JP5740475B2 - 加工異常検知方法および加工装置 - Google Patents

加工異常検知方法および加工装置 Download PDF

Info

Publication number
JP5740475B2
JP5740475B2 JP2013531140A JP2013531140A JP5740475B2 JP 5740475 B2 JP5740475 B2 JP 5740475B2 JP 2013531140 A JP2013531140 A JP 2013531140A JP 2013531140 A JP2013531140 A JP 2013531140A JP 5740475 B2 JP5740475 B2 JP 5740475B2
Authority
JP
Japan
Prior art keywords
cutting
threshold value
cutting force
amount
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013531140A
Other languages
English (en)
Other versions
JPWO2013031353A1 (ja
Inventor
中須 信昭
信昭 中須
英明 小野塚
英明 小野塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013531140A priority Critical patent/JP5740475B2/ja
Publication of JPWO2013031353A1 publication Critical patent/JPWO2013031353A1/ja
Application granted granted Critical
Publication of JP5740475B2 publication Critical patent/JP5740475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37242Tool signature, compare pattern with detected signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37355Cutting, milling, machining force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50203Tool, monitor condition tool

Description

本発明は、機械加工中に加工状態をモニタリングし、異常を検知する方法および加工装置に関するものである。
機械加工は様々な金属加工に用いられる一般的な加工方法であり、回転工具に取り付けられた切刃を被削材に切り込み、材料を除去することで様々な形状に加工する。複雑な形状を持つ部品を加工する場合、除去量が多くなるため、切込量や送り速度、工具回転速度を大きくする等して、高能率化を図っている。
切込量や工具回転数を上げると、切刃にかかる力が大きくなるため、工具の振動や切刃の摩耗、折損等の加工トラブルが発生しやすい。加工トラブルが発生すると、加工部分の表面粗さが悪化したり、傷ついたりするため、材料を廃棄しなければならず、廃棄コストがかかる。そこで、加工状態をモニタリングし、異常が発生する直前に加工条件を変更したり、加工を停止することができるシステムを構築する技術が不可欠となっている。
従来、工具摩耗の検知方法として、主軸回転に用いるモータの駆動電流地量を測定することでモータ負荷を推定し、あらかじめ設定したしきい値と比較することによって異常を検知する方法が知られている。このとき、しきい値の設定方法として、あらかじめ実験やシミュレーションによりモータ駆動電流値の変化パターンを把握しておき、この変化パターンから加工パス毎にしきい値を設定する発明が特許文献1(特開平5−337790)に開示されている。
特開平5−337790号公報
しかしながら、加工パス毎にあらかじめしきい値を設定する方法は、一つの加工パスにおける切込量が一定のときのみ適用可能であり、切込量が変化して加工負荷が変化する場合には適用できない。また、複雑な3次元形状の加工では、短い加工パスを多数分割する必要があり、それぞれの加工パスに対して、しきい値を設定することは困難である。
