JP5691813B2 - 4軸アライメントステージの原点位置設定方法 - Google Patents

4軸アライメントステージの原点位置設定方法 Download PDF

Info

Publication number
JP5691813B2
JP5691813B2 JP2011105162A JP2011105162A JP5691813B2 JP 5691813 B2 JP5691813 B2 JP 5691813B2 JP 2011105162 A JP2011105162 A JP 2011105162A JP 2011105162 A JP2011105162 A JP 2011105162A JP 5691813 B2 JP5691813 B2 JP 5691813B2
Authority
JP
Japan
Prior art keywords
servo
drive unit
linear motion
drive
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011105162A
Other languages
English (en)
Other versions
JP2012238078A (ja
Inventor
雄一朗 中山
雄一朗 中山
中村 恵子
恵子 中村
研吾 松尾
研吾 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011105162A priority Critical patent/JP5691813B2/ja
Publication of JP2012238078A publication Critical patent/JP2012238078A/ja
Application granted granted Critical
Publication of JP5691813B2 publication Critical patent/JP5691813B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、アライメント対象物のXY直交座標平面における配置と、回転角度θの位置決めに使用される4軸アライメントステージについて、4軸制御状態での原点復帰を実施するときの原点位置を定めるために用いる4軸アライメントステージの原点位置設定方法に関するものである。
近年、金属蒸着膜のエッチング等による微細加工に代えて、導電性ペーストを印刷用のインクとして用いた印刷技術、たとえば、凹版オフセット印刷技術を用いて基板上に液晶ディスプレイ等の画像表示素子の電子回路を印刷して形成する手法が提案されてきている。
上記画像表示素子の電子回路を基板に形成する場合は、電極となる線幅として、たとえば、10μm程度と微細なものが要求されることがある。更に、基板上に複数の電子回路を重ね合わせて形成するために、たとえば、線幅を10μm程度とするような精密な電子回路の重ね刷りを行う場合は、重ね合わせる印刷位置の位置ずれを数μmからサブμmオーダーに抑えることが必要とされることもある。
したがって、この種の微細な電子回路を印刷するために用いるオフセット印刷装置には、高い印刷精度が要求されるため、版と基板の位置及び姿勢について、XY直交座標平面における配置と、回転角度θを合わせるXYθの3自由度についての位置決めを行うアライメントステージ(アライメント機構)が必要になる。
更に、上記オフセット印刷処理を行う際には、上記版や印刷対象としての基板に対して、回転するブランケットロールを或る印圧(接触圧力)を付与した状態で接触させるようにしてあるため、該版や印刷対象を保持して位置及び姿勢を合わせるために用いるアライメントステージには、上記ブランケットロールより版や基板の面内に部分的に付与される印圧の荷重が、移動荷重として作用するようになる。
そのために、上記微細な電子回路を印刷するためのオフセット印刷装置にて版や印刷対象である基板を載置してそのXYθの3自由度についての位置決めを行うために用いるアライメントステージには、所望される印刷精度に対応した高い位置決め精度が必要とされると同時に、オフセット印刷時にブランケットロールより版や基板に対して付与する印圧に伴って作用する移動荷重に耐えるための高い位置決め剛性も必要とされる。
しかし、従来、XYθの3自由度の位置決めに一般的に用いられるアライメントステージは、上記3自由度に対応して3つの駆動軸を備えているが、たとえば、XY直交座標平面におけるX軸方向に2つの駆動軸を配置し、残る1つの駆動軸をY軸方向に配置した形式としてあるため、X軸方向とY軸方向とでは駆動軸の数が異なることに起因して位置決め精度及び位置決め剛性が不均等になり、そのため、アライメントステージ全体での位置決め精度及び位置決め剛性をあまり高めることができないというのが実状である。
そこで、XYθの3自由度についての位置決め精度及び位置決め剛性の向上化を図ることが可能なアライメントステージとして、XY直交座標平面に、X軸方向に配置した2つの駆動軸と、Y軸方向に配置した2つの駆動軸とを備えて、4軸形式としてなるアライメントステージ(4軸XYθテーブル)が従来提案されている(たとえば、特許文献1参照)。
ところで、一般に、アライメントステージは、各駆動軸の駆動モータ(サーボモータ)に設けてあるモータエンコーダで該各駆動軸毎の制御位置の検出を行うようにしてあり、このモータエンコーダとしては、通常、インクリメンタルエンコーダが使用されているため、該アライメントステージの起動時(電源投入時)には、各駆動軸の原点復帰動作を行う必要がある。
そのために、上記特許文献1では、上記4軸形式のアライメントステージについての原点復帰を行う手法として、該アライメントステージにおける4つの駆動軸のうち、1つの駆動軸について駆動モータをサーボオフ又は動力伝達手段を切り離して制御を解除し、残る3つの駆動軸のみの駆動モータをサーボオンさせた3軸制御状態で、予め設定してある原点位置に基づいて原点復帰動作を行い、その後、上記制御解除状態としてあった第4の駆動軸については、上記3軸制御状態での原点復帰動作に追従して該第4の駆動軸が受動的に動作させられた位置を基準として、原点調整を行うようにする手法が提案されている。
又、4軸形式のアライメントステージにおける原点復帰を行う別の手法としては、すべての駆動軸の制御を切った状態で、4つの駆動軸によりXYθの3自由度が制御される上部プレート(テーブル)、又は、各駆動軸を、原点位置との差が予め求めてある或る基準位置まで手動で動かして該基準位置に機械的な固定機構を用いて一旦固定することにより、上記各駆動軸をそれぞれの基準位置に配置させ、その後、該基準位置に配置されている状態の上記各駆動軸について、上記既知となっている原点位置との差を基に、原点復帰を行わせるようにする手法が提案されている(たとえば、特許文献2参照)。
特許第3604686号公報 特許第4525751号方向
ところが、上記4軸形式のアライメントステージでは、XY直交座標平面における配置と、回転角度θによるXYθの3自由度しかないところに、4つの駆動軸が設けてあるために、該4つの駆動軸を同時制御して予め設定してある或る原点位置を目標として原点復帰動作を行おうとすると、各駆動軸にそれぞれ位置決め精度の誤差があることに起因して、該各駆動軸同士による機械的な姿勢の相互干渉が生じてしまう。
その結果、4つの駆動軸の間には、互いに押し引きし合う内力が発生し、上記各駆動軸によりXYθの3自由度が制御される上部プレートを同一位置(XY座標位置)、同一姿勢(回転角度θ)に保持するだけで各駆動軸の推力(トルク)が必要になってしまう。
更に、部品や組み立ての精度によっては、上記4つの駆動軸が、互いの機械的な姿勢の干渉に伴う位置ずれを補正するようにそれぞれサーボ制御されることに伴って、4つの駆動軸の間で発生する内力が該各駆動軸の駆動モータの定格推力の殆どを利用するようになる虞もあり、その場合には、トルクが許容設定値を超えるようなエラーが生じる虞がある。また、4つの駆動軸の間での力が時間遅れをもって干渉しあう事により、フィードバック制御するタイミングが機械的にずらされてしまい、発振現象が生じる虞もある。
そのために、特許文献1に示された4軸アライメントステージの原点復帰手法では、4つの駆動軸のうち、1つの駆動軸の制御を解除した3軸制御状態で、所定の目標位置に対する原点復帰動作を行うようにし、その後、制御解除してあった第4の駆動軸についての原点調整を行うようにすることによって、上記したような4軸制御状態での原点復帰動作を行う場合に生じる各駆動軸同士での機械的な姿勢の相互干渉を回避するようにしてある。
しかし、上記4軸形式のアライメントステージにおける各駆動軸では、駆動モータと制御位置との間に介在しているボールねじ等の動力伝達手段の剛性が必ずしも高くない。
そのために、上記特許文献1に示された手法のように、4軸アライメントステージにて、先ず3つの駆動軸により、該各駆動軸の駆動モータに装備してあるモータエンコーダで検出される制御位置をそれぞれ所定の原点位置に一致させるよう原点復帰動作を行っても、制御解除状態としてある第4の駆動軸が上記3つの駆動軸の原点復帰動作に追従して受動的に動作させられる先の位置には、上記したように駆動軸における動力伝達手段の剛性が必ずしも高くないことに起因して上記3つの駆動軸でそれぞれ生じる制御位置の誤差が複合して含まれるようになってしまう。そのため、上記3つの駆動軸の原点復帰動作を実施した時点での上記第4の駆動軸の受動的な動作位置は、必ずしも機械として理想的な位置に最後まで確実に移動するとは限らない。よって、上記3つの駆動軸の原点復帰動作を実施した時点で上記第4の駆動軸が受動的に動作した現在位置を、該第4の駆動軸の原点位置にそのまま定めて原点調整を行うようにしても、該第4の駆動軸の原点位置を最適な位置に定めることができない可能性があり、この第4の駆動軸の原点位置が最適位置とならない場合、その後の4軸形式のアライメントステージを使用する際の4軸制御を高精度で行うことが困難になってしまう。
又、上記特許文献に2に示された4軸アライメントステージの原点復帰方法では、4つの駆動軸、又は、該各駆動軸によりXYθの3自由度が制御される上部プレートの位置を、或る位置に機械的に固定して原点復帰のための基準とするようにしてあるが、たとえば、この機械的な固定手段として用いるねじと、該ねじを挿通させるねじ挿通孔との間のクリアランスをゼロにすることはできないため、このような機械的補正手段では、前述したような微細な電子回路を印刷するために用いるオフセット印刷装置で要求される、たとえば、印刷位置の位置ずれを数μmからサブμmオーダーに抑えるような高い位置決め精度を得ることはできないというのが実状である。
そこで、本発明は、4つの駆動軸を備えてXYθの3自由度の制御を行うようにしてある4軸アライメントステージについて、4軸制御による原点復帰処理を、各駆動軸同士の間の機械的な姿勢の相互干渉を抑えた状態で実現できるようにするための原点位置を定めるために用いる4軸アライメントステージの原点位置設定方法を提供しようとするものである。
本発明は、上記課題を解決するために、請求項1に対応して、ベースと、該ベースの上方位置に配置した上部プレートとの間に、X、Y、θの3自由度を備えたXYθガイドの被駆動部に一軸方向のサーボ式直動機構を取り付けた構成を有する駆動ユニットを、直交する2軸方向に2台ずつ駆動ユニットの駆動方向を揃えた姿勢で取り付けてなる構成を備えた4軸アライメントステージにて、上記各駆動ユニットに予め設定した仮の原点位置を基準として、上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行い、次に、この4軸制御の原点復帰動作状態から上記各駆動ユニットのサーボ式直動機構を全軸同時サーボオフして、該全軸同時サーボオフの直後に該各駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量を外部移動量計測器でそれぞれ計測すると共に記録し、次いで、上記各駆動ユニット毎に計測された移動量の計測値をそれぞれの補正量として該各駆動ユニットの仮の原点位置を補正して更新し、その後、上記更新された仮の原点位置を基準とする上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行うステップと、該原点復帰動作状態からの上記各駆動ユニットのサーボ式直動機構の全軸同時サーボオフするステップと、該全軸同時サーボオフの直後に該各駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量の計測及び記録を行うステップと、該移動量の計測値を補正量とする各駆動ユニットの仮の原点位置の補正による更新を行うステップを備えた処理サイクルを、上記原点復帰動作状態からの全軸同時サーボオフの直後に各駆動ユニットのXYθガイドの被駆動部に生じる移動量が収束するまで繰り返して行い、該移動量が収束したときの上記各駆動ユニットの仮の原点位置を、上記4軸アライメントステージにおける各駆動ユニットの原点復帰動作用の原点位置として定めるようにする4軸アライメントステージの原点位置設定方法とする。
