JP5715802B2 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
JP5715802B2
JP5715802B2 JP2010259198A JP2010259198A JP5715802B2 JP 5715802 B2 JP5715802 B2 JP 5715802B2 JP 2010259198 A JP2010259198 A JP 2010259198A JP 2010259198 A JP2010259198 A JP 2010259198A JP 5715802 B2 JP5715802 B2 JP 5715802B2
Authority
JP
Japan
Prior art keywords
substrate
vapor deposition
deposition source
film
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010259198A
Other languages
English (en)
Other versions
JP2012111977A (ja
Inventor
田中 幸一郎
幸一郎 田中
山崎 舜平
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2010259198A priority Critical patent/JP5715802B2/ja
Publication of JP2012111977A publication Critical patent/JP2012111977A/ja
Application granted granted Critical
Publication of JP5715802B2 publication Critical patent/JP5715802B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、成膜装置及び成膜方法に関する。
有機材料の薄膜が積層されて成る有機エレクトロルミネセンス素子の作製方法として、真空蒸着法を用いる方法が知られている。真空蒸着法は種々の薄膜形成に用いられる代表的な技術であるが、有機エレクトロルミネッセンス素子を作製するに当たっては、真空蒸着装置の構成に様々な工夫が加えられている。
例えば、蒸着速度を一定に保つために、有機材料を充填した容器と、有機材料を被着させる基板とを対向して設け、さらに容器と基板との空間を囲むように加熱壁が設けられた真空蒸着装置が開示されている(特許文献1参照)。
この真空蒸着装置は、加熱壁を有機材料の蒸発温度程度に加熱しながら有機材料を充填した容器を加熱して基板に有機材料を蒸着することで、長時間に渡って有機材料を基板表面に均一に偏りなく被着させることが出来るとされている。
また、有機エレクトロルミネセンス素子の発光効率を高めるため、エレクトロルミネセンス材料により構成される発光ユニットを複数個積層する技術が知られている。このような構造のエレクトロルミネセンス素子は、有機材料を数層から数十層積層させて作製される。
一方、コストミニマムの思想に基づき、有機エレクトロルミネセンス素子を形成する基材(基板)サイズの大型化が望まれている。基板サイズの例としては、液晶パネルを生産するためのガラス基板サイズを例にとれば、第1世代と呼ばれる300mm×400mm、第3世代の550mm×650mm、第4世代の730mm×920mm、第5世代の1000mm×1200mm、第6世代の1450mm×1850mm、第7世代の1870mm×2200mm、第8世代の2000mm×2400mmなどのガラス基板が用いられる。
また、このような大型基板に対して多品種の膜を積層して形成する場合、処理する順に成膜装置を配置し、基板の搬送手段を備えた、所謂インライン型の装置が知られている。
しかしながら、第8世代などといった大型基板に対して、数層から数十層の膜をインライン型の装置で形成しようとすると、その積層する層の数だけ成膜室を設けなければならず、莫大な費用と床面積が必要となり、実現が困難である。
さらに、有機エレクトロルミネセンス素子の積層構造によっては、異なる層に同じ有機材料を蒸着する場合がある。その場合、従来のインライン型の装置構成を適用すると、同じ有機材料を成膜する成膜室を複数設けなければならない問題がある。
特開2005−082872号公報
本発明はこのような技術背景のもとになされたものである。そこで本発明は大型基板に偏りなく均一に多品種の積層膜を成膜可能な成膜装置若しくは成膜方法を提供することを課題の一とする。
また本発明は、複数の材料で形成される薄膜の組成を精密に制御することが可能な成膜装置若しくは成膜方法を提供することを課題の一とする。
本発明の一態様の成膜装置は、回転軸と、当該回転軸を中心に放射状に配置された複数の蒸着源群と、複数の蒸着源群のそれぞれに対向可能に基板を保持する基板支持部とを有する。上記複数の蒸着源群のそれぞれは、回転軸に対して半径方向に並べて配置された複数の蒸着源を有する。また、基板支持部と複数の蒸着源群の一方又は双方を、回転軸を中心に相対的に回転させる駆動部を有する成膜装置である。
また、本発明の一態様の成膜装置は、上記複数の蒸着源群のそれぞれが有する複数の蒸着源は、基板に均一に成膜材料を被着させるよう制御される。
本発明の成膜装置は、半径方向に並べて配置された複数の蒸着源を有する蒸着源群が、回転軸に対して放射状に複数配置されている。成膜は回転軸に対して基板を公転させながら、または蒸着源群を配置したテーブルを自転させながら、若しくは当該基板を自転させつつテーブルを公転させながら行う。その際、回転半径の小さい箇所と大きい箇所とでは線速度が異なるため、成膜速度を均一にするために、テーブルに半径方向に並べた蒸着源は、気化速度が外側に向かうほど速くなるよう制御される。
このような成膜装置を用いることによって、大型基板であっても基板上に偏りなく均一に成膜することが出来る。
また、本発明の一態様の成膜装置は、上記において、複数の蒸着源群の一つが有する複数の蒸着源は、基板に第1の成膜材料を被着させ、複数の蒸着源群の他の一つが有する複数の蒸着源は、基板に第2の成膜材料を被着させる、成膜装置である。
複数の蒸着源群が異なる成膜材料を基板に被着させることができるため、単一の装置で基板上に多品種の積層膜を形成することができる。また、異なる成膜材料を有する複数の蒸着源群と基板とを、相対的に回転させながら成膜し、異なる成膜材料が順に交互に積層されることにより、組成が精密に制御された薄膜を形成することができる。
また、本発明の一態様は、第1の成膜材料を基板に被着させる第1の蒸着源群と、第2の成膜材料を基板に被着させる第2の蒸着源群とを離散的に配置するとともに、第1の蒸着源群、及び第2の蒸着源群と対向可能に基板を配置する。その後、基板と第1の蒸着源群の一方又は双方を、回転軸を中心に回転させながら基板に第1の成膜材料を被着させて第1の薄膜を形成する。さらに基板と第2の蒸着源群の一方又は双方を、回転軸を中心に回転させながら基板に第2の成膜材料を被着させて第2の薄膜を形成する、成膜方法である。
上記成膜方法によれば、大型基板であっても単一の装置で多品種の積層膜を基板上に偏りなく均一に形成することができる。
また、本発明の一態様は、第1の成膜材料を基板に被着させる第1の蒸着源群と、第2の成膜材料を基板に被着させる第2の蒸着源群とを離散的に配置するとともに、第1の蒸着源群、及び第2の蒸着源群と対向可能に基板を配置する。さらに、基板と第1の蒸着源群の一方又は双方を、回転軸を中心に回転させながら基板に第1の成膜材料を被着させる第1の段階と、基板と第2の蒸着源群の一方又は双方を、回転軸を中心に回転させながら基板に第2の成膜材料を被着させる第2の段階とを有し、第1の段階と第2の段階とを繰り返して基板に薄膜を形成する、成膜方法である。
また、本発明の一態様は、上記成膜方法において、第1の蒸着源群からホスト材料を供給し、第2の蒸着源群からゲスト材料を供給する。
上記成膜方法によれば、基板に成膜される薄膜は複数の材料が混合した薄膜、又は複数の材料の層が格子状に配列した薄膜、若しくは複数の材料の実質的な単分子層あるいは厚さ方向に一乃至十の分子が重なった層(厚さ0.1nm〜10nm、代表的には0.5nm〜5nm)が膜厚方向に積層した薄膜、すなわち実質的な超格子構造の薄膜を形成することが可能となる。特に、ホスト材料とゲスト材料とを交互に成膜することにより、これらが膜厚方向に繰り返し積層された薄膜とすることができ、このような薄膜をエレクトロルミネセンス素子の発光層に適用することにより、高発光効率な素子を実現できる。
また、本発明の一態様は、上記成膜方法を用いた、エレクトロルミネセンス素子の作製方法である。
また、本発明の一態様は、上記成膜方法を用いた、照明装置の作製方法である。
本発明の成膜方法を用いたエレクトロルミネセンス素子は、高発光効率な素子とすることができ、この素子を照明装置に適用することにより、高電力効率な照明装置を実現できる。
本発明の一形態によれば、大型基板に偏りなく均一に多品種の積層膜を成膜可能な成膜装置及び成膜方法を提供できる。また本発明の一形態によれば、複数の材料で形成される薄膜の組成を精密に制御することが可能な成膜装置及び成膜方法を提供できる。
本発明の一態様の成膜装置を説明する図。 本発明の一態様の成膜装置を説明する図。 本発明の一態様の蒸着源群の構成を説明する図。 本発明の一態様の蒸着源の構成を説明する図。 本発明の一態様の成膜装置を説明する図。 本発明の一態様の成膜装置で成膜される薄膜を説明する図。 本発明の一態様の成膜装置で成膜される薄膜を説明する図。 本発明の一態様の成膜装置で成膜される薄膜を説明する図。 本発明の一態様の成膜装置を説明する図。 本発明の一態様の成膜室を説明する図。 本発明の一態様の照明装置を説明する図。 本発明の一態様の成膜装置を説明する図。 本発明の一態様のレーザ処理室を説明する図。 本発明の一態様の照明装置を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
(実施の形態1)
本実施の形態では、本発明の一態様である成膜装置の構成例及び成膜方法について、図1乃至図8を用いて説明する。
≪装置構成例≫
まず、本実施の形態で説明する成膜装置の主要な構成について図1及び図2を用いて説明する。図1は、成膜装置100の上面模式図であり、図中のA−B切断線に概略対応する断面図を図2に示す。
成膜装置100は略円筒状の形状であり、その中心から放射状に配置された複数の蒸着源群(蒸着源群103(a)乃至103(h))と、成膜装置100内の内壁及び中心部に沿って配置された防着板105と、を有する。また、基板101を成膜装置100に搬入するロード室107と、成膜装置100から基板101を搬出するアンロード室109が接続される。なお成膜装置100の内部は真空排気によって内部を減圧状態とすることができる。
複数の蒸着源群(蒸着源群103(a)乃至103(h))には、それぞれ異なる蒸着源を配置することが出来る。本実施の形態では蒸着源群を8個配置する構成としたが、この数は限定されず、作製する素子の層構造に応じて適宜設ければよい。また、同じ成膜材料を成膜する蒸着源群を複数配置しても良い。
本実施の形態では、蒸着源群103(a)はホール注入層を成膜する成膜材料を装填した蒸着源を有する。以下、同様に蒸着源群103(b)はホール輸送層、蒸着源群103(c)は発光層のホスト材料、蒸着源群103(d)は発光層のゲスト材料、蒸着源群103(e)は電子輸送層、蒸着源群103(f)は電子注入層、蒸着源群103(g)は中間層、蒸着源群103(h)は金属層をそれぞれ成膜する成膜材料を装填した蒸着源を有する構成となっている。なお、後述するようにそれぞれの蒸着源群には異なる成膜材料を装填した複数の蒸着源を有する構成となっている。
図2(A)に示すように、成膜装置100は、基板101を保持する基板ステージ121と、基板ステージを保持するステージホルダ119と、マスク123を有する。また蒸着源群103は、基板ステージ121で保持された基板101と対向するように配置されている。
ステージホルダ119とマスク123とは回転軸117に接続されており、駆動部115によって回転軸117を中心として個別に、又は同時に回転可能である。また、ステージホルダ119とマスク123とは、回転軸117に沿って上下に可動である。後に説明する基板101の搬入出時には基板101をマスク123から遠ざけることにより、破損等の事故を防ぐことが出来る。また、マスク123は回転方向に加えて半径方向にも可動となっており、これによりマスク123と基板101との位置調整を行う。なお、マスク123を複数具備し、成膜する膜によってマスクを使い分けても良い。その際、使用しないマスクは、基板101と重畳しないような相対的な位置関係(例えば90度)を保持しておけばよい。
防着板105は中空構造を有している。防着板105の中空部分には加熱された流体が流れている。この流体は一例としてシリコーンオイルなどが用いられる。防着板105の中空部分に加熱された流体を流し、防着板105を蒸発源から放出される材料が付着しない温度まで加熱することで、該材料の利用効率を高めることが出来る。材料の利用効率とは、蒸発源から蒸発若しくは昇華した材料の全量に対する、基板に付着して成膜される材料の割合である。
基板101へ成膜を行う際は、駆動部115によって基板101とマスク123とを回転軸117を中心として回転させながら成膜を行うことが出来る。
また、図2(B)に示すように蒸着源群103を回転させながら成膜を行える構成としても良い。その場合、蒸着源群103をテーブル129に配置し、テーブル129が回転軸127を中心に駆動部125によって回転する機構を加えればよい。ここで成膜の際には基板101と蒸着源群103とが相対的に回転すればよく、基板101を止めた状態でテーブル129のみを回転されても良いし、両者を逆向きに回転させてもよい。両者を逆向きに回転させると、相対的な回転数を大きくすることが出来る。
なお、本実施の形態では一枚の基板101を成膜する構成としているが、同時に複数枚の基板に成膜する構成としても良い。偶数枚配置する場合は、回転軸117に対して対称になるように配置すればよく、奇数枚の場合でも、等間隔になるように配置すればよい。複数枚を同時に成膜できる構成とすることにより、材料使用効率の向上や成膜コストの低減を図ることが出来る。
≪蒸着源群の構成例≫
次に、蒸着源群の構成例について図3を用いて説明する。
図3(A)は、一つの蒸着源群103の構成を示す図である。蒸着源群103は、n個の蒸着源111(1)〜111(n)から構成され、蒸着源111(1)〜111(n)は成膜装置100の回転軸に対して半径方向に概略一列に並ぶよう配置される。
また、図3(B)に示すように、蒸着源111(1)〜111(n)と、これとは異なる材料を有する蒸着源113(1)〜113(n)とを並べて配置しても良い。なお図3(B)には2列並べる構成を例示したが、3列以上としてもよい。また、これらを並列に並べるのではなく、回転半径方向に沿うように配置しても良い。
なお、図3(A)及び図3(B)には、複数の蒸着源を等間隔に配置したが、これに限定されず、間隔を空けずに並べて配置してもよいし、異なる間隔を空けて配置してもよい。また、複数の蒸着源は円周方向にずらして配置することもできる。
本発明の成膜装置では、基板と蒸着源とを相対的に回転させながら成膜を行うことを特徴としている。基板と蒸着源とが相対的に回転した場合、その相対線速度は回転中心からの距離と、回転周波数(角速度)に比例する。ここで、蒸着源群103からの成膜速度の分布が半径方向に一定とした場合、被成膜基板面内における半径方向の成膜速度はその回転中心からの距離に反比例する。したがって、被成膜基板面内で成膜速度を均一にするためには、回転中心側に配置される蒸着源の気化速度を遅く、外周側に配置される蒸着源の気化速度を速くし、各蒸着源からの成膜速度を調整すればよい。
図3(C)に、複数の蒸着源(蒸着源111(1)〜111(n))を有する蒸着源群103を模式的に示す。回転中心側から外周側に向かって蒸着源111(1)〜蒸着源111(n)が配置されている。最も基板中心側に近い蒸着源111(1)からの気化速度が最も遅くなるよう制御され、外周側に近づくにしたがって段階的に気化速度が速まるよう制御されている。
また、図3(D)に示すように、各々の蒸着源を蒸着源群の内側に向けて傾けて設置しても良い。各々の蒸着源を内側に向けて傾けて配置することにより、飛散した材料の空間的な広がりを抑制することができ、材料の使用効率を高めることが出来る。また、図3(E)に示すように、外周に近い蒸着源ほど基板に近い位置になるよう、各々の蒸着源の高さを異ならせて設置しても良い。高さによって成膜速度を調整することにより、各々の蒸着源からの気化速度を等しい速度とすることも出来る。
次に、蒸着源の一例について、図4を用いて説明する。蒸着源111は、坩堝141と、坩堝141を加熱するヒータ143とを有している。ヒータ143としては、ニクロム線などの電気抵抗が高い導体で電路を形成し電流を通して発熱させるものである。なお、この蒸着源111は他の蒸着源(例えば蒸着源113)も同様の構成とすることが出来る。
蒸着源111には、成膜に使用する材料の蒸発を間歇的に行うために、成膜する成膜材料145を坩堝141内に供給する材料供給部147が付加されていても良い。材料供給部147は、成膜する成膜材料145の装填部149と押出部151などにより構成される。
この場合、成膜材料145は、一度の成膜処理に必要な量だけあればよく、所定の形状に固められていることが好ましい。
この成膜材料145を坩堝141内に供給する方法は任意である。例えば、装填部149を坩堝141に細管で連結し、細管を成膜材料145が通るように機械的に押し出す構成、又は気圧によって押し出す構成とすればよい。気圧によって成膜材料145を押し出すには、アルゴン等の不活性ガスを用い、ピエゾバルブなど0.5秒以内で開閉可能なバルブを使用してパルス的に圧縮した気体を送り込めばよい。
このような材料供給部147があれば、処理ごとに成膜材料145の供給が可能となり、成膜室に基板を出し入れする間は成膜材料145の蒸着を止めることができるため、成膜材料145の無駄を無くすことができる。
坩堝141の温度は蒸発若しくは昇華させる材料の無駄を無くすために、場所によって温度を異ならせておくことが好ましい。成膜材料145が供給される坩堝141の底部の温度(T2)は、成膜材料145を急速に加熱して蒸気を発生させるために、成膜材料145が気化する温度以上に加熱する。坩堝141の先端(放射口)は、温度T2よりも低くてよいが、成膜材料145の蒸気が再付着してそこに堆積しない温度(T4)に加熱する。また、坩堝141の底部と先端部の間は、温度T2と温度T4の中間の温度(T3)とする。坩堝141と装填部149の間を繋ぐ細管部は成膜材料145が気化しない温度(T1)で予熱しておくことは好ましい。
成膜材料145の蒸発量は、坩堝141の底部の温度(T2)によって制御することが出来る。T2を高くすることにより、蒸発量を増やすことが出来るため、当該蒸着源111からの被成膜基板への成膜速度を高めることが出来る。また、成膜材料145の大きさは、一度の成膜処理で消費する量に応じて、各々の蒸発源で適宜調整すればよい。
このような蒸着源111により、成膜材料145の蒸気の発生を制御することが出来るため、成膜材料145の無駄を省きつつ、連続して多数の基板に薄膜を形成することができる。
≪ロード室、及びアンロード室の構成例≫
続いて、図5を用いてロード室107、及びアンロード室109の一例について説明する。図5(A)は、図1中のC−D切断線における断面概略図である。なお、図5(A)において成膜装置100については一部省略して示している。
成膜装置100とアンロード室109との間の隔壁には、開閉可能な機構を備えており、これにより基板の搬出時には成膜装置100とアンロード室109とを連通させることができる。アンロード室109は基板ステージ121を搬送する搬送ロボット131を有する。また、開閉可能な機構を有する隔壁を介して、ステージホルダ133と、ステージホルダ133をアンロード室から搬送する搬送手段139とを有する。なお、当該隔壁は必要なければ省略しても良い。
基板を成膜装置100から搬入出する際、ステージホルダ119はマスク123から遠ざかるように回転軸117に沿って上側に移動する。その後、搬送ロボット131によって基板ステージ121を成膜装置100から搬出し、アンロード室109内のステージホルダ133に設置する。ここで、基板101を直接搬送するのではなく、基板ステージ121を搬送する構成とすることにより、基板101の表面(成膜面)に直接触れることなく搬送を行うことが出来る。
ステージホルダ133は、両端に2個ずつガイド137を有し、ガイド137はそれぞれガイドレール135に沿って動くことが出来る。このガイド137及びガイドレール135を用いて、基板101の向きを水平方向から、搬送時の向きへと回転することが出来る。
ガイド137及びガイドレール135を用いてステージホルダ133を回転させる方法について、図5(B1)乃至図5(B3)を用いて説明する。ガイドレール135は、上下に並行した2本の水平部と、これらを連続的に繋ぐ垂直部からなる、図5(B1)乃至(B3)に示すような形状をとる。ここで、ステージホルダ133の片側の2つのガイドをそれぞれガイド137a、ガイド137bと区別して表記する。
ガイド137a及びガイド137bがそれぞれガイドレール135に沿って移動することにより、ステージホルダ133は図5(B1)に示す水平方向の向きの状態から、途中段階である図5(B2)の状態を介して、最終的に図5(B3)のように垂直からやや傾いた状態に至る。
このような機構を用いることにより、基板101の表面(成膜面)に直接触れることなく、基板101の向きを適宜変えることが出来る。また、このような搬送機構は例えば第8世代のような大型基板にも適用可能である。
その後、図5(B3)に示すように基板を垂直からやや傾いた状態で、搬送手段139によって基板101をアンロード室109から搬出する。特に大型基板を用いた場合には、このように基板を立てて搬送することは、装置の床面積を低減させることができ好適である。
なお、本実施の形態では基板を垂直からやや傾いた状態で搬送する構成としたが、完全に垂直としてもよいし、水平としてもよい。基板を水平まで回転させる場合は、ガイドレール135のうち、下側の水平部をさらに延長すればよい。
以上、アンロード室109の構成について説明してきたが、ロード室107についても同様の構成を用いることができる。基板101をロード室107から成膜装置100に搬入するには、上記と逆の手順で行えばよい。
≪本装置で成膜される薄膜について≫
次に、本発明の一態様である成膜装置を用いて成膜可能な薄膜の特徴について図6及び図7を用いて説明する。
成膜装置100で基板101に所定の薄膜を形成する際、複数の蒸着源群から材料を放出(蒸発、又は昇華)させた状態で成膜することもできる。例えば2つの異なる蒸着源群から異なる材料を放出させながら、基板101と蒸着源群の双方を相対的に回転させると、基板101のある一点では2種類の成膜材料が交互に蒸着されることとなる。
図6(A)に示すように、複数の蒸発源を異なる位置に配置し、同時に成膜することにより、基板101に成膜される薄膜161は複数の材料が混合した薄膜、又は複数の材料の層が格子状に配列した薄膜、若しくは複数の材料の実質的な単分子層あるいは厚さ方向に一乃至十の分子が重なった層(厚さ0.1nm〜10nm、代表的には0.5nm〜5nm)が膜厚方向に積層した薄膜、すなわち実質的な超格子構造の薄膜を形成することが可能となる。
図6(B)に示すように、第1の電極163と第2の電極165との間に薄膜161が挟まれるように形成することで、このような超格子構造を貫通するように電流を流すことが出来る。
このように、基板と蒸着源群とを相対的に高速回転させつつ異なる材料を同時に成膜した場合、従来の共蒸着法で成膜した薄膜とは異なる薄膜となる。
図7(A)に、従来の共蒸着法によりゲスト材料とホスト材料を共蒸着した場合の概念図を示す。本実施の形態では、ゲスト材料167に両端に異なる2つの機能(ET:エネルギーの授受機能、Em:発光機能)を持たせて分子設計された分子を、ホスト材料169も同様に両端に異なる2つの機能(R:キャリアの授受機能、T:エネルギー輸送機能)を持たせて分子設計された分子を用いる。
図7(A)に示すように、共蒸着法ではゲスト材料167とホスト材料169とがうまく分散せず、分子同士の配向が不揃いとなったり、局所的に歪が生じたりする。
一方、成膜装置100を用いて基板と蒸着源群とを相対的に高速回転させ、基板の一表面が基板の上を通過する際に、実質的に単分子層が堆積するようにすると、図7(B)に示すようにゲスト材料167とホスト材料169が膜厚方向に並んだ積層を形成することができる。また、その際に自己整合的にゲスト材料167及びホスト材料169の配向を揃えるように堆積させることが出来る。
このように両端に機能を持たせたゲスト材料167とホスト材料169とが規則性を持って配向し積層された積層膜は、非常に効率の高い発光層として機能する。図7(B)に示すように、ホスト材料169は、一端(R)でキャリアを受け取った際に生じるエネルギーを他端(T)から、ゲスト材料167の一端(ET)に輸送する。エネルギーを受け取ったゲスト材料167は、当該エネルギーにより他端(Em)から発光が生じる。このように、ホスト材料169がキャリア受け取った際に生じるエネルギーをロスすることなく効率的に発光エネルギーに変換することが出来、発光効率の極めて高い発光層とすることができる。
≪本装置で作製する発光素子の一例≫
次に、成膜装置100を用いた発光素子の一例とその作製方法について説明する。図8は本実施の形態で例示する発光素子200の主要部を示す図である。発光素子200は、一対の電極間にエレクトロルミネセンス材料により構成される発光ユニットが複数積層された構造を有している。
基板101の材質は、ガラス、セラミック、石英、プラスチックなど、光透過性を有し、作製工程で発生する熱に耐えうる基板を用いることができる。プラスチック材料では、ポリカーボネート、ポリアリレート、ポリエーテルスルフォン等を選択可能である。