本発明の目的は、切込量が時々刻々と変化する加工パスにおいても、動的に切削力異常検知しきい値を決定可能とする方法を提供することにある。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、回転切削によって発生した信号を測定し、測定した信号から基本波と高周波を含む切削力成分を抽出し、この切削力成分の基本波と高周波との比率に基いて異常検知のしきい値を算出し、切削力成分に基いて切削力を算出し、切削力としきい値とを比較して加工異常を判定する。
本発明によれば、切込量の変化に応じて動的に切削力異常検知しきい値を決定することができるため、異常検知しきい値の設定精度を向上させるとともに、加工精度を向上させることができる。
本発明の実施形態1の加工異常検知方法を説明するフローチャートである。 本発明の実施例にかかる加工装置の構成を説明するための図である。 径切込量の変化が小さい加工パスにおいて異常判定する方向の決定方法を説明するための図である。 径切込量の変化が大きい加工パスにおいて異常判定する方向の決定方法を説明するための図である。 径切込量が小さい場合の加工状態を示す図である。 切削力を示す図である。 切削力の周波数変換の一例を説明するための図である。 径切込量が大きい場合の加工状態を示す図である。 切削力を示す図である。 切削力の周波数変換の一例を説明するための図である。 径切込量の変化を定式化する方法を説明するための図である。 径切込量の変化を定式化する方法を説明するための図である。 径切込量の変化を定式化する方法を説明するための図である。 切削力の周波数変換後の高調波成分を説明するための図である。 本発明の実施形態1の異常検知しきい値を決定する方法を説明するための図である。 本発明の実施形態1の異常検知しきい値を決定する方法を説明するための図である。 本発明の実施形態1の加工装置の構成を示した図である。 加工条件設定方法を入力する入力画面の一例を示す概略図である。 図11に記載のライブラリ情報のファイルフォーマットの一実施形態を表す図である。 ファイル情報の一実施例を示す図である。 異常検知しきい値入力方法を入力する入力画面の一例を示す概略図である。 遷移する入力画面の概要の一実施例を示す図である。 ファイルフォーマット情報の一実施例を示す図である。 遷移する入力画面の一実施例を示す図である。 ライブラリ情報に基づいた設定項目の一例を示す図である。 遷移する入力画面の一実施例を示す図である。 ライブラリ情報に基づいた設定項目の表示の一例を示す図である。 しきい値変換係数算出部の詳細について説明する図である
以下、本発明が適用された実施形態の例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明は省略する。
図1〜図9Cを用いて第一の実施例を説明する。図2に本実施例で用いる一般的な機械加工装置の装置構成を示す。本実施例では3軸制御の機械加工装置を例に説明するが、制御軸数や装置構成はこれに限られるものではない。機械加工装置100は、筐体101と加工工具104,加工工具104を保持して回転させる主軸103、主軸103を軸方向に移動させる主軸ステージ102、被削材105,被削材を保持して移動させるテーブル106、機械加工装置100を制御するコントローラ107で構成される。コントローラ内のMPU(図示せず)は、ソフトウェアを実行することにより、後述する周波数変換部,切削力成分抽出部、切削力算出部,異常判定部、切込量算出部、異常検知しきい値算出部として機能し、メモリ(図示せず)は加工条件記憶部、切込量変換係数記憶部、しきい値変換係数記憶部を有する。機械加工装置100は、加工工具104を回転させて被削材105に切り込み、被削材105を除去することによって、被削材105の形状を加工するものである。加工工具104は被削材105から受ける力により、加工工具104や筐体101等が振動し、加工面の表面粗さが低下したり、加工工具104が折損する等の不具合が発生する。
図1に加工異常判定方法の処理フローを示す。まず、切削状態量測定(S1)を実施し、測定した信号の周波数変換(S2)を実施する。次に切削力成分抽出(S3)を実施し、さらに抽出した信号から切込量算出(S4)を実施する。次に算出した高調波比率から異常検知しきい値算出(S5)を実施後、切削力成分抽出(S3)で抽出した切削力成分を逆周波数変換して切削力を算出する切削力算出(S6)を実施する。最後に、切削力算出(S6)で算出した切削力と異常検知しきい値算出(S5)で算出したしきい値を比較することによって異常状態を判定する異常判定(S7)を実施する。
切削状態量測定(S1)では、センサ(図示せず)を用いて、切削状態量を測定する。切削状態量として、一般的に力センサ信号や主軸モータの駆動電流値、加速度センサ信号、音響信号、アコースティックエミッション等のセンサ出力を使用することができる。力センサは、テーブル106や主軸ステージ102に内蔵したり、被削材105とテーブル106の間に挟み込むように配置する等して、設置することができる。主軸モータの駆動電流値は、加工工具104を回転させる力に比例した値となるため、加工負荷を測定することが可能である。加速度センサとアコースティックエミッションは主に筐体101や主軸ステージ102、テーブル106に取り付けられ、装置の振動を測定する。音響信号は装置の振動に伴って発生する音をマイクロフォン等で収集するものである。
図3、図4を用いて、信号を解析するときの軸方向について説明する。加工工具104は、回転軸122に切刃を形成したチップ121を取り付けた構造である。加工工具104は回転中心Cを中心として回転し、チップ121を被削材105に切り込んで加工する。図3、図4ではチップ121が2枚取り付けられている例を示しているが、チップ枚数は工具によって異なってもよい。
信号解析に使用する軸方向として、軸切込方向(紙面垂直方向)と加工工具104の送り方向、それらに垂直な径切り込み方向を考える。図3に示した例のように、工具送り方向Xがほぼ一定の方向であり、回転軸122の回転中心が描く軌跡31の移動平均線32がほぼ直線となる場合には、工具送り方向Xを固定して考えることができる。また、図4のように、工具送り方向Xが大きく変化し、回転軸122の回転中心が描く軌跡31の移動平均線32が曲線となる場合は、現在の回転中心位置における移動平均線32の接線方向をFx、垂線方向をFyとなるよう、測定信号を座標変換すればよい。
異常検知においては、必ずしも3方向の異常判定をする必要はなく、代表的な方向、例えば径切り込み方向の信号成分Fyを用いて判定すれば十分である。あるいは、切削状態量の変動が顕著に表れる方向の信号成分で判定してもよい。切削状態量の変動が顕著に表れる方向は、チップ121の取り付け角度や工具移動方向等によって決まる。
周波数変換(S2)では、コントローラ107内の周波数変換部が、測定した切削状態量測定値を周波数変換する。周波数変換方法としては、離散フーリエ変換やファーストフーリエ変換等の一般的な技術を用いることができる。切削力成分抽出(S3)では、コントローラ107内の切削力成分抽出部が、切削力に関する周波数成分を抽出する。力センサ出力を例に取ると、測定した信号には、被削材を除去するときに発生する切削力と工具振動等により発生する振動力が混在している。この信号を周波数変換することによって、工具回転数と切刃数から決まる切削力周波数(例えば、切刃2枚の加工工具104を工具回転数3300min―1で回転させると切削力周波数は110Hz(=3300min―1/60×2枚刃)となる)と、加工工具104の固有振動数で決まる振動力周波数に分離することができる。すなわち、切削力成分抽出(S3)では、主軸モータの回転数に基いて加工工具の回転数を算出し、その回転数に刃数を乗じた値に対応する周波数を基本波とする。そして、基本波及びその整数倍付近の周波数を、測定した信号から、切削力成分として抽出する。
切込量算出(S4)では、コントローラ107内の切込量算出部が、径方向の切込量を算出する。これについて、図5A、図5B、図5C、図6A,図6B、図6Cを用いて説明する。図5A〜図5Cは径切込量hが小さい場合であり、径切込量hが加工工具104の半径と同程度な場合の例である。
図5Bに工具回転数3300min−1で回転させたときの切削力信号の例を示す。工具回転数に対応し、0.009秒間隔で切削力が発生し、チップ121が空走する時間があるため、断続的な切削力がかかっている。図5(b)を離散フーリエ変換した結果を図5Cに示す。工具回転数3300min−1に対応した周波数110Hz(3300min−1/60×2枚刃)を基本波とし、基本波の整数倍の高調波が発生している。高調波は、切削力が断続的であり、不連続部分があるために発生するものである。図6は径切込量hが大きい場合であり、径切込量hが加工工具104の直径と同等な場合の例である。チップ122の空走時間がないため、連続的な切削力となっている。周波数変換結果においても、基本波110Hzの信号のみ発生していることがわかる。
図6Bの切削力信号は余弦波で近似され、図5Bは図6Bのグラフからチップ121の空走期間の波形を取り除いた波形となっている。したがって、チップ121が被削材105に切り込んでいる時間だけ信号を有効とするような窓関数を図6B波形にかけることによって、図5Bの波形を得ることができる。図7A、図7B、図7Cを用いて切込量hと切削波形の関係式導出方法、およびフーリエ変換について説明する。
図7Aに窓関数を示す。窓関数は、大きさ1の矩形波であり、周期をfc、矩形波幅をs・fcとおく。矩形比率sはチップ121の空走時間と関係する値であり、0≦s≦1の値をとる。図7Bは図6Bと同じ径切込量での切削力波形を示している。最大切削力をF、周期は窓関数と同じくfcとする。図7Cは窓関数(図7A)と切削力波形(図7B)を掛け合わせた波形であり、図5B波形に相当する。