又、請求項2に対応して、ベースと、該ベースの上方位置に配置した上部プレートとの間に、X、Y、θの3自由度を備えたXYθガイドの被駆動部に一軸方向のサーボ式直動機構を取り付けた構成を有する駆動ユニットを、直交する2軸方向に2台ずつ駆動ユニットの駆動方向を揃えた姿勢で取り付けてなる構成を備えた4軸アライメントステージにて、上記各駆動ユニットに予め設定した仮の原点位置を基準として、上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行い、次に、この4軸制御の原点復帰動作状態から、上記4台の駆動ユニットのうち、サーボオフ操作対象とする1台乃至3台の駆動ユニットのサーボ式直動機構をサーボオフして、該サーボオフの直後にサーボオフ操作対象の駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量を外部移動量計測器でそれぞれ計測すると共に記録し、次いで、上記サーボオフ操作対象の駆動ユニットについて計測された移動量の計測値を補正量として対応するサーボオフ操作対象の駆動ユニットの仮の原点位置を補正して更新し、その後、上記サーボオフ操作対象の駆動ユニットのサーボ直動機構による上記更新された仮の原点位置を基準とする原点復帰動作、及び、サーボオフ操作対象以外の駆動ユニットのサーボ式直動機構による当初の仮の原点位置を基準とする原点復帰動作とによる4軸制御の原点復帰動作を行うステップと、該原点復帰動作状態からの上記サーボオフ操作対象となる駆動ユニットのサーボ式直動機構のサーボオフを行うステップと、該サーボオフの直後にサーボオフ操作対象の駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量の計測及び記録を行うステップと、該移動量の計測値を補正量とする上記サーボオフ操作対象の駆動ユニットの仮の原点位置の補正による更新を行うステップを備えた処理サイクルを、上記原点復帰動作状態からのサーボオフ操作対象の駆動ユニットのサーボオフの直後に該サーボオフ操作対象の駆動ユニットのXYθガイドの被駆動部に生じる移動量が収束するまで繰り返して行い、該移動量が収束したときの上記サーボオフ操作対象の駆動ユニットの仮の原点位置、及び、サーボオフ操作対象以外の駆動ユニットの当初の仮の原点位置を、上記4軸アライメントステージにおける各駆動ユニットの原点復帰動作用の原点位置として定めるようにする4軸アライメントステージの原点位置設定方法とする。
更に、上記各構成において、4軸アライメントステージを、オフセット印刷装置における版や印刷対象を載置してブランケットロールの下方位置を走行するテーブルの上部に設けた4軸アライメントステージとし、該4軸アライメントステージの各駆動ユニットの仮の原点位置を基準とする4軸制御による原点復帰動作状態からのサーボオフ操作の対象となる駆動ユニットのサーボ式直動機構のサーボオフの処理、及び、該サーボオフの直後に該サーボオフされた駆動ユニットのXYθガイドの被駆動部に生じる移動量の計測の処理は、上記オフセット印刷装置における上記テーブルを上記ブランケットロールの直下に配置させた状態で行い、その他の処理は、上記テーブルを上記ブランケットロールの直下以外に設定してあるテーブル待機エリアに配置させた状態で行うようにする。
本発明の4軸アライメントステージの原点位置設定方法によれば、以下のような優れた効果を発揮する。
(1)ベースと、該ベースの上方位置に配置した上部プレートとの間に、X、Y、θの3自由度を備えたXYθガイドの被駆動部に一軸方向のサーボ式直動機構を取り付けた構成を有する駆動ユニットを、直交する2軸方向に2台ずつ駆動ユニットの駆動方向を揃えた姿勢で取り付けてなる構成を備えた4軸アライメントステージにて、上記各駆動ユニットに予め設定した仮の原点位置を基準として、上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行い、次に、この4軸制御の原点復帰動作状態から上記各駆動ユニットのサーボ式直動機構を全軸同時サーボオフして、該全軸同時サーボオフの直後に該各駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量を外部移動量計測器でそれぞれ計測すると共に記録し、次いで、上記各駆動ユニット毎に計測された移動量の計測値をそれぞれの補正量として該各駆動ユニットの仮の原点位置を補正して更新し、その後、上記更新された仮の原点位置を基準とする上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行うステップと、該原点復帰動作状態からの上記各駆動ユニットのサーボ式直動機構の全軸同時サーボオフするステップと、該全軸同時サーボオフの直後に該各駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量の計測及び記録を行うステップと、該移動量の計測値を補正量とする各駆動ユニットの仮の原点位置の補正による更新を行うステップを備えた処理サイクルを、上記原点復帰動作状態からの全軸同時サーボオフの直後に各駆動ユニットのXYθガイドの被駆動部に生じる移動量が収束するまで繰り返して行い、該移動量が収束したときの上記各駆動ユニットの仮の原点位置を、上記4軸アライメントステージにおける各駆動ユニットの原点復帰動作用の原点位置として定めるようにしてあるので、4軸アライメントステージの実際の運用時にすべての駆動ユニットのサーボ式直動機構を制御する4軸制御状態で原点復帰動作を行っても、該各サーボ式直動機構同士の間での機械的な姿勢の相互干渉を抑えることが可能な位置に、原点位置を設定することができる。
(2)よって、上記4軸アライメントステージの運用時には、4軸制御状態での各駆動ユニットの原点復帰動作を円滑に且つ容易に実施させることが可能になる。このため、原点復帰処理後に上記4軸アライメントステージを使用するときには、各駆動ユニットにおけるサーボ式直動機構の駆動方向に関する位置制御性を高めることが可能になる。したがって、上記4軸アライメントステージの上部プレート上に載置するアライメント対象物の位置決め精度を高めることが可能になる。
(3)更に、上記4軸アライメントステージにおける各駆動ユニットの最適な原点位置の導出は、該4軸アライメントステージの装置構成を組み立てた後に行う調整動作によって実現することができる。よって、上記4軸アライメントステージにて各駆動ユニットの最適な原点位置を設定するための特別な機構は不要なため、該4軸アライメントステージの装置構成をコンパクトなものにすることが可能になる。
(4)しかも、上記4軸アライメントステージの各駆動ユニットの原点復帰動作を行わせるときに、該各駆動ユニットのサーボ式直動機構同士のトルクバランスを良好なものとすることができる。このため、各駆動ユニットの各サーボ式直動機構で過剰な推力を発生させる必要がなくなることから、トルクが許容設定値を超えるようなエラーが生じる虞を防止して、安定した運用を行うことが可能になる。
(5)したがって、本発明の4軸アライメントステージの原点設定方法は、微細な電子回路を印刷するために用いるオフセット印刷装置で要求されるような高い位置決め精度が要求される4軸アライメントステージにおける原点位置を定めるのに適したものとすることができる。
(6)ベースと、該ベースの上方位置に配置した上部プレートとの間に、X、Y、θの3自由度を備えたXYθガイドの被駆動部に一軸方向のサーボ式直動機構を取り付けた構成を有する駆動ユニットを、直交する2軸方向に2台ずつ駆動ユニットの駆動方向を揃えた姿勢で取り付けてなる構成を備えた4軸アライメントステージにて、上記各駆動ユニットに予め設定した仮の原点位置を基準として、上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行い、次に、この4軸制御の原点復帰動作状態から、上記4台の駆動ユニットのうち、サーボオフ操作対象とする1台乃至3台の駆動ユニットのサーボ式直動機構をサーボオフして、該サーボオフの直後にサーボオフ操作対象の駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量を外部移動量計測器でそれぞれ計測すると共に記録し、次いで、上記サーボオフ操作対象の駆動ユニットについて計測された移動量の計測値を補正量として対応するサーボオフ操作対象の駆動ユニットの仮の原点位置を補正して更新し、その後、上記サーボオフ操作対象の駆動ユニットのサーボ直動機構による上記更新された仮の原点位置を基準とする原点復帰動作、及び、サーボオフ操作対象以外の駆動ユニットのサーボ式直動機構による当初の仮の原点位置を基準とする原点復帰動作とによる4軸制御の原点復帰動作を行うステップと、該原点復帰動作状態からの上記サーボオフ操作対象となる駆動ユニットのサーボ式直動機構のサーボオフを行うステップと、該サーボオフの直後にサーボオフ操作対象の駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量の計測及び記録を行うステップと、該移動量の計測値を補正量とする上記サーボオフ操作対象の駆動ユニットの仮の原点位置の補正による更新を行うステップを備えた処理サイクルを、上記原点復帰動作状態からのサーボオフ操作対象の駆動ユニットのサーボオフの直後に該サーボオフ操作対象の駆動ユニットのXYθガイドの被駆動部に生じる移動量が収束するまで繰り返して行い、該移動量が収束したときの上記サーボオフ操作対象の駆動ユニットの仮の原点位置、及び、サーボオフ操作対象以外の駆動ユニットの当初の仮の原点位置を、上記4軸アライメントステージにおける各駆動ユニットの原点復帰動作用の原点位置として定めるようにする方法によっても、上記(1)乃至(5)と同様の効果を得ることができる。
本発明の4軸アライメントステージの原点位置設定方法の実施の一形態として、該原点位置設定方法の実施手順を示すフロー図である。 図1の原点位置設定方法の実施過程での4軸アライメントステージの状態を示すもので、(イ)は4軸アライメントステージにて仮の原点位置を基準として4軸制御による原点復帰動作を行った状態を、(ロ)は4軸制御による原点復帰動作状態から全軸同時サーボオフした直後の状態を、(ハ)は原点復帰動作状態からの全軸同時サーボオフで生じた各軸の移動量を補正量として仮の原点位置を補正した状態を、それぞれ示す概要図である。 図1の原点位置設定方法を実施する4軸アライメントステージの装置構成を示す概略切断平面図である。 図3のA−A方向矢視図である。 図3の4軸アライメントステージにおける駆動ユニットの構成を示すもので、(イ)は概略平面図、(ロ)は(イ)のB−B方向矢視図、(ハ)は(イ)のC−C方向矢視図である。 本発明の実施の他の形態を示す切断概略平面図である。 本発明の実施の更に他の形態を示す概略側面図である。 本発明の実施の更に他の形態を示すもので、原点位置設定方法の実施手順を示すフロー図である。 図8の原点位置設定方法の実施過程での4軸アライメントステージの状態を示すもので、(イ)は4軸アライメントステージにて仮の原点位置を基準として4軸制御による原点復帰動作を行った状態を、(ロ)は4軸制御による原点復帰動作状態から1台の駆動ユニットのボールねじ直動機構をサーボオフした直後の状態を、(ハ)は原点復帰動作状態からの1台の駆動ユニットのサーボオフで生じた該駆動ユニットにおける軸方向の移動量を補正量として、該移動ユニットにおける仮の原点位置を補正した状態を、それぞれ示す概要図である。
以下、本発明を実施するための形態を図面を参照して説明する。
図1乃至図5(イ)(ロ)(ハ)は本発明の4軸アライメントステージの原点位置設定方法の実施の一形態として、たとえば、図3乃至図5(イ)(ロ)(ハ)に示す如き4軸アライメントステージに適用する場合を示すもので、以下のようにしてある。
ここで、先ず、図3乃至図5(イ)(ロ)(ハ)に示した4軸アライメントステージについて説明する。
上記4軸アライメントステージは、固定側となるベース1の上方位置に、たとえば、オフセット印刷で用いる平板状の版や印刷対象等の図示しないアライメント対象物を保持するための上部プレート2が配置してある。
更に、上記ベース1と上部プレート2との間における正方形の各コーナ部となる4個所、たとえば、上記上部プレート2の四隅部と対応する4個所に、XY直交座標平面における配置と回転角度θによるXYθの3自由度を備えたXYθガイド4と、該XYθガイド4を水平面内で一軸方向に駆動するための一軸方向のサーボ式直動機構としてのボールねじ直動機構5a,5b,5c,5dとからなる駆動軸としての駆動ユニット3a,3b,3c,3dが個別に配置してある。この際、上記正方形の2組の対角位置としての上記上部プレート2の2組の対角位置のうち、一方の対角位置に配置される2台の駆動ユニット3aと3cは、そのボールねじ直動機構5a,5cによる駆動方向が、XY直交座標平面におけるX軸方向に揃うように配置させ、且つ他方の対角位置に配置される2台の駆動ユニット3bと3dは、そのボールねじ直動機構5b,5dによる駆動方向が、XY直交座標平面におけるY軸方向に揃うように配置させるようにしてあり、この状態で、上記各駆動ユニット3a,3b,3c,3dの下端部と上端部を、上記ベース1と上部プレート2の対応する個所にそれぞれ取り付けるようにしてある。
