JP5747805B2 - Electronic equipment - Google Patents

Electronic equipment Download PDF

Info

Publication number
JP5747805B2
JP5747805B2 JP2011271503A JP2011271503A JP5747805B2 JP 5747805 B2 JP5747805 B2 JP 5747805B2 JP 2011271503 A JP2011271503 A JP 2011271503A JP 2011271503 A JP2011271503 A JP 2011271503A JP 5747805 B2 JP5747805 B2 JP 5747805B2
Authority
JP
Japan
Prior art keywords
insulating substrate
heat
hole
solder
radiating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011271503A
Other languages
Japanese (ja)
Other versions
JP2013123011A (en
Inventor
高志 星野
高志 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011271503A priority Critical patent/JP5747805B2/en
Publication of JP2013123011A publication Critical patent/JP2013123011A/en
Application granted granted Critical
Publication of JP5747805B2 publication Critical patent/JP5747805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、絶縁基板に設けられた貫通孔に挿入された放熱部材により、当該絶縁基板に搭載された電子部品を放熱するようにした電子装置に関する。   The present invention relates to an electronic apparatus in which heat is dissipated from an electronic component mounted on an insulating substrate by a heat dissipating member inserted into a through hole provided in the insulating substrate.

従来より、この種の電子部品としては、絶縁基板と、絶縁基板の一方の面から他方の面に貫通する貫通孔と、貫通孔に挿入された放熱部材と、絶縁基板の一方の面にて貫通孔に重なるように絶縁基板に搭載され固定された電子部品と、を備え、絶縁基板の一方の面側にて放熱部材と電子部品とがはんだ等で接合されることにより、電子部品にて発生する熱が放熱部材へ放熱されるようになっているものが提案されている((たとえば、特許文献1参照)。   Conventionally, this type of electronic component includes an insulating substrate, a through hole penetrating from one surface of the insulating substrate to the other surface, a heat dissipation member inserted into the through hole, and one surface of the insulating substrate. An electronic component mounted on and fixed to the insulating substrate so as to overlap the through hole, and the heat dissipation member and the electronic component are joined by solder or the like on one surface side of the insulating substrate. There has been proposed one in which generated heat is dissipated to a heat radiating member (see, for example, Patent Document 1).

ここで、この従来の電子装置においては、貫通孔内にて、貫通孔の内壁と放熱部材の外面との間をはんだで充填することにより、放熱部材を貫通孔に固定するようにしている。そして、通常、絶縁基板の他面側には、筐体を設け、当該他面側に突出する放熱部材の部分を筐体に接触させることで、放熱部材から筐体へ放熱するようにしている。   Here, in this conventional electronic device, the heat radiating member is fixed to the through hole by filling the space between the inner wall of the through hole and the outer surface of the heat radiating member in the through hole. Usually, a housing is provided on the other surface side of the insulating substrate, and a portion of the heat radiation member protruding to the other surface side is brought into contact with the housing, so that heat is radiated from the heat radiation member to the housing. .

特開2007−35843号公報JP 2007-35843 A

しかしながら、上記従来の電子装置においては、一般的なはんだ実装により装置を製造するにあたって、貫通孔に充填されるはんだ量の正確な制御、および、当該はんだにおけるボイドやフィレットなどの出来栄え管理が困難である。それにより、貫通孔に挿入される放熱部材の実装位置の制御、具体的には絶縁基板の一方の面に対する放熱部材の高さ位置の制御が難しくなる。   However, in the above-described conventional electronic device, when manufacturing the device by general solder mounting, it is difficult to accurately control the amount of solder filled in the through hole and to manage the quality of voids and fillets in the solder. is there. This makes it difficult to control the mounting position of the heat dissipation member inserted into the through hole, specifically, to control the height position of the heat dissipation member with respect to one surface of the insulating substrate.

このような放熱部材の実装位置のばらつきが生じると、それによって、電子部品の実装工程(たとえばはんだ印刷、部品マウント等)の障害となる場合がある。また、電子装置を筐体へ組付ける工程において、たとえば放熱部材が筐体に干渉する等、不良や市場での不具合が生じ、信頼性を損なう恐れがある。   If such variation in the mounting position of the heat dissipating member occurs, it may cause an obstacle in the mounting process of electronic components (for example, solder printing, component mounting, etc.). In addition, in the process of assembling the electronic device to the housing, for example, a heat radiating member may interfere with the housing, causing defects or problems on the market, which may impair reliability.

つまり、このような電子装置において、信頼性と作りやすさを向上させるためには、製造工程における放熱部材の実装位置を精度良くコントロールすることが必要となってくる。   That is, in such an electronic device, in order to improve reliability and ease of manufacture, it is necessary to accurately control the mounting position of the heat dissipation member in the manufacturing process.

本発明は、上記問題に鑑みてなされたものであり、絶縁基板に設けられた貫通孔に挿入された放熱部材により、当該絶縁基板に搭載された電子部品を放熱するようにした電子装置において、製造工程における放熱部材の実装位置を精度良くコントロールするのに適した構成を実現することを目的とする。   The present invention has been made in view of the above problem, and in an electronic device configured to radiate an electronic component mounted on the insulating substrate by a heat dissipation member inserted into a through hole provided in the insulating substrate, It is an object of the present invention to realize a configuration suitable for accurately controlling the mounting position of the heat dissipation member in the manufacturing process.

上記目的を達成するため、請求項1に記載の発明では、絶縁基板(10)と、絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、貫通孔(13)に挿入された放熱部材(20)と、絶縁基板(10)の一方の面(11)にて貫通孔(13)に重なるように絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、絶縁基板(10)の一方の面(11)側にて放熱部材(20)と電子部品(30)とが接合されることにより、電子部品(30)にて発生する熱が放熱部材(20)へ放熱されるようになっている電子装置において、
放熱部材(20)の一部は、絶縁基板(10)の他方の面(12)にて貫通孔(13)より突出し、貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、この突出部(23)は絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、貫通孔(13)の内壁と放熱部材(20)の外面との間は空隙とされており、
放熱部材(20)の突出部(23)と絶縁基板(10)とを接合する接合材は、はんだ(50)であり、
放熱部材(20)のうちの絶縁基板(10)とのはんだ(50)による接合部(24)は、めっき処理が施されたものとなっており、当該接合部(24)の外周囲には当該めっき処理を施さないことにより、
放熱部材(20)において接合部(24)は当該接合部(24)の外周囲に比べて、はんだ(50)の濡れ性が良いものとされていることを特徴とする。
In order to achieve the above object, according to the invention described in claim 1, the insulating substrate (10) and the through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12). And mounted on the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10) and the heat dissipation member (20) inserted into the through hole (13). The electronic component (30), and the heat dissipation member (20) and the electronic component (30) are joined to each other on the one surface (11) side of the insulating substrate (10). In the electronic device in which the heat generated in) is radiated to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) on the other surface (12) of the insulating substrate (10), and overlaps the other surface (12) outside the through hole (13). The protrusion (23) is formed into a shape, and this protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50). The space between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) is a gap ,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
The joint part (24) by the solder (50) with the insulating substrate (10) of the heat radiating member (20) is subjected to plating treatment, and the outer periphery of the joint part (24) By not performing the plating process,
In the heat radiating member (20), the joint (24) is characterized in that the wettability of the solder (50) is better than the outer periphery of the joint (24) .