基板101上にスパッタリング法等で絶縁層205、及び第1電極層207をあらかじめ形成する。絶縁層205は酸化珪素、窒化珪素、窒化酸化珪素などの絶縁膜で形成する。絶縁層205はエレクトロルミネセンス素子に水分が浸入するのを防ぐために設ける。特に基板101としてプラスチックなどの水蒸気透過率の高い材質を用いた場合に有効である。
絶縁層205、及び第1電極層207が形成された基板101を、ロード室107を介して成膜装置100に搬入する。上述のように、成膜装置100には複数の基板を搬入してもよい。その後、真空排気によって成膜装置100内を減圧状態とする。また、基板101の所望の位置に重なるように、マスク123の位置調整を行う。
基板101と、蒸着源群とを相対的に回転させながら、蒸着源群103(a)に装填された成膜材料を蒸着し、第1ホール注入層209を所望の膜厚になるまで成膜する。その後、蒸着源群103(a)からの蒸気を止め、蒸着源群103(b)を用いて第1ホール輸送層211を形成する。
第1発光層213は、蒸着源群103(c)及び蒸着源群103(d)を用いて、図7で示したような積層膜を成膜することにより得ることが出来る。その後同様にして第1電子輸送層215、第1電子注入層217を成膜する。
この段階で、エレクトロルミネセンス素子により構成される第1発光ユニット201が形成される。第1発光ユニット201は、第1ホール注入層209、第1ホール輸送層211、第1発光層213、第1電子輸送層215、第1電子注入層217が積層されている。
なお、第1発光ユニット201の構成は少なくとも第1発光層213を有していれば、この構成に限定されない。用いる蒸着源群を適宜変更することにより、第1発光ユニット201の構成を変更することが出来る。
続いて、蒸着源群103(g)を用いて、第1中間層219、及び第2中間層221を形成する。蒸着源群103(g)には第1中間層219、及び第2中間層221のそれぞれを成膜するための2種類の成膜材料が装填されている。
第1中間層219は、ホール輸送性の高い有機化合物と電子受容体(アクセプター)とを含む層として形成される。また、第2中間層221は、電子輸送性の高い有機化合物と電子供与体(ドナー)とを含む層として形成される。
第1中間層219は第1発光ユニット201に電子を注入し、第2中間層221は後に形成する第2発光ユニット203にホールを注入する。
なお、中間層の構成はこれに限られるものではなく、ホール輸送性の高い有機化合物と電子受容体(アクセプター)とを含む層、または電子輸送性の高い有機化合物と電子供与体(ドナー)とを含む層の単層構造としてもよい。
第2中間層221を形成後、第1発光ユニット201の作製と同様の工程を経て、第2発光ユニット203が形成される。第2発光ユニット203は、第2ホール注入層223、第2ホール輸送層225、第2発光層227、第2電子輸送層229、第2電子注入層231が積層されている。第2発光ユニット203を構成する各々の層は、第1発光ユニット201の形成時に用いた材料とは異なる成膜材料を装填が装填された蒸着源を用いて成膜を行うことにより、第1発光ユニットとは異なる層構造の第2発光ユニットとすることが出来る。
なお、第2発光ユニット203の構成は第1発光ユニット201と同様、少なくとも第2発光層227を有していれば、この構成に限定されない。用いる蒸着源群を適宜変更することにより、第2発光ユニット203の構成を変更することが出来る。
ここで、第1発光ユニット201から得られる発光の発光色と、第2発光ユニット203から得られる発光の発光色とが補色の関係にある場合、外部へ取り出される光は白色発光となる。又は、第1発光ユニット201及び第2発光ユニット203のそれぞれが複数の発光層を有する構成として、複数層の発光層のそれぞれにおいて互いに補色となる発光色を重ね合わせることによって各発光ユニットが白色発光を得られる構成としても良い。補色の関係としては、青色と黄色、或いは青緑色と赤色などがある。
最後に第2発光ユニット203に積層して第2電極層233を、蒸着源群103(h)を用いて形成する。第2電極層233は、第1発光ユニット201、第2発光ユニット203、第1中間層219、及び第2中間層221の成膜で用いたマスクとは異なるマスクを用いて成膜することも出来る。
以上の工程を経ることにより、基板101上に発光素子200が得られる。発光素子200は、第1発光ユニット201と第2発光ユニット203とが積層されたタンデム型の構成であり、このようなタンデム型の構成とすることにより発光輝度の電流効率を高めることができ、また白色発光をすることが容易となるため好ましい。
本実施の形態では2つの発光ユニットを積層した構成としたが、本発明の成膜装置100は、3以上の発光ユニットを積層した構成についても、同様の工程を繰り返すことにより容易に、成膜装置を増やすことなく作製することができる。
以上のように、本発明の成膜装置用いることにより、一つの成膜装置で多層の積層膜を装置外に搬出することなく効率よく成膜することが出来る。また本成膜装置を用いて作製された発光素子は、発光効率の非常に高い発光素子とすることが出来る。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせて実施することが出来る。
(実施の形態2)
本実施の形態では、実施の形態1で示した成膜装置100を適用した、照明装置の作製装置の構成の一例と、照明装置の作製方法の一例について図9乃至図11を用いて説明する。
≪装置構成例≫
図9に示す成膜装置100は、実施の形態1で示したロード室107、及びアンロード室109が接続されている。ロード室107は、これに隣接して成膜室255及び基板を搬入するためのロード室251が順に接続されている。また、アンロード室109には、これと隣接して処理室257及び基板を搬出するためのアンロード室253が順に接続されている。なお、図9にはアンロード室109と処理室257との間に角度をつけた搬送路を設けた構成としているが無い構成としてもよく、装置を設置するレイアウトに応じて適宜設ければよい。
ロード室251、及びアンロード室253では、装置外から、又は装置外へ基板を搬入出する。また、ロード室251、及びアンロード室253は排気手段を設けて減圧可能な構成とすることが好ましい。成膜室255や、処理室257の構成によって、基板の向きを変えられるような構成を適宜有していても良い。
処理室257では、成膜装置100で形成された発光素子に対して、乾燥剤や封止材料を用いて封止処理を行うことができる。処理室257には、適用する工程に応じて適宜装置を配置すればよい。
成膜室255では、作製する照明装置の下部電極を形成する。下部電極はスパッタリング法、蒸着法などの方法を適用することが出来る。
図10にスパッタリング法を用いた場合の、成膜室255の構成を例示する。図10(A)は成膜室255の断面概略図である。大型基板を用いて成膜する場合は、このように基板101を傾けた状態で成膜処理可能な構成とすることにより、装置の床面積を低減することができ好適である。
成膜室255は、ターゲット261、防着板263、マスク273、及びヒータ265を有する。基板101を保持した基板ステージ121が固定されたステージホルダ133は、搬送手段139に保持されている。ヒータ265はステージホルダ133の裏面から基板101を必要に応じて加熱することが出来る。
図10(B)は、成膜室255の上面概略図である。成膜室255は両端にゲートバルブ267を有し、装置内は排気手段269により減圧状態とすることができる。また必要に応じてガス導入手段271から成膜ガスを導入することも出来る。基板101は搬送手段139によって横方向に搬送することが出来る構成となっている。
また、図10(C)に示すように、基板101を横方向に移動させながら成膜を行う構成としてもよい。大型基板を用いた場合、このような構成とすることにより高価なターゲットのサイズを小さくすることが出来るため好適である。
≪照明装置の一例≫
図9に示す装置を用いて作製可能な照明装置の一例について図11を用いて説明する。照明装置300は、基板101上に下部電極301、発光ユニット303、及び上部電極305の積層構造を有し、乾燥材309と共に封止部材311及びシール材307を用いて封止されている。上部電極305は端部が下部電極301と同一材料で形成された電極と接している。当該電極と下部電極の一部が封止された領域より外側に引き出されている。
基板101の表面は凹凸形状を有していることが好ましい。発光ユニットや下部電極を形成する材料に高屈折材料を用いた場合、基板101との界面で全反射が起こり、発光の基板側への透過が阻害される場合がある。基板101の表面を凹凸形状とすることで全反射が抑制され、効率よく基板側へ発光を取り出すことが出来る。
発光ユニット303は、実施の形態1で示した手順で形成された、白色発光の発光ユニットを用いることができる。
照明装置300の作製方法としては、まず基板101をロード室251から搬入し、その後成膜室255でマスクを用いて下部電極301を形成する。その後、ロード室107を介して成膜装置100に基板を搬入し、実施の形態1で示した手順により異なるマスクを用いて発光ユニット303、及び上部電極305を形成する。その後、アンロード室109を介して処理室257に基板を移載し、乾燥材309と共にシール材307及び封止部材311を用いて封止処理を施す。その後、アンロード室253を介して基板101を装置外に搬出することにより、基板101上に形成された照明装置300を得る。
また、図11(B)に示すように、処理室257で基板101の裏面にマイクロレンズを具備した光学シート313を貼り付けても良い。光学シート313を用いることにより発光をより効率的に取り出すことが出来る。
また、図11(C)に示すように、処理室257にてコンバータ315を基板上に導電材317を用いて実装してもよい。コンバータ315は、家庭用電源から出力される実効値100Vの交流電圧を所望の電圧値の直流電圧に変換する。なお、コンバータ315は封止部材311の内部に配置しても良い。
以上のような工程により作製された照明装置は、発光効率の極めて高い照明装置とすることが出来る。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせて実施することが出来る。
(実施の形態3)
本実施の形態では、成膜装置100を適用した実施の形態2とは異なる装置構成と、これを用いて作製された照明装置の一例について図12乃至図14を用いて説明する。
≪装置構成例≫
図12に示す成膜装置100は、ロード室107に隣接してレーザ処理室281、成膜室255、及びロード室251が順に接続されている。また、アンロード室109に隣接して、レーザ処理室283、成膜室285、レーザ処理室287、処理室257、及びアンロード室253が順に接続されている。
ロード室251、アンロード室253、成膜室255、及び処理室257は実施の形態2で示したものと同様の構成とすることが出来る。また、成膜室285は上部電極を形成する成膜室であり、スパッタリング法を用いて形成する場合は成膜室255と同様の構成を用いればよく、蒸着法等別の方法を用いて形成する場合は適宜構成を変更すればよい。
レーザ処理室281、283、及び287は、レーザを用いたパターニング方法により成膜された膜に対し微細なパターンを形成する処理室である。レーザを用いたパターニング方法を適用することにより、高額なマスクを用いずにパターニングが可能となるため、異なる仕様や形状の照明装置を、コストをかけずに作り分けることが可能となる。また、マスクを用いた場合よりも、より微細なパターンや島状のパターンの加工を行うことが出来るため、パターン設計の幅が広がる。
図13にレーザ処理室281の構成の一例を示す。レーザ処理室281の断面模式図を図13(A)に、上面模式図を図13(B)に示す。
レーザ処理室281は、基板101に対向して配置されたレーザ照射装置291を有する。レーザ照射装置291によって適切な波長とエネルギーが選択されたレーザ光を基板101に照射することにより、基板101上の所望の膜を蒸発(アブレーション)させ、パターンを形成する。本実施の形態で例示するレーザ照射装置291は、基板101に沿って縦方向にレーザ光を走査させることが可能で、同時に図13(B)に示すように基板101を横方向に移動させることにより基板101全面にパターンを形成することができる。
また、レーザ処理室281の内部は、必要に応じてゲートバルブ293と排気手段295によって室内を減圧状態とすることが出来る。また、ガス導入手段297を用いて、反応ガス、または不活性ガス雰囲気で処理を行うことが出来る。
レーザ照射装置291は、例えばレーザ光を出力するレーザ発振器、レーザ光を減衰させるための光学系、レーザ光の強度を変調するための音響光学変調器、レーザ光の断面を縮小するためのレンズ及び光路を変更するためのミラー等で構成される光学系、基板上にレーザ光の焦点を合わせるためのフォーカス機構などから構成される。レーザとしては、連続発振型のレーザービームやパルス発振型のレーザービームを用いることができる。レーザービームの照射条件、例えば、周波数、パワー密度、エネルギー密度、ビームプロファイル等は、用いる膜の厚さや材料によって適宜制御する。また、用いるレーザ光の波長も適宜設定すればよいが、例えば紫外領域である1〜380nmの波長の固体レーザを用いることができる。
なお、レーザ処理室283、レーザ処理室287についても、レーザ処理室281と同様の構成を用いることができる。
≪照明装置の一例≫
次に、図12に示した装置を用いて作製可能な照明装置とその作製方法について図14を用いて説明する。図14(A)は本実施の形態で例示する照明装置350の断面模式図である。照明装置350は発光素子の形状以外は上記で例示した照明装置300と同様の構成であるため、重複する説明は省略する。
照明装置350は、下部電極351、発光ユニット353、及び上部電極355からなる発光素子が直列に複数接続された構成を有している。すなわち、一つの発光素子の上部電極が、隣接する発光素子の下部電極に接続されている。図14(A)には4個の発光素子を直列に接続した構成を示しているが、接続数は特に限定されない。
通常、発光素子に印加する直流電圧は、家庭用の交流電源から出力される電圧を、コンバータ(AC−DCコンバータ)を用いて生成するが、コンバータの特性上、出力電圧が低電圧になるほど変換効率が悪化し、電力のロスが生じる。したがって、照明装置350のように複数の発光素子を直列に接続することにより、その両端に高い電圧を印加することが可能となり、結果的にコンバータによる電力のロスを抑制することができる。
また、パターニング方法としてレーザ装置を用いることにより、パターン間スペースやコンタクト部の形状を縮小できる。そのためこのようなパターンを形成しても、非発光領域の面積を縮小することが可能となり、発光効率の高い照明装置を実現できる。
照明装置350の作製方法としては、まず基板101をロード室251から搬入し、その後成膜室255で導電膜を成膜する。続いてレーザ処理室281にて該導電膜をパターニングして下部電極351を形成する。次にロード室107を経由して成膜装置100に基板101を搬入し、後に発光ユニット353となる膜を成膜する。その後アンロード室109を経由した後レーザ処理室283にてパターニングを行い発光ユニット353を得る。続いて成膜室285で導電膜を成膜し、レーザ処理室287にて該導電膜をパターニングすることにより上部電極355が形成される。その後、処理室257に基板を移載し、乾燥材359と共にシール材357及び封止部材361を用いて封止処理を施す。最後にアンロード室253を介して基板101を装置外に搬出することにより、基板101上に形成された照明装置350を得る。
なお、実施の形態2で示した照明装置300と同様、処理室257では、図14(B)のように基板101の裏面にマイクロレンズを具備した光学シート363を貼り付けても良いし、図14(C)のようにコンバータ365を導電材367を用いて実装してもよい。
以上のような工程により作製された照明装置は、消費電力効率及び発光効率の極めて高い照明装置とすることが出来る。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせて実施することが出来る。
100 成膜装置
101 基板
103 蒸着源群
105 防着板
107 ロード室
109 アンロード室
111 蒸着源
113 蒸着源
115 駆動部
117 回転軸
119 ステージホルダ
121 基板ステージ
123 マスク
125 駆動部
127 回転軸
129 テーブル
131 搬送ロボット
133 ステージホルダ
135 ガイドレール
137 ガイド
139 搬送手段
141 坩堝
143 ヒータ
145 成膜材料
147 材料供給部
149 装填部
151 押出部
161 薄膜
163 第1の電極
165 第2の電極
167 ゲスト材料
169 ホスト材料
200 発光素子
201 第1発光ユニット
203 第2発光ユニット
205 絶縁層
207 第1電極層
209 第1ホール注入層
211 第1ホール輸送層
213 第1発光層
215 第1電子輸送層
217 第1電子注入層
219 第1中間層
221 第2中間層
223 第2ホール注入層
225 第2ホール輸送層
227 第2発光層
229 第2電子輸送層
231 第2電子注入層
233 第2電極層
251 ロード室
253 アンロード室
255 成膜室
257 処理室
261 ターゲット
263 防着板
265 ヒータ
267 ゲートバルブ
269 排気手段
271 ガス導入手段
273 マスク
281 レーザ処理室
283 レーザ処理室
285 成膜室
287 レーザ処理室
291 レーザ照射装置
293 ゲートバルブ
295 排気手段
297 ガス導入手段
300 照明装置
301 下部電極
303 発光ユニット
305 上部電極
307 シール材
309 乾燥材
311 封止部材
313 光学シート
315 コンバータ
317 導電材
350 照明装置
351 下部電極
353 発光ユニット
355 上部電極
357 シール材
359 乾燥材
361 封止部材
363 光学シート
365 コンバータ
367 導電材

Claims (6)

  1. 回転軸と、
    前記回転軸を中心に放射状に配置された複数の蒸着源群と、
    前記複数の蒸着源群対向可能に基板を保持する基板支持部と、
    前記複数の蒸着源群を、前記回転軸を中心に回転させる第1の駆動部と、
    前記基板支持部を、前記回転軸を中心に回転させる第2の駆動部と、
    を有し、
    前記複数の蒸着源群のそれぞれは、前記回転軸に対して半径方向に並べて配置された複数の蒸着源を有する、成膜装置。
  2. 請求項1において、
    前記回転軸は、前記基板支持部に保持される基板の外側に位置する、成膜装置。
  3. 請求項1または請求項2において、
    前記基板支持部は、複数の基板を保持可能であり、
    前記基板支持部は、前記複数の基板を等間隔になるように配置できる、成膜装置。
  4. 請求項1または請求項2において
    前記基板支持部は、複数の基板を保持可能であり、
    前記基板支持部は、前記複数の基板を前記回転軸に対して対称に配置できる、成膜装置。
  5. 請求項1乃至請求項4のいずれか一において
    前記複数の蒸着源の回転する方向と、前記基板支持部の回転する方向とは、逆向きである、成膜装置。
  6. 請求項1乃至請求項5のいずれか一において、
    前記複数の蒸着源群のは、前記基板に第1の成膜材料を被着させ、
    前記複数の蒸着源群の他のは、前記基板に第2の成膜材料を被着させる、成膜装置。
JP2010259198A 2010-11-19 2010-11-19 成膜装置 Expired - Fee Related JP5715802B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010259198A JP5715802B2 (ja) 2010-11-19 2010-11-19 成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259198A JP5715802B2 (ja) 2010-11-19 2010-11-19 成膜装置

Publications (2)

Publication Number Publication Date
JP2012111977A JP2012111977A (ja) 2012-06-14
JP5715802B2 true JP5715802B2 (ja) 2015-05-13

Family

ID=46496517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259198A Expired - Fee Related JP5715802B2 (ja) 2010-11-19 2010-11-19 成膜装置

Country Status (1)

Country Link
JP (1) JP5715802B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6302786B2 (ja) * 2014-08-01 2018-03-28 シャープ株式会社 蒸着装置、蒸着方法、及び有機el素子の製造方法
CN109023246B (zh) * 2017-12-08 2020-08-14 深圳龙图腾创新设计有限公司 一种高效oled蒸镀设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274756A (ja) * 1987-04-28 1988-11-11 Toda Kogyo Corp 真空蒸着多層薄膜形成装置
JP4469430B2 (ja) * 1998-11-30 2010-05-26 株式会社アルバック 蒸着装置
JP2004269948A (ja) * 2003-03-07 2004-09-30 Sony Corp 成膜装置、成膜方法および表示装置の製造方法
KR100637180B1 (ko) * 2004-11-05 2006-10-23 삼성에스디아이 주식회사 증착 방법 및 이를 위한 증착 장치
JP2006332031A (ja) * 2005-04-28 2006-12-07 Semiconductor Energy Lab Co Ltd 発光装置及びその作製方法
KR100784953B1 (ko) * 2006-05-23 2007-12-11 세메스 주식회사 다수의 도가니를 이용한 유기발광소자 박막 제작을 위한선형증발원
KR20080007820A (ko) * 2006-07-18 2008-01-23 세메스 주식회사 박막 증착용 회전 증착원 및 이를 이용하는 박막 증착 장치
US20100247747A1 (en) * 2009-03-27 2010-09-30 Semiconductor Energy Laboratory Co., Ltd. Film Deposition Apparatus, Method for Depositing Film, and Method for Manufacturing Lighting Device

Also Published As

Publication number Publication date
JP2012111977A (ja) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5568729B2 (ja) 成膜装置および成膜方法
KR102113581B1 (ko) 증착 장치, 그 방법 및 이를 이용한 양자점층 형성 방법
JP5417236B2 (ja) 照明装置の作製方法
EP1113087B1 (en) Film formation apparatus and method for forming a film
KR101223489B1 (ko) 기판 가공 장치
JP5710734B2 (ja) 蒸着粒子射出装置および蒸着装置
JP2006057173A (ja) 成膜源、真空成膜装置、有機elパネルの製造方法
KR101983213B1 (ko) 유기 재료를 위한 증발 소스
WO2015139777A1 (en) Evaporation source for organic material
CN103385035A (zh) 蒸镀颗粒射出装置和蒸镀装置以及蒸镀方法
JP5715802B2 (ja) 成膜装置
WO2012133201A1 (ja) 蒸着粒子射出装置、蒸着粒子射出方法および蒸着装置
KR101925064B1 (ko) 면증발원을 이용한 고해상도 amoled 소자의 양산장비
JP2014015637A (ja) 蒸着装置
TWI692137B (zh) 連續式製造系統、連續式製造方法、有機膜裝置、施體基板組
WO2012081625A1 (ja) 有機el装置の製造方法、有機el装置の製造装置、光電変換装置の製造方法及び光電変換装置の製造装置
KR100695271B1 (ko) 대면적 oled기판의 패턴형성방법
KR100666534B1 (ko) 레이져 전사방법을 사용하는 대면적 유기박막 증착장치
JP5836974B2 (ja) 表示デバイス製造装置、表示デバイスの製造方法
TW201416470A (zh) 汽相沉積裝置、汽相沉積方法、有機電致發光顯示器及有機電致發光照明裝置
JP2006002218A (ja) 成膜源、成膜方法、および加熱板、ならびに有機el素子の製造方法
KR101117721B1 (ko) 박막 증착 장치 및 박막 증착 방법
KR100629476B1 (ko) 증착물질 가열장치
WO2012108363A1 (ja) 坩堝、蒸着装置、蒸着方法、有機エレクトロルミネッセンス表示装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150316

R150 Certificate of patent or registration of utility model

Ref document number: 5715802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees