JP5676075B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP5676075B2 JP5676075B2 JP2008293349A JP2008293349A JP5676075B2 JP 5676075 B2 JP5676075 B2 JP 5676075B2 JP 2008293349 A JP2008293349 A JP 2008293349A JP 2008293349 A JP2008293349 A JP 2008293349A JP 5676075 B2 JP5676075 B2 JP 5676075B2
- Authority
- JP
- Japan
- Prior art keywords
- well
- outer edge
- sense amplifier
- mos transistor
- bit line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 37
- 239000012535 impurity Substances 0.000 claims description 78
- 238000009792 diffusion process Methods 0.000 description 14
- 229920002120 photoresistant polymer Polymers 0.000 description 13
- 238000010586 diagram Methods 0.000 description 12
- 230000004913 activation Effects 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000003321 amplification Effects 0.000 description 8
- 238000005468 ion implantation Methods 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0207—Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/09—Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/50—Peripheral circuit region structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26586—Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/823412—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Dram (AREA)
Description
しかしながら、メモリの高集積化が進むにつれて、上記キャパシタに蓄積される電荷量が低減し、上記スイッチトランジスタを介してキャパシタから読み出せる信号量が小さくなっているため、センスアンプにより上記信号量の微少な電圧を増幅する必要がある(例えば、特許文献1参照)。
この2組のセンスアンプのうち、1組のセンスアンプ(図5の図面上において左側のメモリセル領域に対応する)は、nチャネル型MOSトランジスタ(以下、nMOSトランジスタと記す)2−N4a及び2−N5aと、pチャネル型MOSトランジスタ(以下、pMOSトランジスタと記す)2−P1a及び2−P2aとから構成されている。
ここで、nMOSトランジスタ2−N1aは、ビット線BLTa及びBLBaのイコライズに用いられ、nMOSトランジスタ(以下N2−N6a及び2−N7aは、ビット線BLTa、BLBaそれぞれのプリチャージに用いられる。
ここで、nMOSトランジスタ2−N1bは、ビット線BLTb及びBLBbのイコライズに用いられ、nMOSトランジスタ2−N6b及び2−N7bは、ビット線BLTb、BLBbそれぞれのプリチャージに用いられる。
信号線LVBLに対してプリチャージ電圧VBL(例えば、0.6ボルト)が印加されるとともに、信号線BLEQTを介して、nMOSトランジスタ2−N1a、2−N6a及び2−N7a各々のゲートに対し、「H」レベル(内部電源電圧VDD:例えば、1.4ボルト)のBLイコライズ用MOS活性化信号が印加されると、nMOSトランジスタ2−N1a、2−N6a及び2−N7a各々が活性化され、ビット線BLTa及びBLBaがプリチャージ電圧VBLにイコライズされる。このとき、電源ノードSA−N−MOS及び電源ノードSA−P−MOSへの電源供給源がオフされており、これらのノードもプリチャージ電圧VBLにイコライズされている。
そして、信号線BLEQTを介して印加されるBLイコライズ用MOS活性化信号を「L」レベル(VSS:0ボルト)とすると、nMOSトランジスタ2−N1a、2−N6a及び2−N7a各々がオフ状態となり、ビット線BLTa及びBLBaがオープン状態となる。