図7Aの窓関数M(t)は、式1で表される。以下、簡単のため、ω=2πfcの関係式より、角周波数ωを用いて説明する。
Figure 0005740475
また、図7Bの切削力波形G(t)は式2で表される。式2は、2枚のチップ121が回転軸122に等間隔に取り付けられている場合の切削力波形を数式化したものであり、チップ枚数や各チップ間の間隔、回転軸寸法によって決まる。
Figure 0005740475
径切り込みが小さい場合である図7Cの切削力波形H(t)は、式3で表される。
Figure 0005740475
加工工具104の半径をr、チップ121の枚数をNとおくと、矩形比率sと径切込量hの関係は、式4で表される。
Figure 0005740475
式3,式4より、高調波成分の大きさは、径切込量hの関数となっており、高調波の比率から、径切込量hを算出することができる。
高調波比率から径切込量を算出する方法の一例を説明する。図8に示すように、工具回転数に対応した基本周波数をF0、一次高調波をF1,n次高調波をFnとする。式3、式4から、F1/F0,F2/F0、…、Fn/F0は、径切込量hの関数であり、他のパラメータ(例えば、軸切込量や加工工具104、被削材105の剛性)に左右されないことが分かる。基本波F0(t),第一高調波F1(t)を式3から求めると、式5、6となる。
Figure 0005740475
Figure 0005740475
フーリエ変換のパワースペクトルをそれぞれP0,P1とすると、
P0=|F0(t)|、P1=|F1(t)|であることから、式5,式6より
P1/P0は式7で表される。
Figure 0005740475
実測値P1/P0から式7を使用して、矩形比率sを求め、式4から切込量hを算出することができる。式7から矩形比率sを求める方法としては、ルンゲクッタ法やオイラー法、シミュレーション等の一般的な技術を用いることができる。
高調波比率から径切込量を算出する方法の別の一例について説明する。式3から算出される高調波比率をP1s/P0s、P2s/P0s、…、Pns/P0s、とし、実測値から算出される高調波比率をP1m/P0m、P2m/P0m、…、Pnm/P0m、とする。誤差関数として式8を定義し、切込量hをパラメータとしたとき、最も誤差関数が小さくなる切込量hを求めればよい。式4の関係から、式8において最も誤差関数が小さくなる矩形比率sを求めてもよい。また、nは十分高次の項まで計算すればよく、無限大まで計算する必要はない。式8から矩形比率sを求める方法としては、ルンゲクッタ法やオイラー法、シミュレーション等の一般的な技術を用いることができる。
Figure 0005740475
高調波比率から径切込量を算出する方法の別の一例について説明する。複数個の矩形比率sについて、高調波比率(P1/P0,P2/P0,、、Pn・P0)をシミュレーションや実験によりあらかじめ求めて記憶しておく。次に、実測データの高調波比率(P1m/P0m、P2m/P0m、…、Pnm/P0m、)を求める。最後に、誤差関数(式9)が最も小さくなる矩形比率sを選択する。矩形比率sの分割数を多くするほど、算出精度を向上することができる。
Figure 0005740475
軸切込量を算出する方法の一例について説明する。切削力の大きさFは、加工工具104と被削材105の剛性で決まる定数Cと軸切込量wを用いて、F=C・wと表される。式3より直流成分はF・s/2であり、C・w・s/2と表される。切削力の直流成分の実測値をLとおくと、式10が得られる。定数Cをあらかじめシミュレーションや実験により求めておけば、直流線分の実測値Lと、式7または式8または式9で求めた矩形比率sを用いて、軸切込量wを式11から算出することができる。
Figure 0005740475
Figure 0005740475
コントローラ107内の異常検知しきい値算出部が行う異常検知しきい値算出(S5)について説明する。式3における切削力の大きさFは、加工工具104と被削材105の剛性、および径切込量、軸切込量に依存する。この中で加工中に変更可能なパラメータは、径切込量と軸切込量であるため、この二つをパラメータとしたしきい値を図9Aに示すようなテーブルに持たせ、参照できるようにする。各条件におけるしきい値は、あらかじめシミュレーションや実験によって切削力を導出し、その切削力の大きさに応じてテーブルに設定しておく。径切込量と高調波比率は式3の関係があることから、図9Bのように径切込量を高調波比率に置き換えたテーブルを使用してもよい。
また、式12から切削力Fを求め、このFにマージンDを加えた値を異常検知しきい値とすることができる。
Figure 0005740475
コントローラ107内の切削力算出部が、切削力算出(S6)では、切削力成分抽出(S3)で分離した切削力の周波数成分を、逆フーリエ変換することで切削力の大きさを求める。コントローラ107内の異常判定部が、異常判定(S7)ではS6で求めた切削力とS5で求めた異常検知しきい値を比較することによって、切削異常を検知する。
本実施例によれば、径切り込みが時々刻々と変化する加工パスにおいて、動的に異常検知しきい値を設定する方法を提供することが可能なため、加工失敗による不良品発生を回避することができるとともに、製造コストの削減に寄与する。
図10は、加工装置のコントローラ107うち、加工異常検知にかかる部分の一実施例を説明する構成図である。コントローラ107のMPUは、切削状態量測定部11と周波数変換部12,切削力成分抽出部13、切削力算出部14,異常判定部15、切込量算出部16、異常検知しきい値算出部17として機能し、メモリは、加工条件記憶部18、切込量変換係数記憶部19、しきい値変換係数記憶部20、加工条件入力部21、しきい値変換係数算出部23、しきい値条件入力部25を有する。
切削状態量測定部11は、力センサや主軸モータの駆動電流値、加速度センサ、音響センサ、アコースティックエミッション等のセンサを備え、切削力や機械振動に伴う信号の変化を測定する手段である。力センサは、テーブル106や主軸ステージ102に内蔵されたり、被削材105とテーブル106の間に挟み込むように配置する等して、設置することができる。主軸モータの駆動電流値は、加工工具104にかかる力に比例した値となるため、加工負荷を測定することが可能である。加速度センサとアコースティックエミッションは主に筐体101や主軸ステージ102、テーブル106に取り付けられ、装置の振動を測定する。音響信号は装置の振動に伴って発生する音をマイクロフォン等で集音するものである。
周波数変換部12は、切削状態量測定部11から出力されるセンサ信号を周波数変換する手段である。周波数変換方式としては、離散フーリエ変換やファーストフーリエ変換、等の一般的な技術を用いることができる。切削力成分抽出部13は、加工工具104の固有振動数や、切削力の振動数を用いて、切削力成分を分離する手段である。切込量算出部16は、切削力成分抽出部13で分離された切削力成分の高調波比率から径切込量を算出する手段である。切込量算出部16は切込量変換係数記憶部19より、高調波比率から径切込量を算出する式の係数、あるいは、変換テーブルを取得し、径切込量を算出する。切込量を算出する式は、チップ枚数や各チップ間の間隔、回転軸寸法によって決まるため、これらの情報を切込量変換係数記憶部19から取得する。
異常検知しきい値算出部17は、加工条件記憶部18としきい値変換係数記憶部20の情報を用い、切込量算出部16で算出した切込量から、計算式あるいは変換テーブルを用いて異常検知しきい値を決定する手段である。しきい値変換係数記憶部20には、加工条件設定部23で設定した加工条件と切込量としきい値が関連づけられて記憶されている。
切削力算出部14は、切削力成分抽出部13で分離された切削力成分を逆周波数変換することにより、切削力を算出する手段である。逆離散フーリエ変換や逆ファーストフーリエ変換等の一般的な技術を用いることができる。異常判定部15は、切削力算出部14から出力される切削力と異常検知しきい値算出部17から出力されるしきい値を比較することによって異常を判定する。
加工条件入力部21の詳細について、図11〜図13を用いて説明する。図11は加工条件設定方法を入力する入力画面1001の一例を示す概略図である。図12は、図11に記載のライブラリ情報のファイルフォーマットの一実施形態を表す図である。ライブラリ情報には、例えばライブラリ番号1005と、主軸回転速度入力方法等のライブラリ項目1006が含まれる。図12のライブラリ情報に基づいて図11の入力画面1001に表示項目1002を表示し、項目毎に使用する条件を、ラジオボタン1003を押下することによって選択する。全ての項目を選択した後、決定ボタン1004を押下することによって、入力を終了し、加工条件記憶部18に選択した項目を記憶する。主軸回転速度入力方法で「装置から取得」を選択した場合には、機械加工装置100からコントローラ107が取得した主軸回転速度を用いて、切削力成分抽出部13で切削力成分を抽出する。また、「プログラムから取得」を選択した場合には、機械加工装置100またはコントローラ107に保存されているプログラムの主軸回転速度を取得する。一般的に加工プログラムは数ステップで構成されており、各ステップ毎に主軸回転速度を取得することが望ましい。軸切込み量入力方法で「ファイルから取得」を選択した場合のファイル情報の一実施例を図13に示す。ファイル情報として、例えばライブラリ番号1007とライブラリ第一項目1008、ライブラリ第二項目1009が含まれる。ライブラリ第一項目として、パス番号、またはプログラムのステップ番号を入力し、ライブラリ第二項目として、軸切込み量を入力することで、各パスまたは各プログラムステップ番号に対応した軸切込み量を設定することができる。