上記各駆動ユニット3a,3b,3c,3dの構成は、たとえば、図5(イ)(ロ)(ハ)に示すようにしてある。なお、図5(イ)(ロ)(ハ)では、図示する便宜上、1台の駆動ユニット3aの配置に対応する図が示してある。
すなわち、水平方向に或る寸法延びる下段ガイドレール6に、下段ガイドブロック部7aと上段ガイドブロック部7bとを直交配置した状態で背面合わせに一体化してなる構成のガイドブロック7における上記下段ガイドブロック部7aが、スライド可能に取り付けてあり、且つ上記ガイドブロック7における上記上段ガイドブロック部7bの上側に、上記下段ガイドレール6と直交する水平方向に或る寸法延びる上段ガイドレール8を長手方向にスライド可能に保持させて、上下2段の直動ガイドを背面合わせに連結した構造を備えて直交する2方向にスライド可能なガイドが形成してある。
上記直交する2方向にスライド可能なガイドの上端部となる上記上段ガイドレール8の上側には、旋回ベアリング9を取り付けて、上記XYθガイド4が構成してある。これにより、上記XYθガイド4では、下段ガイドレール6に沿うガイドブロック7の下段ガイドブロック部7aのスライド動作と、該ガイドブロック7の上段ガイドブロック部7bに対する上段ガイドレール8の長手方向へのスライド動作と、上記旋回ベアリング9の旋回動作とにより、上記各駆動ユニット3a,3b,3c,3dの下端部となる該XYθガイド4における上記下段ガイドレール6の位置(設置位置)を基準として、各駆動ユニット3a,3b,3c,3dの上端部となる該XYθガイド4の上記旋回ベアリング9の頂部に、XYθの3自由度を得ることができるようにしてある。
更に、上記XYθガイド4における下段ガイドレール6と平行に、ボールねじ直動機構5a,5b,5c,5dを配置すると共に、該XYθガイド4における被駆動部としての上記ガイドブロック7の或る個所、たとえば、下段ガイドブロック部7aに、上記ボールねじ直動機構5a,5b,5c,5dのナット部材10を、連結ブラケット11を介し連結して、駆動ユニット3a,3b,3c,3dを構成してある。12は上記各ボールねじ直動機構5a,5b,5c,5dを駆動するための駆動モータ(サーボモータ)である。これにより、上記各駆動ユニット3a,3b,3c,3dでは、ボールねじ直動機構5a,5b,5c,5dの駆動モータ12を運転することにより、ナット部材10と一体に、上記XYθガイド4の被駆動部であるガイドブロック7を、下段ガイドレール6の長手方向、すなわち、該各ボールねじ機構5a,5b,5c,5dの駆動方向に沿う方向に往復移動させることができるようにしてある。
よって、以上の構成としてある各駆動ユニット3a,3b,3c,3dは、図3及び図4に示すように、上記ベース1と上部プレート2との間における該上部プレート2の四隅部と対応する4個所のうち、上部プレート2の一方の対角位置と対応する2個所に、上記2台の駆動ユニット3aと3cが、そのボールねじ直動機構5a,5cの駆動方向をX軸方向に沿わせて配置した姿勢で取り付けてあり、且つ上記上部プレート2の他方の対角位置と対応する2個所には、上記2台の駆動ユニット3bと3dが、そのボールねじ直動機構5b,5dの駆動方向をY軸方向に沿わせて配置した姿勢で取り付けてある。
更に、上記各駆動ユニット3a,3b,3c,3dには、図3に示すように、該各駆動ユニット3a,3b,3c,3dにおけるボールねじ直動機構5a,5b,5c,5dの駆動方向に関する制御位置を計測するための外部移動量計測器としてのリニアエンコーダ(リニアスケール)13a,13b,13c,13dを、それぞれ付設した構成としてある。
具体的には、ボールねじ直動機構5a,5cの駆動方向がX軸方向としてある駆動ユニット3aと3cについては、該各駆動ユニット3a,3cのXYθガイド4におけるガイドブロック7の下段ガイドレール6に沿う移動軌跡の近傍となるベース1上に、X軸方向に延びるリニアエンコーダ13a,13cが、該ガイドブロック7の動作ストロークに対応させて設置してある。これにより、上記各駆動ユニット3a,3cにてボールねじ直動機構5a,5cにより対応するガイドブロック7のX軸方向の動作の制御を行うときに、該ガイドブロック7のX軸方向に関する位置(制御位置)を、それぞれ対応する上記リニアエンコーダ13a,13cによって精密に計測できるようにしてある。
一方、ボールねじ直動機構5b,5dの駆動方向がY軸方向としてある駆動ユニット3bと3dについては、該各駆動ユニット3b,3dのXYθガイド4におけるガイドブロック7の下段ガイドレール6に沿う移動軌跡の近傍となるベース1上に、Y軸方向に延びるリニアエンコーダ13b,13dが、該ガイドブロック7の動作ストロークに対応させて設置してある。これにより、上記各駆動ユニット3b,3dにてボールねじ直動機構5b,5dにより対応するガイドブロック7のY軸方向の動作の制御を行うときに、該ガイドブロック7のY軸方向に関する位置(制御位置)を、それぞれ対応する上記リニアエンコーダ13b,13dによって精密に計測できるようにしてある。
上記各リニアエンコーダ13a,13b,13c,13dには、該各リニアエンコーダ13より入力される信号を基に、各駆動ユニット3a,3b,3c,3dの各ボールねじ直動機構5a,5b,5c,5dの駆動モータ12へ指令を与える制御器14が接続してある。これにより、上記制御器14では、上記各駆動ユニット3a,3b,3c,3dに付設してある上記リニアエンコーダ13a,13b,13c,13dによって計測される該各駆動ユニット3a,3b,3c,3dのガイドブロック7の位置の情報を基に、該各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dの駆動モータ12へ指令を与えて、対応する上記ガイドブロック7の位置についてフィードバック制御等の位置制御を行うことができるようにしてある。よって、上記各駆動ユニット3a,3b,3c,3dにおけるガイドブロック7の位置制御の精度に対し、該各ガイドブロック7を動作させるボールねじ直動機構5a,5b,5c,5dの構成部材の撓みや、製作精度に起因する部材間のがた等の影響が生じる虞を解消して、上記各駆動ユニット3a,3b,3c,3dでのガイドブロック7の位置制御に関して高いサーボ剛性を得ることができるようにしてある。
なお、上記各駆動ユニット3a,3b,3c,3dに付設するリニアエンコーダ13a,13b,13c,13dとして、インクリメンタルエンコーダを用いる場合は、上記各駆動ユニット3a,3b,3c,3dのガイドブロック7の下段ガイドレール6に沿う移動軌跡の近傍位置となるベース1上に、該移動軌跡の長手方向の或る個所に予め設定する基準位置に上記ガイドブロック7が配置されている状態を確認(検出)するための基準位置検出センサ15を設ける。上記基準位置としては、たとえば、上記ボールねじ直動機構5a,5b,5c,5dにより下段ガイドレール6に沿って往復動作させるようにしてある上記ガイドブロック7の設計上の動作ストロークの中央となる個所等に設定するようにすればよい。又、上記基準位置検出センサ15としては、上記ボールねじ直動機構5a,5b,5c,5dの運転によりガイドブロック7を下段ガイドレール6に沿わせて一方向に移動させるときに、該ガイドブロック7が上記所定の基準位置に達すると、その時点で該基準位置に上記ガイドブロック7が配置されていることを検出することができるようにしたマイクロスイッチや光電式の近接センサを用いるようにすればよい。
これにより、上記各駆動ユニット3aと3cでは、対応するボールねじ直動機構5a,5cの駆動方向であるX軸方向について、又、上記各駆動ユニット3bと3dでは、対応するボールねじ直動機構5b,5dの駆動方向であるY軸方向について、後述するように、本発明の4軸アライメントステージの原点位置設定方法を実施する際に設定する仮の原点位置Oや、最終的に定める原点位置、及び、上記各ボールねじ直動機構5a,5b,5c,5dにより位置制御される各ガイドブロック7の位置を、ベース1上に固定されたXY直交座標にて、該各駆動ユニット3a,3b,3c,3dに設けた上記基準位置検出センサ15が配置されている基準位置と、上記リニアエンコーダ13a,13b,13c,13dによって計測される該基準位置からの移動量とを基に計測することができるようにしてある。
以上の構成としてある4軸アライメントステージを用いて本発明の4軸アライメントステージの原点位置設定方法を実施する場合は、図1にフローを示す如き手順で実施する。
すなわち、先ず、上記各駆動ユニット3a,3b,3c,3dについて、それぞれのボールねじ直動機構5a,5b,5c,5dによるガイドブロック7の動作ストロークの途中に、図2(イ)に示すように、仮の原点位置Oa,Ob,Oc,Odを個別に設定する(ステップ1(S1))。なお、この仮の原点位置Oa,Ob,Oc,Odは、上記各駆動ユニット3a,3b,3c,3dで4軸制御するようにしてある上部プレート2(図3参照)の任意の配置に対応する位置でよいが、たとえば、上記4軸アライメントステージの設計データを基に、上記上部プレート2(図3参照)をX軸方向とY軸方向の自由度の調整範囲のそれぞれ中間位置、及び、回転角度θの調整範囲の中間の角度姿勢に配置させるときに、設計上、上記各駆動ユニット3a,3b,3c,3dのガイドブロック7が対応するボールねじ直動機構5a,5b,5c,5dの駆動方向に沿う方向に配置される位置を、該各ボールねじ直動機構5a,5b,5c,5dのガイドブロック7に関する仮の原点位置Oa,Ob,Oc,Odと設定するようにすればよい。又、図2(イ)では、図示する便宜上、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dについては記載を簡略化してある。更に、XYθガイド4については、ガイドブロック7のみが二等辺三角形で図示してあり、該二等辺三角形の頂角の位置で、該ガイドブロック7における上記仮の原点位置Oa,Ob,Oc,Odに対して位置合わせを行うための位置合わせ用の個所が示してある(後述する図2(ロ)(ハ)、図9(イ)(ロ)(ハ)も同様)。
上記のようにして各駆動ユニット3a,3b,3c,3dにてガイドブロック7の仮の原点位置Oa,Ob,Oc,Odが定まると、該各駆動ユニット3a,3b,3c,3d毎に、ガイドブロック7の基準位置を検出するために設けてある上記基準位置検出センサ15(図3参照)から、上記設定された仮の原点位置Oa,Ob,Oc,Odまでの方向と距離を求めておく(ステップ2(S2))。
次に、図2(イ)に示すように、上記4軸アライメントステージにて、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dを運転して、該各ボールねじ直動機構5a,5b,5c,5dにより、対応するガイドブロック7をそれぞれの仮の原点位置Oa,Ob,Oc,Odに一致するように移動させて、各駆動ユニット3a,3b,3c,3dについて原点復帰動作を行わせる(ステップ3(S3))。
この際、上記各ボールねじ直動機構5a,5b,5c,5dによるガイドブロック7の仮の原点位置Oa,Ob,Oc,Odへの位置合わせは、上記各駆動ユニット3a,3b,3c,3dに付設してある上記基準位置検出センサ15によってそれぞれのガイドブロック7が基準位置に存在することが検出された時点から、上記リニアエンコーダ13a,13b,13c,13dによって検出される該ガイドブロック7の移動方向と移動距離が、上記各ボールねじ直動機構5a,5b,5c,5d毎に予め求めてある上記基準位置から上記仮の原点位置Oa,Ob,Oc,Odまでの方向と距離に一致するように、上記各ボールねじ直動機構5a,5b,5c,5dにより対応するガイドブロック7の位置を制御することで行うようにしてある。
上記のようにして仮の原点位置Oa,Ob,Oc,Odを基準としてすべての駆動ユニット3a,3b,3c,3dのガイドブロック7について対応するボールねじ直動機構5a,5b,5c,5dによる制御を行う4軸制御によって原点復帰動作を行わせると、上記各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間で機械的な姿勢の相互干渉が生じている場合は、該各ボールねじ直動機構5a,5b,5c,5dの駆動モータ12の推力(トルク)が上記姿勢の相互干渉による反発力を抑えるように作用した状態となる。
次いで、上記のようにして4軸制御による上記仮の原点位置Oa,Ob,Oc,Odを基準とする原点復帰動作が完了した状態にて、全軸、すなわち、上記4台の駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dを同時にサーボオフ(以下、単に全軸同時サーボオフと云う)する(ステップ4(S4))。これにより、上記各駆動ユニット3a,3b,3c,3dでは、該各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉による反発力を抑えるように作用させていたそれぞれの駆動モータ12の推力(トルク)がなくなるため、該各ボールねじ直動機構5a,5b,5c,5dのナット部材10(図3参照)に連結ブラケット11(図3参照)を介して接続してあるガイドブロック7が、図2(ロ)に二点鎖線で示すように上記仮の原点位置Oa,Ob,Oc,Odに配置されていた状態から、上記4軸制御による原点復帰動作を行わせた状態のときに上記各ボールねじ直動機構5a,5b,5c,5d同士の間で作用していた上記反発力により、図2(ロ)に実線で示すように微小量移動させられるようになる。なお、図2(ロ)に示した各駆動ユニット3a,3b,3c,3dのガイドブロック7の微小移動量の大きさと方向は、図示するための便宜的なものであって、各駆動ユニット3a,3b,3c,3dのガイドブロック7に実際に生じる微小量移動の大きさや方向を何ら限定するものではない。
上記のようにして各駆動ユニット3a,3b,3c,3dの全軸同時サーボオフに伴って各ガイドブロック7が微小量移動させられた後は、上記4軸制御による原点復帰動作の際に各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間で生じていた機械的な姿勢の相互干渉による反発力は解消される。
したがって、上記全軸同時サーボオフの後に上記各駆動ユニット3a,3b,3c,3d毎に生じるガイドブロック7の微小量移動の移動量の大小は、上記4軸制御による原点復帰動作の際に各ボールねじ直動機構5a,5b,5c,5d同士の間で生じていた反発力の大小にある程度関連したものになると考えられる。
そこで、本発明では、図2(ロ)に示すように、上記全軸同時サーボオフの直後に各駆動ユニット3a,3b,3c,3dにおいて生じるガイドブロック7の微小量移動について、それぞれの移動量Δa,Δb,Δc,Δdを、それぞれ対応するリニアエンコーダ13a,13b,13c,13dで計測するようにする(ステップ5(S5))。なお、この際、上記各駆動ユニット3a,3b,3c,3dにて計測する全軸同時サーボオフ直後のガイドブロック7の移動量Δa,Δb,Δc,Δdには、対応する各ボールねじ直動機構5a,5b,5c,5dの動作方向の一方を正とし、他方を負として各駆動ユニット3a,3b,3c,3d毎に個別に設定する正負の符号、あるいは、X軸方向の一方とY軸方向の一方を正とし、その反対側を負として上記各駆動ユニット3a,3b,3c,3dに共通して設定する正負の符号で表される上記ガイドブロック7の移動した方向に関する情報を含むものとする。
上記のようにして各駆動ユニット3a,3b,3c,3dについて、全軸同時サーボオフの直後に生じた上記各ガイドブロック7の移動量Δa,Δb,Δc,Δdが個別に計測されると、該各移動量Δa,Δb,Δc,Δdの計測値(計測結果)を、図示しない記憶手段に記憶(記録)する(ステップ6(S6))。
その後、図2(ハ)に示すように、上記各駆動ユニット3a,3b,3c,3dについて個別に計測された全軸同時サーボオフの直後のガイドブロック7の移動量Δa,Δb,Δc,Δdの計測値を補正量として、該各駆動ユニット3a,3b,3c,3dのガイドブロック7に設定されていた従前の仮の原点位置Oa,Ob,Oc,Odを補正して、新たな仮の原点位置Oa,Ob,Oc,Odとして更新する(ステップ7(S7))。
上記のようにして仮の原点位置Oa,Ob,Oc,Odが更新された後は、該更新後の仮の原点位置Oa,Ob,Oc,Odを基準として、上述したステップ2(S2)からステップ7(S7)までの処理サイクルを順次繰り返して行うようにする。
これにより、上記各処理サイクル毎に更新される仮の原点位置Oa,Ob,Oc,Odは、従前の仮の原点位置Oa,Ob,Oc,Odを基準として原点復帰動作を行う際に各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間で生じていた機械的な姿勢の相互干渉による反発力が全軸同時サーボオフによって解消された位置に順次設定されるようになることから、上記処理サイクルを繰り返して実施すると、該各処理サイクルの上記ステップ6(S6)で図示しない記憶手段に記憶させるようにしてある全軸同時サーボオフの直後の各駆動ユニット3a,3b,3c,3dのガイドブロック7に生じる微小量移動の移動量Δa,Δb,Δc,Δdの計測値は、次第に収束するようになる。
又、上記処理サイクル毎に各駆動ユニット3a,3b,3c,3dについて更新される上記各仮の原点位置Oa,Ob,Oc,Odの補正量は、全軸同時サーボオフの直後に該各駆動ユニット3a,3b,3c,3dに生じるガイドブロック7の移動量Δa,Δb,Δc,Δdの計測値に対応するものであることから、上記全軸同時サーボオフの直後に該駆動ユニット3a,3b,3c,3dで生じるガイドブロック7の移動量Δa,Δb,Δc,Δdが大きい場合は上記補正量も大きい値となり、移動量Δa,Δb,Δc,Δdが小さい場合は補正量も小さい値となる。このために、上記各処理サイクルの上記ステップ6(S6)で図示しない記憶部に記憶される上記移動量Δa,Δb,Δc,Δdは、すべてのボールねじ直動機構5a,5b,5c,5dについて次第に収束するようになる。
よって、上記のようにして4軸制御による原点復帰動作を行った状態から全軸サーボオフした直後の各駆動ユニット3a,3b,3c,3dのガイドブロック7の移動量Δa,Δb,Δc,Δdがすべての駆動ユニット3a,3b,3c,3dについて収束するようになるまで、たとえば、上記移動量Δa,Δb,Δc,Δdの変化が予め設定した或る範囲に収まるように収束するまで上記処理サイクルを繰り返すようにし、その移動量Δa,Δb,Δc,Δdが収束した状態のときに設定されていた仮の原点位置Oa,Ob,Oc,Odを、上記4軸アライメントステージの実際の運用時に各駆動ユニット3a,3b,3c,3dにおけるガイドブロック7を原点復帰動作させる際の基準とする原点位置として設定するようにする。
このように、本発明の4軸アライメントステージの原点位置設定方法によれば、4軸アライメントステージにおける4軸制御による原点復帰動作が完了した状態から、全軸同時サーボオフを行うことにより、4台の駆動ユニット3a,3b,3c,3dについて、瞬時に機械的に最も安定な安定状態、すなわち、上記4台の各駆動ユニット3a,3b,3c,3dの動力伝達手段としてのボールねじ直動機構5a,5b,5c,5dの剛性の不足に伴う機械的な誤差を含まない安定状態を、瞬時に形成させることができる。このため、上記全軸同時サーボオフの直後に生じる各駆動ユニット3a,3b,3c,3dのガイドブロック7の微小量移動の移動量Δa,Δb,Δc,Δdの計測値を基に、該各駆動ユニット3a,3b,3c,3dの仮の原点位置Oa,Ob,Oc,Odを補正する処理サイクルを繰り返して、上記移動量Δa,Δb,Δc,Δdが収束するようになる各駆動ユニット3a,3b,3c,3dの仮の原点位置Oa,Ob,Oc,Odを求めるようしてあるので、4軸アライメントステージの実際の運用時にすべての駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dを制御する4軸制御状態で原点復帰動作を行っても、該各ボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉を抑えることが可能な最適位置に、原点位置を設定することができる。
このため、上記4軸アライメントステージの運用時には、各駆動ユニット3a,3b,3c,3dの原点復帰動作を円滑に且つ容易に実施させることが可能になる。したがって、原点復帰処理後に上記4軸アライメントステージを使用するときには、各駆動ユニット3a,3b,3c,3dにおけるボールねじ直動機構5a,5b,5c,5dの駆動方向に関する位置制御性を高めることが可能になる。よって、上記4軸アライメントステージの上部プレート2上に載置する図示しないアライメント対象物の位置決め精度を高めることが可能になる。
更に、上記4軸アライメントステージにおける各駆動ユニット3a,3b,3c,3dの最適な原点位置の導出は、上述したように、図3乃至図5(イ)(ロ)(ハ)に示した装置構成を組み立てた後の4軸アライメントステージにおける調整動作によって実現することができる。よって、上記4軸アライメントステージにて各駆動ユニット3a,3b,3c,3dの最適な原点位置を設定するための特別な機構も不要なため、4軸アライメントステージの装置構成をコンパクトなものにすることが可能になる。
しかも、特許文献2に示された4軸アライメントステージの原点復帰方法のような4つの駆動軸、又は、上部プレートの位置を機械的に固定して原点復帰のための基準とするようにしてある手法に比して、4軸アライメントステージの原点位置自体の位置決め精度を高めることができる。よって、4軸アライメントステージに、高い位置決め精度の原点復帰動作を実施させることが可能になる。
更には、上記したように原点復帰動作から全軸同時サーボオフした直後の各駆動ユニット3a,3b,3c,3dのガイドブロック7の移動量Δa,Δb,Δc,Δdの計測値が収束するときには、上記4軸アライメントステージにて4軸制御状態で原点復帰動作を行っても、各ボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉が抑えられるようになっていることから、上記4軸アライメントステージの各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dで原点復帰動作を行わせている状態で、該各ボールねじ直動機構5a,5b,5c,5dのトルクバランスが良好になることも確認することができる。これにより、最終的に設定される原点位置に基づいて、上記4軸アライメントステージにて、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dによりガイドブロック7の原点復帰動作を行う際に、該各ボールねじ直動機構5a,5b,5c,5dの駆動モータ12で過剰な推力(トルク)を発生させる虞がなくなることから、トルクが許容設定値を超えるようなエラーが生じる虞を防止して、安定した運用を行うことが可能になる。
よって、本発明の4軸アライメントステージの原点設定方法は、微細な電子回路を印刷するために用いるオフセット印刷装置で要求される、たとえば、印刷位置の位置ずれを数μmからサブμmオーダーに抑えるような高い位置決め精度が要求される4軸アライメントステージにおける原点位置を定めるのに適したものとすることができる。
なお、上記においては、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dに付設するリニアエンコーダ13a,13b,13c,13dがインクリメントエンコーダである場合について説明したが、該リニアエンコーダ13a,13b,13c,13dがアブソリュートエンコーダである場合は、基準位置検出センサ15を省略した構成としてもよい。又、この場合は、前述した図1のステップ2(S2)の処理を省略してよい。よって、最初に図1のステップ1(S1)と、ステップ3(S3)からステップ7(S7)までの最初の処理を実施した後は、ステップ3(S3)へ戻って、該ステップ3(S3)からステップ7(S7)までの処理サイクルを、4軸制御による原点復帰動作後の全軸同時サーボオフの直後に各駆動ユニット3a,3b,3c,3dのガイドブロック7に生じる微小量移動の移動量Δa,Δb,Δc,Δdの計測値が収束するようになるまで順次繰り返して行うようにすればよい。
次に、図6は本発明の実施の更に他の形態を示すもので、図3乃至図5(イ)(ロ)(ハ)に示したと同様の構成において、各駆動ユニット3a,3b,3c,3dに、ガイドブロック7の制御位置を計測するための個別のリニアエンコーダ13a,13b,13c,13dを付設した構成に代えて、上記各駆動ユニット3a,3b,3c,3dに、ガイドブロック7の対応するボールねじ直動機構5a,5b,5c,5dの駆動方向に関する制御位置を計測するための外部移動量計測器としてのレーザ距離計16a,16b,16c,16dを付設してなる構成としたものである。
上記レーザ距離計16a,16b,16c,16dは、上記各駆動ユニット3a,3b,3c,3dのガイドブロック7の対応するボールねじ直動機構5a,5b,5c,5dによる往復動作方向の一端側に設置してある。
上記各レーザ距離計16a,16b,16c,16dを採用した構成とする場合は、上記各駆動ユニット3a,3b,3c,3dに図3に示したものと同様に基準位置に設けた基準位置検出センサ15によって該各駆動ユニット3a,3b,3c,3dのガイドブロック7が基準位置に存在することが検出された時点から、各レーザ距離計16a,16b,16c,16dによって検出される上記各駆動ユニット3a,3b,3c,3dのガイドブロック7との距離の変化量を基に、該各駆動ユニット3a,3b,3c,3dにおけるボールねじ直動機構5a,5b,5c,5dで制御されるガイドブロック7の制御位置を検出させるようにすればよい。
あるいは、上記各駆動ユニット3a,3b,3c,3d毎に設けるレーザ距離計16a,16b,16c,16dの設置個所について、たとえば、4軸アライメントステージのベース1上に設定するXY座標平面における位置を予め計測しておくことにより、該各レーザ距離計16a,16b,16c,16dによって計測される対応する駆動ユニット3a,3b,3c,3dのガイドブロック7までの距離の計測結果と、上記既知としてある該各レーザ距離計16a,16b,16c,16dの位置とを基に、上記各駆動ユニット3a,3b,3c,3dにおけるボールねじ直動機構5a,5b,5c,5dで制御されるガイドブロック7の制御位置を検出させるようにしてもよい。この場合は、基準位置検出センサ15を省略した構成としてよい。
その他の構成は図3乃至図5(イ)(ロ)(ハ)に示したものと同様であり、同一のものには同一の符号が付してある。
本実施の形態によっても、図1及び図2(イ)(ロ)(ハ)に示したと同様の手順で、4軸アライメントステージについて、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dをすべて制御する4軸制御状態で原点復帰動作を行っても、該各ボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉を抑えることが可能な最適位置に、原点位置を設定することができる。
よって、本実施の形態によっても、図1乃至図5(イ)(ロ)(ハ)の実施の形態と同様の効果を得ることができる。
次いで、図7は本発明の実施の更に他の形態として、上記各実施の形態に示した本発明の4軸アライメントステージの原点設定方法を、たとえば、図7に示す如きオフセット印刷装置における版テーブル17の上部の版(図示せず)の位置決め用の4軸アライメントステージ18や、印刷対象テーブル19の上部の印刷対象(図示せず)の位置決め用の4軸アライメントステージ20に適用する場合を示すものである。
ここで、図7のオフセット印刷装置の構成について概説すると、該オフセット印刷装置は、水平な架台21と、該架台21上に設置して上記版テーブル17や印刷対象テーブル19の走行(往復動)をガイドするためのガイドレール22と、上記ガイドレール22の長手方向の途中個所の上方位置に該ガイドレール22の長手方向と直角な水平方向に延びるよう設けたブランケットロール23とを備えた構成としてある。更に、上記ガイドレール22上には、上記版テーブル17と印刷対象テーブル19が該ガイドレール22の長手方向一端側から順に配置した状態で、個別に走行可能に取り付けてある。又、上記架台21上における上記ガイドレール22の長手方向一端部と対応する個所には、上記版テーブル17を待機させて必要に応じて版の交換を行うための版テーブル待機エリア24が設けてある。一方、上記架台21上における上記ガイドレール22の長手方向他端部と対応する個所には、上記印刷対象テーブル19を待機させて印刷済みの印刷対象の取り外しと、次にオフセット印刷処理に供する印刷対象の該印刷対象テーブル19上への設置を行うための印刷対象テーブル待機エリア25が設けてある。更に、図示してないが、上記ガイドレール22の長手方向の途中位置で上記ブランケットロール23と干渉しない個所に、上記版テーブル17上に保持させた版に対してインキングを行うためのインキング手段が設けてある。
ところで、上記構成としてあるオフセット印刷装置における版テーブル17に装備した4軸アライメントステージ18や、印刷対象テーブル19に装備した4軸アライメントステージ20について、最も厳密な位置決め精度が要求されるのは、オフセット印刷処理時に版テーブル17上に保持した版や、印刷対象テーブル19上に保持した印刷対象に、上記ブランケットロール23を上方より接触させて実際の印刷処理を行うとき、すなわち、図7に二点鎖線で示すように、上記版テーブル17や印刷対象テーブル19がブランケットロール23の直下に位置するときである。
したがって、本発明の4軸アライメントステージの原点設定方法を、上記オフセット印刷装置における版テーブル17に装備した4軸アライメントステージ18や、印刷対象テーブル19に装備した4軸アライメントステージ20に適用する場合は、上記各テーブル17,19の4軸アライメントステージ18,20について、図1に示した本発明の4軸アライメントステージの原点設定方法の手順において、少なくともステップ4(S4)における各駆動ユニット3a,3b,3c,3dの4軸制御によるガイドブロック7の原点復帰動作状態からの各ボールねじ直動機構5a,5b,5c,5dの全軸同時サーボオフの処理と、ステップ5(S5)における上記ステップ4(S4)で実施した全軸同時サーボオフの直後に各駆動ユニット3a,3b,3c,3dのガイドブロック7が微小量移動するときのそれぞれの移動量Δa,Δb,Δc,Δdのリニアエンコーダ13a,13b,13c,13d(図3参照)、あるいは、レーザ距離計16a,16b,16c,16d(図6参照)による計測は、上記版テーブル17や印刷対象テーブル19を、図7に二点鎖線で示すように上記ブランケットロール23の直下位置に配置させた状態で実施することが望ましい。
したがって、上記図1に示した本発明の4軸アライメントステージの原点設定方法におけるステップ1(S1)からステップ7(S7)までの手順、及び、その後ステップ2(S2)からステップ7(S7)までの処理サイクルを順次繰り返して行う処理を、すべて上記版テーブル17や印刷対象テーブル19を、図7に二点鎖線で示すように上記ブランケットロール23の直下位置に配置させた状態のままで実施するようにしてもよい。
ところで、上記4軸アライメントステージ18,20における原点復帰動作は、通常、上記オフセット印刷装置の電源投入時に行わせるものであるため、この原点復帰動作を行わせる電源投入時に、上記版テーブル17又は印刷対象テーブル19をブランケットロール23の直下に配置させた状態としておくと、万一誤動作によってブランケットロール23が下降動作した場合は、該ブランケットロール23と上記版テーブル17や印刷対象テーブル19との予期せぬ接触を招く虞がある。
そのため、図7に示す如く、上記したように、図1に示した本発明の4軸アライメントステージの原点設定方法の手順におけるステップ4(S4)と、ステップ5(S5)の処理は、上記版テーブル17や印刷対象テーブル19を、図7に二点鎖線で示すように上記ブランケットロール23の直下位置に配置させた状態で実施する一方、その他のステップ1(S1)、ステップ2(S2)、ステップ3(S3)の処理、及び、ステップ6(S6)、ステップ7(S7)の処理は、上記版テーブル17や印刷対象テーブル19を、図7に実線で示す如くそれぞれの待機エリア24,25に配置させた状態で実施させるようにすることがより好ましい。
上記のようにすれば、上記版テーブル17の4軸アライメントステージ18や、印刷対象テーブル19の4軸アライメントステージ20にて仮の原点位置を基準とする原点復帰動作を行わせるときには、該各テーブル17,19はそれぞれの待機位置に配置されているため、該各テーブル17,19にブランケットロール23が接触する虞を解消できる。
一方、上記原点復帰動作を行った後、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dの全軸同時サーボオフを行うときは、上記版テーブル17や印刷対象テーブル19がブランケットロール23の直下に配置されているため、該版テーブル17や印刷対象テーブル19の4軸アライメントステージ18,20の位置決め精度に影響する種々の要因、たとえば、架台21上に設けたガイドレール22の精度等の影響を排除した、実際のオフセット印刷処理の実施に即した状態で、各駆動ユニット3a,3b,3c,3dの4軸制御による原点復帰動作を行っても各ボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉を抑えることが可能な最適位置に、原点位置を設定することができるようになる。
なお、上記ガイドレール22の精度が十分に確保されている場合や、オフセット印刷装置で要求される位置決め精度があまり厳密でない場合等には、上記オフセット印刷装置における各テーブル17,19の4軸アライメントステージ18,20について、それぞれのテーブルの待機エリア24,25に配置させた状態で、図1に示したステップ4(S4)の原点復帰動作後の全軸同時サーボオフの工程と、ステップ5(S5)による該全軸同時サーボオフの直後に生じる各駆動ユニット3a,3b,3c,3dのガイドブロック7の移動量Δa,Δb,Δc,Δdの計測の工程を含む図1に示した処理手順のすべてのステップを実施するようにしてもよい。
更に、図8及び図9(イ)(ロ)(ハ)は本発明の更に他の実施の形態として、図1乃至図5(イ)(ロ)(ハ)の実施の形態の応用例を示すもので、図3乃至図5(イ)(ロ)(ハ)に示したと同様の構成としてある4軸アライメントステージを用いて、4軸アライメントステージの原点位置設定方法を、図8にフローを示す如き手順で実施する。
すなわち、先ず、ステップ1a(S1a)として、図1のステップ1(S1)と同様に、上記4軸アライメントステージの各駆動ユニット3a,3b,3c,3dについて、それぞれのボールねじ直動機構5a,5b,5c,5dによるガイドブロック7の動作ストロークの途中に、図9(イ)に示すように、図2(イ)に示したと同様の仮の原点位置Oa,Ob,Oc,Odを個別に設定する。
又、ステップ2a(S2a)として、図1のステップ2(S2)と同様に、上記ガイドブロック7の仮の原点位置Oa,Ob,Oc,Odを定めた該各駆動ユニット3a,3b,3c,3d毎に、ガイドブロック7の基準位置を検出するための基準位置検出センサ15(図3参照)から、上記設定された仮の原点位置Oa,Ob,Oc,Odまでの方向と距離を求めておく。
次に、ステップ3a(S3a)として、図1のステップ3(S3)と同様に、図9(イ)に示す如く、上記4軸アライメントステージにて、各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dを運転して、該各ボールねじ直動機構5a,5b,5c,5dにより、対応するガイドブロック7をそれぞれの仮の原点位置Oa,Ob,Oc,Odに一致するように移動させて、各駆動ユニット3a,3b,3c,3dについて図2(イ)に示したと同様の原点復帰動作を行わせる。
上記のようにして仮の原点位置Oa,Ob,Oc,Odを基準としてすべての駆動ユニット3a,3b,3c,3dのガイドブロック7について対応するボールねじ直動機構5a,5b,5c,5dによる制御を行う4軸制御によって原点復帰動作を行わせると、上記各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間で機械的な姿勢の相互干渉が生じている場合は、該各ボールねじ直動機構5a,5b,5c,5dの駆動モータ12の推力(トルク)が上記姿勢の相互干渉による反発力を抑えるように作用した状態となる。
次いで、上記のようにして4軸制御による上記仮の原点位置Oa,Ob,Oc,Odを基準とする原点復帰動作が完了した状態にて、上記4台の駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dのうち、サーボオフ操作対象として選定した或る1台の駆動ユニット、たとえば、駆動ユニット3dのボールねじ直動機構5dのみをサーボオフする(ステップ4a(S4a))。
これにより、上記サーボオフした駆動ユニット3dでは、上記4台の駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉による反発力を抑えるように作用させていた駆動モータ12の推力(トルク)がなくなる。このため、上記4台の駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dのうち、サーボオフしない3台の駆動ユニット3a,3b,3cでは、4軸形式のアライメントステージにおけるXYθの3自由度を、3つの駆動軸として該各駆動ユニット3a,3b,3cで制御することになるため、該各駆動ユニット3a,3b,3cについては、各ボールねじ直動機構5a,5b,5cに対応するガイドブロック7の仮の原点位置Oa,Ob,Ocからのずれはほとんど生じない。
一方、上記サーボオフした駆動ユニット3dにおけるボールねじ直動機構5dのナット部材10(図3参照)に連結ブラケット11(図3参照)を介して接続してあるガイドブロック7は、図9(ロ)に二点鎖線で示すように、上記仮の原点位置Odに配置されていた状態から、上記4軸制御による原点復帰動作を行わせた状態のときに上記各ボールねじ直動機構5a,5b,5c,5d同士の間で作用していた上記反発力により、図9(ロ)に実線で示すように微小量移動させられるようになる。なお、図9(ロ)に示した駆動ユニット3dのガイドブロック7の微小移動量の大きさと方向は、図示するための便宜的なものであって、該駆動ユニット3dのガイドブロック7に実際に生じる微小量移動の大きさや方向を何ら限定するものではない。
上記のようにして駆動ユニット3dのサーボオフに伴って該駆動ユニット3dのボールねじ直動機構5dにおける各ガイドブロック7が微小量移動させられた後は、上記4軸制御による原点復帰動作の際に各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間で生じていた機械的な姿勢の相互干渉による反発力は解消される。
したがって、上記1台の駆動ユニット3aのサーボオフの後に該駆動ユニット3dに生じるガイドブロック7の微小量移動の移動量の大小は、上記4軸制御による原点復帰動作の際に各ボールねじ直動機構5a,5b,5c,5d同士の間で生じていた反発力の大小にある程度関連したものになると考えられる。