また、ビット線BLBaの電位がプリチャージ電圧VBLを維持するため、この結果、ビット線BLTa及びBLBa間にて電圧ΔVの電位差が発生することになる。
そして、センスアンプ回路の駆動電圧として、電源ノードSA−N−MOSを接地電位VSSとし、電源ノードSA−P−MOSをVDL(例えば、1.2ボルト)とすることにより、ゲートにビット線BLTaが接続されたpMOSトランジスタ2−P2aに比較して、ゲートにビット線BLBaが接続されたpMOSトランジスタ2−P1aの方が、ビット線BLBaが電圧ΔV低い分だけより強くオン状態(オン抵抗小)となる。
これにより、よりビット線BLTaの電位が上昇し、一方、ビット線BLBaの電位が下降し、最終的に、ビット線BLTaの電位がVDLとなり、ビット線BLBaの電位が接地電位VSSとなり、センスアンプの増幅動作が終了する。
そして、カラム選択信号を「H」レベルとして活性化することにより、ビット線BLTaの電位をローカルIO線LIOTaに出力し、ビット線BLBaの電位をローカルIO線LIOBaに出力する。
すなわち、センスアンプにおいて対となるpMOSトランジスタ同士の閾値電圧Vthの差、又は、対となるnMOSトランジスタ同士の閾値電圧Vthの差が、上記電圧ΔVより大きい場合、この電圧ΔVに対応した増幅動作が行えず、メモリセルからのデータの読み出しが行えない。
図7は、図5に示すセンスアンプ回路のレイアウトを示した図であり、n型のウェルNW1が、p型のウェルPW1とPW2とに挟まれて形成されている。そして、センスアンプ回路を構成するpMOSトランジスタ2−P1a、2−P1b、2−P2a及び2−P2bは、このウェルNW1内に形成されている。
なお、図7では、n型のウェル、p型のウェル、トランジスタのソース・ドレインを構成する拡散層及びゲート配線層を図示し、それ以外について図示を省略している。
また、図7のセンスアンプ回路は、図の上下方向に多数接して配置されており、上下の最端部にはダミーのセンスアンプ回路が配置される。
例えば、図7のウェルを形成する場合に、半導体基板にp型不純物をイオン注入してp型のウェルPWを形成した後に、n型不純物のイオン注入によりn型のウェルNW1を形成し、ウェルPW1及びPW2に分離する。このプロセスの場合、図8に示すようにn型のウェルNW1を形成する際、ウェハ全面にフォトレジストを形成し、ウェルNW1を形成する領域のみフォトレジストを除去して、n型不純物を注入する。
そして、p型のウェルPW1及びPW2には、センスアンプ回路を構成するnMOSトランジスタが形成され、n型のウェルNW1にはセンスアンプ回路を構成するpMOSトランジスタが形成される。
ここで、図5(図7)に示す構成にて製造されたセンスアンプ回路の動作を確認したところ、期待した読み出しが行われない場合のあることが見出された。この問題を解決すべくデバイスの特性を解析した結果、センスアンプを構成するトランジスタの閾値電圧Vthにばらつきがあり、特にpMOSトランジスタ2−P1a(図の左側センスアンプ)及び2−P1b(図の右側センスアンプ)の閾値電圧Vthのばらつきが大きいことが分かった。
さらに、この閾値電圧Vthのばらつきの原因を解析したところ、図7に示すようにセンスアンプ(図の左側)を構成するpMOSトランジスタ2−P1a、2−P2a、及び他のセンスアンプ(図の右側)を構成するpMOSトランジスタ2−P2b、2−P1bがn型のウェルNW1内で直線状に配置されていることに起因することが判明した。
このため、ウェルNW1の外縁近傍の領域A1及びA2においては、ウェルNW1の内部領域Bに比較して、n型不純物の注入量がばらついて不純物濃度が不均一となり、このウェルNW1の不純物濃度のばらつきが、pMOSトランジスタ2−P1a及び2−P1bの閾値電圧Vthの変動を引き起こすことを知見した。
なお、前述のように、センスアンプ回路配列の上下の最端部にはダミーのセンスアンプ回路が配置されるため、n型のウェルNW1形成時に不純物イオンの反射や、フォトレジストの陰となり不純物イオンが正常に注入されない部分の発生が問題になるのは、図7の左右方向である。つまり、図7の上下方向には端部にダミーのセンスアンプ回路が配置されるため上下方向のウェル外縁と実使用のセンスアンプ回路との間の距離を大きくとることができるため、不純物イオンの反射等の影響を受けないで済む。
この知見に基づく解析によると、図7の左側に示すセンスアンプを構成するpMOSトランジスタ2−P1aは、2−P2aに比べてウェルNW1のウェル外縁(PW1側)に隣接した領域A1に配置されている。つまり、領域A1に配置されているため、ウェルNW1を形成するn型不純物イオン注入時にフォトレジストの側壁からの反射などの影響を受けることになり、領域Bに配置された場合に比較してpMOSトランジスタ2−P1aの閾値電圧Vthのばらつきが大きくなり、精度良く制御できない。この結果、領域Aに配置されたpMOSトランジスタ2−P1aの閾値電圧Vthと領域Bに配置されたpMOSトランジスタ2−P2aの閾値電圧Vthとの差が上記電圧ΔVを上回る場合が生じ、センスアンプがメモリセルからのデータを正常に読み出せないことになる。