しきい値条件入力部25の詳細について、図14〜図20用いて説明する。図14は異常検知しきい値入力方法を入力する入力画面1040の一例を示す概略図である。ラジオボタン1003により、入力方法を選択できるようにする。「テーブルから取得」を押下したときに遷移する入力画面1041の概要の一実施例を図15に示す。しきい値設定テーブル1045の縦軸は軸切込み量、横軸は高調波比率または径切込み量であり、横軸は図11で選択したラジオボタン1003に連動して、高調波比率または径切込み量の表示が切り替わる。図15は、図11において、「テーブルから取得(高調波比率変換)」を選択したときの画面の一例である。しきい値設定テーブル1045のパラメータ数および範囲は、パラメータ設定テーブル1044に入力された数値で決定される。各項目について、下限値と上限値およびステップ量を入力し、設定ボタン1043を押下すると、入力された値に応じてしきい値設定テーブル1045のパラメータ数と数値が決定され、表示される。しきい値入力欄1046に数値を入力後、決定ボタン1004を押下することによって、入力を終了する。しきい値およびパラメータの入力は、ファイルから読み込む方法でもよい。この場合、ファイル名入力部1047でしきい値設定テーブル1045に読み込むファイルを指定し、読込みボタン1048を押下することで、データを入力することができる。しきい値設定テーブル1045に読み込むファイルのファイルフォーマット情報の一実施例を図16に示す。ファイル情報として、縦軸の項目名と横軸の項目名、縦軸の下限値と上限値、およびステップ、横軸の下限値と上限値、およびステップ、しきい値で構成される。しきい値は、縦軸のステップ数mと横軸のステップ数nの積であるmn個のデータを持つ。異常検知しきい値入力方法として、「切削力係数から取得」を選択した場合に遷移する入力画面1011の一実施例を図17に示す。入力画面1011には、図18のライブラリ情報に基づいた設定項目1012を表示し、必要な情報を入力する。また、「加工諸元から取得」を選択した場合に遷移する入力画面の一実施例を図19に示す。入力画面1021には、図20のライブラリ情報に基づいた設定項目1022を表示し、情報を入力する。
しきい値変換係数算出部23の詳細について、図21を用いて説明する。図14に示す異常検知しきい値入力方法で、「固定値入力」のラジオボタン1003を選択した場合、しきい値変換係数算出部23は、図16に示したファイルフォーマットの項目のしきい値に、入力した固定値を設定したしきい値設定テーブル情報を作成し、しきい値変換係数記憶部20に記憶する。「テーブルから取得」のラジオボタン1003を選択した場合、図15で入力したしきい値設定テーブルをしきい値変換係数記憶部に記憶する。「切削力係数から算出」または「加工諸元から算出」のラジオボタン1003を選択した場合、図17または図19で入力した値をもとにシミュレーションを実施し、工具磨耗量0μmにおける切削力を算出する。算出した切削力にしきい値設定倍率を乗算して、異常検知しきい値を決定する。図16の実施例に示した縦軸、横軸としての軸切込み量と高調波比率を変えながらしきい値を算出し、図16に示すファイル情報を含むデータを作成して、しきい値変換係数記憶部20に記憶する。縦軸、横軸の値の下限値および上限値、ステップはあらかじめ記憶しておいた値を使用する。あるいは、入力画面を設けてもよい。
本実施例によれば、径切り込みが時々刻々と変化する加工パスにおいて、動的に異常検知しきい値を設定する手段を提供することが可能なため、加工失敗による不良品発生を回避することができるとともに、製造コストの削減に寄与する。
以上、本発明者によってなされた発明を、前記発明の実施形態に基づき具体的に説明したが、本発明は、前記発明の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において変更可能であることは勿論である。
101・・・筐体、102・・・主軸テーブル、103・・・主軸、104・・・加工工具、105・・・被削材、106・・・テーブル、107・・・コントローラ、121・・・チップ、122・・・回転軸。