そこで、本実施の形態では、図9(ロ)に示すように、上記1台の駆動ユニット3dのサーボオフの直後に該駆動ユニット3dにおいて生じるガイドブロック7の微小量移動について、その移動量Δdを、対応するリニアエンコーダ13dで計測するようにする(ステップ5a(S5a))。なお、この際、上記駆動ユニット3dにて計測する該駆動ユニット3dのサーボオフ直後のガイドブロック7の移動量Δdには、対応するボールねじ直動機構5dの動作方向の一方を正とし、他方を負として該駆動ユニット3dに設定する正負の符号、あるいは、該駆動ユニット3dの動作方向に一致する軸方向としてのY軸方向の一方を正とし、その反対側を負として設定する正負の符号で表される上記ガイドブロック7の移動した方向に関する情報を含むものとする。
上記のようにしてサーボオフした1台の駆動ユニット3dについて、そのサーボオフの直後に生じた上記ガイドブロック7の移動量Δdが計測されると、該移動量Δdの計測値(計測結果)を、図示しない記憶手段に記憶(記録)する(ステップ6a(S6a))。
その後、図9(ハ)に示すように、上記サーボオフした駆動ユニット3dについて計測されたそのサーボオフ直後のガイドブロック7の移動量Δdの計測値を補正量として、該駆動ユニット3dのガイドブロック7に設定されていた従前の仮の原点位置Odを補正して、新たな仮の原点位置Odとして更新する(ステップ7a(S7a))。
上記のようにしてサーボオフ操作対象の駆動ユニット3dについての仮の原点位置Odが更新された後は、該サーボオフ操作対象の駆動ユニット3dについては更新後の仮の原点位置Odを基準として、又、サーボオフ操作対象ではない残る3台の駆動ユニット3a,3b,3cについては、当初の仮の原点位置Oa,Ob,Ocを基準として、上述したステップ2a(S2a)からステップ7a(S7a)までの処理サイクルを順次繰り返して行うようにする。
これにより、上記各処理サイクル毎に、上記サーボオフ操作対象とした駆動ユニット3dについて更新される仮の原点位置Odは、従前の仮の原点位置Odを基準として原点復帰動作を行う際に各駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5d同士の間で生じていた機械的な姿勢の相互干渉による反発力が駆動ユニット3dのサーボオフに伴って解消された位置に順次設定されるようになることから、上記したように、ステップ1a(S2a)〜ステップ7a(S7a)の最初の処理の後に、ステップ2a(S2a)〜ステップ7a(S7a)の処理サイクルを繰り返して実施すると、該各処理サイクルの上記ステップ6a(S6a)で図示しない記憶手段に記憶させるようにしてあるサーボオフ操作対象としての駆動ユニット3dのサーボオフ直後の該駆動ユニット3dのガイドブロック7に生じる微小量移動の移動量Δdの計測値は、次第に収束するようになる。
又、上記処理サイクル毎に上記サーボオフ操作対象とした駆動ユニット3dについて更新される上記仮の原点位置Odの補正量は、該駆動ユニット3dのサーボオフの直後にそのガイドブロック7に生じる微小移動量の移動量Δdの計測値に対応するものであることから、上記駆動ユニット3dのサーボオフ直後に該駆動ユニット3dで生じるガイドブロック7の移動量Δdが大きい場合は上記補正量も大きい値となり、移動量Δdが小さい場合は補正量も小さい値となる。このために、上記各処理サイクルの上記ステップ6a(S6a)で図示しない記憶部に記憶される上記移動量Δdは、次第に収束するようになる。
よって、上記のようにして4軸制御による原点復帰動作を行った状態から駆動ユニット3dをサーボオフした直後の該駆動ユニット3dのガイドブロック7の移動量Δdが収束するようになるまで、たとえば、上記移動量Δdの変化が予め設定した或る範囲に収まるように収束するまで上記処理サイクルを繰り返すようにし、その移動量Δdが収束した状態のときに上記駆動ユニット3dに設定されていた仮の原点位置Odを、上記4軸アライメントステージの実際の運用時に該駆動ユニット3dのガイドブロック7を原点復帰動作させる際の基準とする原点位置として設定するようにする。その他の3台の駆動ユニット3a,3b,3dについては、当初設定した仮の原点位置Oa,Ob,Ocを、上記4軸アライメントステージの実際の運用時に該各駆動ユニット3a,3b,3cのガイドブロック7を原点復帰動作させる際の基準とする原点位置として設定するようにする。
このように、本実施の形態の4軸アライメントステージの原点位置設定方法によれば、サーボオフ操作対象以外の3台の駆動ユニット3a,3b,3cを、それぞれに設定された仮の原点位置Oa,Ob,Ocを基準として原点復帰動作を行わせた状態で、サーボオフ操作対象となる駆動ユニット3dについて、仮の原点位置Odを基準とする原点復帰動作を行った後、原点復帰動作状態からのサーボオフの直後に生じる微小量移動の移動量Δdを計測し、その移動量Δdの計測値を補正量として、該駆動ユニット3dの仮の原点位置Odを補正する処理を繰り返し行って、上記移動量Δdが収束するようになる仮の原点位置Odを求めるようにしてあるため、該駆動ユニット3dの原点位置を、理想的な位置に移動させることができる。
これに対し、特許文献1に示された手法は、前述したように、4軸アライメントステージにおける3つの駆動軸の原点復帰動作を実施した状態で、第4の駆動軸の現在位置を、該第4の駆動軸の原点位置に定めるようにしてあるが、この手法では、上記のようにして定めた第4の駆動軸の原点位置を基準として該第4の駆動軸の原点復帰動作を行うようにしても、1回の原点復帰動作では、該第4の駆動軸自体に剛性不足による機械的な誤差が存在しているため、該第4の駆動軸が、必ずしも機械として理想的な位置に最後まで移動するとは限らない。
したがって、本実施の形態の4軸アライメントステージの原点位置設定方法によれば、4軸アライメントステージの実際の運用時にすべての駆動ユニット3a,3b,3c,3dのボールねじ直動機構5a,5b,5c,5dを制御する4軸制御状態で原点復帰動作を行っても、該各ボールねじ直動機構5a,5b,5c,5d同士の間での機械的な姿勢の相互干渉を抑えることが可能な位置であって、且つ特許文献1に示された手法で設定される原点位置に比してより最適な位置に、原点位置を設定することができる。
よって、上記4軸アライメントステージの運用時には、各駆動ユニット3a,3b,3c,3dの原点復帰動作を円滑に且つ容易に実施させることが可能になる。
以上により、図1乃至図5(イ)(ロ)(ハ)の実施の形態と同様の効果を得ることができる。
上記図8及び図9(イ)(ロ)(ハ)の実施の形態では、4軸アライメントステージにおける4台の駆動ユニット3a,3b,3c,3dのすべてによる4軸制御による原点復帰動作を行った状態から、1台の駆動ユニット3dのみをサーボオフ操作対象としてサーボオフする場合について示したが、4軸制御による原点復帰状態からサーボオフする駆動ユニットの数は2台又は3台としてもよい。
上記のように4軸アライメントステージにおける4台の駆動ユニット3a,3b,3c,3dの4軸制御による原点復帰状態から、2台又は3台の駆動ユニットをサーボオフ操作対象としてサーボオフする場合は、サーボオフ操作対象以外の2台又は1台の駆動ユニットの原点復帰状態を保持したまま、上記サーボオフ操作対象となる2台又は3台の駆動ユニットをサーボオフしたときに該各駆動ユニットのガイドブロック7に生じる微小量移動の移動量を計測し、その計測値を補正量として該各駆動ユニットの仮の原点位置を補正して更新する。その後、上記更新された仮の原点位置を基準とする上記サーボオフ操作対象の各駆動ユニットの原点復帰動作と、該各駆動ユニットの原点復帰動作状態からサーボオフしたときに該各駆動ユニットのガイドブロック7に生じる微小量移動の移動量の計測値を補正量とする仮の原点位置の補正とを行う処理サイクルを繰り返すようにする。これにより、上記図8及び図9(イ)(ロ)(ハ)の実施の形態と同様の効果を得ることができる。
なお、上記のように2台又は3台の駆動ユニットをサーボオフ操作対象とする場合や、図8及び図9(イ)(ロ)(ハ)の実施の形態のように1台の駆動ユニットをサーボオフ操作対象とする場合、4軸アライメントステージにおける4台の駆動ユニット3a,3b,3c,3dのうちの任意の駆動ユニットをサーボオフ操作対象に設定してよい。
又、本発明は上記実施の形態のみに限定されるものではなく、各駆動ユニット3a,3b,3c,3dによる4軸制御状態の原点復帰状態から全軸同時サーボオフした直後に該各駆動ユニット3a,3b,3c,3dのガイドブロック7に生じる微小量移動を計測できるようにしてあれば、該各駆動ユニット3a,3b,3c,3dに付設する外部移動量計測器としては、静電容量式変位計等、リニアエンコーダ13a,13b,13c,13dやレーザ距離計16a,16b,16c,16d以外のいかなる計測方式、形式の外部移動量計測器を用いるようにしてもよい。この場合、使用する外部移動量計測器の計測方式や形式に応じて、該外部移動量計測器の配置を適宜変更してもよい。更には、上記外部移動量計測器は、上記4軸アライメントステージの各駆動ユニット3a,3b,3c,3dの原点位置が設定された後、該設定された原点位置を用いて上記4軸アライメントステージを運用する際のガイドブロック7の移動量の計測に関与しない場合は、4軸アライメントステージに対して着脱可能に取り付ける構成としておき、上記本発明の4軸アライメントステージの原点位置設定方法の実施以外のときは、該外部移動量計測器を4軸アライメントステージより取り外すようにしてもよい。
各駆動ユニット3a,3b,3c,3dが正方形の各頂点の位置に配置するようにしてあれば、たとえば、上部プレート2における4つの辺の中間部付近に配置する等、図示した以外の位置に各駆動ユニット3a,3b,3c,3dを配置した形式の4軸アライメントステージに適用してもよい。
更には、本発明の適用対象となる4軸アライメントステージは、4台の駆動ユニット3a,3b,3c,3dを備えた4軸アライメントステージであれば、ベース1及び上部プレート2の形状やサイズは図示した以外のものであってもよい。
4軸アライメントステージの各駆動ユニット3a,3b,3c,3dにおける一軸方向のサーボ式直動機構は、該各駆動ユニット3a,3b,3c,3dにおけるガイドブロック7を該サーボ式直動機構の駆動方向に沿う方向へ往復動させることができ、且つ各駆動ユニット3a,3b,3c,3dによる4軸制御によって原点復帰動作を行わせるときに上記各駆動ユニット3a,3b,3c,3dのサーボ式直動機構同士の間で機械的な姿勢の相互干渉が生じている場合は、該各サーボ式直動機構同士の間で上記相互干渉による反発力を発生させることができると共に、上記各駆動ユニット3a,3b,3c,3dの全軸同時サーボオフの直後に、該サーボ式直動機構同士の間で発生していた機械的な姿勢の相互干渉による反発力によってガイドブロック7を微小量移動させることができる形式のものであれば、台形ねじによるサーボ式直動機構や、リニアモータ等、ボールねじ直動機構5a,5b,5c,5d以外のサーボ式直動機構を採用してもよい。
各駆動ユニット3a,3b,3c,3dにおけるXYθガイド4は、ベース1に取り付ける下端部と上部プレート2に取り付ける上端部との間にXY直交座標平面における配置と、回転角度θについてのXYθの3自由度を備えており、且つ一軸方向のサーボ式直動機構により該サーボ式直動機構の駆動方向に沿って位置制御されるガイドブロック7を備えていれば、図示した以外の形式のXYθガイドを採用してもよい。
図8及び図9(イ)(ロ)(ハ)の実施の形態の4軸アライメントステージの原点設定方法を、図6の実施の形態と同様に、各駆動ユニット3a,3b,3c,3dに、ガイドブロック7の対応するボールねじ直動機構5a,5b,5c,5dの駆動方向に関する制御位置を計測するための外部移動量計測器としてのレーザ距離計16a,16b,16c,16dを付設してなる構成の4軸アライメントステージに適用してもよい。この場合にも図6の実施の形態と同様の効果を得ることができる。
又、図8及び図9(イ)(ロ)(ハ)の実施の形態の4軸アライメントステージの原点設定方法を、図7の実施の形態と同様にして、図7に示す如きオフセット印刷装置における版テーブル17の上部の版(図示せず)の位置決め用の4軸アライメントステージ18や、印刷対象テーブル19の上部の印刷対象(図示せず)の位置決め用の4軸アライメントステージ20に適用してもよい。この場合にも図7の実施の形態と同様の効果を得ることができる。
本発明は、微細な電子回路を印刷するために用いるオフセット印刷装置における版や基板以外のXYθの3自由度のアライメントが要求される任意のアライメント対象物の位置決めを行うための4軸アライメントステージの原点復帰動作用の原点位置の設定に適用してもよい。
その他本発明の要旨を逸脱しない範囲内で種々変更を加え得ることは勿論である。
1 ベース
2 上部プレート
3a,3b,3c,3d 駆動ユニット
4 XYθガイド
5a,5b,5c,5d ボールねじ直動機構(サーボ式直動機構)
7 ガイドブロック(被駆動部)
13a,13b,13c,13d リニアエンコーダ(外部移動量計測器)
16a,16b,16c,16d レーザ距離計(外部移動量計測器)
17 版テーブル(テーブル)
18 4軸アライメントステージ
19 印刷対象テーブル(テーブル)
20 4軸アライメントステージ
23 ブランケットロール
Oa,Ob,Oc,Od 仮の原点位置
Δa,Δb,Δc,Δd 移動量

Claims (3)

  1. ベースと、該ベースの上方位置に配置した上部プレートとの間に、X、Y、θの3自由度を備えたXYθガイドの被駆動部に一軸方向のサーボ式直動機構を取り付けた構成を有する駆動ユニットを、直交する2軸方向に2台ずつ駆動ユニットの駆動方向を揃えた姿勢で取り付けてなる構成を備えた4軸アライメントステージにて、上記各駆動ユニットに予め設定した仮の原点位置を基準として、上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行い、次に、この4軸制御の原点復帰動作状態から上記各駆動ユニットのサーボ式直動機構を全軸同時サーボオフして、該全軸同時サーボオフの直後に該各駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量を外部移動量計測器でそれぞれ計測すると共に記録し、次いで、上記各駆動ユニット毎に計測された移動量の計測値をそれぞれの補正量として該各駆動ユニットの仮の原点位置を補正して更新し、その後、上記更新された仮の原点位置を基準とする上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行うステップと、該原点復帰動作状態からの上記各駆動ユニットのサーボ式直動機構の全軸同時サーボオフするステップと、該全軸同時サーボオフの直後に該各駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量の計測及び記録を行うステップと、該移動量の計測値を補正量とする各駆動ユニットの仮の原点位置の補正による更新を行うステップを備えた処理サイクルを、上記原点復帰動作状態からの全軸同時サーボオフの直後に各駆動ユニットのXYθガイドの被駆動部に生じる移動量が収束するまで繰り返して行い、該移動量が収束したときの上記各駆動ユニットの仮の原点位置を、上記4軸アライメントステージにおける各駆動ユニットの原点復帰動作用の原点位置として定めることを特徴とする4軸アライメントステージの原点位置設定方法。
  2. ベースと、該ベースの上方位置に配置した上部プレートとの間に、X、Y、θの3自由度を備えたXYθガイドの被駆動部に一軸方向のサーボ式直動機構を取り付けた構成を有する駆動ユニットを、直交する2軸方向に2台ずつ駆動ユニットの駆動方向を揃えた姿勢で取り付けてなる構成を備えた4軸アライメントステージにて、上記各駆動ユニットに予め設定した仮の原点位置を基準として、上記各駆動ユニットのサーボ式直動機構による4軸制御の原点復帰動作を行い、次に、この4軸制御の原点復帰動作状態から、上記4台の駆動ユニットのうち、サーボオフ操作対象とする1台乃至3台の駆動ユニットのサーボ式直動機構をサーボオフして、該サーボオフの直後にサーボオフ操作対象の駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量を外部移動量計測器でそれぞれ計測すると共に記録し、次いで、上記サーボオフ操作対象の駆動ユニットについて計測された移動量の計測値を補正量として対応するサーボオフ操作対象の駆動ユニットの仮の原点位置を補正して更新し、その後、上記サーボオフ操作対象の駆動ユニットのサーボ直動機構による上記更新された仮の原点位置を基準とする原点復帰動作、及び、サーボオフ操作対象以外の駆動ユニットのサーボ式直動機構による当初の仮の原点位置を基準とする原点復帰動作とによる4軸制御の原点復帰動作を行うステップと、該原点復帰動作状態からの上記サーボオフ操作対象となる駆動ユニットのサーボ式直動機構のサーボオフを行うステップと、該サーボオフの直後にサーボオフ操作対象の駆動ユニットにおけるXYθガイドの被駆動部に生じる移動量の計測及び記録を行うステップと、該移動量の計測値を補正量とする上記サーボオフ操作対象の駆動ユニットの仮の原点位置の補正による更新を行うステップを備えた処理サイクルを、上記原点復帰動作状態からのサーボオフ操作対象の駆動ユニットのサーボオフの直後に該サーボオフ操作対象の駆動ユニットのXYθガイドの被駆動部に生じる移動量が収束するまで繰り返して行い、該移動量が収束したときの上記サーボオフ操作対象の駆動ユニットの仮の原点位置、及び、サーボオフ操作対象以外の駆動ユニットの当初の仮の原点位置を、上記4軸アライメントステージにおける各駆動ユニットの原点復帰動作用の原点位置として定めることを特徴とする4軸アライメントステージの原点位置設定方法。
  3. 4軸アライメントステージを、オフセット印刷装置における版や印刷対象を載置してブランケットロールの下方位置を走行するテーブルの上部に設けた4軸アライメントステージとし、該4軸アライメントステージの各駆動ユニットの仮の原点位置を基準とする4軸制御による原点復帰動作状態からのサーボオフ操作の対象となる駆動ユニットのサーボ式直動機構のサーボオフの処理、及び、該サーボオフの直後に該サーボオフされた駆動ユニットのXYθガイドの被駆動部に生じる移動量の計測の処理は、上記オフセット印刷装置における上記テーブルを上記ブランケットロールの直下に配置させた状態で行い、その他の処理は、上記テーブルを上記ブランケットロールの直下以外に設定してあるテーブル待機エリアに配置させた状態で行うようにする請求項1又は2記載の4軸アライメントステージの原点位置設定方法。
JP2011105162A 2011-05-10 2011-05-10 4軸アライメントステージの原点位置設定方法 Expired - Fee Related JP5691813B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011105162A JP5691813B2 (ja) 2011-05-10 2011-05-10 4軸アライメントステージの原点位置設定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011105162A JP5691813B2 (ja) 2011-05-10 2011-05-10 4軸アライメントステージの原点位置設定方法

Publications (2)

Publication Number Publication Date
JP2012238078A JP2012238078A (ja) 2012-12-06
JP5691813B2 true JP5691813B2 (ja) 2015-04-01

Family

ID=47460943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011105162A Expired - Fee Related JP5691813B2 (ja) 2011-05-10 2011-05-10 4軸アライメントステージの原点位置設定方法

Country Status (1)

Country Link
JP (1) JP5691813B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604867B (zh) * 2020-05-21 2023-06-23 张营国 一种四轴同平面校正平台及原点回归方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604686B1 (ja) * 2003-06-03 2004-12-22 株式会社ファースト 4軸XYθテーブルとその制御方法
JP4413826B2 (ja) * 2005-07-13 2010-02-10 住友重機械工業株式会社 平面ステージ装置及びその制御方法
JP2010274429A (ja) * 2009-05-26 2010-12-09 Ihi Corp アライメントステージ
JP5436073B2 (ja) * 2009-07-06 2014-03-05 三菱電機株式会社 位置決め制御装置及び位置決め制御方法

Also Published As

Publication number Publication date
JP2012238078A (ja) 2012-12-06

Similar Documents

Publication Publication Date Title
US8104752B2 (en) Integrated large XY rotary positioning table with virtual center of rotation
WO2010137320A1 (ja) アライメントステージ
US8214080B2 (en) Method and device for the compensation of geometrical errors in machining machinery
JP4525751B2 (ja) アライメント装置およびアライメント装置の原点復帰方法、アライメント装置を備えた旋回テーブル、並進テーブル、機械、および機械制御システム
JP5918622B2 (ja) 部品または基板の作業装置および部品実装装置
JP4865414B2 (ja) アライメント方法
JP4615024B2 (ja) テーブルの位置決め制御装置
JP2014212306A (ja) 電子構成要素又は光学構成要素を基板上に組み付ける方法及び装置
WO2005040945A1 (ja) ステージ装置
CN109421003A (zh) 框架结构中的定位装置
CN110303505B (zh) 机器人的位置信息恢复方法
JP5691813B2 (ja) 4軸アライメントステージの原点位置設定方法
JP5644333B2 (ja) 4軸アライメントステージ
JP5195621B2 (ja) オフセット印刷方法及び装置
WO2010100928A1 (ja) インクジェット用塗布ヘッドの回転調整装置
WO2012176649A1 (ja) ロボットのツールパラメータの補正方法
JP4546227B2 (ja) 膜厚抵抗測定装置
KR20120118543A (ko) 미세구동이 가능한 3축 초정밀 스테이지
JP6985901B2 (ja) 部品実装機および実装ライン
JP2004082228A (ja) ロボットの制御装置
JP6709994B2 (ja) ステージ装置
JP5074313B2 (ja) 基板検査装置
JP2015003361A (ja) コンプライアンス装置
JP2005243668A (ja) 部品実装方法及びその装置
CN113853671A (zh) 用于将器件或图案转移到基板的系统和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

LAPS Cancellation because of no payment of annual fees