また、図7の右側のセンスアンプを構成するpMOSトランジスタ2−P1bについても、2−P1bに比べてウェルNW1の外縁(PW2側)に隣接した領域A2に配置されている。従って、このpMOSトランジスタ2−P1bについても、同様に、閾値電圧Vthのばらつきが大きくなり、精度良く制御できない。この結果、左側のセンスアンプと同様に、右側のセンスアンプもメモリセルからのデータを正常に読み出せないことになる。
この場合、領域A1及び領域A2の領域にMOSトランジスタを形成しない、すなわちN型のウェルNW1の外縁から十分な距離を取り領域BにpMOSトランジスタ2−P1a(及び2−P1b)とpMOSトランジスタ2−P2a(及び2−P2b)とを形成することが考えられるが、この十分な距離を取ることにより、チップ面積が増加してしまうことになる。これは、記憶容量の大容量化に伴い、益々多数のセンスアンプ回路が必要とされる半導体記憶装置の製造において、大きなコストアップを招くことになる。
以上の説明では、センスアンプを構成するpMOSトランジスタの閾値電圧Vthに対するn型のウェル不純物濃度の変化による影響について述べた。しかしながら、後述するように、p型不純物が注入されたp型のウェルにnMOSトランジスタを形成する場合においても、p型ウェルの外縁近傍の領域では、p型ウェルを形成するp型不純物のイオン注入時に不純物の注入量がばらついて不純物濃度が不均一となることは同様である。従って、センスアンプを構成するnMOSトランジスタのように閾値電圧Vthを精度良く制御する必要があるnMOSトランジスタについても、p型ウェルの外縁から離れたウェルの内側領域に配置することが好ましい。
また、ウェルの不純物濃度のばらつきによる影響を受ける素子の特性パラメータとしては、上述したトランジスタの閾値電圧Vthに限られるものではなく、MOSトランジスタのチャネル間リーク電流や、このウェルに接合を有するダイオードの接合容量、接合リーク電流、接合耐圧等がある。
前記複数の素子のうち、前記ウェルの不純物濃度のばらつきに対して非センシティブな素子は、前記ウェルの外縁から相対的に近く配置され、
前記複数の素子のうち、前記ウェルの不純物濃度のばらつきに対してセンシティブな素子は、前記ウェルの外縁から相対的に遠く、かつ、前記ウェルの外縁から所定距離離れて配置されたことを特徴とする。
したがって、ウェル内の不純物濃度の変動を抑えて、上記センシティブな素子の特性パラメータを高い精度で制御することができる。
また、特性パラメータを低い精度高精度で制御してもよい非センシティブな素子を不純物濃度が不均一なウェルの外縁近傍に配置するため、チップ面積の増加を抑制したレイアウトが可能となる。
以下の説明において、前述した図8に示すように、n型のウェルNW1を形成する際、フォトレジストの開口部(ウェル形成のためのレジストパターン)を介してn型不純物のイオン注入を行いウェルを形成するプロセスを用い、ウェルNW1の外縁近傍のn型不純物濃度が不均一となる場合の対応について説明する。
このブロックは、センスアンプ回路SA1及びSA2の2つのセンスアンプ回路から構成されている。各センスアンプ回路におけるそれぞれのMOSトランジスタは、ブロック内でビット線の延在方向に直線状に配置されている。これは、近年の半導体記憶装置の記憶容量の増加に伴って1メモリセル当たりの面積が小さくなり、これによりビット線のピッチも小さくなったため、レイアウトの都合上、ビット線のピッチとの関係でセンスアンプ列方向のセンスアンプ幅を大きくできないという理由によるものである。
そして、図1のレイアウト図に示すように、n型のウェルNW1内に各MOSトランジスタのソース及びドレインを構成するp型の拡散層DP5(及びDP6)、DP1、DP2、DP3、DP4、DP7(及びDP8)が直線状に配列されている(図の左から右へ)。この配列方向と平行に、p型のウェルPW1内のMOSトランジスタのn型不純物の拡散層DN1、DN2、DN5、DN6、DN7が直線状に配列されている(図の右から左へ)。同様に、p型のウェルPW2内の各MOSトランジスタのn型の拡散層DN3、DN4、DN8、DN9、DN10も直線状に配列されている(図の左から右へ)。なお、図1の各拡散層の配列順序は、図2の各MOSトランジスタの配列順序に対応している。
この各ウェルの作成は従来と同様のプロセスにて行われており、n形のウェルNW1の外縁50あるいは51近傍の領域における領域A1及びA2において、すでに述べたように、n型不純物の濃度が不均一となっている。このため、ウェル内部に近づくにつれて、すなわちウェルの外縁50あるいは51から離れるに従い、n型不純物の濃度が徐々に均一化され、上記外縁50あるいは51からある距離(実験的に、予め使用する各プロセス毎に求められた距離であり、現在使用の製造プロセスにおいては約1μm)以上離れた領域Bはn型不純物の濃度が均一となっている。
すなわち、本実施形態においては、センスアンプに用いられるような、ばらつきの少ない高精度の閾値電圧制御を行う必要のあるMOSトランジスタを、ウェルの不純物濃度が不均一な領域A1及びA2でなく、ウェルの不純物濃度が均一な領域Bに形成しているため、高精度にてMOSトランジスタの閾値電圧制御が行えることになる。したがって、センスアンプ回路において対として用いられるMOSトランジスタ間の閾値電圧Vthを実用上問題ない程度に等しくすることが可能であり、ビット線間における微少な電圧ΔVを高感度で正確に増幅するセンスアンプ回路を構成することができる。
領域A1及びA2に形成されたpMOSトランジスタの閾値電圧Vthのばらつきを測定した結果、本来、不純物濃度が不均一であるため、高精度の閾値電圧制御が必要なMOSトランジスタを形成できない領域A1及びA2においても、ビット線に対してプリチャージを行うスイッチング機能、すなわちオン/オフ機能のみを必要とする、高精度の閾値電圧制御がそれほど必要のないMOSトランジスタであれば形成できることを確認した。
つまり、n型のウェルNW1内でセンスアンプを構成するpMOSトランジスタ1−P1aと1−P2a、又は1−P1bと1−P2bは、その動作上、特性パラメータである閾値電圧に高精度な制御が要求されものであり、ウェルNW1のn型不純物濃度のばらつきに伴うMOSトランジスタの閾値電圧Vthのばらつき(変動)が、これらpMOSトランジスタが搭載された集積回路の動作に与える影響が相対的に大きい素子である。本発明では、このような素子をセンシティブな素子と称する。従って、センスアンプを構成するpMOSトランジスタは、ウェルの不純物濃度のばらつきに対して相対的にセンシティブということになり、このようなセンシティブな素子は、ウェルNW1の外縁50あるいは51から離れたウェルNW1内の領域Bに形成する必要がある。
ウェルの不純物濃度のばらつきによる影響を受ける素子の特性パラメータとしては、MOSトランジスタの閾値電圧Vthに以外にも、上述したように、MOSトランジスタのチャネル間リーク電流や、このウェルに逆導電型半導体層が接する接合を有するダイオードの接合容量、接合リーク電流、接合耐圧等がある。これらのトランジスタやダイオードを同一の半導体基板に搭載した半導体装置において、これらの素子が半導体装置上で適用される機能に応じて、センシティブ素子、又は非センシティブな素子に成り得ることは明らかである。
ウェルの不純物濃度のばらつきに対して相対的にセンシティブな素子というのは、ウェルの不純物濃度が所定値ばらついたとき、この素子が搭載された半導体装置の期待される動作に与える影響が非センシティブな素子に比べて相対的に大きいということである。
また、半導体装置に期待される動作としては、機能的ものと特性的なものがあるが、製品としてこの両者を満足する必要がある。従って、機能的、特性的にできる限り大きな動作マージンを確保できるよう考慮して、ウェル内のセンシティブな素子と非センシティブな素子の配置を決定することになる。
また、本実施形態において、n型のウェルNW1の領域A1、A2には、上述したようにビット線プリチャージ用pMOSトランジスタ1−P3aと1−P4aの対、及び1−P3bと1−P4bの対を夫々配置した。これは、図5におけるビット線プリチャージ用nMOSトランジスタ2−N6aと2−N7aの対、及び2−N6bと2−N7bの対の代わりとして配置したものである。つまり、ウェルNW1の領域A1、A2を有効に利用するため、ビット線プリチャージ用MOSトランジスタを図5のnチャネル型からpチャネル型に変更して領域A1、A2に配置したものである。ここで、ビット線プリチャージ用pMOSトランジスタのゲート電極に、内部電源電圧VDD(例えば、1.4ボルト)と接地電位Vss(0ボルト)との間で振幅する図5のBLイコライズ用MOS活性化信号の反転信号を印加することも可能である。
また、ビット線プリチャージ用pMOSトランジスタ1−P3a、1−P4a、1−P3b及び1−P4bのオン時のゲート電圧をVBBとすることで、これらトランジスタの閾値電圧Vthがばらついたとしても、ビット線プリチャージとして十分なスピードを確保できる。
これにより、不純物濃度が不均一なウェル領域A1、A2から、第1のMOSトランジスタを離して形成することができるため、より不純物濃度が均一なウェル内の領域にて高精度の閾値電圧制御を行うことが可能となる。
これにより、ウェル外縁に隣接した不純物濃度が不均一な領域から、高精度の閾値電圧制御が必要な第1のMOSトランジスタを離して形成することができるため、より不純物濃度が均一なウェル内の領域に配置して高精度の閾値電圧制御を行うことが可能となる。
上述のように、この第2のMOSトランジスタはウェル外縁に隣接した不純物濃度が不均一なウェル領域に配置することが可能であるため、この領域に第2のMOSトランジスタを形成することで外縁に隣接した領域を有効に利用することとなり、チップの面積の増加を抑制することが可能となる。
これにより、ウェルの外縁近傍の不純物濃度が不均一な領域において形成された第2のMOSトランジスタをオンする場合、不純物濃度の不均一による閾値電圧のばらつきを補償すると共に、オン抵抗を小さくして電流駆動能力を増加させることができる。
