JP5692636B2 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
JP5692636B2
JP5692636B2 JP2010255658A JP2010255658A JP5692636B2 JP 5692636 B2 JP5692636 B2 JP 5692636B2 JP 2010255658 A JP2010255658 A JP 2010255658A JP 2010255658 A JP2010255658 A JP 2010255658A JP 5692636 B2 JP5692636 B2 JP 5692636B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
coated
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010255658A
Other languages
English (en)
Other versions
JP2012106299A (ja
Inventor
英利 淺沼
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010255658A priority Critical patent/JP5692636B2/ja
Publication of JP2012106299A publication Critical patent/JP2012106299A/ja
Application granted granted Critical
Publication of JP5692636B2 publication Critical patent/JP5692636B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、Ti合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材を、高熱発生を伴うとともに切刃部に対して大きな機械的負荷がかかる高速条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性と耐溶着性を発揮する被覆工具に関するものである。
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またスローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
また、被覆工具としては、例えば、工具基体表面に、AlとCrの複合窒化物((Al,Cr)N)層、あるいは、これにさらに、Si、B、Y、Zr、V等(M成分で示す)を微量添加含有させたAlとCrを主成分とする複合窒化物(以下、これらを総称して、(Al,Cr,M)Nで示す)層を設けた被覆工具も知られており、特に、構成成分であるTiによって高温硬さと耐熱性、同Alによって高温強度を具備することから、前記(Al,Cr)N層あるいは(Al,Cr,M)N層がすぐれた高温強度、耐欠損性、耐摩耗性を示すことも知られている。
さらに、前記従来被覆工具が、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、装置内を、例えば、500℃の温度に加熱した状態で、硬質被覆層の組成に対応した合金がセットされたカソード電極、例えば、Al−Cr−M合金と、アノード電極との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で、工具基体表面に、(Al,Cr,M)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平9−41127号公報 特開平10−25566号公報 特開2004−106183号公報 特開2004−269985号公報 特開2005−330539号公報 特開2006−82209号公報
ところが、近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、前記従来被覆工具においては、これを、Ti合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の通常切削速度での切削加工に用いた場合には問題ないが、これらの被削材を、高い発熱をともなうとともに、切刃部に局部的に高負荷がかかる高速条件で切削した場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性が増大し、これに伴って硬質被覆層表面に対する溶着性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、高熱発生を伴う高速条件で切削した場合においてもすぐれた耐熱性および耐溶着性を発揮する被覆工具を提供することである。
そこで、本発明者らは、前述のような観点から、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の切削加工を、高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性とすぐれた耐溶着性を併せ持つ被覆工具を開発すべく、前記従来被覆工具に着目し、鋭意研究を行った結果、従来被覆超硬工具の硬質被覆層である(Al,Cr)N層あるいは(Al,Cr,M)N層を下部層として0.5〜5μmの平均層厚で形成し、これの上に上部層として、Zrとの合量に占めるYの含有割合が1〜15原子%となるようにY成分を含有させたZrとYの複合窒化物層(以下、(Zr,Y)N層で示す)を形成すると、下部層である(Al,Cr)N層あるいは(Al,Cr,M)N層は、すぐれた高温硬さ、高温強度、耐熱性を示し、また、上部層である(Zr,Y)N層はすぐれた耐溶着性を示が、特に、上部層の(Zr,Y)N層中に含有されるY成分によって、(Zr,Y)N層の高温硬さが向上することから、高熱発生を伴う切削加工においても、(Zr,Y)N層のすぐれた耐溶着性は維持され、したがって、高硬度難削材の高速切削加工において、切刃部が高温になったとしても被削材との耐溶着性にすぐれ、その結果、切刃部におけるチッピング(微少欠け)の発生が抑制され、長期に亘ってすぐれた耐摩耗性が発揮されるという新規な知見を得て、係る知見に基づき、本発明を完成するに至ったものである。
さらに、工具基体の表面に、一層平均層厚0.01〜0.1μmの(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層を蒸着形成し、この上に、Zrとの合量に占めるYの含有割合が1〜15原子%となるようにY成分を含有させたZrとYの複合窒化物層(以下、(Zr,Y)N層で示す)からなる一層平均層厚0.01〜0.1μmの(Zr,Y)N薄層を蒸着形成し、さらに、前記(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層と前記(Zr,Y)N薄層とを交互に形成し、交互積層構造からなる硬質被覆層を構成すると、前記(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層はすぐれた高温硬さ、高温強度、耐熱性を示し、また、これと交互に積層形成される(Zr,Y)N薄層はすぐれた耐溶着性を示し、特に、(Zr,Y)N薄層中に含有されるY成分によって、(Zr,Y)N薄層の耐熱性が向上することから、高熱発生を伴う切削加工においても、(Zr,Y)N薄層のすぐれた耐溶着性は維持されることを見出した。
したがって、ステンレス鋼、耐熱鋼等の難削材の高速高送り切削加工において、切刃部が高温になったとしても、(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層に不足する耐溶着性を、これと交互に積層される(Zr,Y)N薄層が補完し、硬質被覆層全体としての被削材との耐溶着性が改善され、その結果、切刃部におけるチッピング(微少欠け)の発生が防止され、長期に亘ってすぐれた耐摩耗性が発揮されることを見出し、本発明に至ったものである。

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−αCrα)N(但し、αはCrの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するAlとCrの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
(2) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Al1−αCrα)N(但し、αはCrの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するAlとCrの複合窒化物層からなる(Al,Cr)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる(Zr,Y)N薄層、
上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有することを特徴とする表面被覆切削工具。
(3) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Al1−α−βCrαβ)N(ここで、Mは、Alを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するAlとCrとMの複合窒化物層からなる下部層と、
(b)0.5〜5μmの平均層厚を有し、かつ、
組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
(4) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Al1−α−βCrαβ)N(ここで、Mは、Alを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するAlとCrとMの複合窒化物層からなる(Al,Cr,M)N薄層、
(b)0.01〜0.1μmの一層平均層厚を有し、かつ、
組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる(Zr,Y)N薄層、
上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有することを特徴とする表面被覆切削工具。」
を特徴とするものである。
つぎに、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。
(a)下部層または交互積層の一方の層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層の組成および平均層厚または一層平均膜厚:
下部層または交互積層の一方の層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層の構成成分であるCr成分には硬質被覆層における高温硬さを向上させ、同Al成分には高温強度を向上させる作用があり、さらに、M成分のうちの、Alを除く周期律表4a,5a,6a族の元素、Si、B、には硬質被覆層の耐摩耗性を向上させる作用があり、また、Yには硬質被覆層の高温耐酸化性を向上させる作用があるが、Crの割合を示すα値がAlとの合量あるいはAlとMの合量に占める割合(原子比、以下同じ)で0.45未満になると、所定の高温硬さを確保することができず、これが耐摩耗性低下の原因となり、一方、Crの割合を示すα値が同0.75を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になり、さらに、M成分の含有割合を示すβ値がAlとCrの合量に占める割合(原子比、以下同じ)で0.01未満では、M成分を含有させたことによる耐摩耗性、高温耐酸化性等の特性向上が期待できず、一方同β値が0.25を超えると、高温強度に低下傾向が現れるようになることから、α値を0.45〜0.75、β値を0.01〜0.25と定めた。
また、下部層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、前記高速切削では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
また、交互積層の一方の層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層の一層平均層厚が0.01μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その一層平均層厚が0.1μmを越えると、前記高速切削では、耐溶着性の不足が顕在化し、切刃部にチッピングが発生し易くなることから、その一層平均層厚を0.01〜0.1μmと定めた。
(b)上部層または交互積層の一方の層を構成する(Zr,Y)N層の組成および平均層厚または一層平均層厚
(Al,Cr)N層または(Al,Cr,M)N層の上部層あるいは交互積層の一方の層を構成するZrとYの複合窒化物(以下、(Zr,Y)Nと略記する)層は、所定の耐熱性、高温強度、耐溶着性を有するとともに、その構成成分であるY成分によって、すぐれた高温硬さを備えるようになり、そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐溶着性を発揮するようになるが、Yの含有割合を示すγ値がZrとの合量に占める割合(原子比、以下同じ)で0.01未満になると、耐熱性を確保することができないために耐溶着効果を期待することはできず、一方、Yの割合を示すγ値が同0.15を越えると、相対的にZrの含有割合が減少し、高硬度難削材の高速切削加工で必要とされる高温強度を確保することができないばかりか、耐溶着性も低下し、チッピング発生を防止することが困難になることから、γ値を0.01〜0.15(原子比、以下同じ)と定めた。
また、上部層を構成する(Zr,Y)N層の平均層厚が0.5μm未満では、自身のもつすぐれた耐熱性、耐溶着性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、Ti合金、Ni基耐熱合金、高硬度ステンレス鋼などの高硬度難削材の高速切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
また、交互積層の一方の層を構成する(Zr,Y)N層の一層平均層厚が0.01μm未満では、自身の持つすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その一層平均膜厚が0.1μmを越えると、前記高速高送り切削では、耐摩耗性の不足が顕在化し、切刃部にチッピングが発生しやすくなることから、その一層平均層厚を0.01〜0.1μmと定めた。
そして、前記(Al,Cr)N層あるいは(Al,Cr,M)N層、(Zr,Y)N層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、装置内に所定組成のAl−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)と、所定組成のZr−Y合金からなるカソード電極(蒸発源)とを配置し、アノード電極とAl−Cr合金あるいはAl−Cr−M合金からなるカソード電極(蒸発源)との間に、例えば、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、2Paの反応雰囲気とし、一方、前記基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することにより、(Al,Cr)N層あるいは(Al,Cr,M)層をまず下部層として蒸着形成し、その後、Zr−Y合金カソード電極とアノード電極の間に、前記同様アーク放電を発生させることにより、(Zr,Y)N層からなる上部層を蒸着形成することができる。もしくは、(Al,Cr)N層または(Al,Cr,M)層と(Zr,Y)N層との交互積層を蒸着することにより本発明の硬質被覆層を蒸着形成することができる。
本発明の被覆工具の一態様によれば、硬質被覆層を構成する下部層の(Al,Cr)N層あるいは(Al,Cr,M)N層が、すぐれた高温硬さ、耐熱性、高温強度を有し、あるいは、さらにすぐれた耐摩耗性、高温耐酸化性を有し、また、上部層の(Zr,Y)N層が、すぐれた耐熱性と耐溶着性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐溶着性を備えたものとなり、その結果、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐溶着性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。
本発明の被覆工具の別の態様によれば、交互積層構造からなる硬質被覆層を(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層が、すぐれた高温硬さ、耐熱性、高温強度を有し、あるいは、さらにすぐれた耐摩耗性、高温耐酸化性を有し、また、(Zr,Y)N層が、すぐれた耐熱性と耐溶着性を兼ね備えていることから、硬質被覆層は全体として、すぐれた高温硬さ、耐熱性、高温強度等に加え、すぐれた耐溶着性を備えたものとなり、その結果、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、すぐれた耐溶着性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。
本発明被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。 比較被覆工具を構成する硬質被覆層を形成するのに用いた従来のアークイオンプレーティング装置の概略説明図である。
つぎに、本発明の被覆工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。
(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方にはカソード電極(蒸発源)として所定組成の下部層形成用のAl−Cr合金あるいはAl−Cr−M合金を配置し、また、その他方にはカソード電極(蒸発源)として所定組成の上部層形成用のZr−Y合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつ、カソード電極の前記下部層形成用Al−Cr−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることにより、工具基体表面を前記Al−Cr合金あるいはAl−Cr−M合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Cr合金あるいはAl−Cr−M合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表3、表4に示される目標組成、目標層厚の下部層としての(Al,Cr)N層あるいは(Al,Cr,M)N層を0.5〜5μmの平均層厚で蒸着形成した後、前記Al−Cr合金あるいはAl−Cr−M合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるZr−Y合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3、表4に示される目標組成および目標層厚の(Zr,Y)N層を蒸着形成し、
前記(a)〜(d)により硬質被覆層を蒸着形成し、本発明被覆工具としての表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)1〜24をそれぞれ製造した。
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のAl−Cr合金あるいはAl−Cr−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつ、カソード電極のAl−Cr合金あるいはAl−Cr−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、工具基体表面を前記Al−Cr合金あるいはAl−Cr−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させることによって、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5、表6に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)1〜14をそれぞれ製造した。
つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜24および比較被覆チップ1〜14について、
被削材:Ti−6Al−4V合金(HB400)の丸棒、
切削速度: 40m/min.、
切り込み: 2mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件A)でのTi合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.15mm/rev.)、
被削材:JIS・SUS630(HB370)の丸棒、
切削速度: 110m/min.、
切り込み: 3mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件B)での高硬度ステンレス鋼の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、90m/min.、0.2mm/rev.)、
被削材:Ni−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB450)の丸棒、
切削速度: 45m/min.、
切り込み: 3mm、
送り: 0.15mm/rev.、
切削時間: 5分、
の条件(切削条件C)でのNi基耐熱合金の湿式連続高速切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.15mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7、表8に示した。
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。
ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層、および、同じく表9に示される目標組成および目標層厚の(Zr,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜15をそれぞれ製造した。
また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表10に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜8をそれぞれ製造した。
つぎに、本発明被覆エンドミル1〜15および比較被覆エンドミル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB400)の板材、
切削速度: 45m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 90mm/分、
の条件(切削条件D)でのTi合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、80mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630(HB370)の板材、
切削速度: 120m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 200mm/分、
の条件(切削条件D)での高硬度ステンレス鋼の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、90m/min.、200mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB450)の板材、
切削速度: 45m/min.、
溝深さ(切り込み):15mm、
テーブル送り: 90mm/分、
の条件(切削条件D)でのNi基耐熱合金の湿式高速溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、80mm/分)、
をそれぞれ行い、いずれの高速溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、表10にそれぞれ示した。
Figure 0005692636
Figure 0005692636
実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。
ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表11に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層、および同じく表11に示される目標組成および目標層厚の(Zr,Y)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜15をそれぞれ製造した。
また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表12に示される目標組成および目標層厚を有する(Al,Cr)N層あるいは(Al,Cr,M)N層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜8をそれぞれ製造した。
つぎに、本発明被覆ドリル1〜15および比較被覆ドリル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V合金(HB400)の板材、
切削速度: 45m/min.、
送り: 0.1mm/rev、
穴深さ: 5mm、
の条件(切削条件G)でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.1mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630(HB370)の板材、
切削速度: 80m/min.、
送り: 0.2mm/rev、
穴深さ: 5mm、
の条件(切削条件H)での高硬度ステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、60m/min.、0.15mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB450)の板材、
切削速度: 45m/min.、
送り: 0.1mm/rev、
穴深さ: 5mm、
の条件(切削条件I)でのNi基耐熱合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.1mm/rev.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11、表12にそれぞれ示した。
Figure 0005692636
Figure 0005692636
この結果得られた本発明被覆工具としての本発明被覆チップ1〜24、本発明被覆エンドミル1〜15、および本発明被覆ドリル1〜15の硬質被覆層を構成する(Al,Cr)N層あるいは(Al,Cr,M)N層(下部層)および(Zr,Y)N層(上部層)の組成、並びに、比較被覆工具としての比較被覆チップ1〜14、比較被覆エンドミル1〜8、および比較被覆ドリル1〜8の(Al,Cr)N層あるいは(Al,Cr,M)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
表7〜12に示される結果から、本発明被覆工具は、いずれも特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の高速切削加工でも、硬質被覆層の下部層である(Al,Cr)N層あるいは(Al,Cr,M)N層が工具基体表面に強固に密着接合した状態で、すぐれた高温硬さ、耐熱性、高温強度、あるいは、これに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有し、かつ、耐熱性にすぐれた(Zr,Y)N層からなる上部層によって、前記被削材および切粉との間のすぐれた耐溶着性が確保されていることによって、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Cr)N層あるいは(Al,Cr,M)N層で構成され、(Nb,Y)N層を備えない比較被覆工具においては、いずれも前記被削材の高速切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。
(a)ついで、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで相対向する両側にカソード電極(蒸発源)を配置し、その一方にはカソード電極(蒸発源)として所定組成のAl−Cr合金あるいはAl−Cr−M合金を配置し、また、その他方にはカソード電極(蒸発源)として所定組成のZr−Y合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Al−Cr合金あるいはAl−Cr−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、前記工具基体表面をAl−Cr合金あるいはAl−Cr−M合金によってボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Al−Cr合金あるいはAl−Cr−M合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表13、表14に示される目標組成、一層目標層厚の(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層を蒸着形成した後、前記Al−Cr合金あるいはAl−Cr−M合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
(d)引き続いて装置内雰囲気を2Paの窒素雰囲気に保持したままで、カソード電極(蒸発源)であるZr−Y合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表13、表14に示される目標組成、一層目標層厚の(Zr,Y)N薄層を蒸着形成し、
前記(c)、(d)の操作を、所定の合計平均層厚になるまで繰り返し行って硬質被覆層を蒸着形成し、本発明被覆工具としての本発明表面被覆スローアウエイチップ(以下、本発明被覆チップと云う)25〜48をそれぞれ製造した。
また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として所定組成のAl−Cr合金あるいはAl−Cr−M合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極のAl−Cr合金あるいはAl−Cr−M合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、前記工具基体表面をAl−Cr合金あるいはAl−Cr−M合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記所定組成の各カソード電極とアノード電極との間にアーク放電を発生させ、前記工具基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表15、表16に示される目標組成および目標層厚の(Al,Cr)N層あるいは(Al,Cr,M)N層で構成された硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆スローアウエイチップ(以下、比較被覆チップと云う)15〜30をそれぞれ製造した。
つぎに、前記各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ25〜48および比較被覆チップ15〜30について、
被削材:Ti−6Al−4V(HB350)の丸棒、
切削速度: 60m/min.、
切り込み: 2.0mm、
送り: 0.2mm/rev.、
切削時間: 5分、
の条件(切削条件a)でのTi合金の湿式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.15mm/rev.)、
被削材:JIS・SUS630(HB400)の丸棒、
切削速度: 120m/min.、
切り込み: 2.0mm、
送り: 0.25mm/rev.、
切削時間: 5分、
の条件(切削条件b)でのステンレス鋼の湿式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、85m/min.、0.2mm/rev.)、
被削材:Ni−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB400)の丸棒、
切削速度: 60m/min.、
切り込み: 20mm、
送り: 0.20mm/rev.、
切削時間: 5分、
の条件(切削条件c)でのNi基耐熱合金の湿式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.15mm/rev.)、
を行い、いずれの高速高送り切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表17、表18に示した。
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
Figure 0005692636
実施例4と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−10をそれぞれ製造した。
ついで、これらの工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例4と同一の条件で、表19に示される目標組成および一層目標層厚の(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層、および、同じく表19に示される目標組成および一層目標層厚の(Zr,Y)N薄層の交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)16〜30をそれぞれ製造した。
また、比較の目的で、前記工具基体(エンドミル)A−1〜A−10の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例4と同一の条件で、表20に示される目標組成および目標層厚の(Al,Cr)N薄層あるいは(Al,Cr,M)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)9〜16をそれぞれ製造した。
つぎに、前記本発明被覆エンドミル16〜30および比較被覆エンドミル9〜16について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V(HB350)の板材、
切削速度: 65m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 110mm/分、
の条件(切削条件d)でのTi合金の湿式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、80mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630(HB400)の板材、
切削速度: 120m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 240mm/分、
の条件(切削条件e)でのステンレス鋼の湿式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、85m/min.、200mm/分)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB400)の板材、
切削速度: 60m/min.、
溝深さ(切り込み): 15mm、
テーブル送り: 110mm/分、
の条件(切削条件f)でのNi基耐熱合金の湿式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、80mm/分)、
をそれぞれ行い、いずれの高速高送り溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表19、表20にそれぞれ示した。
Figure 0005692636
Figure 0005692636
前記の実施例4で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−10をそれぞれ製造した。
ついで、これらの工具基体(ドリル)A−1〜A−10の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表21に示される目標組成および一層目標層厚の(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層、および、同じく表21に示される目標組成および一層目標層厚の(Zr,Y)N薄層の交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)16〜30をそれぞれ製造した。
また、比較の目的で、前記工具基体(ドリル)A−1〜A−10の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、表22に示される目標組成および目標層厚を有する(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層からなる硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)9〜16をそれぞれ製造した。
つぎに、前記本発明被覆ドリル16〜30および比較被覆ドリル9〜16について、
被削材−平面寸法:100mm×250mm、厚さ:50mmのTi−6Al−4V(HB350)の板材、
切削速度: 50m/min.、
送り: 0.20mm/rev、
穴深さ: 5mm、
の条件(切削条件g)でのTi合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.1mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS630(HB400)の板材、
切削速度: 80m/min.、
送り: 0.25mm/rev、
穴深さ: 5mm、
の条件(切削条件h)でのステンレス鋼の湿式高速高送り穴あけ切削加工試験((通常の切削速度および送りは、それぞれ、55m/min.、0.15mm/rev.)、
被削材−平面寸法:100mm×250mm、厚さ:50mmのNi−18Cr−3Mo−18.5Fe−0.9Ti−1.0(Nb+Ta)−0.5Al(HB400)の板材、
切削速度: 50m/min.、
送り: 0.2mm/rev、
穴深さ: 5mm、
の条件(切削条件i)でのNi基耐熱合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.1mm/rev.)、
をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表21、表22にそれぞれ示した。
Figure 0005692636
Figure 0005692636
この結果得られた本発明被覆工具としての本発明被覆チップ25〜48、本発明被覆エンドミル16〜30、および本発明被覆ドリル16〜30の硬質被覆層を構成する(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層および(Zr,Y)N薄層の組成、並びに、比較被覆工具としての比較被覆チップ15〜30、比較被覆エンドミル9〜16、および比較被覆ドリル9〜16の(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
表17〜22に示される結果から、本発明被覆工具は、いずれも特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金等の高硬度難削材の、大きな発熱をともない、かつ、高負荷のかかる高速高送り切削加工でも、硬質被覆層の交互積層構造を構成する(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層が、すぐれた高温硬さ、耐熱性、高温強度、あるいは、これに加えてさらにすぐれた耐摩耗性、高温耐酸化性を有し、同じく交互積層構造を構成する(Zr,Y)N薄層が耐熱性にすぐれ、高温条件下でも前記被削材および切粉との間のすぐれた耐溶着性を保持し、その結果、(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層に不足する耐溶着性が、これに交互に積層される(Zr,Y)N薄層により補完されることによって、硬質被覆層全体として、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Cr)N薄層あるいは(Al,Cr,M)N薄層で構成され、(Zr,Y)N層を備えない比較被覆工具においては、いずれも前記被削材の高速高送り切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。
前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特にTi合金、高硬度ステンレス鋼、Ni基耐熱合金などの高硬度難削材の高速切削加工でもすぐれた耐摩耗性と耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

Claims (4)

  1. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
    前記硬質被覆層が、
    (a)0.5〜5μmの平均層厚を有し、かつ、
    組成式:(Al1−αCrα)N(但し、αはCrの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するAlとCrの複合窒化物層からなる下部層と、
    (b)0.5〜5μmの平均層厚を有し、かつ、
    組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
  2. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
    前記硬質被覆層が、
    (a)0.01〜0.1μmの一層平均層厚を有し、かつ、
    組成式:(Al1−αCrα)N(但し、αはCrの含有割合を示し、原子比で、0.45≦α≦0.75である)を満足するAlとCrの複合窒化物層からなる(Al,Cr)N薄層、
    (b)0.01〜0.1μmの一層平均層厚を有し、かつ、
    組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる(Zr,Y)N薄層、
    上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有することを特徴とする表面被覆切削工具。
  3. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
    前記硬質被覆層が、
    (a)0.5〜5μmの平均層厚を有し、かつ、
    組成式:(Al1−α−βCrαβ)N(ここで、Mは、Alを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するAlとCrとMの複合窒化物層からなる下部層と、
    (b)0.5〜5μmの平均層厚を有し、かつ、
    組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる上部層とから構成されていることを特徴とする表面被覆切削工具。
  4. 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
    前記硬質被覆層が、
    (a)0.01〜0.1μmの一層平均層厚を有し、かつ、
    組成式:(Al1−α−βCrαβ)N(ここで、Mは、Alを除く周期律表4a,5a,6a族の元素、Si、B、Yのうちから選ばれた1種又は2種以上の添加成分を示し、また、αはCrの含有割合、βはMの含有割合をそれぞれ示し、原子比で、0.45≦α≦0.75、0.01≦β≦0.25である)を満足するAlとCrとMの複合窒化物層からなる(Al,Cr,M)N薄層、
    (b)0.01〜0.1μmの一層平均層厚を有し、かつ、
    組成式:(Zr1−γγ)N(但し、γはYの含有割合を示し、原子比で、0.01≦γ≦0.15である)を満足するZrとYの複合窒化物層からなる(Zr,Y)N薄層、
    上記(a)、(b)の交互積層からなり、1〜5μmの合計平均層厚を有することを特徴とする表面被覆切削工具。
JP2010255658A 2010-11-16 2010-11-16 表面被覆切削工具 Expired - Fee Related JP5692636B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010255658A JP5692636B2 (ja) 2010-11-16 2010-11-16 表面被覆切削工具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010255658A JP5692636B2 (ja) 2010-11-16 2010-11-16 表面被覆切削工具

Publications (2)

Publication Number Publication Date
JP2012106299A JP2012106299A (ja) 2012-06-07
JP5692636B2 true JP5692636B2 (ja) 2015-04-01

Family

ID=46492507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010255658A Expired - Fee Related JP5692636B2 (ja) 2010-11-16 2010-11-16 表面被覆切削工具

Country Status (1)

Country Link
JP (1) JP5692636B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682293B (zh) * 2018-12-05 2020-05-19 东南大学 带肋筋材增强水泥基复合材料结构保护层厚度的确定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712241B2 (ja) * 1995-01-20 2005-11-02 日立ツール株式会社 被覆切削工具・被覆耐摩耗工具
JP4375527B2 (ja) * 2003-05-19 2009-12-02 三菱マテリアル株式会社 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
DE102004010285A1 (de) * 2004-03-03 2005-09-29 Walter Ag Beschichtung für ein Schneidwerkzeug sowie Herstellungsverfahren
JP4645821B2 (ja) * 2005-04-08 2011-03-09 三菱マテリアル株式会社 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5138892B2 (ja) * 2006-01-20 2013-02-06 株式会社神戸製鋼所 硬質皮膜
JP2008240079A (ja) * 2007-03-28 2008-10-09 Tungaloy Corp 被覆部材
JP5180221B2 (ja) * 2007-09-20 2013-04-10 オーエスジー株式会社 硬質積層被膜、硬質積層被膜被覆工具、および被膜形成方法
JP2009119551A (ja) * 2007-11-14 2009-06-04 Mitsubishi Materials Corp 高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2009119550A (ja) * 2007-11-14 2009-06-04 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2009255233A (ja) * 2008-04-17 2009-11-05 Mitsubishi Materials Corp 表面被覆切削工具
JP5234499B2 (ja) * 2008-05-28 2013-07-10 三菱マテリアル株式会社 高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Also Published As

Publication number Publication date
JP2012106299A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
JP2009101491A (ja) 高速切削加工で硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具
JP5488824B2 (ja) 硬質難削材の高速切削加工で硬質被覆層がすぐれた耐剥離性とすぐれた耐摩耗性を発揮する表面被覆切削工具
JP2014079834A (ja) 表面被覆切削工具
JP5783462B2 (ja) 表面被覆切削工具
JP2009119551A (ja) 高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5196122B2 (ja) 表面被覆切削工具
JP5234499B2 (ja) 高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2011240438A (ja) 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP5975214B2 (ja) 表面被覆切削工具
JP5692636B2 (ja) 表面被覆切削工具
JP4697662B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP5234332B2 (ja) 高速高送り切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2011240436A (ja) 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP5975338B2 (ja) 表面被覆切削工具
JP6102653B2 (ja) 表面被覆切削工具
JP5686254B2 (ja) 表面被覆切削工具
JP5796354B2 (ja) 耐熱性および耐溶着性に優れた表面被覆切削工具
JP2011177800A (ja) 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP2011240437A (ja) 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP2007313582A (ja) 難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2012143851A (ja) 表面被覆切削工具
JP5692635B2 (ja) 表面被覆切削工具
JP2011173176A (ja) 耐熱性および耐溶着性にすぐれた表面被覆切削工具
JP5688685B2 (ja) 表面被覆切削工具
JP5688686B2 (ja) 表面被覆切削工具

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150122

R150 Certificate of patent or registration of utility model

Ref document number: 5692636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees