわちd90の粒子が大粒径導電性粒子122である。また弾性高分子材料110に分散されている導電性粒子120の粒度頻度分布は図3(b)に示すような曲線を描く。   Specifically, when the conductive particles 120 dispersed in the elastic polymer material 110 are accumulated, the particle size cumulative distribution of the conductive particles 120 draws a curve as shown in FIG. In the cumulative particle size distribution of FIG. 3A, the particle size when the conductive particles 120 are accumulated to 10%, that is, the particles of d10 are the small particle size conductive particles 124, and the conductive particles 120 are accumulated to 90%. The particle size at the time, that is, the d90 particle is the large particle size conductive particle 122. The particle size frequency distribution of the conductive particles 120 dispersed in the elastic polymer material 110 draws a curve as shown in FIG.

上記の大粒径導電性粒子122の粒径d90は、弾性高分子材料110の平均厚さtの70%〜90%、すなわち平均膜厚に対して概ね80%である。テストヘッド400の電極基板402をウエハ300の回路302に向かって圧接すると(図1(a)参照)、図2(a)に示す異方導電性膜100が図2(b)に示すように圧縮される。これにより、第1異方導電性膜100aでは、大粒径導電性粒子122が、ウエハ300の回路302の端子304と可動電極220とに接触し、第2異方導電性膜100bでは、大粒径導電性粒子122が、テストヘッド400の電極基板402の電極404と可動電極220とに接触する(図1(a)参照)。   The particle size d90 of the large particle size conductive particles 122 is 70% to 90% of the average thickness t of the elastic polymer material 110, that is, approximately 80% of the average film thickness. When the electrode substrate 402 of the test head 400 is pressed against the circuit 302 of the wafer 300 (see FIG. 1A), the anisotropic conductive film 100 shown in FIG. 2A becomes as shown in FIG. Compressed. Thus, in the first anisotropic conductive film 100a, the large particle size conductive particles 122 come into contact with the terminals 304 and the movable electrode 220 of the circuit 302 of the wafer 300, and in the second anisotropic conductive film 100b, The particle size conductive particles 122 are in contact with the electrode 404 and the movable electrode 220 of the electrode substrate 402 of the test head 400 (see FIG. 1A).

このとき、弾性高分子材料110の膜厚の80%程度の粒径を有する大粒径導電性粒子122が電極基板402および回路302の間でスペーサとして機能するため、異方導電性膜100の圧縮は20%程度であり、換言すれば異方導電性膜100の厚みは0.8t程度までしか圧縮されない。したがって、異方導電性膜100への過剰な圧力を防ぐことができ、その過度な変形が抑制される。故に、異方導電性膜100の耐久性、ひいては高周波特性の向上を図ることが可能となる。   At this time, since the large-diameter conductive particles 122 having a particle size of about 80% of the film thickness of the elastic polymer material 110 function as a spacer between the electrode substrate 402 and the circuit 302, the anisotropic conductive film 100 The compression is about 20%, in other words, the thickness of the anisotropic conductive film 100 is compressed only to about 0.8 t. Therefore, excessive pressure on the anisotropic conductive film 100 can be prevented, and excessive deformation thereof is suppressed. Therefore, it is possible to improve the durability of the anisotropic conductive film 100, and hence the high frequency characteristics.

また上述したように大粒径導電性粒子122がスペーサとして機能し、異方導電性膜100が20%程度の圧縮が可能であるということは、すなわち異方導電性膜100は20%程度のストロークを持つということである。したがって、電極基板402の電極404(ランド)および回路302の端子304の寸法公差を十分に吸収可能である。   Further, as described above, the large conductive particles 122 function as spacers, and the anisotropic conductive film 100 can be compressed by about 20%, that is, the anisotropic conductive film 100 has about 20% compression. It has a stroke. Therefore, the dimensional tolerance of the electrode 404 (land) of the electrode substrate 402 and the terminal 304 of the circuit 302 can be sufficiently absorbed.

一方、小粒径導電性粒子124の粒径d10は、d90の半分以下であり、換言すれば弾性高分子材料の膜厚の40%以下の粒径である。この小粒径導電性粒子124は、弾性高分子材料110に磁場をかけながら硬化すると、図2(a)に示すように弾性高分子材料110の厚み方向に鎖状に配列する。これにより、テストヘッド400の電極基板402をウエハ300の回路302(図1参照)に向かって圧接すると、図2(b)に示すように小粒径導電性粒子124によって電極基板402の電極404と回路302の端子304とが複数の経路(パス)で電気的に接続される。したがって、異方導電性膜100の接続安定性が十分に確保され、高電気特性(低電気抵抗)ひいては高い高周波特性が得られる。   On the other hand, the particle size d10 of the small particle size conductive particles 124 is less than half of d90, in other words, 40% or less of the film thickness of the elastic polymer material. When the small-sized conductive particles 124 are cured while applying a magnetic field to the elastic polymer material 110, they are arranged in a chain shape in the thickness direction of the elastic polymer material 110 as shown in FIG. Thus, when the electrode substrate 402 of the test head 400 is pressed against the circuit 302 (see FIG. 1) of the wafer 300, the electrode 404 of the electrode substrate 402 is caused by the small particle size conductive particles 124 as shown in FIG. And a terminal 304 of the circuit 302 are electrically connected through a plurality of paths. Accordingly, the connection stability of the anisotropic conductive film 100 is sufficiently ensured, and high electrical characteristics (low electrical resistance) and thus high frequency characteristics can be obtained.

なお、弾性高分子材料110に含有される導電性粒子120が大粒径導電性粒子122のみであると、端子304および電極404と導電性粒子120との接点数ひいてはそれらの導電経路が極端に減少するため電気的特性が低下してしまう。故に、本実施形態のように、導電性粒子120を大粒径導電性粒子122および小粒径導電性粒子124から構成することにより、大粒径導電性粒子122のスペーサ効果によって異方導電性膜100の耐久性の向上を図りつつ、小粒径導電性粒子124による高電気特性の確保が可能となる。   If the conductive particles 120 contained in the elastic polymer material 110 are only the large particle size conductive particles 122, the number of contacts between the terminals 304 and the electrodes 404 and the conductive particles 120, and therefore the conductive paths thereof are extremely large. As a result, the electrical characteristics deteriorate. Therefore, by forming the conductive particles 120 from the large particle size conductive particles 122 and the small particle size conductive particles 124 as in the present embodiment, the anisotropic conductivity is obtained by the spacer effect of the large particle size conductive particles 122. While improving the durability of the film 100, it is possible to ensure high electrical characteristics by the small particle size conductive particles 124.

上記説明したように、本実施形態の異方導電性膜100によれば、大粒径導電性粒子122および小粒径導電性粒子124により、高電気特性を確保しつつ耐久性の向上を図ることが出来る。これにより、異方導電性膜の更なる薄膜化が可能になり、ひいては高周波特性の向上および高分解能化を達成することができる。そして、このような異方導電性膜100を導電性コネクタ200に用いることにより、可動電極220の圧力による異方導電性膜100の過度な変形が抑制されるため導電性コネクタ200の長寿命化も可能になり、且つ適度な変形は許容されるため検査装置の電極基板402の電極404(ランド)および回路302の端子304(電極)の寸法公差を十分に吸収することができる。   As described above, according to the anisotropic conductive film 100 of this embodiment, the large particle size conductive particles 122 and the small particle size conductive particles 124 improve durability while ensuring high electrical characteristics. I can do it. As a result, the anisotropic conductive film can be further thinned, and as a result, high frequency characteristics can be improved and high resolution can be achieved. By using such an anisotropic conductive film 100 for the conductive connector 200, excessive deformation of the anisotropic conductive film 100 due to the pressure of the movable electrode 220 is suppressed, so that the life of the conductive connector 200 is extended. In addition, since appropriate deformation is allowed, the dimensional tolerance of the electrode 404 (land) of the electrode substrate 402 and the terminal 304 (electrode) of the circuit 302 can be sufficiently absorbed.

(第2実施形態)
図4は、第2実施形態にかかる導電性コネクタを説明する図であり、特に図4(a)は第3異方導電性膜の構成を例示する断面図であり、図4(b)は第2実施形態の導電性コネクタの概略構成を図示している。なお、以下、第1実施形態の導電性コネクタと同一の機能や構成を有する要素については、同一の符号を付すことにより重複説明を避ける。また、理解を容易にするために、図4では、図1に示した可動電極220および電極基板402の電極404を破線にて図示している。
(Second Embodiment)
FIG. 4 is a diagram for explaining the conductive connector according to the second embodiment. In particular, FIG. 4A is a cross-sectional view illustrating the configuration of the third anisotropic conductive film, and FIG. The schematic structure of the electroconductive connector of 2nd Embodiment is shown in figure. In the following description, elements having the same functions and configurations as those of the conductive connector of the first embodiment are denoted by the same reference numerals to avoid redundant description. For easy understanding, in FIG. 4, the movable electrode 220 and the electrode 404 of the electrode substrate 402 shown in FIG.

第1実施形態の導電性コネクタは、第1異方導電性膜100aおよび第2異方導電性膜100bが同一の構成であったのに対し、第2実施形態の導電性コネクタは、第2異方導電膜に代えて、図4に示す第3異方導電性膜100cを備える。   In the conductive connector of the first embodiment, the first anisotropic conductive film 100a and the second anisotropic conductive film 100b have the same configuration, whereas the conductive connector of the second embodiment has the second configuration. Instead of the anisotropic conductive film, a third anisotropic conductive film 100c shown in FIG. 4 is provided.

図4(a)に示すように、第3異方導電性膜は、弾性高分子材料110中に含まれる(混入した)導電性粒子126の最大粒径が弾性高分子材料の平均厚さtの半分以下である。すなわち第3異方導電性膜100cには、第1実施形態における小粒径導電性粒子124に近い粒径の導電性粒子126が含まれていて、スペーサとして機能する第1実施形態の大粒径導電性粒子122のような導電性粒子は含まれていない。   As shown in FIG. 4A, in the third anisotropic conductive film, the maximum particle diameter of the conductive particles 126 contained (mixed) in the elastic polymer material 110 is the average thickness t of the elastic polymer material. Less than half. That is, the third anisotropic conductive film 100c includes the conductive particles 126 having a particle size close to the small particle size conductive particles 124 in the first embodiment, and the large particles of the first embodiment functioning as spacers. Conductive particles such as the diameter conductive particles 122 are not included.

本実施形態の特徴として、上記の第3異方導電性膜100cの導電性粒子126は、可動電極220(破線にて図示)と対応する位置に集合するように偏在し、弾性高分子材料110の厚み方向に導電路(導電経路)を形成している。これは、第3異方導電性膜100cを成膜する際に、電極の位置に磁場をかけた状態で硬化させることにより、電極の位置に導電性粒子126が集中し、偏在させることができる。このように導電性粒子126が可動電極220と対応する位置に集合して偏在していることにより、それらの導電経路を増強させ、また他の電極との絶縁性を高めることが可能となる。また、小径の導電性粒子126が連なっていることからクッション性が高く、導電性コネクタ200全体としてのストロークを大きくすることが可能となる。   As a feature of the present embodiment, the conductive particles 126 of the third anisotropic conductive film 100c are unevenly distributed so as to gather at a position corresponding to the movable electrode 220 (illustrated by a broken line), and the elastic polymer material 110 Conductive paths (conductive paths) are formed in the thickness direction. This is because, when the third anisotropic conductive film 100c is formed, the conductive particles 126 can be concentrated and unevenly distributed at the electrode positions by curing in a state where a magnetic field is applied to the electrode positions. . As described above, the conductive particles 126 are gathered at positions corresponding to the movable electrode 220 and are unevenly distributed, whereby the conductive paths thereof can be enhanced and the insulation from other electrodes can be enhanced. Further, since the conductive particles 126 having a small diameter are connected, the cushioning property is high, and the stroke of the entire conductive connector 200 can be increased.

以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   Although the preferred embodiments of the present invention have been described above with reference to the accompanying drawings, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、弾性高分子材料中に導電性粒子が分散され、厚み方向に異方導電性を示すシート状の異方導電性膜、およびそれを用いた導電性コネクタに利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for a sheet-like anisotropic conductive film in which conductive particles are dispersed in an elastic polymer material and exhibit anisotropic conductivity in the thickness direction, and a conductive connector using the same.

100…異方導電性膜、100a…第1異方導電性膜、100b…第2異方導電性膜、100c…第3異方導電性膜、110…弾性高分子材料、120…導電性粒子、122…大粒径導電性粒子、124…小粒径導電性粒子、126…導電性粒子、200…導電性コネクタ、202…複合導電性シート、210…絶縁性シート、212…貫通孔、220…可動電極、222…胴部、224a…頭部、224b…頭部、300…ウエハ、302…回路、304…端子、400…テストヘッド、402…電極基板、404…電極 DESCRIPTION OF SYMBOLS 100 ... Anisotropic conductive film, 100a ... 1st anisotropic conductive film, 100b ... 2nd anisotropic conductive film, 100c ... 3rd anisotropic conductive film, 110 ... Elastic polymer material, 120 ... Conductive particle 122 ... conductive particles, 124 ... conductive particles, 126 ... conductive particles, 200 ... conductive connectors, 202 ... composite conductive sheets, 210 ... insulating sheets, 212 ... through holes, 220 ... movable electrode, 222 ... trunk, 224a ... head, 224b ... head, 300 ... wafer, 302 ... circuit, 304 ... terminal, 400 ... test head, 402 ... electrode substrate, 404 ... electrode

Claims (1)

検査装置において検査対象である回路の端子に接触させて通電するための導電性コネクタにおいて、
前記回路から前記検査装置の電極基板に向かって、第1異方導電性膜と、複合導電性シートと、第異方導電性膜とを備え、
前記第1異方導電性膜は弾性高分子材料中に導電性粒子が分散されたシート状の異方導電性膜であって、前記導電性粒子の粒度累積分布の累積10%の粒径であるd10は累積90%の粒径であるd90の半分以下であり、前記導電性粒子のd90は前記弾性高分子材料の平均厚さの70%〜90%であり、
前記複合導電性シートは、複数の貫通孔が形成された絶縁性シートと、前記貫通孔に組み合わされ厚み方向に移動自在な複数の可動電極とを有し、
前記第3異方導電性膜は弾性高分子材料中に導電性粒子が分散されたシート状の異方導電性膜であって、前記弾性高分子材料中に混入した導電性粒子の最大粒径が該弾性高分子材料の平均厚さの半分以下であり、該導電性粒子を前記可動電極と対応する位置に集合させて偏在させ、厚み方向に導電路を形成したものであることを特徴とする導電性コネクタ。
In the conductive connector for energizing by contacting the terminal of the circuit to be inspected in the inspection device,
A first anisotropic conductive film, a composite conductive sheet, and a third anisotropic conductive film are provided from the circuit toward the electrode substrate of the inspection apparatus,
The first anisotropic conductive film is a sheet-shaped anisotropic conductive film in which conductive particles are dispersed in an elastic polymer material, and has a cumulative particle size of 10% of the cumulative particle size distribution of the conductive particles. A certain d10 is less than half of d90 which is a cumulative particle size of 90%, d90 of the conductive particles is 70% to 90% of the average thickness of the elastic polymer material,
The composite conductive sheet, possess a plurality of through holes insulating sheet is formed, and a plurality of movable electrodes movable in the thickness direction is combined in the through hole,
The third anisotropic conductive film is a sheet-shaped anisotropic conductive film in which conductive particles are dispersed in an elastic polymer material, and the maximum particle diameter of the conductive particles mixed in the elastic polymer material features There is less than half of the average thickness of the elastic polymer material, the conductive particles are unevenly distributed assembled into a position corresponding to the movable electrode, the der Rukoto that forms a conductive path in the thickness direction Conductive connector.
JP2011174072A 2011-08-09 2011-08-09 Anisotropic conductive membrane and conductive connector Active JP5755527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011174072A JP5755527B2 (en) 2011-08-09 2011-08-09 Anisotropic conductive membrane and conductive connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011174072A JP5755527B2 (en) 2011-08-09 2011-08-09 Anisotropic conductive membrane and conductive connector

Publications (2)

Publication Number Publication Date
JP2013037944A JP2013037944A (en) 2013-02-21
JP5755527B2 true JP5755527B2 (en) 2015-07-29

Family

ID=47887366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011174072A Active JP5755527B2 (en) 2011-08-09 2011-08-09 Anisotropic conductive membrane and conductive connector

Country Status (1)

Country Link
JP (1) JP5755527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983628A (en) * 2016-11-30 2019-07-05 迪睿合株式会社 Conducting particles configures film, its manufacturing method, checks contact unit, conduction inspection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6889020B2 (en) * 2016-05-02 2021-06-18 デクセリアルズ株式会社 Manufacturing method of anisotropic conductive film and anisotropic conductive film
JP6307142B2 (en) * 2016-11-16 2018-04-04 株式会社三共 Game machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102110A (en) * 1986-10-17 1988-05-07 富士ゼロックス株式会社 Anisotropic conductor and making thereof
JPH083963B2 (en) * 1987-05-29 1996-01-17 日立化成工業株式会社 Circuit connection member
JPH08148213A (en) * 1994-11-25 1996-06-07 Hitachi Chem Co Ltd Connection member and structure and method for connecting electrode using the same
JPH1125760A (en) * 1997-07-03 1999-01-29 Nec Corp Anisotropic conductive film
JP2008101931A (en) * 2006-10-17 2008-05-01 Jsr Corp Composite conductive sheet, anisotropic conductive connector, adapter device, and electric inspection device for circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983628A (en) * 2016-11-30 2019-07-05 迪睿合株式会社 Conducting particles configures film, its manufacturing method, checks contact unit, conduction inspection method
CN109983628B (en) * 2016-11-30 2021-12-24 迪睿合株式会社 Conductive particle arrangement film, method for producing same, inspection probe unit, and conduction inspection method

Also Published As

Publication number Publication date
JP2013037944A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP4555362B2 (en) Probe, electronic component testing apparatus, and probe manufacturing method
KR100684221B1 (en) Anisotropic conductive connector and wafer inspection device
KR101246301B1 (en) Socket for electrical test with micro-line
CN102183680B (en) Contactor
KR101366171B1 (en) Test socket with high density conduction section
KR102002694B1 (en) Conductive contact and anisotropic conductive sheet with the same
KR102133675B1 (en) Test socket
KR101471116B1 (en) Test socket with high density conduction section
JPWO2010007816A1 (en) probe
JP2013007700A (en) Electric contact
JP4952787B2 (en) Anisotropic conductive connector, probe member and wafer inspection device
JP5755527B2 (en) Anisotropic conductive membrane and conductive connector
KR101468586B1 (en) Conductive connector and manufacturing method of the same
KR102153221B1 (en) Anisotropic conductive sheet
JP2009139298A (en) Probe card
US20220057434A1 (en) Conductive particle and testing socket comprising the same
JP2008164476A (en) Anisotropic conductive connector apparatus and manufacturing method of the same, and inspection apparatus for circuit apparatus
JP4631621B2 (en) Circuit board inspection apparatus and circuit board inspection method
WO2006064558A1 (en) Contactor member, contactor and contacting method
KR20200111538A (en) Conductive powder and connector for electrical connection including same
JP2002170608A (en) Anisotropic conductive sheet, manufacturing method of the same, and applied product using the same
CN114078610B (en) Conductive particle and test socket comprising same
KR20190050688A (en) Anisotropic conductive sheet
JP5777477B2 (en) Manufacturing method of conductive connector
JP3700721B2 (en) Circuit board inspection apparatus and circuit board inspection method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250