しかしながら、p型のウェルを形成するために、p型不純物を注入する際、図8と同様に、フォトレジストを全面に塗布し、リソグラフィ工程によりウェルを形成する位置に対応してフォトレジストを開口して、この開口部にp型不純物をイオン注入する場合、p型のウェルPW1の外縁50あるいはPW2の外縁51近傍において、不純物濃度が不均一となる。この領域にnMOSトランジスタを形成すると、図8について述べたことと同様の理由により高精度の閾値電圧制御が行えなくなる。
例えば、図1において、ウェルPW1の外縁50から、nMOSトランジスタ1−N4a及び1−N5aまで所定の距離離し、すなわちn型不純物からなる拡散層(DN1、DN2)及びチャネル領域(ゲート配線層領域GN1、GN2)を、ウェルPW1の外縁50から所定の距離離れたウェルPW1内に形成する。このとき、上述した実施形態と同様に、ウェルPW1の外縁50と、nMOSトランジスタ1−N5aとの間に、nMOSトランジスタ1−N4a及び1−N5aに比較して低い精度の閾値電圧制御でも良い、スイッチング動作のみを行うnMOSトランジスタ1−N1aの拡散層DN5及びチャネル領域(ゲート配線層領域GN5)を配置することができる。このように配置することで、ウェルPW1の外縁50近傍領域を有効に利用することができ、チップの面積の増加を抑制することが可能となる。
そして、ウェルPW1の外縁50と、nMOSトランジスタ1−N4a及び1−N5aとの距離を離し、また、ウェルPW2の外縁51と、nMOSトランジスタ1−N4b及び1−N5bとの距離を離した。そのため、それぞれの空いた領域に、低い精度の閾値電圧制御でも良いnMOSトランジスタ1−N1a、1−N1bをそれぞれ形成することで、この空いた領域を有効に利用することとなり、チップの面積の増加を抑制することができる。
このセンスアンプ領域の両端にはメモリセル領域が配置されており、ビット線BLTa、BLTb、またビット線BLBa、BLBbそれぞれにメモリセルが接続されている。このメモリセルは、スイッチトランジスタと、このスイッチトランジスタを介してビット線に接続されるキャパシタから構成されている。このキャパシタにデータとして、スイッチトランジスタを介して電荷が蓄積あるいは放電され、「1」または「0」のデータが書き込まれる。図5の従来例にてすでに述べたように、このキャパシタに蓄積される電荷量により、ビット線の変化する電圧ΔVが決定される。
また、センスアンプ回路SA2は、pMOSトランジスタ1−P1b、1−P2b、1−P3b及び1−P4bと、nMOSトランジスタ1−N1b、1−N2b、1−N3b、1−N4b及び1−N5bとから構成されている。ただし、1−N2bは、センスアンプSA1側に配置されている。
以下、図2の説明において、( )内は、センスアンプSA1の各構成に対応した、センスアンプSA2における構成を示している。
増幅動作を行うセンスアンプは、nMOSトランジスタ1−N5a(1−N5b)及び1−P2a(1−P2b)が対となり、nMOSトランジスタ1−N4a(1−N4b)及び1−P1a(1−P1b)が対となっている。
また、nMOSトランジスタ1−N4a(1−N4b)は、ドレインが電源ノードSA−N−MOSに接続され、ゲートがビット線BLBa(BLBb)に接続され、ソースがビット線BLTa(BLTb)に接続されている。同様に、nMOSトランジスタ1−N5a(1−N5b)は、ドレインが電源ノードSA−N−MOSに接続され、ゲートがビット線BLTa(BLTb)に接続され、ソースがビット線BLBa(BLBb)に接続されている。
なお、上記信号線BLPRBに印加されるプリチャージMOS活性化信号は、上記信号線BLEQTに印加されるイコライズ用MOS活性化信号の反転信号である。
nMOSトランジスタ1−N3a(1−N3b)は、ドレインがビット線BLBa(BLBb)に接続され、ゲートが信号線CLMに接続され、ソースがローカルIO線LIOBa(LIOBb)に接続されている。
信号線CLMに「H」レベルのカラム選択信号が印加されると、nMOSトランジスタ1−N2a(1−N2b)及び1−N3a(1−N3b)がオン状態となり、ビット線BLTa(BLTb)がローカルIO線LIOTa(LIOTb)に接続され、ビット線BLBa(BLBb)がローカルIO線LIOBa(LIOBb)に接続される。
また、ビット線BLBaの電位がプリチャージ電圧VBLを維持するため、この結果、ビット線BLTa及びBLBa間にて電圧ΔVの電位差が発生することになる。
一方、ゲートにビット線BLBaが接続されたnMOSトランジスタ1−N4aに比較して、ゲートにビット線BLTaが接続されたnMOSトランジスタ1−N5aの方が、ビット線BLTaが電圧ΔV高い分だけより強くオン状態(オン抵抗小)となる。
これにより、よりビット線BLTaの電位が上昇し、一方、ビット線BLBaの電位が下降し、最終的に、ビット線BLTaの電位が電源ノードSA−P−MOSのVDLとなり、ビット線BLBaの電位が接地電位Vssとなり、センスアンプにおける電圧ΔVの増幅動作が終了する。
そして、時刻t8以降において、メモリセルからの読み出しが継続される場合、時刻1から時刻7までの動作が繰り返されることになる。
ここでは、一例として、SDRAM(Synchronous Dynamic Random Access Memory)を用いて示す。