それによれば、従来において放熱部材の実装位置の誤差要因であったはんだ等の接合材を貫通孔(13)に充填しないようにし、貫通孔(13)に挿入された放熱部材(20)の実装位置を調整した上で、貫通孔(13)の外部にて絶縁基板(10)と放熱部材(20)とを接合し固定できるので、製造工程における放熱部材(20)の実装位置を精度良くコントロールするのに適した構成を実現することができる。
また、請求項1に記載の発明によれば、放熱部材(20)の突出部(23)を絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付けして固定するから、放熱部材(20)を、はんだペースト印刷→マウント→リフローという一般的な工程で実装することができる。また、はんだペースト印刷により、はんだ(50)を供給してやれば、はんだ(50)厚さの正確なコントロールができ、上記した放熱部材(20)の実装位置のコントロールを行いやすくなる。
さらに、請求項1に記載の発明では、放熱部材(20)のうちの絶縁基板(10)とのはんだ(50)による接合部(24)は、めっき処理が施されたものとなっており、当該接合部(24)の外周囲には当該めっき処理を施さないことにより、放熱部材(20)において接合部(24)は当該接合部(24)の外周囲に比べて、はんだ(50)の濡れ性が良いものにしているので、貫通孔(13)内へのはんだ(50)の濡れ拡がり等、放熱部材(20)の接合部(24)の外側への意図しないはんだ(50)の濡れ拡がりを抑えることができる。そのため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材(20)の実装位置をより一層、精度良く制御できる。
次に、請求項2に記載の発明では、絶縁基板(10)と、絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、貫通孔(13)に挿入された放熱部材(20)と、絶縁基板(10)の一方の面(11)にて貫通孔(13)に重なるように絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、絶縁基板(10)の一方の面(11)側にて放熱部材(20)と電子部品(30)とが接合されることにより、電子部品(30)にて発生する熱が放熱部材(20)へ放熱されるようになっている電子装置において、
放熱部材(20)の一部は、絶縁基板(10)の他方の面(12)にて貫通孔(13)より突出し、貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、この突出部(23)は絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、貫通孔(13)の内壁と放熱部材(20)の外面との間は空隙とされており、
放熱部材(20)の突出部(23)と絶縁基板(10)とを接合する接合材は、はんだ(50)であり、
放熱部材(20)の表面において、絶縁基板(10)とのはんだ(50)による接合部(24)の外周囲には、当該接合部(24)からのはんだ(50)の濡れ拡がりを抑制するコーティング(71)が施されていることを特徴とする。
それによれば、請求項1に記載の発明と同様に、はんだ等の接合材を貫通孔(13)に充填しないようにし、貫通孔(13)に挿入された放熱部材(20)の実装位置を調整した上で、貫通孔(13)の外部にて絶縁基板(10)と放熱部材(20)とを接合し固定できるので、製造工程における放熱部材(20)の実装位置を精度良くコントロールするのに適した構成を実現することができる。
また、請求項2に記載の発明においても、放熱部材(20)の突出部(23)を絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付けして固定するから、放熱部材(20)を、はんだペースト印刷→マウント→リフローという一般的な工程で実装することができる。また、はんだペースト印刷により、はんだ(50)を供給してやれば、はんだ(50)厚さの正確なコントロールができ、上記した放熱部材(20)の実装位置のコントロールを行いやすくなる。
さらに、請求項2に記載の発明では、放熱部材(20)の表面において、絶縁基板(10)とのはんだ(50)による接合部(24)の外周囲には、当該接合部(24)からのはんだ(50)の濡れ拡がりを抑制するコーティング(71)が施されているから、放熱部材(20)の接合部(24)の外側への意図しないはんだ(50)の濡れ拡がりを抑えることができる。そのため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材(20)の実装位置をより一層、精度良く制御できる。
次に、請求項3に記載の発明では、絶縁基板(10)と、絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、貫通孔(13)に挿入された放熱部材(20)と、絶縁基板(10)の一方の面(11)にて貫通孔(13)に重なるように絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、絶縁基板(10)の一方の面(11)側にて放熱部材(20)と電子部品(30)とが接合されることにより、電子部品(30)にて発生する熱が放熱部材(20)へ放熱されるようになっている電子装置において、
放熱部材(20)の一部は、絶縁基板(10)の他方の面(12)にて貫通孔(13)より突出し、貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、この突出部(23)は絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、貫通孔(13)の内壁と放熱部材(20)の外面との間は空隙とされており、
放熱部材(20)の突出部(23)と絶縁基板(10)とを接合する接合材は、はんだ(50)であり、
絶縁基板(10)において貫通孔(13)の内面は、はんだ濡れ性を確保するためのめっき処理が施されたものとされており、
絶縁基板(10)の他方の面(12)のうちの放熱部材(20)とのはんだ(50)による接合部(15)の表面と、貫通孔(13)の内面とは分離された状態とされることにより、当該接合部(15)から貫通孔(13)の内面へのはんだ(50)の濡れ拡がりを抑制するようにしたことを特徴とする。
それによれば、請求項1、2に記載の発明と同様に、はんだ等の接合材を貫通孔(13)に充填しないようにし、貫通孔(13)に挿入された放熱部材(20)の実装位置を調整した上で、貫通孔(13)の外部にて絶縁基板(10)と放熱部材(20)とを接合し固定できるので、製造工程における放熱部材(20)の実装位置を精度良くコントロールするのに適した構成を実現することができる。
また、請求項3に記載の発明においても、放熱部材(20)の突出部(23)を絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付けして固定するから、放熱部材(20)を、はんだペースト印刷→マウント→リフローという一般的な工程で実装することができる。また、はんだペースト印刷により、はんだ(50)を供給してやれば、はんだ(50)厚さの正確なコントロールができ、上記した放熱部材(20)の実装位置のコントロールを行いやすくなる。
さらに、請求項3に記載の発明では、絶縁基板(10)において貫通孔(13)の内面は、はんだ濡れ性を確保するためのめっき処理が施されたものとされており、絶縁基板(10)の他方の面(12)のうちの放熱部材(20)とのはんだ(50)による接合部(15)の表面と、貫通孔(13)の内面とは分離された状態とされることにより、当該接合部(15)から貫通孔(13)の内面へのはんだ(50)の濡れ拡がりを抑制するようになっているから、絶縁基板(10)において、はんだ(50)による接合部(15)の外側への意図しないはんだ(50)の濡れ拡がりを抑えることができる。そのため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材(20)の実装位置をより一層、精度良く制御できる。
次に、請求項4に記載の発明では、絶縁基板(10)と、絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、貫通孔(13)に挿入された放熱部材(20)と、絶縁基板(10)の一方の面(11)にて貫通孔(13)に重なるように絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、絶縁基板(10)の一方の面(11)側にて放熱部材(20)と電子部品(30)とが接合されることにより、電子部品(30)にて発生する熱が放熱部材(20)へ放熱されるようになっている電子装置において、
放熱部材(20)の一部は、絶縁基板(10)の他方の面(12)にて貫通孔(13)より突出し、貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、この突出部(23)は絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、貫通孔(13)の内壁と放熱部材(20)の外面との間は空隙とされており、
放熱部材(20)の突出部(23)と絶縁基板(10)とを接合する接合材は、はんだ(50)であり、
放熱部材(20)の突出部(23)の一部は、当該放熱部材(20)側から絶縁基板(10)の他方の面(12)に延びる細長の薄肉板状をなす薄肉板部(23a)として構成されており、
この薄肉板部(23a)にて、はんだ(50)により絶縁基板(10)の他方の面(12)に接合されており、
はんだ(50)に加わる応力が、薄肉板部(23a)により緩和されるようになっていることを特徴とする。
それによれば、請求項1、2、3に記載の発明と同様に、はんだ等の接合材を貫通孔(13)に充填しないようにし、貫通孔(13)に挿入された放熱部材(20)の実装位置を調整した上で、貫通孔(13)の外部にて絶縁基板(10)と放熱部材(20)とを接合し固定できるので、製造工程における放熱部材(20)の実装位置を精度良くコントロールするのに適した構成を実現することができる。
また、請求項4に記載の発明においても、放熱部材(20)の突出部(23)を絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付けして固定するから、放熱部材(20)を、はんだペースト印刷→マウント→リフローという一般的な工程で実装することができる。また、はんだペースト印刷により、はんだ(50)を供給してやれば、はんだ(50)厚さの正確なコントロールができ、上記した放熱部材(20)の実装位置のコントロールを行いやすくなる。
さらに、請求項4に記載の発明では、放熱部材(20)の突出部(23)の一部は、当該放熱部材(20)側から絶縁基板(10)の他方の面(12)に延びる細長の薄肉板状をなす薄肉板部(23a)として構成されており、この薄肉板部(23a)にて、はんだ(50)により絶縁基板(10)の他方の面(12)に接合されており、はんだ(50)に加わる応力が、薄肉板部(23a)により緩和されるようになっている。
それによれば、絶縁基板(10)の厚さ方向における絶縁基板(10)と放熱部材(20)との熱膨張係数差から生じる熱応力を、薄肉板部(23a)にて緩和できるため、各接合部への当該熱応力を低減し、接合寿命を向上させることができる。
According to this, mounting of the heat radiating member (20) inserted into the through hole (13) is prevented so as not to fill the through hole (13) with a bonding material such as solder, which has conventionally been an error factor of the mounting position of the heat radiating member. Since the insulating substrate (10) and the heat radiating member (20) can be joined and fixed outside the through hole (13) after adjusting the position, the mounting position of the heat radiating member (20) in the manufacturing process can be accurately controlled. It is possible to realize a configuration suitable for this.
Moreover, according to invention of Claim 1, the protrusion part (23) of a thermal radiation member (20) is soldered and fixed to the other surface (12) side of an insulated substrate (10) with a solder (50). Therefore, the heat radiating member (20) can be mounted by a general process of solder paste printing → mounting → reflow. If the solder (50) is supplied by solder paste printing, the thickness of the solder (50) can be accurately controlled, and the mounting position of the heat dissipation member (20) can be easily controlled.
Furthermore, in invention of Claim 1, the junction part (24) by the solder (50) with the insulated substrate (10) of the heat radiating member (20) has been plated. By not performing the plating process on the outer periphery of the joint (24), the joint (24) of the heat radiating member (20) is made of the solder (50) compared to the outer periphery of the joint (24). Since the wettability is good, unintentional solder (50) wetting outside the joint (24) of the heat radiating member (20), such as wetting and spreading of the solder (50) into the through hole (13) Expansion can be suppressed. Therefore, it becomes easy to control the amount of solder (solder height), and as a result, the mounting position of the heat dissipation member (20) can be controlled with higher accuracy.
Next, in the invention described in claim 2, the insulating substrate (10), the through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12), and the through hole The heat dissipating member (20) inserted in (13) and the electronic component mounted and fixed on the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10). And is generated in the electronic component (30) by joining the heat dissipation member (20) and the electronic component (30) on one surface (11) side of the insulating substrate (10). In the electronic device in which the heat to be radiated is radiated to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) on the other surface (12) of the insulating substrate (10), and overlaps the other surface (12) outside the through hole (13). The protrusion (23) is formed into a shape, and this protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50). The space between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) is a gap,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
On the surface of the heat dissipating member (20), wetting and spreading of the solder (50) from the joint (24) is suppressed in the outer periphery of the joint (24) by the solder (50) with the insulating substrate (10). A coating (71) is provided.
According to this, similarly to the invention described in claim 1, the mounting position of the heat dissipating member (20) inserted into the through hole (13) is set so as not to fill the through hole (13) with a bonding material such as solder. After adjustment, since the insulating substrate (10) and the heat dissipation member (20) can be joined and fixed outside the through hole (13), the mounting position of the heat dissipation member (20) in the manufacturing process can be accurately controlled. Can be realized.
Also in the invention according to claim 2, the protrusion (23) of the heat radiating member (20) is fixed by soldering to the other surface (12) side of the insulating substrate (10) with solder (50). Therefore, the heat radiation member (20) can be mounted by a general process of solder paste printing → mounting → reflow. If the solder (50) is supplied by solder paste printing, the thickness of the solder (50) can be accurately controlled, and the mounting position of the heat dissipation member (20) can be easily controlled.
Furthermore, in invention of Claim 2, in the outer periphery of the junction part (24) by the solder (50) with the insulated substrate (10) on the surface of the heat radiating member (20), it is from the said junction part (24). Since the coating (71) that suppresses the wetting and spreading of the solder (50) is applied, it is possible to suppress the unintended wetting and spreading of the solder (50) to the outside of the joint (24) of the heat dissipation member (20). it can. Therefore, it becomes easy to control the amount of solder (solder height), and as a result, the mounting position of the heat dissipation member (20) can be controlled with higher accuracy.
Next, in the invention described in claim 3, the insulating substrate (10), the through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12), and the through hole The heat dissipating member (20) inserted in (13) and the electronic component mounted and fixed on the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10). And is generated in the electronic component (30) by joining the heat dissipation member (20) and the electronic component (30) on one surface (11) side of the insulating substrate (10). In the electronic device in which the heat to be radiated is radiated to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) on the other surface (12) of the insulating substrate (10), and overlaps the other surface (12) outside the through hole (13). The protrusion (23) is formed into a shape, and this protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50). The space between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) is a gap,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
In the insulating substrate (10), the inner surface of the through hole (13) is subjected to a plating process to ensure solder wettability,
Of the other surface (12) of the insulating substrate (10), the surface of the joint (15) by the solder (50) with the heat radiating member (20) and the inner surface of the through hole (13) are separated from each other. By doing so, wetting and spreading of the solder (50) from the joint (15) to the inner surface of the through hole (13) is suppressed.
According to this, similarly to the first and second aspects of the invention, the mounting of the heat radiating member (20) inserted into the through hole (13) without filling the through hole (13) with a bonding material such as solder. Since the insulating substrate (10) and the heat radiating member (20) can be joined and fixed outside the through hole (13) after adjusting the position, the mounting position of the heat radiating member (20) in the manufacturing process can be accurately controlled. It is possible to realize a configuration suitable for this.
Also in the invention described in claim 3, the protrusion (23) of the heat radiating member (20) is fixed by soldering to the other surface (12) side of the insulating substrate (10) with solder (50). Therefore, the heat radiation member (20) can be mounted by a general process of solder paste printing → mounting → reflow. If the solder (50) is supplied by solder paste printing, the thickness of the solder (50) can be accurately controlled, and the mounting position of the heat dissipation member (20) can be easily controlled.
Further, in the invention described in claim 3, in the insulating substrate (10), the inner surface of the through hole (13) is subjected to a plating process for ensuring solder wettability. ) Of the other surface (12) of the joint (15) by the solder (50) with the heat dissipation member (20) and the inner surface of the through hole (13) are separated. Since wetting and spreading of the solder (50) from the joint portion (15) to the inner surface of the through hole (13) is suppressed, the joint portion (15) by the solder (50) in the insulating substrate (10). ) To the outside of the solder (50) unintentionally can be suppressed. Therefore, it becomes easy to control the amount of solder (solder height), and as a result, the mounting position of the heat dissipation member (20) can be controlled with higher accuracy.
Next, in the invention described in claim 4, the insulating substrate (10), the through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12), and the through hole The heat dissipating member (20) inserted in (13) and the electronic component mounted and fixed on the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10). And is generated in the electronic component (30) by joining the heat dissipation member (20) and the electronic component (30) on one surface (11) side of the insulating substrate (10). In the electronic device in which the heat to be radiated is radiated to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) on the other surface (12) of the insulating substrate (10), and overlaps the other surface (12) outside the through hole (13). The protrusion (23) is formed into a shape, and this protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50). The space between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) is a gap,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
A part of the protruding portion (23) of the heat radiating member (20) is a thin plate portion (23a) that forms an elongated thin plate shape extending from the heat radiating member (20) side to the other surface (12) of the insulating substrate (10). )
At this thin plate portion (23a), it is joined to the other surface (12) of the insulating substrate (10) by solder (50),
The stress applied to the solder (50) is relaxed by the thin plate portion (23a).
According to this, as in the first, second, and third aspects of the invention, the heat radiating member (20) inserted into the through hole (13) without filling the through hole (13) with a bonding material such as solder. Since the insulating substrate (10) and the heat radiating member (20) can be joined and fixed outside the through hole (13) after adjusting the mounting position, the mounting position of the heat radiating member (20) in the manufacturing process is accurate. A configuration suitable for good control can be realized.
Also in the invention according to claim 4, the protrusion (23) of the heat radiating member (20) is fixed to the other surface (12) side of the insulating substrate (10) by soldering with the solder (50). Therefore, the heat radiation member (20) can be mounted by a general process of solder paste printing → mounting → reflow. If the solder (50) is supplied by solder paste printing, the thickness of the solder (50) can be accurately controlled, and the mounting position of the heat dissipation member (20) can be easily controlled.
Furthermore, in the invention described in claim 4, a part of the protrusion (23) of the heat radiating member (20) is an elongated shape extending from the heat radiating member (20) side to the other surface (12) of the insulating substrate (10). The thin plate portion (23a) has a thin plate shape, and is joined to the other surface (12) of the insulating substrate (10) by the solder (50) at the thin plate portion (23a). The stress applied to the solder (50) is relaxed by the thin plate portion (23a).
According to it, since the thermal stress resulting from the thermal expansion coefficient difference between the insulating substrate (10) and the heat dissipation member (20) in the thickness direction of the insulating substrate (10) can be relaxed by the thin plate portion (23a), The thermal stress to the joint can be reduced and the joint life can be improved.

ここで、請求項に記載の発明では、請求項1ないし4のいずれか1つに記載の電子装置において、絶縁基板(10)は、熱伝導性を有する金属で構成された筐体(100)に組み付けられ、放熱部材(20)の突出部(23)と筐体(100)とが、熱伝導性を有する熱伝導部材(60)を介して接触しており、電子部品(30)の熱を、放熱部材(20)を介して筐体(100)へ放熱させるようにしたことを特徴とする。 Here, in the invention according to claim 5 , in the electronic device according to any one of claims 1 to 4 , the insulating substrate (10) is a casing (100) made of a metal having thermal conductivity. ), The projecting portion (23) of the heat radiating member (20) and the housing (100) are in contact via a heat conducting member (60) having thermal conductivity, and the electronic component (30) The heat is radiated to the housing (100) through the heat radiating member (20).

それによれば、金属製の筐体(100)をヒートシンクとして機能させ、電子部品(30)→放熱部材(20)→筐体(100)と熱伝導性の高い放熱経路を確保することができる。そのため、たとえば樹脂基板で課題とされる絶縁基板(10)の厚み方向への放熱性を大きく向上させることができる。   According to this, the metal housing (100) can function as a heat sink, and a heat radiation path with high thermal conductivity can be secured: electronic component (30) → heat radiation member (20) → housing (100). Therefore, for example, the heat dissipation in the thickness direction of the insulating substrate (10), which is a problem with the resin substrate, can be greatly improved.

また、請求項に記載の発明では、絶縁基板(10)と、絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、貫通孔(13)に挿入された放熱部材(20)と、絶縁基板(10)の一方の面(11)にて貫通孔(13)に重なるように絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、絶縁基板(10)の一方の面(11)側にて放熱部材(20)と電子部品(30)とが接合されることにより、電子部品(30)にて発生する熱が放熱部材(20)へ放熱されるようになっている電子装置において、
放熱部材(20)の一部は、絶縁基板(10)の他方の面(12)にて貫通孔(13)より突出し、貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、この突出部(23)は絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付け接合されて固定されており、貫通孔(13)の内壁と放熱部材(20)の外面との間は空隙とされており、
絶縁基板(10)は、熱伝導性を有する金属で構成された筐体(100)に組み付けられ、
放熱部材(20)の突出部(23)と筐体(100)とが、熱伝導性を有する熱伝導部材(60)を介して接触しており、電子部品(30)の熱を、放熱部材(20)を介して筐体(100)へ放熱させるようにし、
電子部品(30)には放熱部材(20)の一端(21)に対向するヒートシンク(31)が設けられており、
絶縁基板(10)の一方の面(11)において貫通孔(13)の周囲には端子用ランド(14)が設けられており、
電子部品(30)には端子用ランド(14)上に位置する端子(32)が設けられており、
ヒートシンク(31)と放熱部材(20)の一端(21)との間、および端子用ランド(14)と端子(32)との間が、はんだ(40)により一括してはんだ付けされることを特徴とする。
Moreover, in invention of Claim 6 , the through-hole (13) penetrated from the one surface (11) of the insulating substrate (10) to the other surface (12), the through-hole ( 13) and an electronic component (20) mounted and fixed on the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10). 30), and the heat radiating member (20) and the electronic component (30) are joined to each other on the one surface (11) side of the insulating substrate (10), thereby generating the electronic component (30). In an electronic device in which heat is dissipated to the heat dissipation member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) on the other surface (12) of the insulating substrate (10), and overlaps the other surface (12) outside the through hole (13). The protrusion (23) is formed into a shape, and the protrusion (23) is soldered and fixed to the other surface (12) side of the insulating substrate (10) by solder (50). And the space between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) is a gap,
The insulating substrate (10) is assembled to a housing (100) made of a metal having thermal conductivity,
The protrusion (23) of the heat radiating member (20) and the housing (100) are in contact via a heat conductive member (60) having thermal conductivity, and the heat of the electronic component (30) is transferred to the heat radiating member. (20) to dissipate heat to the housing (100),
The electronic component (30) is provided with a heat sink (31) facing one end (21) of the heat dissipation member (20),
A terminal land (14) is provided around the through hole (13) on one surface (11) of the insulating substrate (10).
The electronic component (30) is provided with a terminal (32) located on the terminal land (14),
The solder (40) collectively solders between the heat sink (31) and one end (21) of the heat dissipation member (20) and between the terminal land (14) and the terminal (32). Features.