Claims (18)

  1. 切削工具を回転させる加工に伴う切削状態量を測定する測定ステップと、
    前記測定した信号から、基本波及び高調波を含む切削力成分を抽出する抽出ステップと、
    前記切削力成分の基本波と高調波との比率である高調波比率に基いて、異常判定のしきい値を算出するしきい値算出ステップと、
    前記抽出した切削力成分から、切削力を算出する切削力算出ステップと、
    前記算出した切削力と、前記算出したしきい値とに基いて、異常を判定する異常判定ステップと、
    を含む加工異常検知方法。
  2. 請求項1において、
    前記抽出ステップでは、前記測定した信号を周波数変換して切削力成分を抽出し、
    前記切削力算出ステップでは、前記周波数変換されて抽出された切削力成分を、逆周波数変換することにより切削力を算出することを特徴とする加工異常検知方法。
  3. 請求項1または2において、
    前記しきい値算出ステップでは、前記高調波比率に基いて、径切込量を算出し、当該径切込量に基いて、しきい値を算出することを特徴とする加工異常検知方法。
  4. 請求項1乃至3のいずれかにおいて、
    軸切込量を算出する軸切込量算出ステップを有し、
    前記しきい値算出ステップでは、前記高調波比率または径切込み量と、前記軸切込量とに基いて、前記しきい値を設定することを特徴とする加工異常検知方法。
  5. 請求項1乃至4のいずれかにおいて、
    前記測定ステップでは、前記切削状態量として、被加工材の振動、加工装置の振動、前記加工工具を回転させるモータの電流、振動に伴って発生する音のいずれかを測定することを特徴とする加工異常検知方法。
  6. 請求項1乃至5のいずれかにおいて、
    測定した信号を、前記切削工具の回転中心が描く軌跡の移動平均線の接線方向成分と、
    垂直方向成分に座標変換し、前記抽出ステップでは当該垂直方向成分を用いることを特徴とする加工異常検知方法。
  7. 請求項3において、
    前記しきい値算出ステップでは、前記測定信号の、一次高調波の振幅F1と基本波の振幅F0との比である高調波比率と切込量を関連付けて記憶した変換テーブルまたは数式を用いて、前記径切込量を算出することを特徴とする加工異常検知方法。
  8. 請求項7において、
    前記しきい値算出ステップは、前記測定信号の、一次高調波からn次高調波の振幅F1からFnと基本波の振幅F0との比を算出するステップと、シミュレーションあるいは数式から算出される信号の一次高調波からn次高調波の振幅F1からFnと基本波の振幅F0との比を算出するステップと、各高調波比の差を最小化する切込量を算出するステップと
    を有することを特徴とする加工異常検知方法。
  9. 切削工具と、前記切削工具を回転させるモータと、制御を行う制御手段と、を備えた加工装置において、
    切削工具を回転させる加工に伴う切削状態量を測定する測定手段を有し、
    前記制御手段は、
    前記測定した信号から、基本波及び高調波を含む切削力成分を抽出する抽出部と、
    前記切削力成分の基本波と高調波との比率である高調波比率に基いて、異常判定のしきい値を算出するしきい値算出部と、
    前記抽出した切削力成分から、切削力を算出する切削力算出部と、
    前記算出した切削力成分と、前記算出したしきい値とに基いて、異常を判定する異常判定分と、
    とを有することを特徴とする加工装置。
  10. 請求項9において、
    前記抽出部は、前記測定した信号を周波数変換して切削力成分を抽出し、
    前記切削力算出部は、前記周波数変換されて抽出された切削力成分を、逆周波数変換することを特徴とする加工装置。
  11. 請求項9または10において、
    前記しきい値算出部では、前記高調波比率に基いて、径切込量を算出し、当該径切込量に基いて、しきい値を算出することを特徴とする加工装置。
  12. 請求項9乃至11のいずれかにおいて、
    軸切込量を算出する軸切込量算出部を有し、
    前記しきい値算出部は、前記高調波比率または径切込み量と、前記軸切込量とに基いて、前記しきい値を設定することを特徴とする加工装置。
  13. 請求項9乃至12のいずれかにおいて、
    前記測定手段は、前記切削状態量として、被加工材の振動、加工装置の振動、前記加工工具を回転させるモータの電流、振動に伴って発生する音のいずれかを測定することを特徴とする加工装置。
  14. 請求項9乃至13のいずれかにおいて、
    前記しきい値算出部は、前記高調波と前記基本波の比率と切込量を関連付けるテーブルあるいは数式を用いて前記しきい値を算出することを特徴とする加工装置。
  15. 請求項9乃至14のいずれかにおいて、
    前記しきい値算出部は、切込量と加工条件情報と異常検知しきい値を関連付けるテーブルあるいは数式に基いてを用いて前記しきい値を算出する
    をことを特徴とする加工装置。
  16. 請求項9乃至15のいずれかにおいて、
    前記切削工具の回転軸の回転中心が描く軌跡の移動平均線の接線方向と垂線方向に測定値を座標変換する手段を有することを特徴とする加工装置。
  17. 請求項9乃至16のいずれかにおいて、
    加工条件記憶部から加工条件を取得し、シミュレーションまたは数式により、切込量変換係数を算出する手段を有することを特徴とする加工装置。
  18. 請求項15または17において、
    前記加工条件情報として、チップ枚数およびチップ取り付け位置を有することを特徴とする加工装置。
JP2013531140A 2011-09-02 2012-06-25 加工異常検知方法および加工装置 Active JP5740475B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013531140A JP5740475B2 (ja) 2011-09-02 2012-06-25 加工異常検知方法および加工装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011191257 2011-09-02
JP2011191257 2011-09-02
JP2013531140A JP5740475B2 (ja) 2011-09-02 2012-06-25 加工異常検知方法および加工装置
PCT/JP2012/066102 WO2013031353A1 (ja) 2011-09-02 2012-06-25 加工異常検知方法および加工装置

Publications (2)

Publication Number Publication Date
JPWO2013031353A1 JPWO2013031353A1 (ja) 2015-03-23
JP5740475B2 true JP5740475B2 (ja) 2015-06-24

Family

ID=47755865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013531140A Active JP5740475B2 (ja) 2011-09-02 2012-06-25 加工異常検知方法および加工装置

Country Status (3)

Country Link
US (1) US20140288882A1 (ja)
JP (1) JP5740475B2 (ja)
WO (1) WO2013031353A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170066818A (ko) * 2015-12-07 2017-06-15 현대위아 주식회사 절삭 작업을 위한 공구의 마모 및 파손 감지 방법
CN106863009A (zh) * 2017-01-20 2017-06-20 西北工业大学 基于刀杆两点变形的切削力测量方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215809A (ja) * 2012-04-04 2013-10-24 Hitachi Ltd 切削加工システム及び方法
JP6578195B2 (ja) * 2015-11-26 2019-09-18 Dmg森精機株式会社 切削工具の固有振動数導出方法及び安定限界曲線作成方法、並びに切削工具の固有振動数導出装置
JP2019072806A (ja) * 2017-10-17 2019-05-16 オムロン株式会社 切削加工装置
JP6987030B2 (ja) 2018-07-18 2021-12-22 株式会社日立製作所 システム及び工作機械の異常又は加工作業に関する分析方法
JP7131454B2 (ja) * 2019-03-27 2022-09-06 ブラザー工業株式会社 数値制御装置、工作機械、制御プログラム、及び記憶媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62193749A (ja) * 1986-02-19 1987-08-25 Ichiro Inazaki 多刃工具損傷検出装置
JP3193120B2 (ja) * 1992-06-01 2001-07-30 エヌティエヌ株式会社 工具異常検出装置
JPH08323585A (ja) * 1995-05-31 1996-12-10 Fanuc Ltd 異常負荷検出方式
JP3025421B2 (ja) * 1995-06-14 2000-03-27 三菱電機株式会社 制御システムの異常検知装置
JP2000263377A (ja) * 1999-03-17 2000-09-26 Ntn Corp 金型加工装置
KR100579083B1 (ko) * 2002-12-30 2006-05-12 두산인프라코어 주식회사 공작기계의 공구 이상 검출장치 및 검출방법
JP2007276031A (ja) * 2006-04-05 2007-10-25 Kitagawa Iron Works Co Ltd 加工対象物把握手段の監視方法および加工対象物把握手段の監視装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170066818A (ko) * 2015-12-07 2017-06-15 현대위아 주식회사 절삭 작업을 위한 공구의 마모 및 파손 감지 방법
KR101867136B1 (ko) * 2015-12-07 2018-06-12 현대위아 주식회사 절삭 작업을 위한 공구의 마모 및 파손 감지 방법
CN106863009A (zh) * 2017-01-20 2017-06-20 西北工业大学 基于刀杆两点变形的切削力测量方法

Also Published As

Publication number Publication date
US20140288882A1 (en) 2014-09-25
JPWO2013031353A1 (ja) 2015-03-23
WO2013031353A1 (ja) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5740475B2 (ja) 加工異常検知方法および加工装置
JP5732325B2 (ja) 振動判別方法、及び振動判別装置
JP5793200B2 (ja) 工作機械の切削力検出装置、切削力検出方法、加工異常検出方法、および加工条件制御システム
JP5686760B2 (ja) 振動判別方法、及び振動判別装置
TWI472402B (zh) Tool flutter monitoring method
JP5609739B2 (ja) 加工びびり振動検出装置、及び工作機械
JP5105102B2 (ja) 作業機械のびびり抑制方法及び装置
JP5710391B2 (ja) 工作機械の加工異常検知装置及び加工異常検知方法
JP5622626B2 (ja) 回転速度表示装置
Costes et al. Surface roughness prediction in milling based on tool displacements
US20020146296A1 (en) Method and device for avoiding chatter during machine tool operation
JP5301380B2 (ja) 回転刃具の寿命予測方法
JP5809709B2 (ja) 切削加工装置及びそれを用いた加工方法
JP2014083674A (ja) 作業機械のびびり抑制方法
JP5631792B2 (ja) 工作機械のモニタ装置
JP6777696B2 (ja) 加工環境推定装置
JP6354349B2 (ja) 振動検出装置と工作機械
JP5660850B2 (ja) 振動表示装置
JP5637840B2 (ja) 振動検出方法
JP2023171406A (ja) 加工状態検出方法、加工状態検出プログラム、および加工状態検出装置
KR20180036199A (ko) 가공 정밀도 향상을 위한 공작 기계의 채터 검출방법
WO2022080505A1 (ja) 作業機械の工具損傷判定方法及びシステム
JP2007033244A (ja) 駆動機構の亀裂検知方法
JP5539794B2 (ja) 振動抑制装置
JP2021194730A (ja) 検査装置、検査方法、及び工作機械

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R151 Written notification of patent or utility model registration

Ref document number: 5740475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151