上記半導体記憶装置は、内部CLK(クロック)生成回路807、制御信号生成回路808、Xデコーダ・Xタイミング生成回路802、Yデコーダ・Yタイミング生成回路803、データ制御回路804、DLL(Delay Locked Loop)回路809、メモリアレイ801、データラッチ回路805、入出力インターフェース806を備えている。
1−N1a,1−N1b,1−N2a,1−N2b,1−N3a,1−N3b,1−N4a,1−N4b,1−N5a,1−N5b…nチャネル型MOSトランジスタ
203,SA1,SA2…センスアンプ回路
NW1…n型不純物が注入されたn型のウェル
PW1,PW2…p型不純物が注入されたp型のウェル
SA−N−MOS,SA−P−MOS…電源ノード
BLTa,BLTb,BLBa,BLBb…ビット線
LIOTa,LIOTb,LIOBa,LIOBb…ローカルIO線
LVBL,BLPRB,BLEQT,CLM…信号線
50,51…ウェルの外縁
Claims (8)
- 第1導電型のウェル内に形成される複数の素子を備えた半導体装置において、
前記複数の素子のうち、前記ウェルの不純物濃度のばらつきに対して非センシティブな素子は、前記ウェルの外縁に近く配置され、
前記複数の素子のうち、前記ウェルの不純物濃度のばらつきに対してセンシティブな素子は、前記ウェルの外縁から遠く、かつ、前記ウェルの外縁から所定距離離れて配置されたことを特徴とする半導体装置。 - 前記複数の素子の夫々が第2導電型の半導体層を有し、
前記非センシティブな素子の前記半導体層が前記ウェルの外縁に近く配置され、
前記センシティブな素子の前記半導体層が前記ウェルの外縁から遠く、かつ前記ウェルの外縁から所定距離離れて配置されたことを特徴とする請求項1に記載の半導体装置。 - 前記センシティブな素子と前記ウェルの外縁との間に前記非センシティブな素子が配置されたことを特徴とする請求項1又は請求項2に記載の半導体装置。
- 前記複数の素子が、夫々MOSトランジスタであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体装置。
- 前記センシティブな素子が、第1の精度の閾値電圧制御が必要なMOSトランジスタであり、
前記非センシティブな素子が、前記第1の精度よりも低い第2の精度の閾値電圧制御でよいMOSトランジスタであることを特徴とする請求項4に記載の半導体装置。 - メモリセルと、
前記メモリセルからビット線を介して読み出されたデータによりビット線間の電位差を増幅するセンスアンプ回路と、を備え、
前記センスアンプ回路は、第1導電型のウェル内に形成され、前記データの読み出し前に前記ビット線をプリチャージする第2導電型のプリチャージ用MOSトランジスタと前記読み出されたデータによるビット線間の電位差を増幅する第2導電型のセンスアンプ用MOSトランジスタとを有し、
前記プリチャージ用MOSトランジスタが前記ウェルの外縁に近く配置され、
前記センスアンプ用MOSトランジスタが前記ウェルの外縁から遠く、かつ前記ウェルの外縁から所定距離離れて配置されたことを特徴とする半導体装置。 - 前記第1導電型がn型であると共に、前記第2導電型がp型であり、
前記プリチャージの期間中、前記プリチャージ用MOSトランジスタのゲート電極には、負の電圧が印加されることを特徴とする請求項6に記載の半導体装置。 - メモリセルと、
前記メモリセルからビット線を介して読み出されたデータによりビット線間の電位差を増幅するセンスアンプ回路と、を備え、
前記センスアンプ回路は、第1導電型のウェル内に形成され、前記データの読み出し前の前記ビット線のプリチャージ期間中、前記ビット線間をイコライズする第2導電型のイコライズ用MOSトランジスタと前記読み出されたデータによるビット線間の電位差を増幅する第2導電型のセンスアンプ用MOSトランジスタとを有し、
前記イコライズ用MOSトランジスタが前記ウェルの外縁に近く配置され、
前記センスアンプ用MOSトランジスタが前記ウェルの外縁から遠く、かつ前記ウェルの外縁から所定距離離れて配置されたことを特徴とする半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008293349A JP5676075B2 (ja) | 2008-11-17 | 2008-11-17 | 半導体装置 |
US12/318,417 US8102726B2 (en) | 2008-11-17 | 2008-12-29 | Semiconductor device |
US13/311,344 US8411522B2 (en) | 2008-11-17 | 2011-12-05 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008293349A JP5676075B2 (ja) | 2008-11-17 | 2008-11-17 | 半導体装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014263077A Division JP2015111488A (ja) | 2014-12-25 | 2014-12-25 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010123610A JP2010123610A (ja) | 2010-06-03 |