それによれば、請求項1〜4に記載の発明と同様に、はんだ等の接合材を貫通孔(13)に充填しないようにし、貫通孔(13)に挿入された放熱部材(20)の実装位置を調整した上で、貫通孔(13)の外部にて絶縁基板(10)と放熱部材(20)とを接合し固定できるので、製造工程における放熱部材(20)の実装位置を精度良くコントロールするのに適した構成を実現することができる。
また、請求項6に記載の発明では、絶縁基板(10)は、熱伝導性を有する金属で構成された筐体(100)に組み付けられ、放熱部材(20)の突出部(23)と筐体(100)とが、熱伝導性を有する熱伝導部材(60)を介して接触しており、電子部品(30)の熱を、放熱部材(20)を介して筐体(100)へ放熱させるようにしたから、請求項5に記載の発明と同様に、金属製の筐体(100)をヒートシンクとして機能させ、電子部品(30)→放熱部材(20)→筐体(100)と熱伝導性の高い放熱経路を確保することができる。そのため、たとえば樹脂基板で課題とされる絶縁基板(10)の厚み方向への放熱性を大きく向上させることができる。
さらに、請求項6に記載の発明では、放熱部材(20)の突出部(23)は絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付け接合されて固定され、電子部品(30)のヒートシンク(31)と放熱部材(20)の一端(21)との間、および絶縁基板(10)の端子用ランド(14)と電子部品(30)の端子(32)との間が、はんだ(40)により一括してはんだ付けされるので、電子部品(30)を実装する際に、放熱部材(20)を、はんだペースト印刷→マウント→リフローという一般的な工程で実装することができる。また、はんだペースト印刷により、はんだ(50)を供給してやれば、はんだ(50)厚さの正確なコントロールができ、上記した放熱部材(20)の実装位置のコントロールを行いやすくなる。
According to this, similarly to the first to fourth aspects of the invention, the mounting of the heat radiating member (20) inserted into the through hole (13) without filling the through hole (13) with a bonding material such as solder. Since the insulating substrate (10) and the heat radiating member (20) can be joined and fixed outside the through hole (13) after adjusting the position, the mounting position of the heat radiating member (20) in the manufacturing process can be accurately controlled. It is possible to realize a configuration suitable for this.
In the invention according to claim 6, the insulating substrate (10) is assembled to the casing (100) made of a metal having thermal conductivity, and the protrusion (23) of the heat radiating member (20) and the casing are assembled. The body (100) is in contact with the heat conductive member (60) having thermal conductivity, and the heat of the electronic component (30) is radiated to the housing (100) through the heat radiating member (20). Therefore, similarly to the invention described in claim 5, the metal casing (100) functions as a heat sink, and the electronic component (30) → the heat dissipation member (20) → the casing (100) and heat. A highly conductive heat dissipation path can be secured. Therefore, for example, the heat dissipation in the thickness direction of the insulating substrate (10), which is a problem with the resin substrate, can be greatly improved.
Furthermore, in the invention described in claim 6, the protrusion (23) of the heat dissipation member (20) is soldered and fixed to the other surface (12) side of the insulating substrate (10) by solder (50). , Between the heat sink (31) of the electronic component (30) and one end (21) of the heat dissipation member (20), and the terminal land (14) of the insulating substrate (10) and the terminal (32) of the electronic component (30). Are mounted together with the solder (40), so when mounting the electronic component (30), the heat dissipating member (20) is mounted by a general process of solder paste printing → mounting → reflow. Can be implemented. If the solder (50) is supplied by solder paste printing, the thickness of the solder (50) can be accurately controlled, and the mounting position of the heat dissipation member (20) can be easily controlled.

また、請求項に記載の発明では、請求項3、4、6のいずれか1つに記載の電子装置において、放熱部材(20)の全表面に、放熱部材(20)の本体を構成する材料よりもはんだ(50)の濡れ性の悪いめっき処理が施されていることを特徴とする。 Further, in the invention according to claim 7, claim 3, in the electronic device according to any one of 4,6, the entire surface of the heat dissipating member (20), constituting the body of the heat dissipating member (20) It is characterized in that a plating process in which the wettability of the solder (50) is worse than that of the material is applied.

本発明の場合も、放熱部材(20)の接合部(24)の外側への意図しないはんだ(50)の濡れ拡がりを抑えることができる。そのため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材(20)の実装位置を精度良く制御できる。また、全面めっきなので部分めっきに比べ、手間やコストがかからない。   Also in the case of the present invention, unintended wetting and spreading of the solder (50) to the outside of the joint (24) of the heat dissipation member (20) can be suppressed. Therefore, it becomes easy to control the amount of solder (solder height), and as a result, the mounting position of the heat dissipation member (20) can be controlled with high accuracy. Moreover, since it is a whole surface plating, it does not require time and cost compared with partial plating.

また、請求項に記載の発明では、請求項1、2、3、6のいずれか1つに記載の電子装置において、放熱部材(20)の突出部(23)と絶縁基板(10)の他方の面(12)とのはんだ(50)による接合は、放熱部材(20)の全周ではなく局所的に行われていることを特徴とする。 According to an eighth aspect of the present invention, in the electronic device according to any one of the first , second, third , and sixth aspects, the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) The joining with the other surface (12) by the solder (50) is characterized in that it is performed not locally but entirely on the heat radiating member (20).

放熱部材(20)は、絶縁基板(10)の一方の面(11)側では、電子部品(30)を介して絶縁基板(10)に固定され、他方の面(12)側では、接合材(50)を介して絶縁基板(10)に固定されることで、絶縁基板(10)の両面(11、12)にて、放熱部材(20)は絶縁基板(10)に拘束されているため、基板厚さ方向の熱膨張係数差により、電子部品(30)、絶縁基板(10)、放熱部材(20)の間の各接合部に応力が加わる。   The heat radiating member (20) is fixed to the insulating substrate (10) via the electronic component (30) on the one surface (11) side of the insulating substrate (10), and the bonding material on the other surface (12) side. Since the heat dissipation member (20) is restrained by the insulating substrate (10) on both surfaces (11, 12) of the insulating substrate (10) by being fixed to the insulating substrate (10) via (50). Stress is applied to each joint between the electronic component (30), the insulating substrate (10), and the heat dissipation member (20) due to the difference in thermal expansion coefficient in the substrate thickness direction.

それに対して、本発明のように、絶縁基板(10)の他方の面(12)側にて、放熱部材(20)と絶縁基板(10)とのはんだ接合部の面積を小さくすれば、当該はんだ接合の破壊により当該他方の面(12)側の拘束が開放され、当該応力が劇的に低減し、絶縁基板(10)の一方の面(11)側における電子部品(10)と絶縁基板(10)との接合寿命、および、電子部品(10)と放熱部材(20)との接合寿命を長くすることができる。   In contrast, if the area of the solder joint between the heat dissipation member (20) and the insulating substrate (10) is reduced on the other surface (12) side of the insulating substrate (10) as in the present invention, The restraint on the other surface (12) side is released by breakage of the solder joint, the stress is dramatically reduced, and the electronic component (10) and the insulating substrate on the one surface (11) side of the insulating substrate (10). The joint life with (10) and the joint life between the electronic component (10) and the heat dissipation member (20) can be extended.

なお、特許請求の範囲およびこの欄で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each means described in the claim and this column is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

本発明の第1実施形態に係る電子装置の概略断面図である。1 is a schematic cross-sectional view of an electronic device according to a first embodiment of the present invention. 図1に示される電子装置の上面図である。FIG. 2 is a top view of the electronic device shown in FIG. 1. 図1に示される電子装置の下面図である。FIG. 2 is a bottom view of the electronic device shown in FIG. 1. 上記第1実施形態に係る電子装置の製造方法を示す工程図である。FIG. 6 is a process drawing illustrating the method for manufacturing the electronic device according to the first embodiment. 図4に続く製造方法を示す工程図である。It is process drawing which shows the manufacturing method following FIG. 上記図1に示される電子装置における放熱部材の突出部と絶縁基板の他方の面とのはんだによる接合部分を拡大して示す概略断面図である。It is a schematic sectional drawing which expands and shows the junction part by the solder of the protrusion part of the heat radiating member in the electronic device shown by the said FIG. 1, and the other surface of an insulated substrate. 本発明の第2実施形態の第1の例としての電子装置の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electronic device as a 1st example of 2nd Embodiment of this invention. 上記第2実施形態の第2の例としての電子装置の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electronic device as a 2nd example of the said 2nd Embodiment. 上記第2実施形態の第4の例としての電子装置の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electronic apparatus as a 4th example of the said 2nd Embodiment. 図9中の放熱部材の全体を示す概略断面図である。It is a schematic sectional drawing which shows the whole heat radiating member in FIG. 上記第2実施形態の第5の例としての電子装置の要部を示す概略断面図である。It is a schematic sectional drawing which shows the principal part of the electronic apparatus as a 5th example of the said 2nd Embodiment. 上記図1に示される電子装置における絶縁基板と放熱部材との熱膨張係数差による各接合部への熱応力の発生状態を示す図である。It is a figure which shows the generation | occurrence | production state of the thermal stress to each junction part by the thermal expansion coefficient difference of the insulated substrate and heat radiating member in the electronic apparatus shown by the said FIG. 本発明の第3実施形態の第1の例としての電子装置の概略断面図である。It is a schematic sectional drawing of the electronic device as a 1st example of 3rd Embodiment of this invention. 図13中の放熱部材の下面図である。It is a bottom view of the heat radiating member in FIG. 上記第3実施形態の第2の例としての電子装置の概略断面図である。It is a schematic sectional drawing of the electronic device as a 2nd example of the said 3rd Embodiment. 本発明の第4実施形態に係る電子装置の要部を示す概略平面図である。It is a schematic plan view which shows the principal part of the electronic device which concerns on 4th Embodiment of this invention.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.

(第1実施形態)
図1は、本発明の第1実施形態に係る電子装置S1の概略断面構成を示す図であり、同電子装置S1を筐体100に組み付けた状態を示している。また、図2は、図1に示される電子装置S1の上面図であり、図3は、図1に示される電子装置S1の下面図である。この電子装置S1は、たとえば自動車に搭載されるECU等に適用されるものである。
(First embodiment)
FIG. 1 is a diagram showing a schematic cross-sectional configuration of an electronic device S1 according to the first embodiment of the present invention, and shows a state in which the electronic device S1 is assembled to a housing 100. 2 is a top view of the electronic device S1 shown in FIG. 1, and FIG. 3 is a bottom view of the electronic device S1 shown in FIG. The electronic device S1 is applied to, for example, an ECU mounted on a car.

本実施形態の電子装置S1は、大きくは、貫通孔13を有する絶縁基板10と、貫通孔13に挿入された放熱部材20と、絶縁基板10に搭載され固定された電子部品30と、を備えて構成されている。   The electronic device S1 of the present embodiment generally includes an insulating substrate 10 having a through hole 13, a heat dissipation member 20 inserted into the through hole 13, and an electronic component 30 mounted and fixed on the insulating substrate 10. Configured.

絶縁基板10は、たとえばエポキシ樹脂やガラスエポキシなどの電気絶縁性材料をベースとし、銅箔や銅めっきなどにより配線が構成されるプリント基板よりなる。この絶縁基板10においては、両板面11、12が実装面とされており、貫通孔13は、これら両板面11、12の一方の面11から他方の面12に貫通している。この貫通孔13ドリル等の孔開け加工により形成されたものであり、ストレートな丸孔形状をなしている。   The insulating substrate 10 is made of a printed circuit board that is based on an electrically insulating material such as epoxy resin or glass epoxy and whose wiring is constituted by copper foil or copper plating. In this insulating substrate 10, both plate surfaces 11 and 12 are mounting surfaces, and the through hole 13 penetrates from one surface 11 of these both plate surfaces 11 and 12 to the other surface 12. This through hole 13 is formed by drilling such as a drill and has a straight round hole shape.

そして、放熱部材20は、この貫通孔13に挿入されており、放熱部材20の一端21側が絶縁基板10の一方の面11に露出し、放熱部材20の他端22側が絶縁基板10の他方の面12より突出している。この放熱部材20の詳細については後述する。   The heat radiating member 20 is inserted into the through-hole 13, the one end 21 side of the heat radiating member 20 is exposed on one surface 11 of the insulating substrate 10, and the other end 22 side of the heat radiating member 20 is the other side of the insulating substrate 10. Projecting from the surface 12. Details of the heat dissipation member 20 will be described later.

そして、電子部品30は、絶縁基板10の一方の面11にて貫通孔13に重なるように絶縁基板10に搭載され固定されている。この電子部品30は、駆動時に発熱を伴うもので、たとえばパワー半導体素子に代表されるパッケージ部品あって、パッケージ底面にヒートシンク31が露出するHSOP、HSON、HQFPなどよりなる。   The electronic component 30 is mounted and fixed on the insulating substrate 10 so as to overlap the through hole 13 on one surface 11 of the insulating substrate 10. The electronic component 30 generates heat during driving, and is, for example, a package component typified by a power semiconductor element, and is made of HSOP, HSON, HQFP, etc. with the heat sink 31 exposed on the bottom surface of the package.

より具体的に電子部品30は、モールド樹脂によりパッケージが構成されたもので、パッケージ内部にて、ヒートシンク31上に搭載された図示しない半導体チップとリードフレーム等よりなる端子32とがワイヤボンディング等により電気的に接続されたものである。そして、パッケージからヒートシンク31および端子32が露出しているものである。   More specifically, the electronic component 30 has a package made of a mold resin. Inside the package, a semiconductor chip (not shown) mounted on the heat sink 31 and a terminal 32 made of a lead frame or the like are formed by wire bonding or the like. It is electrically connected. The heat sink 31 and the terminal 32 are exposed from the package.

そして、絶縁基板10の一方の面11側にて、電子部品30のヒートシンク31は、貫通孔13と重なって対向しており、ヒートシンク31とこれに対向する放熱部材20の一端21とが、部品用接合材40を介して電気的および機械的に接合されている。   Then, on one surface 11 side of the insulating substrate 10, the heat sink 31 of the electronic component 30 is opposed to the through hole 13, and the heat sink 31 and one end 21 of the heat dissipation member 20 facing the heat sink 31 are components. Electrically and mechanically joined via the joint material 40.

また、絶縁基板10の一方の面11側にて、貫通孔13の周囲には銅やアルミなどよりなる端子用ランド14が設けられており、この端子用ランド14が当該一方の面11を構成している。   Further, on one surface 11 side of the insulating substrate 10, a terminal land 14 made of copper, aluminum, or the like is provided around the through hole 13, and the terminal land 14 constitutes the one surface 11. doing.

そして、電子部品30の端子32は、この端子用ランド14上に位置し、部品用接合材40を介して電気的および機械的に接合されている。この部品用接合材40は、はんだや銀ペーストなどの電気伝導性かつ伝熱性を有する接合材料よりなるものであるが、ここでは、はんだよりなる。   The terminals 32 of the electronic component 30 are located on the terminal lands 14 and are electrically and mechanically joined via the component joining material 40. The component bonding material 40 is made of a bonding material having electrical conductivity and heat conductivity, such as solder or silver paste. Here, the bonding material 40 is made of solder.

こうして、絶縁基板10の一方の面11側にて放熱部材20と電子部品30とが接合されることにより、電子部品30にて発生する熱が放熱部材20へ放熱されるようになっている。   In this way, the heat radiating member 20 and the electronic component 30 are joined on the one surface 11 side of the insulating substrate 10, so that heat generated in the electronic component 30 is radiated to the heat radiating member 20.

本実施形態の放熱部材20は、銅やアルミなど熱伝導率に良い金属よりなり、絶縁基板10の厚さ、つまり、貫通孔13の長さよりも長い柱状をなすものである。この放熱部材20は、円柱でも角柱でもよいが、ここでは一端21側が小径、他端22側が大径となった段付き円柱形状、いわゆるリベット形状とされている。   The heat dissipating member 20 of the present embodiment is made of a metal having good thermal conductivity such as copper or aluminum, and has a columnar shape longer than the thickness of the insulating substrate 10, that is, the length of the through hole 13. The heat radiating member 20 may be a cylinder or a prism, but here, it has a stepped columnar shape with a small diameter on one end 21 side and a large diameter on the other end 22 side, a so-called rivet shape.

これは、放熱部材20の形状を、丸孔の貫通孔13に合わせるとともに極力断面積を大きくして放熱性を確保するという点、および、軸周りの回転による放熱部材20の位置ずれが無視できるという点を考慮して、当該円柱形状を採用したものである。   This is because the shape of the heat radiating member 20 is matched with the through hole 13 of the round hole and the cross-sectional area is increased as much as possible to ensure heat dissipation, and the positional deviation of the heat radiating member 20 due to rotation around the axis can be ignored. Considering this point, the column shape is adopted.

そして、放熱部材20は、貫通孔13の孔径よりも径の小さい小径部が貫通孔13内に位置するように、絶縁基板10の他方の面12側から貫通孔13に挿入されており、放熱部材20の一端21は、絶縁基板10の一方の面11にて、貫通孔13より露出している。   The heat dissipating member 20 is inserted into the through hole 13 from the other surface 12 side of the insulating substrate 10 so that the small diameter portion smaller than the diameter of the through hole 13 is located in the through hole 13. One end 21 of the member 20 is exposed from the through hole 13 on one surface 11 of the insulating substrate 10.

ここでは、放熱部材20の一端21の狙いの位置は、絶縁基板10の一方の面11に対して実質同一平面としているが、電子部品30のヒートシンク31との接続性等を考慮して、当該狙いの位置を、絶縁基板10の一方の面11に対して、多少、突出または凹んだ位置としてもよい。   Here, the target position of the one end 21 of the heat radiating member 20 is substantially the same plane with respect to the one surface 11 of the insulating substrate 10, but in consideration of connectivity with the heat sink 31 of the electronic component 30, etc. The target position may be a slightly protruding or recessed position with respect to the one surface 11 of the insulating substrate 10.

また、大径部である放熱部材10の他端22側の部位は、絶縁基板10の他方の面12にて貫通孔13より突出した突出部23として構成されている。ここでは、突出部23は、貫通孔13の孔径よりも径が大きい部位であるがゆえに、貫通孔13の外側にて絶縁基板10の他方の面12に重なる形状、すなわち当該他方の面12に対向する部位を有する形状となっている。   The portion on the other end 22 side of the heat radiating member 10 that is a large diameter portion is configured as a protruding portion 23 that protrudes from the through hole 13 on the other surface 12 of the insulating substrate 10. Here, since the protruding portion 23 is a portion having a diameter larger than the diameter of the through hole 13, the protruding portion 23 overlaps the other surface 12 of the insulating substrate 10 outside the through hole 13, that is, on the other surface 12. It has a shape having opposing parts.

そして、この突出部13は、絶縁基板10の他方の面12に対向する部位にて、放熱部材用接合材50を介して絶縁基板10に接合されて固定されている。ここでは、絶縁基板10の他方の面12にて、貫通孔13の周囲且つ放熱部材20の突出部23に対向する部位には、銅などよりなる放熱部材用ランド15が設けられ、この放熱部材用ランド15が当該他方の面12を構成している。   The protruding portion 13 is bonded and fixed to the insulating substrate 10 via the heat dissipation member bonding material 50 at a portion facing the other surface 12 of the insulating substrate 10. Here, on the other surface 12 of the insulating substrate 10, a heat radiation member land 15 made of copper or the like is provided around the through hole 13 and opposed to the protruding portion 23 of the heat radiation member 20. The land 15 for use constitutes the other surface 12.

そして、突出部23は、放熱部材用接合材50を介して、当該放熱部材用ランド15に機械的に接合されている。本実施形態では、この放熱部材用ランド15は、放熱部材20の全周に設けられており、放熱部材20の突出部23と絶縁基板10の他方の面12との放熱部材用接合材50による接合は、放熱部材20の全周で行われている。   The protrusion 23 is mechanically joined to the heat dissipation member land 15 via the heat dissipation member bonding material 50. In the present embodiment, the radiating member lands 15 are provided on the entire circumference of the radiating member 20, and are formed by the radiating member bonding material 50 between the protruding portion 23 of the radiating member 20 and the other surface 12 of the insulating substrate 10. Joining is performed all around the heat dissipating member 20.

ここで、放熱部材用接合材50は、機械的に接合する接合材料であればよく、電気伝導性の有無、伝熱性の有無は問わない。たとえば、はんだや樹脂接着材などが挙げられるが、本実施形態では、典型的な例として、放熱部材用接合材50は、鉛フリーはんだや共晶はんだ等のはんだ50よりなる。   Here, the heat dissipation member bonding material 50 may be a bonding material that is mechanically bonded, and may or may not have electrical conductivity or thermal conductivity. For example, a solder or a resin adhesive may be used. In the present embodiment, as a typical example, the heat dissipation member bonding material 50 is made of solder 50 such as lead-free solder or eutectic solder.

また、上述したように、貫通孔13内に位置する放熱部材20の小径部は、当該貫通孔13の孔径よりも小さく、貫通孔13の内壁と放熱部材20の外面との間は空隙とされている。   Further, as described above, the small diameter portion of the heat radiating member 20 located in the through hole 13 is smaller than the hole diameter of the through hole 13, and a gap is formed between the inner wall of the through hole 13 and the outer surface of the heat radiating member 20. ing.

そして、放熱部材20の実装位置については、絶縁基板10の一方の面11側に露出する放熱部材20の一端21の高さが問題となるが、本実施形態では、絶縁基板10の他方の面12側における放熱部材用接合材50の厚さを制御するだけで、容易に当該高さを狙いの位置に精度良くおさめることができる。   And about the mounting position of the heat radiating member 20, although the height of the end 21 of the heat radiating member 20 exposed to the one surface 11 side of the insulating substrate 10 becomes a problem, in this embodiment, the other surface of the insulating substrate 10 is used. By simply controlling the thickness of the radiating member bonding material 50 on the 12th side, the height can be easily adjusted to a target position with high accuracy.

こうして、放熱部材20は、貫通孔13に対しては空隙で離れているが、絶縁基板10の一方の面11では、電子部品30と接合され当該電子部品30を介して絶縁基板10に固定され、絶縁基板10の他方の面12では突出部23にて絶縁基板10に固定されている。つまり、放熱部材20は、絶縁基板10の両板面11、12側にて、絶縁基板10に固定された状態で拘束されている。   In this way, the heat radiating member 20 is separated from the through hole 13 by a gap, but on one surface 11 of the insulating substrate 10, it is joined to the electronic component 30 and fixed to the insulating substrate 10 via the electronic component 30. The other surface 12 of the insulating substrate 10 is fixed to the insulating substrate 10 with a protrusion 23. That is, the heat radiating member 20 is restrained while being fixed to the insulating substrate 10 on the both plate surfaces 11 and 12 side of the insulating substrate 10.

また、本実施形態の電子装置S1は、熱伝導性を有する金属製の筐体100に組み付けられて使用される。これについては、図1に示されるように、絶縁基板10の他方の面12を筐体100に対向させた状態で、図示しない絶縁基板10の適所にて、絶縁基板10は筐体100に支持されている。この支持は、たとえば、ねじ止め、嵌合、接着などにより行われる。   Further, the electronic device S1 of the present embodiment is used by being assembled in a metal casing 100 having thermal conductivity. With respect to this, as shown in FIG. 1, the insulating substrate 10 is supported by the housing 100 at a suitable position of the insulating substrate 10 (not shown) with the other surface 12 of the insulating substrate 10 facing the housing 100. Has been. This support is performed, for example, by screwing, fitting, adhesion, or the like.

そして、このように、絶縁基板10を筐体100に組み付けたうえで、さらに、放熱部材20の突出部23と筐体100とが、熱伝導性を有する熱伝導部材60を介して接触している。   Then, after the insulating substrate 10 is assembled to the housing 100 as described above, the protruding portion 23 of the heat radiating member 20 and the housing 100 are further in contact with each other via the heat conducting member 60 having thermal conductivity. Yes.

具体的には放熱部材20の他端22を、熱伝導部材60を介して筺体100に接触させる。それにより、電子部品30の熱を、放熱部材20を介して筐体100へ放熱させるようになっている。   Specifically, the other end 22 of the heat radiating member 20 is brought into contact with the housing 100 via the heat conducting member 60. Thereby, the heat of the electronic component 30 is radiated to the housing 100 through the heat radiating member 20.

それによれば、筐体100をヒートシンクとして機能させ、電子部品30→放熱部材20→筐体100と熱伝導性の高い放熱経路を確保することができる。そのため、たとえば樹脂基板で課題とされる絶縁基板10の厚み方向への放熱性を大きく向上させることができる。   According to this, the housing 100 can function as a heat sink, and a heat radiation path with high thermal conductivity can be secured with the electronic component 30 → the heat radiation member 20 → the housing 100. Therefore, for example, the heat dissipation in the thickness direction of the insulating substrate 10, which is a problem with the resin substrate, can be greatly improved.

ここで、熱伝導部材60は、電気絶縁性かつ伝熱性を有する材料であり、接合力の有無は問わない。たとえば熱伝導部材60としては、放熱ゲル、放熱シート、樹脂接着剤などが挙げられる。   Here, the heat conductive member 60 is an electrically insulating and heat conductive material, and it does not matter whether there is a bonding force. For example, examples of the heat conductive member 60 include a heat radiating gel, a heat radiating sheet, and a resin adhesive.

次に、本実施形態に係る電子装置S1の製造方法について、図4、図5を参照して述べる。図4は、本製造方法を示す工程図であり、図5は、図4に続く製造方法を示す工程図である。   Next, a method for manufacturing the electronic device S1 according to the present embodiment will be described with reference to FIGS. FIG. 4 is a process diagram showing the manufacturing method, and FIG. 5 is a process diagram showing the manufacturing method following FIG.

まず、図4(a)に示されるように、貫通孔13が形成され、端子用ランド14および放熱部材用ランド15が形成された絶縁基板10を用意し、この絶縁基板10の他方の面12において放熱部材用ランド15に、はんだペーストの印刷等により、はんだ50を設ける。   First, as shown in FIG. 4A, an insulating substrate 10 having a through hole 13 and a terminal land 14 and a heat dissipation member land 15 is prepared, and the other surface 12 of the insulating substrate 10 is prepared. The solder 50 is provided on the heat radiation member land 15 by printing solder paste or the like.

次に、図4(b)に示されるように、放熱部材20の一端21側を、絶縁基板10の他方の面12側から貫通孔13に挿入していくとともに、突出部23と放熱部材用ランド15とは、はんだ50を介して接触するようにする。   Next, as shown in FIG. 4B, the one end 21 side of the heat radiating member 20 is inserted into the through hole 13 from the other surface 12 side of the insulating substrate 10, and the protrusion 23 and the heat radiating member are used. The land 15 is brought into contact via the solder 50.

このとき、放熱部材20の実装位置を狙いの位置に定める。ここでは、放熱部材20の一端21と絶縁基板10の一方の面11とが同一平面となるように、当該実装位置を決める。   At this time, the mounting position of the heat radiating member 20 is set to a target position. Here, the mounting position is determined so that one end 21 of the heat radiating member 20 and one surface 11 of the insulating substrate 10 are flush with each other.

続いて、図4(c)に示されるように、はんだ50をリフローさせ、その後、固化させることにより、放熱部材20の突出部23を絶縁基板10の他方の面12に固定する。   Subsequently, as illustrated in FIG. 4C, the protrusion 50 of the heat dissipation member 20 is fixed to the other surface 12 of the insulating substrate 10 by reflowing the solder 50 and then solidifying the solder 50.

次に、図4(d)に示されるように、絶縁基板10の一方の面11側にて、放熱部材20の一端21および端子用ランド14に、部品用接合材40としてのはんだを、上記印刷等により設ける。   Next, as shown in FIG. 4D, on one surface 11 side of the insulating substrate 10, the solder as the component bonding material 40 is applied to the one end 21 of the heat radiating member 20 and the terminal land 14. Provide by printing.

次に、図5(a)に示されるように、電子部品30を、絶縁基板10の一方の面11にて貫通孔13に重なるように絶縁基板10に搭載する。このとき、電子部品30のヒートシンク31を、部品用接合材40を介して放熱部材20の一端21に接触させ、また、電子部品30の端子32を、部品用接合材40を介して端子用ランド14に接触させるようにする。   Next, as shown in FIG. 5A, the electronic component 30 is mounted on the insulating substrate 10 so as to overlap the through hole 13 on one surface 11 of the insulating substrate 10. At this time, the heat sink 31 of the electronic component 30 is brought into contact with the one end 21 of the heat dissipation member 20 via the component bonding material 40, and the terminal 32 of the electronic component 30 is connected to the terminal land via the component bonding material 40. 14 in contact.

続いて、図5(b)に示されるように、部品用接合材40としてのはんだをリフローさせ、その後、固化させることにより、ヒートシンク31および端子32にて、電子部品30を絶縁基板10の一方の面11に固定する。こうして、本実施形態の電子装置S1ができあがる。   Subsequently, as shown in FIG. 5B, the solder as the component bonding material 40 is reflowed and then solidified, so that the electronic component 30 is placed on one side of the insulating substrate 10 by the heat sink 31 and the terminal 32. It fixes to the surface 11 of. Thus, the electronic device S1 of the present embodiment is completed.

その後は、図5(c)に示されるように、電子装置S1を筺体100に組み付ける。具体的には、絶縁基板10を筺体100に支持させ、放熱部材20の他端22を、熱伝導部材60を介して筺体100に接触させる。それにより、図1に示される本実施形態の電子装置の実装構造が完成する。   Thereafter, as shown in FIG. 5C, the electronic device S <b> 1 is assembled to the housing 100. Specifically, the insulating substrate 10 is supported on the casing 100, and the other end 22 of the heat radiating member 20 is brought into contact with the casing 100 via the heat conducting member 60. Thereby, the mounting structure of the electronic device of this embodiment shown in FIG. 1 is completed.

ところで、本実施形態によれば、従来の放熱部材の実装位置の誤差要因であったはんだ等の接合材50を貫通孔13に充填しないようにし、貫通孔13に挿入された放熱部材20の実装位置を調整した上で、貫通孔13の外部にて、接合材50を介して、絶縁基板10と放熱部材20とを接合し固定できる。   By the way, according to the present embodiment, mounting of the heat radiating member 20 inserted into the through hole 13 is prevented so that the through hole 13 is not filled with the bonding material 50 such as solder, which is an error factor of the mounting position of the conventional heat radiating member. After adjusting the position, the insulating substrate 10 and the heat dissipation member 20 can be bonded and fixed to each other outside the through hole 13 via the bonding material 50.

そのため、当該接合材50の厚さ、具体的にははんだ50の厚さを調整するだけで、放熱部材20の実装位置を精度良くコントロールできる。このように、本実施形態によれば、製造工程における放熱部材20の実装位置を精度良くコントロールするのに適した構成を実現することができる。   Therefore, the mounting position of the heat radiating member 20 can be accurately controlled only by adjusting the thickness of the bonding material 50, specifically, the thickness of the solder 50. Thus, according to this embodiment, it is possible to realize a configuration suitable for accurately controlling the mounting position of the heat dissipation member 20 in the manufacturing process.

そして、本実施形態によれば、放熱部材の実装位置を、狙いの位置に精度良く合わせることが容易にできるため、電子部品30の実装における、はんだ印刷や部品マウントの工程内不良を低減し、実装出来栄えバラつきを抑えることができる。   And according to this embodiment, the mounting position of the heat radiating member can be easily adjusted to the target position with high accuracy, so that in-process defects of solder printing and component mounting in mounting of the electronic component 30 are reduced, It is possible to suppress variations in the quality of mounting.

また、本実施形態では、放熱部材20の突出部23と絶縁基板10とを接合する接合材は、はんだ50であるから、放熱部材20を、はんだペースト印刷→マウント→リフローという一般的な工程で実装することができる。   In this embodiment, since the bonding material for bonding the protruding portion 23 of the heat dissipation member 20 and the insulating substrate 10 is the solder 50, the heat dissipation member 20 is formed by a general process of solder paste printing → mounting → reflow. Can be implemented.

また、はんだペースト印刷により、はんだ50を供給してやれば、はんだ50厚さを正確に制御できるので、上記した放熱部材20の実装位置のコントロールを行いやすくなるというメリットも期待できる。   In addition, if the solder 50 is supplied by solder paste printing, the thickness of the solder 50 can be accurately controlled, so that a merit that it is easy to control the mounting position of the heat radiating member 20 can be expected.

(第2実施形態)
図6は、上記図1に示される電子装置S1における放熱部材20の突出部23と絶縁基板10の他方の面12とのはんだ50による接合部分を拡大して示す概略断面図であり、当該接合部分の1つの例を示すものである。
(Second Embodiment)
6 is an enlarged schematic cross-sectional view showing a joint portion of the protrusion 23 of the heat radiating member 20 and the other surface 12 of the insulating substrate 10 by the solder 50 in the electronic device S1 shown in FIG. An example of the part is shown.

図6の例では、放熱部材20の全表面に、はんだ50の濡れ性を確保するためのめっき70、たとえばSnめっき、はんだめっきなどよりなるめっき70を施している。なお、このめっき70は、部品用接合材40としてのはんだを介した電子部品30のヒートシンク31との接合におけるはんだ濡れ性を確保する機能も有している。   In the example of FIG. 6, plating 70 for ensuring wettability of the solder 50, for example, Sn plating, solder plating, or the like is applied to the entire surface of the heat dissipation member 20. The plating 70 also has a function of ensuring solder wettability in joining the electronic component 30 to the heat sink 31 via solder as the component bonding material 40.

一方、絶縁基板10においては、貫通孔13の内面に、Cuなどよりなるめっき13aが施され、このめっき13aは、Cu等よりなる放熱部材用ランド15と連続して形成されることで、これらめっき13aの表面および放熱部材用ランド15の表面が連続している。また、絶縁基板10の他方の面12における放熱部材用ランド15の外側の部位は、ソルダーレジスト16により構成されている。   On the other hand, in the insulating substrate 10, plating 13 a made of Cu or the like is applied to the inner surface of the through hole 13, and the plating 13 a is formed continuously with the heat radiation member land 15 made of Cu or the like. The surface of the plating 13a and the surface of the heat radiation member land 15 are continuous. Further, a portion of the other surface 12 of the insulating substrate 10 outside the heat radiation member land 15 is constituted by a solder resist 16.

ここで、図6には、放熱部材20のうちの絶縁基板10とのはんだ50による接合部24、および、絶縁基板10の他方の面12のうちの放熱部材20とのはんだ50による接合部15(すなわち放熱部材用ランド15)が示されている。   Here, in FIG. 6, the joint portion 24 by the solder 50 with the insulating substrate 10 in the heat radiating member 20 and the joint portion 15 by the solder 50 with the heat radiating member 20 on the other surface 12 of the insulating substrate 10. (In other words, the heat radiation member land 15) is shown.

そして、この図6の例の場合、図中の破線Kに示されるように、はんだ50が、これら放熱部材20の接合部24および絶縁基板10の接合部である放熱部材用ランド15の範囲にとどまればよいが、上記Cuめっき13aやめっき70に沿って、当該範囲の外側まで、はんだ50が濡れ拡がってしまう可能性がある。   In the case of the example of FIG. 6, as indicated by a broken line K in the drawing, the solder 50 is within the range of the heat radiation member land 15 that is the joint portion 24 of the heat radiation member 20 and the joint portion of the insulating substrate 10. However, the solder 50 may spread along the Cu plating 13a and the plating 70 to the outside of the range.

そうすると、はんだ50の厚さが狙いの値よりも小さくなってしまい、上記した放熱部材20の実装位置のコントロールが困難になる可能性がある。そのため、このような各接合部15、24の外側への意図しないはんだ50の濡れ拡がりを抑制することが、望ましい。   If it does so, the thickness of the solder 50 will become smaller than the target value, and control of the mounting position of the above-mentioned heat radiating member 20 may become difficult. Therefore, it is desirable to suppress unintentional wetting and spreading of the solder 50 to the outside of each of the joint portions 15 and 24.

ここで、絶縁基板10において貫通孔13の内面を、めっき処理が施されずに絶縁基板10を構成する絶縁材料(たとえばガラスエポキシ樹脂等の材料)が露出した面とすれば、貫通孔13内面への濡れ拡がりは抑制しやすくなる。ただし、製造上、貫通孔13にめっき13aを施さないようにすることは、マスキング等の問題があり、手間がかかってしまう。   Here, if the inner surface of the through hole 13 in the insulating substrate 10 is a surface on which the insulating material (for example, a material such as glass epoxy resin) constituting the insulating substrate 10 is exposed without being subjected to plating, the inner surface of the through hole 13. It becomes easy to suppress the spread of wetting. However, in manufacturing, it is troublesome to prevent the plating 13a from being applied to the through-holes 13 due to problems such as masking.

そこで、本発明の第2実施形態では、このような放熱部材20および絶縁基板10における上記接合部24、15からのはんだ50の濡れ拡がりを抑制するための種々の構成を提供することとする。   Therefore, in the second embodiment of the present invention, various configurations for suppressing the wetting and spreading of the solder 50 from the joint portions 24 and 15 in the heat dissipation member 20 and the insulating substrate 10 are provided.

図7は、本実施形態の第1の例としての電子装置の要部を示す概略断面図である。この例では、放熱部材20について、放熱部材20の接合部24は、Snめっき、はんだめっきなどのはんだ濡れ性に優れためっき70を形成するめっき処理が施されたものとなっており、当該接合部24の外周囲には当該めっき処理を施さないものとしている。   FIG. 7 is a schematic cross-sectional view showing a main part of an electronic device as a first example of the present embodiment. In this example, for the heat radiating member 20, the joining portion 24 of the heat radiating member 20 has been subjected to a plating process for forming a plating 70 excellent in solder wettability such as Sn plating or solder plating. The outer periphery of the portion 24 is not subjected to the plating process.

それにより、放熱部材20において接合部24は当該接合部24の外周囲に比べて、はんだ50の濡れ性が良いものとされている。   Thereby, in the heat radiating member 20, the joint portion 24 has better wettability of the solder 50 than the outer periphery of the joint portion 24.

なお、この図7では示さないが、この図7の例においても、めっき70は、放熱部材20の一端21に形成され、それにより、部品用接合材40としてのはんだを介したヒートシンク31との接合性確保を行うようにしている。   Although not shown in FIG. 7, also in the example of FIG. 7, the plating 70 is formed on one end 21 of the heat radiating member 20, whereby the heat sink 31 via the solder as the component bonding material 40 is formed. Ensuring bondability is ensured.

この図7に示されるような放熱部材20の構成とすることにより、貫通孔13内へのはんだ50の濡れ拡がり等、放熱部材20の接合部24の外側への意図しないはんだ50の濡れ拡がりを抑えることができる。そのため、はんだ量(高さ)の制御が容易になり、結果的に、放熱部材20の実装位置を精度良く制御できる。   By adopting the structure of the heat radiating member 20 as shown in FIG. 7, unintentional wetting and spreading of the solder 50 to the outside of the joint portion 24 of the heat radiating member 20, such as wetting and spreading of the solder 50 into the through hole 13. Can be suppressed. Therefore, the amount of solder (height) can be easily controlled, and as a result, the mounting position of the heat dissipation member 20 can be accurately controlled.

さらに、図7の例では、図6と同様に、絶縁基板10において貫通孔13の内面は、はんだ濡れ性を確保するためのCuめっき13aにより形成されているが、絶縁基板10の他方の面12の接合部である放熱部材用ランド15の表面と、貫通孔13の内面(つまりCuめっき13aの表面)とは分離された状態とされている。   Further, in the example of FIG. 7, as in FIG. 6, the inner surface of the through hole 13 in the insulating substrate 10 is formed by Cu plating 13 a for ensuring solder wettability, but the other surface of the insulating substrate 10. The surface of the radiating member land 15 that is the joint portion of 12 and the inner surface of the through hole 13 (that is, the surface of the Cu plating 13a) are separated.

ここでは、放熱部材用ランド15の表面と、貫通孔13の内面であるCuめっき13aの表面との間に、はんだ濡れ性の小さいソルダーレジスト16を介在させることにより、当該両表面を分離している。こうすることにより、当該接合部15から貫通孔13の内面へのはんだ50の濡れ拡がりを抑制するようにしている。   Here, the solder resist 16 having a low solder wettability is interposed between the surface of the heat radiation member land 15 and the surface of the Cu plating 13a which is the inner surface of the through-hole 13, thereby separating the two surfaces. Yes. In this way, wetting and spreading of the solder 50 from the joint 15 to the inner surface of the through hole 13 is suppressed.

この図7に示されるような絶縁基板10の構成とすることにより、絶縁基板10において、はんだ50による接合部15の外側への意図しないはんだ50の濡れ拡がりを抑えることができる。そのため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材20の実装位置を精度良く制御できる。   With the configuration of the insulating substrate 10 as shown in FIG. 7, in the insulating substrate 10, unintentional wetting and spreading of the solder 50 to the outside of the joint portion 15 by the solder 50 can be suppressed. Therefore, the amount of solder (solder height) can be easily controlled, and as a result, the mounting position of the heat dissipation member 20 can be controlled with high accuracy.

また、図8は、本実施形態の第2の例としての電子装置の要部を示す概略断面図である。この図8の例においても、上記図7同様、絶縁基板10の放熱部材用ランド15の表面と、貫通孔13の内面であるCuめっき13aとは分離された状態とされている。ここで、図7との相違点は、Cuめっき13aと放熱部材用ランド15とを分離して形成することで、当該分離状態を実現していることである。   FIG. 8 is a schematic cross-sectional view showing a main part of an electronic device as a second example of the present embodiment. Also in the example of FIG. 8, the surface of the heat dissipation member land 15 of the insulating substrate 10 and the Cu plating 13 a that is the inner surface of the through hole 13 are separated from each other as in FIG. 7. Here, the difference from FIG. 7 is that the separated state is realized by forming the Cu plating 13a and the heat radiation member land 15 separately.

また、本実施形態の第3の例としては、図示しないが、放熱部材20の全表面に、放熱部材20の本体を構成する材料よりもはんだ50の濡れ性の悪いめっき処理が施されているものである。このような濡れ性の悪いめっき処理としては、たとえば放熱部材20の本体がCuの場合、Cuよりも濡れ性の悪いNi/Pd/Auめっき、Niめっきなどが挙げられる。   Further, as a third example of the present embodiment, although not shown in the drawing, the entire surface of the heat radiating member 20 is subjected to a plating process in which the wettability of the solder 50 is worse than the material constituting the main body of the heat radiating member 20. Is. Examples of such plating treatment with poor wettability include Ni / Pd / Au plating and Ni plating with poor wettability compared to Cu when the main body of the heat dissipation member 20 is Cu.

この第3の例の場合も、放熱部材20の接合部24の外側への意図しないはんだ50の濡れ拡がりを抑えることができるため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材20の実装位置を精度良く制御できる。また、全面めっきなので部分めっきに比べ、手間やコストがかからないという利点も期待できる。   Also in the case of the third example, unintentional wetting and spreading of the solder 50 to the outside of the joint portion 24 of the heat radiating member 20 can be suppressed, so that the control of the amount of solder (solder height) is facilitated. In addition, the mounting position of the heat dissipation member 20 can be controlled with high accuracy. Moreover, since it is a whole surface plating, the advantage that a labor and cost do not require compared with partial plating can also be anticipated.

また、図9は、本実施形態の第4の例としての電子装置の要部を示す概略断面図であり、図10は、図9中の放熱部材20の全体を示す概略断面図である。   FIG. 9 is a schematic cross-sectional view showing the main part of an electronic device as a fourth example of the present embodiment, and FIG. 10 is a schematic cross-sectional view showing the entire heat dissipating member 20 in FIG.

この第4の例では、絶縁基板10側の構成は、上記第1〜第3の例と同様であるが、放熱部材20の表面において、放熱部材20の接合部24の外周囲には、当該接合部24からのはんだ50の濡れ拡がりを抑制するコーティング71が施されているところが相違点である。   In the fourth example, the configuration on the insulating substrate 10 side is the same as in the first to third examples. However, on the surface of the heat dissipation member 20, the outer periphery of the joint 24 of the heat dissipation member 20 is The difference is that a coating 71 that suppresses the wetting and spreading of the solder 50 from the joint portion 24 is applied.

このコーティング71としては、たとえば塗料、ソルダーレジスト、ポリイミドテープなどが採用できる。ここで、当該接合部24については、めっき無しでもよいし、上記第1の例と同様のはんだ濡れ性を確保するめっき70が施されていてもよい。   As the coating 71, for example, paint, solder resist, polyimide tape, or the like can be employed. Here, about the said junction part 24, there may be no plating and the plating 70 which ensures the solder wettability similar to the said 1st example may be given.

この第4の例の場合も、放熱部材20の接合部24の外側への意図しないはんだ50の濡れ拡がりを抑えることができるため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材20の実装位置を精度良く制御できる。   Also in the case of the fourth example, since the unintentional wetting and spreading of the solder 50 to the outside of the joint portion 24 of the heat radiating member 20 can be suppressed, the control of the amount of solder (solder height) is facilitated. In addition, the mounting position of the heat dissipation member 20 can be controlled with high accuracy.

また、この第4の例では、図10に示されるように、放熱部材20における低熱抵抗化のため、電子部品30のヒートシンク31との接合面である放熱部材20の一端21、および、筐体100との接合面である放熱部材20の他端22はコーティングせずに、放熱部材20を構成する金属(たとえばCu等)が露出していることが望ましい。   In the fourth example, as shown in FIG. 10, in order to reduce the thermal resistance of the heat dissipation member 20, one end 21 of the heat dissipation member 20 that is a joint surface with the heat sink 31 of the electronic component 30, and the housing It is desirable that the other end 22 of the heat radiating member 20, which is a joint surface with 100, is not coated, and the metal (for example, Cu) constituting the heat radiating member 20 is exposed.

なお、これら図7〜図10等に示される上記第1〜第4の各例においては、放熱部材20側のみ当該各例の構成を採用し、絶縁基板10側は上記図6に示される構成のままとしてもよい。また、これら上記第1〜第4の各例においては、絶縁基板10側のみ当該各例の構成を採用し、放熱部材20側は上記図6に示される構成のままとしてもよい。   In each of the first to fourth examples shown in FIGS. 7 to 10 and the like, the configuration of each example is adopted only on the heat radiating member 20 side, and the configuration shown in FIG. It may be left as it is. Further, in each of the first to fourth examples, the configuration of each example may be employed only on the insulating substrate 10 side, and the configuration shown in FIG.

このように放熱部材20、絶縁基板10のいずれか一方のみに、上記第1〜第4の各例の構成を採用した場合であっても、上記図6の構成に比べれば、上記各接合部15、24の外側への意図しないはんだ50の濡れ拡がりを抑制することができ、放熱部材20の実装位置を精度良く制御できることは明らかである。   As described above, even when the configurations of the first to fourth examples are employed for only one of the heat radiating member 20 and the insulating substrate 10, each of the joints is compared with the configuration of FIG. 6. It is clear that unintended wetting and spreading of the solder 50 to the outside of 15 and 24 can be suppressed, and the mounting position of the heat dissipation member 20 can be accurately controlled.

また、図11は、本実施形態の第5の例としての電子装置の要部を示す概略断面図である。この図11の第5の例では、放熱部材20の突出部23のうちの絶縁基板10の他方の面12に対向する部位は、当該他方の面12に直接密着している。ここでは、当該他方の面12を構成するソルダーレジスト16に密着している。   FIG. 11 is a schematic cross-sectional view showing the main part of an electronic device as a fifth example of this embodiment. In the fifth example of FIG. 11, the portion of the protrusion 23 of the heat radiating member 20 that faces the other surface 12 of the insulating substrate 10 is in direct contact with the other surface 12. Here, it is in close contact with the solder resist 16 constituting the other surface 12.

そして、はんだ50は、突出部23のうち絶縁基板10の他方の面12と直交方向に延びる外周端面にてフィレット形状に形成されることで、突出部23と当該他方の面12とが接合されている。   Then, the solder 50 is formed in a fillet shape at the outer peripheral end surface extending in a direction orthogonal to the other surface 12 of the insulating substrate 10 in the protruding portion 23, so that the protruding portion 23 and the other surface 12 are joined. ing.

この第5の例によれば、放熱部材20とこれに対向する絶縁基板10の他方の面12との間では、はんだ50を介することなく密着した状態となるから、意図しないはんだ50の濡れ拡がりを抑えることできる。そのため、はんだ量(はんだ高さ)の制御が容易になり、結果的に、放熱部材20の実装位置を精度良く制御できる。   According to the fifth example, the heat radiating member 20 and the other surface 12 of the insulating substrate 10 opposed to the heat radiating member 20 are in close contact with each other without the solder 50 interposed therebetween. Can be suppressed. Therefore, the amount of solder (solder height) can be easily controlled, and as a result, the mounting position of the heat dissipation member 20 can be controlled with high accuracy.

(第3実施形態)
図12は、上記図1に示される構造において、絶縁基板10と放熱部材20との熱膨張係数差による各接合部への熱応力の発生状態を示す図である。図12では、白矢印200、300にて、放熱部材20の熱膨張および熱収縮の度合200、絶縁基板10の熱膨張および熱収縮の度合300を示している。
(Third embodiment)
FIG. 12 is a diagram illustrating a state in which thermal stress is generated at each joint due to a difference in thermal expansion coefficient between the insulating substrate 10 and the heat dissipation member 20 in the structure illustrated in FIG. In FIG. 12, white arrows 200 and 300 indicate the degree 200 of thermal expansion and thermal contraction of the heat radiating member 20 and the degree 300 of thermal expansion and thermal contraction of the insulating substrate 10.

絶縁基板10として、たとえば一般的なガラスエポキシ基板を使用し、放熱部材20として熱伝導率の高い銅を使用するとき、基板10の厚さ方向で当該2部材10、20間に熱膨張係数の乖離が存在する。   For example, when a general glass epoxy substrate is used as the insulating substrate 10 and copper having high thermal conductivity is used as the heat radiating member 20, the coefficient of thermal expansion between the two members 10 and 20 in the thickness direction of the substrate 10 is large. There is a divergence.

たとえば、当該厚さ方向の熱膨張係数は、ガラスエポキシ基板よりなる絶縁基板20が50〜60ppm/K、銅よりなる放熱部材20が17ppm/Kであり、絶縁基板10の熱膨張および熱収縮の度合300の方が、放熱部材20の熱膨張および熱収縮の度合200よりも大きい。   For example, the thermal expansion coefficient in the thickness direction is 50 to 60 ppm / K for the insulating substrate 20 made of a glass epoxy substrate, and 17 ppm / K for the heat dissipating member 20 made of copper. The degree 300 is greater than the degree 200 of thermal expansion and contraction of the heat dissipation member 20.

ここで、絶縁基板10の他方の面12側にて放熱部材20と絶縁基板10とは、はんだ50で接合されている(これを以下、接合部Cという)。一方、電子部品20は、絶縁基板10の一方の面11側にて、端子32−端子用ランド14間(これを以下、接合部Aという)と、ヒートシンク31−放熱部材20間(これを以下、接合部Bという)とで接合され、絶縁基板10と放熱部材20に跨って実装されている。   Here, the heat radiating member 20 and the insulating substrate 10 are joined by the solder 50 on the other surface 12 side of the insulating substrate 10 (hereinafter referred to as a joining portion C). On the other hand, in the electronic component 20, on one surface 11 side of the insulating substrate 10, between the terminal 32 and the terminal land 14 (hereinafter, referred to as a joint portion A) and between the heat sink 31 and the heat dissipation member 20 (hereinafter referred to as “this”). , And are mounted across the insulating substrate 10 and the heat dissipation member 20.

このように放熱部材20は絶縁基板10の両面11、12側で固定され拘束されているため、冷熱サイクル環境下で絶縁基板10と放熱部材20との基板厚さ方向の熱膨張係数差により、これら各接合部A、B、Cにおいて、引張または圧縮の熱応力が発生することが、懸念される。   Since the heat dissipation member 20 is fixed and restrained on both sides 11 and 12 of the insulating substrate 10 in this way, the thermal expansion coefficient difference in the substrate thickness direction between the insulating substrate 10 and the heat dissipation member 20 in a cold cycle environment causes There is concern about the occurrence of tensile or compressive thermal stress in each of the joints A, B, and C.

具体的には、高温時(冷温時)には、上記接合部A、Cでは圧縮(引張)応力が加わり、上記接合部Bでは引張(圧縮)応力が加わる。そうすると、これら各接合部A〜Cの破壊等が懸念される。   Specifically, at high temperatures (cold temperatures), compressive (tensile) stress is applied at the joints A and C, and tensile (compressive) stress is applied at the joint B. Then, there is a concern about the destruction of each of the joints A to C.

そこで、本発明の第3実施形態では、このような熱応力による各接合部A〜Cへのダメージ低減を目的として、さらに種々の工夫を施した構成を提供する。   Therefore, in the third embodiment of the present invention, a configuration in which various devices are further provided for the purpose of reducing damage to each of the joints A to C due to such thermal stress is provided.

図13は、本第3実施形態の第1の例としての電子装置S2の概略断面構成を示す図であり、図14は、図13中の放熱部材20の下面図である。これら図13、図14に示されるように、放熱部材20の突出部23の一部は、当該放熱部材20側から絶縁基板10の他方の面12に延びる細長の薄肉板状をなす薄肉板部23aとして構成されている。   FIG. 13 is a diagram showing a schematic cross-sectional configuration of an electronic device S2 as a first example of the third embodiment, and FIG. 14 is a bottom view of the heat dissipation member 20 in FIG. As shown in FIGS. 13 and 14, a part of the projecting portion 23 of the heat radiating member 20 is an elongated thin plate portion extending from the heat radiating member 20 side to the other surface 12 of the insulating substrate 10. 23a.

ここでは、薄肉板部23aはガルウィング形状をなしている。また、ここでは、薄肉板部23aは、図14に示されるように、放熱部材20の軸に対して互いに反対方向に延びる2本のものであるが、放熱部材20の軸に対して3本以上の放射状に設けられたものであってもよい。   Here, the thin plate portion 23a has a gull wing shape. Here, as shown in FIG. 14, the thin plate portion 23 a is two pieces extending in opposite directions with respect to the axis of the heat radiating member 20, but three pieces are provided with respect to the axis of the heat radiating member 20. It may be provided radially as described above.

そして、放熱部材20の突出部23は、この薄肉板部23aの先端部側にて、はんだ50により絶縁基板10の他方の面12に接合されている。このような構成においては、上記したようなはんだ50に加わる熱応力が、薄肉板部23aにより緩和される、具体的には薄肉板部23aの変形により吸収されるようになっている。   And the protrusion part 23 of the thermal radiation member 20 is joined to the other surface 12 of the insulating substrate 10 with the solder 50 in the front-end | tip part side of this thin board part 23a. In such a configuration, the thermal stress applied to the solder 50 as described above is relaxed by the thin plate portion 23a, specifically, is absorbed by deformation of the thin plate portion 23a.

また、図15は、本第3実施形態の第2の例としての電子装置S2の概略断面構成を示す図である。この場合も、放熱部材20の突出部23の一部は、当該放熱部材20側から絶縁基板10の他方の面12に延びる細長の薄肉板状をなす薄肉板部23aとして構成されているが、ここでは、薄肉板部23aはJ字形状をなすものとしている。   FIG. 15 is a diagram showing a schematic cross-sectional configuration of an electronic device S2 as a second example of the third embodiment. Also in this case, a part of the protruding portion 23 of the heat dissipation member 20 is configured as a thin plate portion 23a having an elongated thin plate shape extending from the heat dissipation member 20 side to the other surface 12 of the insulating substrate 10, Here, the thin plate portion 23a has a J-shape.

これら第1の例、第2の例によれば、絶縁基板10の厚さ方向における絶縁基板10と放熱部材20との熱膨張係数差から生じる熱応力を、薄肉板部23aにて緩和できるため、上記各接合部A〜Cへの当該熱応力を低減し、接合寿命を向上させることができる。また、上記両例において、ガルウイング型では、はんだ付けの外観検査が行いやすく、J字型ではガルウイング型に比べ、実装面積が小さくて済むという効果が期待できる。   According to the first example and the second example, the thermal stress caused by the difference in thermal expansion coefficient between the insulating substrate 10 and the heat dissipation member 20 in the thickness direction of the insulating substrate 10 can be relaxed by the thin plate portion 23a. The thermal stress applied to each of the joints A to C can be reduced, and the joint life can be improved. In both the above examples, the gull-wing type can easily perform soldering appearance inspection, and the J-shaped type can be expected to have a smaller mounting area than the gull-wing type.

なお、本第3実施形態は、第1実施形態に対して、放熱部材20の突出部23に薄肉板部23aを設けるものであるから、上記第2実施形態の各例とも組み合わせが可能であることはもちろんである。   Note that the third embodiment is different from the first embodiment in that the protrusion 23 of the heat dissipation member 20 is provided with a thin plate portion 23a, and thus can be combined with each example of the second embodiment. Of course.

(第4実施形態)
本発明の第4実施形態では、上記第3実施形態に示した上記熱応力による上記各接合部A〜Cへのダメージ低減を目的とした、別構成を提供する。図16は、本第4実施形態に係る電子装置の要部を示す概略平面図である。
(Fourth embodiment)
In the fourth embodiment of the present invention, another configuration is provided for the purpose of reducing damage to the joints A to C due to the thermal stress shown in the third embodiment. FIG. 16 is a schematic plan view showing the main part of the electronic device according to the fourth embodiment.

上記第1実施形態では、放熱部材20の突出部23と絶縁基板10の他方の面12とのはんだ50による接合は、放熱部材20の全周で行われていたが、本実施形態では、図16に示されるように、放熱部材20の全周ではなく局所的、すなわち不連続的に行うようにしている。   In the first embodiment, the joining of the protrusion 23 of the heat radiating member 20 and the other surface 12 of the insulating substrate 10 by the solder 50 is performed on the entire circumference of the heat radiating member 20. As shown in FIG. 16, it is performed locally, that is, discontinuously, not on the entire circumference of the heat radiating member 20.

上述したが、放熱部材20は、絶縁基板10の一方の面11側では、電子部品30を介して絶縁基板10に固定され、他方の面12側では、はんだ50を介して絶縁基板10に固定されることで、絶縁基板10の両面11、12にて、放熱部材20は絶縁基板10に拘束されている。そのため、基板厚さ方向の熱膨張係数差により、上記各接合部A〜C(に応力が加わる(上記図12参照)。   As described above, the heat dissipation member 20 is fixed to the insulating substrate 10 via the electronic component 30 on the one surface 11 side of the insulating substrate 10, and fixed to the insulating substrate 10 via the solder 50 on the other surface 12 side. As a result, the heat dissipation member 20 is restrained by the insulating substrate 10 on both surfaces 11 and 12 of the insulating substrate 10. Therefore, stress is applied to each of the joints A to C (see FIG. 12 above) due to the difference in thermal expansion coefficient in the substrate thickness direction.

ここで、設計上、上記接合部Aは電気的に、上記接合部Bは熱的に、それぞれ必ず接続されていなければならないため、これら接合部A、Bには製品要求に応じた接合寿命が求められる。   Here, since the joint A must be electrically connected and the joint B must be thermally connected by design, these joints A and B have a joint life according to product requirements. Desired.

一方、上記接合部Cは、製造工程における機械的な接合および固定、さらには装置の実装性や出来栄えに寄与することが主目的なので、電気的および熱的に接続されている必要はなく、接合部A、Bに比して接合寿命は求められない。   On the other hand, the main purpose of the joint C is to contribute to mechanical joining and fixing in the manufacturing process, as well as to the mountability and quality of the device, so it is not necessary to be electrically and thermally connected. Compared to the parts A and B, the bonding life is not required.

よって、接合部の信頼性設計は、接合部Cの寿命を短くし、接合部A、Bに比べて接合部Cが敢えて早期に壊れるような信頼性設計を行うという方法が考えられる。そこで、本実施形態では、上記局所的な接合形態を採用することで、絶縁基板10の他方の面12側にて、放熱部材20と絶縁基板10とのはんだ接合部の面積を小さくする。   Therefore, the reliability design of the joint portion may be a method in which the life of the joint portion C is shortened and the reliability design is performed so that the joint portion C is intentionally broken compared to the joint portions A and B. Therefore, in this embodiment, the area of the solder joint portion between the heat dissipation member 20 and the insulating substrate 10 is reduced on the other surface 12 side of the insulating substrate 10 by adopting the above-described local bonding configuration.

そうすることで、接合部Cにおけるはんだ接合の破壊により当該他方の面12側の拘束が開放され、接合部A、Bに加わる応力が劇的に低減し、これら接合部A、Bの接合寿命を長くできる。   By doing so, the restraint on the other surface 12 side is released due to the breakage of the solder joint in the joint portion C, the stress applied to the joint portions A and B is dramatically reduced, and the joint life of these joint portions A and B is reduced. Can be long.

なお、本第4実施形態は、上記第1実施形態に対して、はんだ50を局所的に設けるものであるから、上記第2実施形態の各例に対しても、組み合わせが可能であることはもちろんである。   In the fourth embodiment, since the solder 50 is locally provided with respect to the first embodiment, it can be combined with each example of the second embodiment. Of course.

(他の実施形態)
なお、絶縁基板10は、電気絶縁性の樹脂により本体を区画構成するプリント基板であったが、可能ならばセラミック基板などであってもよい。
(Other embodiments)
The insulating substrate 10 is a printed circuit board having a main body defined by an electrically insulating resin, but may be a ceramic substrate if possible.

また、放熱部材20と絶縁基板10の他方の面12とを接合する接合材50としては、はんだ50以外にも、エポキシ樹脂やシリコン樹脂などよりなる電気絶縁性の樹脂接着剤などでもよい。   Further, as the bonding material 50 for bonding the heat radiating member 20 and the other surface 12 of the insulating substrate 10, in addition to the solder 50, an electrically insulating resin adhesive made of epoxy resin, silicon resin, or the like may be used.

また、貫通孔13は、通常の孔開け加工により形成されるものであるが、貫通孔13の内面が放熱部材20と離れていればよいものであり、上記した丸孔形状以外にも、角孔形状などであってもよい。   The through-hole 13 is formed by a normal drilling process, but the inner surface of the through-hole 13 only needs to be separated from the heat dissipation member 20. It may be a hole shape.

また、上記した各実施形態同士の組み合わせ以外にも、上記各実施形態は、可能な範囲で適宜組み合わせてもよい。   In addition to the combination of the above-described embodiments, the above-described embodiments may be appropriately combined within a possible range.

10 絶縁基板
11 絶縁基板の一方の面
12 絶縁基板の他方の面
13 貫通孔
15 絶縁基板の他方の面)のうちの放熱部材とのはんだによる接合部
20 放熱部材
23 突出部
24 放熱部材のうちの絶縁基板とのはんだによる接合部
30 電子部品
50 接合材としてのはんだ
71 コーティング
100 筐体
DESCRIPTION OF SYMBOLS 10 Insulating substrate 11 One surface of insulating substrate 12 Other surface of insulating substrate 13 Through hole 15 (Other surface of insulating substrate) Soldered joint with heat radiating member 20 Heat radiating member 23 Projecting portion 24 Heat radiating member Joint part by soldering with an insulating substrate 30 Electronic component 50 Solder as joining material 71 Coating 100 Case

Claims (8)

絶縁基板(10)と、
前記絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、
前記貫通孔(13)に挿入された放熱部材(20)と、
前記絶縁基板(10)の一方の面(11)にて前記貫通孔(13)に重なるように前記絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、
前記絶縁基板(10)の一方の面(11)側にて前記放熱部材(20)と前記電子部品(30)とが接合されることにより、前記電子部品(30)にて発生する熱が前記放熱部材(20)へ放熱されるようになっている電子装置において、
前記放熱部材(20)の一部は、前記絶縁基板(10)の他方の面(12)にて前記貫通孔(13)より突出し、前記貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、
この突出部(23)は前記絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、
前記貫通孔(13)の内壁と前記放熱部材(20)の外面との間は空隙とされており、
前記放熱部材(20)の前記突出部(23)と前記絶縁基板(10)とを接合する前記接合材は、はんだ(50)であり、
前記放熱部材(20)のうちの前記絶縁基板(10)との前記はんだ(50)による接合部(24)は、めっき処理が施されたものとなっており、当該接合部(24)の外周囲には当該めっき処理を施さないことにより、
前記放熱部材(20)において前記接合部(24)は当該接合部(24)の外周囲に比べて、前記はんだ(50)の濡れ性が良いものとされていることを特徴とする電子装置。
An insulating substrate (10);
A through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12);
A heat dissipating member (20) inserted into the through hole (13);
An electronic component (30) mounted and fixed to the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10),
By joining the heat dissipation member (20) and the electronic component (30) on the one surface (11) side of the insulating substrate (10), the heat generated in the electronic component (30) is In the electronic device adapted to radiate heat to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) at the other surface (12) of the insulating substrate (10), and the other surface (outside of the through hole (13) ( 12) forming a protruding portion (23) that is shaped to overlap with
This protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50),
A gap is formed between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) ,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
The joint part (24) by the solder (50) with the insulating substrate (10) of the heat radiating member (20) is subjected to a plating treatment, and the outside of the joint part (24). By not performing the plating process around,
In the heat radiating member (20), the joint (24) has better wettability of the solder (50) than the outer periphery of the joint (24) .
絶縁基板(10)と、
前記絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、
前記貫通孔(13)に挿入された放熱部材(20)と、
前記絶縁基板(10)の一方の面(11)にて前記貫通孔(13)に重なるように前記絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、
前記絶縁基板(10)の一方の面(11)側にて前記放熱部材(20)と前記電子部品(30)とが接合されることにより、前記電子部品(30)にて発生する熱が前記放熱部材(20)へ放熱されるようになっている電子装置において、
前記放熱部材(20)の一部は、前記絶縁基板(10)の他方の面(12)にて前記貫通孔(13)より突出し、前記貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、
この突出部(23)は前記絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、
前記貫通孔(13)の内壁と前記放熱部材(20)の外面との間は空隙とされており、
前記放熱部材(20)の前記突出部(23)と前記絶縁基板(10)とを接合する前記接合材は、はんだ(50)であり、
前記放熱部材(20)の表面において、前記絶縁基板(10)との前記はんだ(50)による接合部(24)の外周囲には、当該接合部(24)からの前記はんだ(50)の濡れ拡がりを抑制するコーティング(71)が施されていることを特徴とする電子装置。
An insulating substrate (10);
A through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12);
A heat dissipating member (20) inserted into the through hole (13);
An electronic component (30) mounted and fixed to the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10),
By joining the heat dissipation member (20) and the electronic component (30) on the one surface (11) side of the insulating substrate (10), the heat generated in the electronic component (30) is In the electronic device adapted to radiate heat to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) at the other surface (12) of the insulating substrate (10), and the other surface (outside of the through hole (13) ( 12) forming a protruding portion (23) that is shaped to overlap with
This protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50),
A gap is formed between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) ,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
On the surface of the heat radiating member (20), the solder (50) is wet from the joint (24) on the outer periphery of the joint (24) by the solder (50) with the insulating substrate (10). An electronic device, characterized by being provided with a coating (71) for suppressing spreading .
絶縁基板(10)と、
前記絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、
前記貫通孔(13)に挿入された放熱部材(20)と、
前記絶縁基板(10)の一方の面(11)にて前記貫通孔(13)に重なるように前記絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、
前記絶縁基板(10)の一方の面(11)側にて前記放熱部材(20)と前記電子部品(30)とが接合されることにより、前記電子部品(30)にて発生する熱が前記放熱部材(20)へ放熱されるようになっている電子装置において、
前記放熱部材(20)の一部は、前記絶縁基板(10)の他方の面(12)にて前記貫通孔(13)より突出し、前記貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、
この突出部(23)は前記絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、
前記貫通孔(13)の内壁と前記放熱部材(20)の外面との間は空隙とされており、
前記放熱部材(20)の前記突出部(23)と前記絶縁基板(10)とを接合する前記接合材は、はんだ(50)であり、
前記絶縁基板(10)において前記貫通孔(13)の内面は、はんだ濡れ性を確保するためのめっき処理が施されたものとされており、
前記絶縁基板(10)の他方の面(12)のうちの前記放熱部材(20)との前記はんだ(50)による接合部(15)の表面と、前記貫通孔(13)の内面とは分離された状態とされることにより、当該接合部(15)から前記貫通孔(13)の内面への前記はんだ(50)の濡れ拡がりを抑制するようにしたことを特徴とする電子装置。
An insulating substrate (10);
A through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12);
A heat dissipating member (20) inserted into the through hole (13);
An electronic component (30) mounted and fixed to the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10),
By joining the heat dissipation member (20) and the electronic component (30) on the one surface (11) side of the insulating substrate (10), the heat generated in the electronic component (30) is In the electronic device adapted to radiate heat to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) at the other surface (12) of the insulating substrate (10), and the other surface (outside of the through hole (13) ( 12) forming a protruding portion (23) that is shaped to overlap with
This protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50),
A gap is formed between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) ,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
In the insulating substrate (10), the inner surface of the through hole (13) is subjected to a plating treatment to ensure solder wettability,
Of the other surface (12) of the insulating substrate (10), the surface of the joint (15) by the solder (50) with the heat radiating member (20) is separated from the inner surface of the through hole (13). The electronic device is characterized in that the solder (50) spreads from the joint (15) to the inner surface of the through-hole (13) by suppressing the wetness of the solder (50) .
絶縁基板(10)と、
前記絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、
前記貫通孔(13)に挿入された放熱部材(20)と、
前記絶縁基板(10)の一方の面(11)にて前記貫通孔(13)に重なるように前記絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、
前記絶縁基板(10)の一方の面(11)側にて前記放熱部材(20)と前記電子部品(30)とが接合されることにより、前記電子部品(30)にて発生する熱が前記放熱部材(20)へ放熱されるようになっている電子装置において、
前記放熱部材(20)の一部は、前記絶縁基板(10)の他方の面(12)にて前記貫通孔(13)より突出し、前記貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、
この突出部(23)は前記絶縁基板(10)の他方の面(12)側に、接合材(50)を介して接合されて固定されており、
前記貫通孔(13)の内壁と前記放熱部材(20)の外面との間は空隙とされており、
前記放熱部材(20)の前記突出部(23)と前記絶縁基板(10)とを接合する前記接合材は、はんだ(50)であり、
前記放熱部材(20)の前記突出部(23)の一部は、当該放熱部材(20)側から前記絶縁基板(10)の他方の面(12)に延びる細長の薄肉板状をなす薄肉板部(23a)として構成されており、
この薄肉板部(23a)にて、前記はんだ(50)により前記絶縁基板(10)の他方の面(12)に接合されており、
前記はんだ(50)に加わる応力が、前記薄肉板部(23a)により緩和されるようになっていることを特徴とする電子装置。
An insulating substrate (10);
A through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12);
A heat dissipating member (20) inserted into the through hole (13);
An electronic component (30) mounted and fixed to the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10),
By joining the heat dissipation member (20) and the electronic component (30) on the one surface (11) side of the insulating substrate (10), the heat generated in the electronic component (30) is In the electronic device adapted to radiate heat to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) at the other surface (12) of the insulating substrate (10), and the other surface (outside of the through hole (13) ( 12) forming a protruding portion (23) that is shaped to overlap with
This protrusion (23) is bonded and fixed to the other surface (12) side of the insulating substrate (10) via a bonding material (50),
A gap is formed between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) ,
The bonding material for bonding the protrusion (23) of the heat dissipation member (20) and the insulating substrate (10) is solder (50),
A part of the projecting portion (23) of the heat radiating member (20) is an elongated thin plate extending from the heat radiating member (20) side to the other surface (12) of the insulating substrate (10). Part (23a),
At the thin plate portion (23a), the solder (50) is joined to the other surface (12) of the insulating substrate (10),
An electronic device characterized in that stress applied to the solder (50) is relaxed by the thin plate portion (23a) .
前記絶縁基板(10)は、熱伝導性を有する金属で構成された筐体(100)に組み付けられ、
前記放熱部材(20)の前記突出部(23)と前記筐体(100)とが、熱伝導性を有する熱伝導部材(60)を介して接触しており、前記電子部品(30)の熱を、前記放熱部材(20)を介して前記筐体(100)へ放熱させるようにしたことを特徴とする請求項1ないし4のいずれか1つに記載の電子装置。
The insulating substrate (10) is assembled to a casing (100) made of a metal having thermal conductivity,
The protrusion (23) of the heat dissipation member (20) and the housing (100) are in contact via a heat conductive member (60) having thermal conductivity, and the heat of the electronic component (30). The electronic device according to any one of claims 1 to 4 , wherein heat is radiated to the housing (100) through the heat radiating member (20).
絶縁基板(10)と、
前記絶縁基板(10)の一方の面(11)から他方の面(12)に貫通する貫通孔(13)と、
前記貫通孔(13)に挿入された放熱部材(20)と、
前記絶縁基板(10)の一方の面(11)にて前記貫通孔(13)に重なるように前記絶縁基板(10)に搭載され固定された電子部品(30)と、を備え、
前記絶縁基板(10)の一方の面(11)側にて前記放熱部材(20)と前記電子部品(30)とが接合されることにより、前記電子部品(30)にて発生する熱が前記放熱部材(20)へ放熱されるようになっている電子装置において、
前記放熱部材(20)の一部は、前記絶縁基板(10)の他方の面(12)にて前記貫通孔(13)より突出し、前記貫通孔(13)の外側にて当該他方の面(12)に重なる形状とされた突出部(23)を構成しており、
この突出部(23)は前記絶縁基板(10)の他方の面(12)側に、はんだ(50)によりはんだ付け接合されて固定されており、
前記貫通孔(13)の内壁と前記放熱部材(20)の外面との間は空隙とされており、
前記絶縁基板(10)は、熱伝導性を有する金属で構成された筐体(100)に組み付けられ、
前記放熱部材(20)の前記突出部(23)と前記筐体(100)とが、熱伝導性を有する熱伝導部材(60)を介して接触しており、前記電子部品(30)の熱を、前記放熱部材(20)を介して前記筐体(100)へ放熱させるようにし、
前記電子部品(30)には前記放熱部材(20)の一端(21)に対向するヒートシンク(31)が設けられており、
前記絶縁基板(10)の一方の面(11)において前記貫通孔(13)の周囲には端子用ランド(14)が設けられており、
前記電子部品(30)には前記端子用ランド(14)上に位置する端子(32)が設けられており、
前記ヒートシンク(31)と前記放熱部材(20)の一端(21)との間、および前記端子用ランド(14)と前記端子(32)との間が、はんだ(40)により一括してはんだ付けされることを特徴とする電子装置。
An insulating substrate (10);
A through hole (13) penetrating from one surface (11) of the insulating substrate (10) to the other surface (12);
A heat dissipating member (20) inserted into the through hole (13);
An electronic component (30) mounted and fixed to the insulating substrate (10) so as to overlap the through hole (13) on one surface (11) of the insulating substrate (10),
By joining the heat dissipation member (20) and the electronic component (30) on the one surface (11) side of the insulating substrate (10), the heat generated in the electronic component (30) is In the electronic device adapted to radiate heat to the heat radiating member (20),
A part of the heat radiating member (20) protrudes from the through hole (13) at the other surface (12) of the insulating substrate (10), and the other surface (outside of the through hole (13) ( 12) forming a protruding portion (23) that is shaped to overlap with
This protrusion (23) is fixed by soldering and joining to the other surface (12) side of the insulating substrate (10) with solder (50).
A gap is formed between the inner wall of the through hole (13) and the outer surface of the heat dissipation member (20) ,
The insulating substrate (10) is assembled to a casing (100) made of a metal having thermal conductivity,
The protrusion (23) of the heat dissipation member (20) and the housing (100) are in contact via a heat conductive member (60) having thermal conductivity, and the heat of the electronic component (30). Radiate heat to the housing (100) through the heat radiating member (20),
The electronic component (30) is provided with a heat sink (31) facing one end (21) of the heat dissipation member (20),
A terminal land (14) is provided around the through hole (13) on one surface (11) of the insulating substrate (10),
The electronic component (30) is provided with a terminal (32) positioned on the terminal land (14),
Soldering between the heat sink (31) and one end (21) of the heat dissipating member (20) and between the terminal land (14) and the terminal (32) is performed by a solder (40). An electronic device characterized by being made .
前記放熱部材(20)の全表面に、前記放熱部材(20)の本体を構成する材料よりも前記はんだ(50)の濡れ性の悪いめっき処理が施されていることを特徴とする請求項3、4、6のいずれか1つに記載の電子装置。 The plating process in which the wettability of the solder (50) is worse than the material constituting the main body of the heat dissipation member (20) is applied to the entire surface of the heat dissipation member (20). The electronic device according to any one of 4 and 6 . 前記放熱部材(20)の前記突出部(23)と前記絶縁基板(10)の他方の面(12)との前記はんだ(50)による接合は、前記放熱部材(20)の全周ではなく局所的に行われていることを特徴とする請求項1、2、3、6のいずれか1つに記載の電子装置。 The joining of the protrusion (23) of the heat radiating member (20) and the other surface (12) of the insulating substrate (10) by the solder (50) is not the entire circumference of the heat radiating member (20) but the local area. The electronic device according to claim 1 , wherein the electronic device is performed in an automatic manner.
JP2011271503A 2011-12-12 2011-12-12 Electronic equipment Active JP5747805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271503A JP5747805B2 (en) 2011-12-12 2011-12-12 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271503A JP5747805B2 (en) 2011-12-12 2011-12-12 Electronic equipment

Publications (2)

Publication Number Publication Date
JP2013123011A JP2013123011A (en) 2013-06-20
JP5747805B2 true JP5747805B2 (en) 2015-07-15

Family

ID=48774816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271503A Active JP5747805B2 (en) 2011-12-12 2011-12-12 Electronic equipment

Country Status (1)

Country Link
JP (1) JP5747805B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130520A1 (en) * 2013-04-05 2014-10-06 St Microelectronics Srl CONSTRUCTION OF A HEAT SINK THROUGH WELDING
JP2016076622A (en) * 2014-10-07 2016-05-12 株式会社デンソー Circuit board and electronic device
JP6578900B2 (en) 2014-12-10 2019-09-25 株式会社デンソー Semiconductor device and manufacturing method thereof
KR20180060572A (en) * 2016-11-29 2018-06-07 주식회사 이진스 Device package having heat dissipating member and the manufacturing method thereof
JP2018147996A (en) * 2017-03-03 2018-09-20 株式会社ジェイテクト Control board and manufacturing method for the same
DE102019129586A1 (en) * 2019-11-04 2021-05-06 Hanon Systems Connection element for connecting a printed circuit board to a heat sink and method for producing the connection
JP7447785B2 (en) 2020-12-25 2024-03-12 株式会社デンソー electronic equipment
KR20230011733A (en) * 2021-07-14 2023-01-25 엘지이노텍 주식회사 Printed Circuit Board module and Electronic device having the same
WO2024024066A1 (en) * 2022-07-28 2024-02-01 日立Astemo株式会社 Power conversion device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786717A (en) * 1993-09-17 1995-03-31 Fujitsu Ltd Printing wiring board structure
JPH0917918A (en) * 1995-06-27 1997-01-17 Murata Mfg Co Ltd Hybrid integrated circuit
JPH09232484A (en) * 1996-02-21 1997-09-05 Fujikura Ltd Structure for cooling electronic element
JP2003115681A (en) * 2001-10-04 2003-04-18 Denso Corp Mounting structure for electronic component
JP4663975B2 (en) * 2003-11-28 2011-04-06 日本特殊陶業株式会社 Package for electronic components
JP5388598B2 (en) * 2008-11-14 2014-01-15 カルソニックカンセイ株式会社 Element heat dissipation structure
JP5187291B2 (en) * 2009-09-25 2013-04-24 株式会社デンソー Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2013123011A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5747805B2 (en) Electronic equipment
JP4691455B2 (en) Semiconductor device
JP6021504B2 (en) Printed wiring board, printed circuit board, and printed circuit board manufacturing method
US20040235287A1 (en) Method of manufacturing semiconductor package and method of manufacturing semiconductor device
WO2004112129A1 (en) Electronic device
JP2017199809A (en) Power semiconductor device
JP2010147382A (en) Electronic device
JPWO2007138771A1 (en) Semiconductor device, electronic component module, and method of manufacturing semiconductor device
JP6354163B2 (en) Circuit board and electronic device
JP5229401B2 (en) Resin substrate with built-in electronic components and electronic circuit module
JP5397012B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2018125515A (en) Electronic device
JP2008028254A (en) Radiation structure of electronic device
JP2011108814A (en) Method of bonding surface mounting electronic component, and electronic device
JP6587795B2 (en) Circuit module
JP2012164934A (en) Circuit module, electronic component mounting board and circuit module manufacturing method
JP6477105B2 (en) Semiconductor device
JP4882394B2 (en) Semiconductor device
JP6633151B2 (en) Circuit module
JP6147990B2 (en) Surface mount structure and surface mount method
JP4100685B2 (en) Semiconductor device
JP6626349B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP4193702B2 (en) Semiconductor package mounting structure
JP2007173877A (en) Method for manufacturing semicunductor device
JP2006286660A (en) Three-dimensional electronic circuit apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R151 Written notification of patent or utility model registration

Ref document number: 5747805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250