JP5676075B2 true JP5676075B2 (ja) | 2015-02-25 |
Family
ID=42171985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008293349A Active JP5676075B2 (ja) | 2008-11-17 | 2008-11-17 | 半導体装置 |
Country Status (2)
Country | Link |
---|---|
US (2) | US8102726B2 (ja) |
JP (1) | JP5676075B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8107305B2 (en) * | 2009-06-25 | 2012-01-31 | Micron Technology, Inc. | Integrated circuit memory operation apparatus and methods |
JP5710945B2 (ja) * | 2010-11-25 | 2015-04-30 | ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. | 半導体装置 |
US9799774B2 (en) * | 2013-09-26 | 2017-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Switch circuit, semiconductor device, and system |
JP6753325B2 (ja) * | 2017-02-01 | 2020-09-09 | 富士通株式会社 | 半導体記憶装置および半導体記憶装置の制御方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960000723B1 (ko) * | 1991-02-15 | 1996-01-11 | 닛본덴기 가부시끼가이샤 | Eeprom |
JPH06162776A (ja) * | 1992-11-18 | 1994-06-10 | Nec Corp | 半導体メモリ回路 |
US5548145A (en) * | 1993-10-25 | 1996-08-20 | Kabushiki Kaisha Toshiba | Semiconductor memory apparatus |
JPH08125034A (ja) * | 1993-12-03 | 1996-05-17 | Mitsubishi Electric Corp | 半導体記憶装置 |
JPH1083689A (ja) * | 1996-09-10 | 1998-03-31 | Mitsubishi Electric Corp | 不揮発性半導体記憶装置 |
US6046924A (en) | 1998-06-19 | 2000-04-04 | Kabushiki Kaisha Toshiba | Semiconductor memory device having a sense amplifier region formed in a triple-well structure |
JP4767390B2 (ja) * | 2000-05-19 | 2011-09-07 | エルピーダメモリ株式会社 | Dram |
JP4157269B2 (ja) * | 2000-06-09 | 2008-10-01 | 株式会社東芝 | 半導体記憶装置 |
JP3762385B2 (ja) * | 2003-04-28 | 2006-04-05 | 株式会社東芝 | 不揮発性半導体記憶装置 |
JP2006031795A (ja) * | 2004-07-14 | 2006-02-02 | Renesas Technology Corp | 不揮発性半導体記憶装置 |
JP4775849B2 (ja) * | 2006-01-13 | 2011-09-21 | 富士通セミコンダクター株式会社 | 半導体素子及びそれを用いた半導体記憶装置、及びそのデータ書込み方法、データ読出し方法、及びそれらの製造方法 |
KR20080069042A (ko) | 2007-01-22 | 2008-07-25 | 삼성전자주식회사 | 오픈 비트라인 구조를 가지는 반도체 메모리 장치 및 이를배치하는 방법 |
IT1400750B1 (it) * | 2010-06-30 | 2013-07-02 | St Microelectronics Srl | Memoria sram 5t per applicazioni a bassa tensione |
-
2008
- 2008-11-17 JP JP2008293349A patent/JP5676075B2/ja active Active
- 2008-12-29 US US12/318,417 patent/US8102726B2/en active Active
-
2011
- 2011-12-05 US US13/311,344 patent/US8411522B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010123610A (ja) | 2010-06-03 |
US8102726B2 (en) | 2012-01-24 |
US8411522B2 (en) | 2013-04-02 |
US20100124134A1 (en) | 2010-05-20 |
US20120075904A1 (en) | 2012-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4110115B2 (ja) | 半導体記憶装置 | |
US8199596B2 (en) | Semiconductor memory device having a plurality of sense amplifier circuits | |
US9646659B2 (en) | Bitline senseamplifier and semiconductor memory apparatus using the same | |
KR101446345B1 (ko) | 반도체 기억장치 및 그 센스 증폭기 회로 | |
JP4418254B2 (ja) | 半導体集積回路 | |
JP4994135B2 (ja) | センス増幅回路およびセンス増幅方法 | |
JP5027503B2 (ja) | 半導体記憶装置 | |
JP4804133B2 (ja) | 不揮発性半導体記憶装置 | |
US20130258794A1 (en) | Memory device having control circuitry for sense amplifier reaction time tracking | |
JP5676075B2 (ja) | 半導体装置 | |
CN115398541A (zh) | 具有感测放大器的边缘存储器阵列垫 | |
CN108431894B (zh) | 半导体存储装置 | |
JP4767390B2 (ja) | Dram | |
US10706917B2 (en) | Semiconductor memory device | |
JP2020098656A (ja) | 半導体装置 | |
JP2015111488A (ja) | 半導体装置 | |
JP2003332532A (ja) | 半導体装置 | |
JP2010153032A (ja) | 半導体記憶装置 | |
US20020003263A1 (en) | Semiconductor device having MOS transistor for coupling two signal lines | |
JP4889965B2 (ja) | 半導体記憶装置 | |
JP2006018935A (ja) | 半導体記憶装置 | |
JP2014139995A (ja) | 半導体装置 | |
JP2010182419A (ja) | 半導体記憶装置 | |
JP2015028836A (ja) | 制御方法および制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110907 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20130731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130905 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20131030 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20131213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140409 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140718 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141028 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20141117 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20141120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5676075 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |