JP5667743B2 - Soi基板の作製方法 - Google Patents

Soi基板の作製方法 Download PDF

Info

Publication number
JP5667743B2
JP5667743B2 JP2008249874A JP2008249874A JP5667743B2 JP 5667743 B2 JP5667743 B2 JP 5667743B2 JP 2008249874 A JP2008249874 A JP 2008249874A JP 2008249874 A JP2008249874 A JP 2008249874A JP 5667743 B2 JP5667743 B2 JP 5667743B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal semiconductor
substrate
semiconductor substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008249874A
Other languages
English (en)
Other versions
JP2010080834A (ja
Inventor
哲弥 掛端
哲弥 掛端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2008249874A priority Critical patent/JP5667743B2/ja
Publication of JP2010080834A publication Critical patent/JP2010080834A/ja
Application granted granted Critical
Publication of JP5667743B2 publication Critical patent/JP5667743B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、絶縁層を介して半導体層が設けられた基板の作製方法に関し、特にSOI(Silicon on Insulator)基板の作製方法に関する。また、絶縁層を介して半導体層が設けられた基板の製造プロセスにおける半導体基板の再利用(リサイクル)方法に関する。
絶縁表面を有するベース基板上に半導体層を有するSOI基板は低消費電力且つ高速動作が可能な半導体装置の製造に適した基板として注目されている。
SOI基板を作製方法の1つに、水素イオン注入剥離法が知られている(例えば、特許文献1参照)。水素イオン注入剥離法は、まず、二枚のシリコンウエハの内、少なくともボンド基板となる一方のシリコンウエハに酸化膜を形成すると共に、上面から水素イオンまたは希ガスイオンを注入し、該シリコンウエハ内部に微小気泡層を形成させる。そして、イオンを注入した方の面を、酸化膜を介してベース基板となる他方のシリコンウエハと密着させ、その後熱処理を加えて微小気泡層を劈開面として一方のウエハを薄膜状に分離し、さらに熱処理を加えて強固に結合してSOI基板とする技術である。
また、SOI基板の製造において、シリコンウエハの効率的、経済的な活用のために、ボンド基板となるシリコンウエハを繰り返し用いる方法が研究されている(例えば、特許文献2参照)。
また、一般的に、半導体デバイスの作製において用いられるシリコンウエハは、当該シリコンウエハの周縁部を面取り加工することによりチッピングやクラックの発生を防いでいる(例えば、特許文献3)。
特開2000−124092号公報 特開2008−21892号公報 特開2004−281609号公報
SOI基板の製造プロセスにおいて、面取り加工された半導体基板を繰り返し使用する場合には、当該半導体基板が薄くなっていくため、ある時点で半導体基板に設けられた面取り部が消失する。このような面取り部が無くなった半導体基板をSOI基板の製造においてボンド基板として用いる場合には、チッピングやクラックが発生する可能性が高くなる。また、半導体基板の面取り部が消失した段階で当該半導体基板の使用をやめる場合には、面取り加工された半導体基板を繰り返し使用できる回数が制限され、半導体基板の使用効率を十分に高めることが困難となる。SOI基板の製造においては、用いる半導体基板自体が高価であるため、半導体基板の使用効率を高めることによるコスト低減は重要となる。
一方で、半導体基板の面取り部が無くなった段階で再度半導体基板に面取り加工を行う場合、既に繰り返し使用されて半導体基板が薄くなっているため面取り加工の取り扱いが難しく、半導体基板が破損するおそれもある。その結果、SOI基板の製造プロセスにおいて半導体基板の使用効率が低下し、材料コストが高くなってしまう。
本発明は、上記問題に鑑み、SOI基板の製造プロセスにおいて、半導体基板を繰り返し使用する場合であっても、チッピングやクラックを低減することを目的の一とする。又は、SOI基板の製造プロセスにおいて、1枚の半導体基板の使用効率を高めると共に、チッピングやクラックを低減することを目的の一とする。
本発明は、SOI基板の製造プロセスにおいて、ボンド基板として用いる半導体基板を繰り返し複数回利用した後、半導体基板の面取り部が無くなった段階又は無くなる前に当該半導体基板を他の第2の単結晶半導体基板と貼り合わせて積層基板を形成し、当該積層基板に面取り部を形成した後にボンド基板として使用するものである。
本発明の一は、表面側面取り部、裏面側面取り部及び表面側面取り部と裏面側面取り部とを連結する端面を有し、ボンド基板となる第1の単結晶半導体基板の表面に、イオンを照射して第1の単結晶半導体基板中に脆化領域を形成し、絶縁層を介して第1の単結晶半導体基板とベース基板とを貼り合わせる第1の工程と、脆化領域において第1の単結晶半導体基板を分離して、ベース基板上に絶縁層を介して単結晶半導体層を形成する第2の工程と、第2の工程において脆化領域で分離された第1の単結晶半導体基板に平坦化処理を行う第3の工程とを有し、平坦化処理が行われた第1の単結晶半導体基板を、再度ボンド基板として複数回使用して第1の工程乃至第3の工程を繰り返し行い、第3の工程において第1の単結晶半導体基板の表面側面取り部が無くなった段階で、第1の単結晶半導体基板を第2の単結晶半導体基板に貼り合わせて積層基板を形成し、積層基板に表面側面取り部及び裏面側面取り部を設けた後、積層基板を第1の工程のボンド基板として使用することを特徴としている。なお、第1の工程乃至第3の工程のいずれかの工程間に別の工程を設けることも可能である。
また、本発明の一は、表面側面取り部、裏面側面取り部及び表面側面取り部と裏面側面取り部とを連結する端面とを有し、ボンド基板となる第1の単結晶半導体基板の表面にイオンを照射して第1の単結晶半導体基板中に脆化領域を形成し、絶縁層を介して第1の単結晶半導体基板とベース基板とを貼り合わせる第1の工程と、脆化領域において第1の単結晶半導体基板を分離して、ベース基板上に絶縁層を介して単結晶半導体層を形成する第2の工程と、第2の工程において脆化領域で分離された第1の単結晶半導体基板に平坦化処理を行う第3の工程とを有し、平坦化処理が行われた第1の単結晶半導体基板を、再度ボンド基板として複数回使用して第1の工程乃至第3の工程を繰り返し行った後、繰り返し使用された第1の単結晶半導体基板の表面側面取り部が残存している状態で、第1の単結晶半導体基板を第2の単結晶半導体基板に貼り合わせて積層基板を形成し、積層基板に表面側面取り部及び裏面側面取り部を設けた後、積層基板を第1の工程におけるボンド基板として使用することを特徴としている。なお、第1の工程乃至第3の工程のいずれかの工程間に別の工程を設けることも可能である。
また、本発明の一は、積層基板の表面側面取り部を、第1の単結晶半導体基板に形成された第1の傾斜面と、第2の単結晶半導体基板に形成され且つ第1の傾斜面と同一面上に設けられた第2の傾斜面で設け、積層基板の表面側面取り部と裏面側面取り部を連結する端面を第2の単結晶半導体基板に設けることを特徴としている。
また、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、表示装置、電気光学装置、半導体回路及び電子機器は全て半導体装置に含まれる。
本発明により、SOI基板の製造プロセスにおいて、半導体基板を再利用する場合であっても、チッピングやクラックを低減することができる。
本発明により、SOI基板の製造プロセスにおいて、1枚の半導体基板の使用効率を高めると共に、チッピングやクラックを低減することができる。
以下に、本発明の実施の形態を図面に基づいて説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態および詳細を変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、SOI基板の作製方法の一例に関して図面を参照して説明する。
まず、ボンド基板として利用する単結晶半導体基板100と、ベース基板120とを準備する(図1(A)、(B)参照)。
単結晶半導体基板100としては、例えば、単結晶シリコン基板、単結晶ゲルマニウム基板、単結晶シリコンゲルマニウム基板など、第14族元素でなる単結晶半導体基板を用いることができる。また、ガリウムヒ素やインジウムリン等の化合物半導体基板も用いることができる。市販のシリコン基板としては、直径5インチ(125mm)、直径6インチ(150mm)、直径8インチ(200mm)、直径12インチ(300mm)、直径16インチ(400mm)サイズの円形のものが代表的である。なお、単結晶半導体基板100の形状は円形に限られず、矩形状等に加工して用いることも可能である。
また、本実施の形態では、ボンド基板となる単結晶半導体基板100として、面取り加工された(面取り部を有する)基板を用いる。ボンド基板として面取り部を有する単結晶半導体基板を用いることにより、SOI基板の製造プロセスにおいて、単結晶半導体基板のチッピングやクラックを低減することができる。その結果、チッピングやクラックに伴うゴミの発生や貼り合わせ不良等を抑制することができる。
例えば、単結晶半導体基板100として、表面111の周縁部に形成された表面側面取り部111bと、裏面112の周縁部に形成された裏面側面取り部112bと、表面側面取り部111bと裏面側面取り部112bを連結する端面113とが設けられた単結晶シリコン基板を用いることができる(図2(A)参照)。表面側面取り部111bは、表面111の主面111aに対して傾斜する傾斜面で形成され、裏面側面取り部112bは、裏面112の主面112aに対して傾斜する傾斜面で形成されている。また、端面113や傾斜面は、必ずしも平面である必要はなく曲面であってもよい。
また、表面111の主面111aと、表面側面取り部111bを構成する傾斜面との交差角度θ1、裏面112の主面112aと、裏面側面取り部112bを構成する傾斜面との交差角度θ2は適宜設定することができる。θ1とθ2が同じであってもよいし、異なっていてもよい。
ベース基板120としては、例えば、絶縁体でなる基板を用いることができる。具体的には、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスのような電子工業用に使われる各種ガラス基板、石英基板、セラミック基板、サファイア基板が挙げられる。他にも、ベース基板120として単結晶半導体基板(例えば、単結晶シリコン基板等)や多結晶半導体基板(例えば、多結晶シリコン基板)を用いてもよい。多結晶シリコン基板は、単結晶シリコン基板より安価であり、ガラス基板より耐熱性が高いという利点を有している。
次に、単結晶半導体基板100の表面111から所定の深さに結晶構造が損傷された脆化領域104を形成し、その後、絶縁層102を介して単結晶半導体基板100とベース基板120とを貼り合わせる(図1(C)参照)。ここでは、ベース基板120に対して単結晶半導体基板100の表面111の主面111aが対向するように貼り合わせを行う。
脆化領域104は、水素等のイオンを単結晶半導体基板100に照射することにより形成することができる。
絶縁層102は、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の絶縁層を単層、又は積層させて形成することができる。これらの膜は、熱酸化法、CVD法又はスパッタリング法等を用いて形成することができる。
本明細書中において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものであって、好ましくは、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)及び水素前方散乱法(HFS:Hydrogen Forward Scattering)を用いて測定した場合に、濃度範囲として酸素が50〜70原子%、窒素が0.5〜15原子%、シリコンが25〜35原子%、水素が0.1〜10原子%の範囲で含まれるものをいう。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものであって、好ましくは、RBS及びHFSを用いて測定した場合に、濃度範囲として酸素が5〜30原子%、窒素が20〜55原子%、シリコンが25〜35原子%、水素が10〜30原子%の範囲で含まれるものをいう。ただし、酸化窒化シリコン又は窒化酸化シリコンを構成する原子の合計を100原子%としたとき、窒素、酸素、シリコン及び水素の含有比率が上記の範囲内に含まれるものとする。
次に、熱処理を行い脆化領域104において単結晶半導体基板100を分離することにより、ベース基板120上に、絶縁層102を介して単結晶半導体層124を設ける(図1(D)参照)。
熱処理を行うことで、温度上昇によって脆化領域104に形成されている微小な孔には、添加された元素が析出し、内部の圧力が上昇する。圧力の上昇により、脆化領域104の微小な孔に体積変化が起こり、脆化領域104に亀裂が生じるので、脆化領域104に沿って単結晶半導体基板100が分離する。絶縁層102はベース基板120に接合しているので、ベース基板120上には単結晶半導体基板100から分離された単結晶半導体層124が形成される。
この熱処理には、拡散炉、抵抗加熱炉などの加熱炉、RTA(瞬間熱アニール、Rapid Thermal Anneal)装置、マイクロ波加熱装置などを用いることができる。例えば、RTA装置を用いる場合、加熱温度550℃以上730℃以下、処理時間0.5分以上60分以内で加熱することができる。
以上の工程により、図1(D)に示すように、ベース基板120上に絶縁層102を介して単結晶半導体層124を有するSOI基板を作製することができる。
次に、分離後の単結晶半導体基板100をSOI基板の製造プロセスにおいて再利用する。単結晶半導体基板100の再利用方法に関して図1(E−1)〜(E−3)を参照して説明する。
まず、分離後の単結晶半導体基板100に対して平坦化処理を行う(図1(E−1)参照)。ここでは、少なくとも分離面である単結晶半導体基板100の表面111の主面111aに平坦化処理を行う。平坦化処理を行うことにより、分離後の単結晶半導体基板100の表面111の主面111aを平坦にし、単結晶半導体基板100をボンド基板として再利用することが可能となる。
平坦化処理として、分離後の単結晶半導体基板100にウエットエッチング処理を行うことができる。これにより、単結晶半導体基板100の分離面の段差を低減することができる。また、単結晶半導体基板100の分離面に形成され結晶欠陥を有する半導体層を除去することができる。なお、ウエットエッチングの変わりにドライエッチングを行ってもよいし、ウエットエッチングとドライエッチングを組み合わせて行ってもよい。
ウエットエッチング処理に用いるエッチャントには有機アルカリ水溶液を用いることができる。例えば、有機アルカリ水溶液として、TMAH(Tetra Methyl Ammonium Hydroxide、テトラメチルアンモニウムヒドロキシド)を0.2〜5.0%含む水溶液(例えば、東京応化工業株式会社製、商品名:NMD3)を用いることが好ましい。また、有機アルカリ水溶液の液温は、40℃〜70℃とするのが好ましい。より好ましくは、液温を50℃程度にするのがよい。このウエットエッチングは、30秒〜600秒行うのが好ましい。より好ましくは、処理時間を60秒程度とする。
また、ウエットエッチングを行う場合、分離後の単結晶半導体基板100を処理槽内の溶液に浸漬して行うことが好ましい。この場合、複数の単結晶半導体基板100を一括処理できるという効果が得られる。
また、図示しないが、ウエットエッチング後に、単結晶半導体基板100表面に酸化膜を形成して、形成後に当該酸化膜を除去してもよい。この酸化膜の形成により、単結晶半導体基板100が脱水素化されるという効果が得られる。SOI基板の製造プロセスでは、単結晶半導体基板100の分離面から500nm程度の深さまで、水素イオンが多く含まれている場合があるため、脱水素化処理を行うことは効果的である。特に、酸化膜の形成において、ハロゲンを含むガスを添加して熱酸化するのが好ましい。この場合、原子による金属不純物のゲッタリング効果がえられる。また、酸化膜にとりこまれた金属不純物等は酸化膜を除去することにより取り除くことができる。
平坦化処理は、単結晶半導体基板100の表面111の主面111aに研磨を行ってもよい。研磨方法としては、化学的機械的研磨法(Chemical Mechanical Polishing:CMP法)を用いることができる。CMP法とは、被加工物の表面を基準にし、それにならって表面を化学・機械的な複合作用により、平坦化する手法である。CMP法では一般的に研磨ステージの上に研磨布を貼り付け、被加工物と研磨布との間にスラリー(研磨剤)を供給しながら研磨ステージと被加工物とを各々回転または揺動させる。スラリーと被研磨物表面との間での化学反応および、研磨布と被研磨物との機械的研磨の作用により、被加工物の表面は研磨される。
本実施の形態では、上述した平坦化処理を行うことにより、分離後の単結晶半導体基板100を1μm〜15μm程度薄膜化することが好ましい。
その後、平坦化処理が行われた単結晶半導体基板100を、SOI基板の製造プロセスにおいてボンド基板として再利用し、再び図1(A)〜(E−1)を繰り返し行った後(図1(A)、(B)、(C)、(D)、(E−1)参照)、薄くなった単結晶半導体基板100を他の単結晶半導体基板150に貼り合わせて、積層基板200を形成する(図1(E−2)、図2(B)、(C)参照)。
例えば、単結晶半導体基板100を分離後、(n−1)回目(nは2以上の自然数)までは単結晶半導体基板100をSOI基板の製造プロセスにおいてボンド基板として再利用し、図1(A)〜図1(E−1)の工程をn回行った後、n回目の平坦化処理で平坦化された単結晶半導体基板100を他の単結晶半導体基板150と貼り合わせて積層基板200を形成することができる。
他の単結晶半導体基板150としては、表面及び裏面に面取り加工された(面取り部を有する)基板、表面と裏面の一方に面取り部を有する基板、又は面取り部を有さない基板を用いることができる。図2では、単結晶半導体基板150として、表面151の周縁部に形成された表面側面取り部151bと、裏面152の周縁部に形成された裏面側面取り部152bと、表面側面取り部151bと裏面側面取り部152bを連結する端面153とが設けられた単結晶シリコン基板を用いる場合を示している。
単結晶半導体基板100をボンド基板として再利用する回数(単結晶半導体基板100を他の単結晶半導体基板150に貼り合わせるタイミング)は、単結晶半導体基板100の表面側面取り部111bの状態により決定することができる。
例えば、図1(A)〜図1(E−1)を繰り返し行う工程において、平坦化処理後に単結晶半導体基板100の表面側面取り部111bが無くなった段階で、第1の単結晶半導体基板100を第2の単結晶半導体基板150に貼り合わせて積層基板200を形成する構成とすることができる。
又は、単結晶半導体基板100の表面側面取り部111bが無くなる前に、他の単結晶半導体基板150と貼り合わせる構成としてもよい。単結晶半導体基板100の表面側面取り部111bが無くなる前に余裕を持って他の単結晶半導体基板150と貼り合わせることにより、繰り返しボンド基板として用いられる単結晶半導体基板100のチッピングやクラックの発生をより効果的に低減することができるからである。
なお、表面側面取り部111bが無くなった段階とは、単結晶半導体基板100の表面111の主面111aと端面113が交差する状態となった場合をいう(図10(A)参照)。具体的には、単結晶半導体基板100の表面111が円状である場合には、主面111aにおける半径rと、単結晶半導体基板100の最大半径rmaxが概略同一となった段階をいう(図10(B)参照)。なお、単結晶半導体基板100の最大半径rmaxとは、単結晶半導体基板100の表面における中心から端面113までの距離を指す。また、単結晶半導体基板100の表面111が矩形状である場合には、単結晶半導体基板100の表面111の中心から主面111aを構成するある辺への垂線の長さと端面113への垂線の長さが概略同一となった段階をいう。なお、表面側面取り部111b、裏面側面取り部112b、端面113が曲面を有する場合でも、表面側面取り部111bが無くなった段階を同様に判断することができる(図10(C)。
このように、SOI基板の製造プロセスにおいて、表面側面取り部111bが無くなった単結晶半導体基板100がボンド基板として用いられない構成とすることにより、SOI基板の製造プロセスにおいて単結晶半導体基板を繰り返し使用する場合であっても、ボンド基板のチッピングやクラックを抑制することができる。
次に、積層基板200に面取り加工を行うことにより表面側面取り部201b及び裏面側面取り部202bを形成する(図1(E−3)参照)。その後、面取り加工された積層基板200をSOI基板の製造プロセスにおけるボンド基板として用いることができる。
図1(E−3)において、積層基板200に形成する面取り部は、単結晶半導体基板100を他の単結晶半導体基板150に貼り合わせた後に、単結晶半導体基板100と単結晶半導体基板150を加工することにより設けることができる。例えば、単結晶半導体基板100を他の単結晶半導体基板150に貼り合わせた後に面取り加工することにより、積層基板200に表面側面取り部201bと、裏面側面取り部202bと、表面側面取り部201bと裏面側面取り部202bを連結する端面203を設けた構成とすることができる(図1(E−3)、図2(D)参照)。
例えば、積層基板200の表面側面取り部201bを、単結晶半導体基板100に形成された第1の傾斜面211と、単結晶半導体基板150に形成され且つ第1の傾斜面211と同一面上に設けられた第2の傾斜面212で設け、積層基板200の端面203を単結晶半導体基板150に設け、積層基板200の裏面側面取り部202bを単結晶半導体基板150に形成された第3の傾斜面213で設けることができる。
この場合、第1の傾斜面211は、単結晶半導体基板100の表面111の主面111a及び裏面の主面112aと交差し、第2の傾斜面212は、単結晶半導体基板150の表面の主面151a及び端面153と交差する。また、表面側面取り部201bは、単結晶半導体基板100と単結晶半導体基板150の貼り合わせ界面を含んだ構成となる。このように、積層基板200の表面側面取り部201bを、同一面上に位置する第1の傾斜面211と第2の傾斜面212で形成することにより、単結晶半導体基板100と単結晶半導体基板150の貼り合わせ界面の段差を低減し、積層基板200のチッピングやクラックを低減することができる。
また、第3の傾斜面213は、単結晶半導体基板150の裏面152の主面152a及び端面153と交差する。
なお、単結晶半導体基板150に裏面側面取り部152bがあらかじめ設けられている場合には、積層基板200の裏面側面取り部202bを、単結晶半導体基板150の裏面側面取り部152bで設けることができる。この場合、積層基板200の裏面側面取り部を形成する工程を省略することができる。
また、図1(E−3)の面取り加工において、表面側面取り部201bと裏面側面取り部202bを連結する端面203を、積層基板200を構成する単結晶半導体基板100と単結晶半導体基板150のうち一方の基板側に設けることが好ましい。端面203を一方の基板(ここでは、単結晶半導体基板150)に設けることにより、積層基板200を再度ボンド基板として面取り部が無くなるまで繰り返し使用した場合、面取り部が無くなる前に他方の基板(ここでは、単結晶半導体基板100)を使い切ることができる。その結果、再度積層基板を形成する場合に積層基板に設けられる貼り合わせ界面を一つとすることができる。
また、単結晶半導体基板100と単結晶半導体基板150の厚さが異なる場合、厚い方の単結晶半導体基板(ここでは、単結晶半導体基板150)側に端面203を形成することが好ましい。厚い方の単結晶半導体基板側に端面203を設けることにより端面203を形成する幅を調整しやすくなるため、面取り部の形状を所望の形状に形成しやすくなる。
また、単結晶半導体基板100と単結晶半導体基板150の厚さに大きな違いがない場合には、双方の単結晶半導体基板に渡って端面203を設けてもよい。この場合、積層基板200の端面は、単結晶半導体基板100と単結晶半導体基板150の貼り合わせ界面を含んだ構成となる。
このように、本実施の形態では、再利用により薄くなった単結晶半導体基板100を破棄するのではなく、他の単結晶半導体基板150と貼り合わせて積層基板200を形成し、当該積層基板200をボンド基板として再利用する。この場合、SOI基板の製造プロセスにおいて、単結晶半導体基板100を最後まで無駄なく使用でき、1枚の単結晶半導体基板の使用効率を高めることができる。その結果、SOI基板の製造プロセスにおいて低コスト化を図ることができる。
また、単結晶半導体基板100の表面側面取り部111bが無くなった段階又は無くなる前に当該単結晶半導体基板100を他の単結晶半導体基板150と貼り合わせて積層基板200を形成し、積層基板200に面取り部を形成した後にボンド基板として用いることによって、ボンド基板を再利用する場合であっても、チッピングやクラックを低減することができる。
また、単結晶半導体基板100が繰り返し使用されて薄くなった場合であっても、薄くなった単結晶半導体基板100を他の単結晶半導体基板150に貼り合わせて面取り加工を行うことにより、面取り加工時に単結晶半導体基板100が破損することを抑制すると共に、単結晶半導体基板100をボンド基板の一部として再度利用することが可能となる。これにより、SOI製造プロセスにおける材料コストを低く抑えることができる。
なお、図1に示したSOI基板の製造プロセスにおいて、単結晶半導体基板100と単結晶半導体基板150の貼り合わせは、単結晶半導体基板同士を直接接合させてもよいし、絶縁層を介して単結晶半導体基板100と単結晶半導体基板150を接合させてもよい。以下に、単結晶半導体基板100と単結晶半導体基板150とを貼り合わせて積層基板200を作製する方法に関して図面を参照して説明する。
図4は、単結晶半導体基板100と単結晶半導体基板150を直接接合させて積層基板200を形成する場合を示している。ここでは、単結晶半導体基板100の裏面112の主面112aと単結晶半導体基板150の表面151の主面151aを直接貼り合わせる場合を示すが、これに限られない。他にも、図1〜図3に示したように、単結晶半導体基板100の表面111の主面111aと単結晶半導体基板150の表面151の主面151aを直接貼り合わせてもよい。
まず、単結晶半導体基板100と単結晶半導体基板150を準備する(図4(A−1)、(B−1)参照)。なお、単結晶半導体基板100と単結晶半導体基板150貼り合わせ面をあらかじめ研磨して平坦にしておくことが好ましい。単結晶半導体基板150は、例えば、単結晶シリコン基板、単結晶ゲルマニウム基板、単結晶シリコンゲルマニウム基板など、第14族元素でなる単結晶半導体基板を用いることができる。また、単結晶半導体基板150として単結晶半導体基板100と同じ材料の基板を用いることにより熱膨張係数等が変わらないため、接合不良を抑制することができる。
次に、単結晶半導体基板100の貼り合わせ面と単結晶半導体基板150の貼り合わせ面の一方又は双方に表面処理を行った後(図4(A−2)、(B−2)参照)、単結晶半導体基板100の裏面112の主面112aと単結晶半導体基板150の表面151の主面151aとを接合させ積層基板200を形成する(図4(C)参照)。
ここでは、表面処理として、単結晶半導体基板100の表面及び単結晶半導体基板150の表面に、真空中でアルゴン(Ar)の高速原子ビームを照射して表面を活性化した後、そのまま常温で接合させる場合(真空接合)を示している。なお、表面処理として、他にも、単結晶半導体基板100の表面と単結晶半導体基板150の表面の一方又は双方に湿式の処理を行うことによりにより水酸基を導入し、水酸基間の水素結合を利用して接合させてもよい。この場合、接合強度を向上させるために熱処理を行ってもよい。
図5は、接合層として機能する絶縁層を介して単結晶半導体基板100と単結晶半導体基板150を接合させて積層基板200を作製する場合を示している。ここでは、単結晶半導体基板100の表面111の主面111aと単結晶半導体基板150の表面151の主面151aが対向するように貼り合わせる場合を示すが、これに限られない。他にも、単結晶半導体基板100の裏面112の主面112aと単結晶半導体基板150の表面151の主面151aが対向するように貼り合わせてもよい。
まず、単結晶半導体基板100と単結晶半導体基板150を準備した後(図5(A−1)、(B)参照)、少なくとも、単結晶半導体基板100の貼り合わせ面(ここでは、表面111の主面111a)に接合層となる絶縁層142を形成する。
絶縁層142は、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の単層、又はこれらを積層させた膜を用いることができる。これらの膜は、熱酸化法、CVD法又はスパッタリング法等を用いて形成することができる。ここでは、熱酸化処理を行うことにより単結晶半導体基板100の表面111及び裏面112に絶縁層142(例えば、SiOx膜)を形成する場合を示している(図5(A−2)参照)。
なお、熱酸化処理は、酸化性雰囲気中にハロゲンを添加して行うことが好ましい。例えば、塩素(Cl)が添加された酸化性雰囲気中で単結晶半導体基板100に熱酸化処理を行うことにより、塩素酸化された絶縁層142を形成する。この場合、絶縁層142は、塩素原子を含有した膜となる。絶縁層142に塩素を含有させることにより不純物となる金属をゲッタリングする効果がる。
次に、単結晶半導体基板100の表面111と単結晶半導体基板150の表面151とを対向させ、絶縁層142の表面と単結晶半導体基板150の表面151の主面151aとを接合させて積層基板200を形成する(図5(C)参照)。また、絶縁層142の表面と単結晶半導体基板150の表面151の主面151aとを接合させた後、接合強度を増加させるための熱処理を行うことが好ましい。
次に、積層基板200に表面側面取り部と裏面側面取り部を設ける(図5(D)参照)。ここでは、積層基板200の表面側面取り部201bは、単結晶半導体基板100の表面111の主面111a及び裏面の主面112aと交差する第1の傾斜面211と、単結晶半導体基板150の表面の主面151a及び端面153と交差し且つ第1の傾斜面211と同一面上に設けられた第2の傾斜面212と、第1の傾斜面211と第2の傾斜面212の間に設けられた絶縁層142とで形成される。
また、絶縁層142を選択的にエッチングすることにより、単結晶半導体基板100と単結晶半導体基板150の間に絶縁層142を残存させ、積層基板200の表面に形成された絶縁層142を除去してもよい。
また、熱酸化法を用いて単結晶半導体基板100の全面に絶縁層142を形成した場合、積層基板200の表面の主面201a上に形成される絶縁層142を除去せずに当該絶縁層142を介してベース基板120との貼り合わせを行ってもよい。この場合、絶縁層142を除去する工程と絶縁層102を形成する工程を省くことができ、SOI基板の製造プロセスを簡略化することができる。
なお、図5では、単結晶半導体基板100の表面に接合層となる絶縁層142を設けて貼り合わせを行う場合を示しているが、単結晶半導体基板150側に絶縁層142を設けて単結晶半導体基板100の表面と絶縁層142の表面を接合させてもよい。
図6は、単結晶半導体基板100と単結晶半導体基板150の表面に、それぞれ接合層として機能する絶縁層を設け、当該絶縁層同士を接合させて積層基板200を形成する場合を示している。ここでは、単結晶半導体基板150として、面取り加工されていない基板を用い、単結晶半導体基板100の表面111の主面111aと単結晶半導体基板150の表面151が対向するように貼り合わせる場合を示すが、これに限られない。他にも、単結晶半導体基板100の裏面112の主面112aと単結晶半導体基板150の表面151が対向するように貼り合わせてもよい。
まず、単結晶半導体基板100と単結晶半導体基板150を準備した後(図6(A−1)、(B−1)参照)、少なくとも単結晶半導体基板100の貼り合わせ面(ここでは、表面111の主面111a)に接合層となる絶縁層144を形成し、単結晶半導体基板150の貼り合わせ面(ここでは、表面151)に接合層となる絶縁層146を形成する。
絶縁層144、絶縁層146は、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、窒化酸化シリコン膜等の単層、又はこれらを積層させた膜を用いることができる。これらの膜は、熱酸化法、CVD法又はスパッタリング法等を用いて形成することができる。ここでは、熱酸化処理を行うことにより、単結晶半導体基板100、単結晶半導体基板150にそれぞれ絶縁層144、絶縁層146(例えば、SiOx膜)を形成する場合を示している(図6(A−2)、(B−2)参照)。なお、熱酸化処理は、酸化性雰囲気中にハロゲンを添加して行ってもよい。
絶縁層144と絶縁層146は、同一の材料で形成してもよいし、異なる材料で形成してもよい。
次に、単結晶半導体基板100の表面111と単結晶半導体基板150の表面151とを対向させ、絶縁層144の表面と絶縁層146の表面とを接合させて積層基板200を形成する(図6(C)参照)。また、絶縁層144の表面と絶縁層146の表面とを接合させた後、接合強度を増加させるための熱処理を行うことが好ましい。
次に、積層基板200に表面側面取り部201bと裏面側面取り部202bを設ける(図6(D)参照)。ここでは、積層基板200の表面側面取り部201bは、単結晶半導体基板100の表面111の主面111a及び裏面の主面112aと交差する第1の傾斜面211と、単結晶半導体基板150の表面151及び端面153と交差し且つ第1の傾斜面211と同一面上に設けられた第2の傾斜面212と、第1の傾斜面211と第2の傾斜面212の間に設けられた絶縁層144、絶縁層146とで形成される。
また、絶縁層144、絶縁層146を選択的にエッチングすることにより、単結晶半導体基板100と単結晶半導体基板150の間に絶縁層144と絶縁層146を残存させ、積層基板200の表面に形成された絶縁層144を除去してもよい。
また、熱酸化法を用いて単結晶半導体基板100の全面に絶縁層144を形成した場合、積層基板200の表面の主面201a上に形成される絶縁層144を除去せずに当該絶縁層144を介してベース基板120との貼り合わせを行ってもよい。この場合、絶縁層144を除去する工程と絶縁層102を形成する工程を省くことができ、SOI基板の製造プロセスを簡略化することができる。
また、図4〜図6において、単結晶半導体基板150として、SOI基板の製造プロセスで繰り返し使用された基板を用いてもよい(図9参照)。図9は、図4において、単結晶半導体基板150として繰り返し使用され薄くなった単結晶半導体基板を用いる場合を示している。
図4と同様に単結晶半導体基板100と単結晶半導体基板150を貼り合わせて積層基板200を形成した後(図9(A−1)〜(C)参照)、当該積層基板200に面取り加工を行うことにより、表面側面取り部201bと裏面側面取り部202bを形成することができる(図9(D)参照)。
面取り加工において、表面側面取り部201bと裏面側面取り部202bを連結する端面203を、積層基板200を構成する単結晶半導体基板100と単結晶半導体基板150のうち一方の基板側に設けることが好ましい。端面203を一方の基板に設けることにより、積層基板200を再度ボンド基板として面取り部が無くなるまで繰り返し使用した場合、面取り部が無くなる前に他方の基板を使い切ることができる。その結果、再度積層基板を形成する場合に積層基板に設けられる貼り合わせ界面を一つとすることができる。
また、単結晶半導体基板100と単結晶半導体基板150の厚さが異なる場合、厚い方の単結晶半導体基板側に端面203を形成することが好ましい。厚い方の単結晶半導体基板側に端面203を設けることにより端面203を形成する幅を調整しやすくなるため、厚い基板側に形成する面取り部の形状を所望の形状に加工しやすくなるからである。なお、単結晶半導体基板100と単結晶半導体基板150の厚さに大きな違いがない場合には、双方の単結晶半導体基板に渡って端面203を設けてもよい。この場合、積層基板の端面は、単結晶半導体基板100と単結晶半導体基板150の貼り合わせ界面を含んだ構成となる。
なお、図9では、単結晶半導体基板100の表面111の主面111aと単結晶半導体基板150の表面151の主面151aを貼り合わせる場合を示したがこれに限られない。単結晶半導体基板100の表面111の主面111aと単結晶半導体基板150の裏面152の主面152aを貼り合わせてもよいし、単結晶半導体基板100の裏面112の主面112aと単結晶半導体基板150の表面151の主面151aを貼り合わせてもよいし、単結晶半導体基板100の裏面112の主面112aと単結晶半導体基板150の裏面152の主面152aを貼り合わせてもよい。
また、積層基板200の裏面側にいずれか一方の単結晶半導体基板の裏面側が配置されるように貼り合わせを行うことが好ましい。この場合、積層基板200の裏面側面取り部を形成する工程を省略することができる。
以上のように、本実施の形態で示した工程を行うことにより、再生された単結晶半導体基板の厚さが薄くなり当該単結晶半導体基板単体ではSOI基板の製造プロセスへの使用ができなくなった場合であっても、他の単結晶半導体基板と貼り合わせることによりSOI基板の製造プロセスで利用することができるため、1枚の単結晶半導体基板の使用効率を高めることができる。これにより、SOI基板の製造プロセスにおける低コスト化を図ることができる。
なお、本実施の形態で示したSOI基板の製造プロセスで得られたSOI基板は、単結晶半導体層124の表面を平坦化処理した後(図1(F−1)参照)、当該単結晶半導体層124を用いてトランジスタ等を具備する半導体装置の作製に用いることができる(図1(F−2)参照)。
なお、本実施の形態で示した構成は、本明細書の他の実施の形態で示す構成と適宜組み合わせて行うことができる。
(実施の形態2)
本実施の形態では、上記実施の形態1で示したSOI基板の製造プロセスにおいて、新たに検査工程を設けた場合について図面を参照して説明する。
図3は、上記図1で示したSOI基板の製造プロセスにおいて、単結晶半導体基板100をボンド基板として再利用する回数を決定するにあたり、平坦化処理後の単結晶半導体基板100の状態を検査する検査工程を設けた場合を示している。なお、図3は、図1に検査工程を追加した構成となっている。
検査工程では、単結晶半導体基板100の状態を検査する。例えば、単結晶半導体基板100の表面111の周縁部等を観察し、表面側面取り部111bの状態等を観察する。また、単結晶半導体基板100の厚さや反り量を測定してもよい。単結晶半導体基板100の厚さや反り量の測定は、レーザー変位計を用いて行うことができる。また、単結晶半導体基板100の表面の状態の観察は顕微鏡等を用いて行うことができる。
検査を行った結果、単結晶半導体基板100の表面側面取り部111bが十分に残存している場合には、単結晶半導体基板100をボンド基板として再利用し、表面側面取り部111bが無くなっている場合や十分に残存していないことが確認された場合には他の単結晶半導体基板150と貼り合わせを行う構成とすることができる(図3(E−2)参照)。なお、単結晶半導体基板100をボンド基板として再利用するか否かを決定するにあたっては、単結晶半導体基板100の表面側面取り部111bの状態だけでなく、単結晶半導体基板100の厚さ、反り量、表面状態等に応じて決定することができる。
なお、図3では、単結晶半導体基板110の表面111の主面111aと、単結晶半導体基板150の表面151の主面151aが対向するように貼り合わせる場合を示しているが、これに限られない。単結晶半導体基板110の裏面112の主面112aと、単結晶半導体基板150の表面151の主面151aが対向するように貼り合わせてもよい。また、図3では、単結晶半導体基板150として、表面151の周縁部に形成された表面側面取り部151bと、裏面152の周縁部に形成された裏面側面取り部152bと、表面側面取り部151bと裏面側面取り部152bを連結する端面153が設けられた基板を用いる場合を示しているが、単結晶半導体基板150の表面側面取り部151bと裏面側面取り部152bの一方又は双方が設けられていない基板を用いてもよい。
また、図3では、単結晶半導体基板100に平坦化処理を行った後に検査工程を設ける場合を示したが、平坦化処理を行う前に検査工程を設けてもよい。
検査工程を設けることにより、単結晶半導体基板100をボンド基板として再利用する回数(ボンド基板として再利用するか、又は他の単結晶半導体基板と貼り合わせるか)を適切に決定することができる。その結果、SOI基板の製造プロセスにおいてチッピングやクラックが生じることを抑制し、単結晶半導体基板100の使用効率を高めることができる。
なお、本実施の形態で示した構成は、本明細書の他の実施の形態で示す構成と適宜組み合わせて行うことができる。
(実施の形態3)
本実施の形態では、上記実施の形態において、単結晶半導体基板100と単結晶半導体基板150が貼り合わされて形成された積層基板200をSOI基板の製造プロセスにおいてボンド基板として用いる場合に関して図面を参照して説明する。
まず、ボンド基板として用いられる積層基板200と、ベース基板120とを準備する(図7(A)、(B)参照)。ここでは、絶縁層142を介して貼り合わされた単結晶半導体基板100と単結晶半導体基板150を積層基板200として用いる場合を示しているが、上記図3に示したように単結晶半導体基板100と単結晶半導体基板150を直接接合させた積層基板を用いてもよい。
次に、積層基板200の表面から所定の深さに結晶構造が損傷された脆化領域104を形成し、その後、絶縁層102を介して積層基板200とベース基板120とを貼り合わせる(図7(C)参照)。ここでは、単結晶半導体基板100内に脆化領域104を設ける。なお、上記図5で説明したように、単結晶半導体基板100の全面に形成された絶縁層142を残存させる場合には、絶縁層142を介して積層基板200とベース基板120との貼り合わせを行うことができる。
次に、熱処理を行い脆化領域104において積層基板200を分離することにより、ベース基板120上に、絶縁層102を介して単結晶半導体層124を設ける(図7(D)参照)。
以上の工程により、図7(D)に示すように、ベース基板120上に絶縁層102を介して単結晶半導体層124を有するSOI基板を作製することができる。なお、得られたSOI基板は、単結晶半導体層124の表面を平坦化処理した後(図7(F−1)参照)、当該単結晶半導体層124を用いてトランジスタ等を具備する半導体装置の作製に用いることができる(図7(F−2)参照)。
次に、分離後の積層基板200に対して平坦化処理を行う(図7(E−1)参照)。ここでは、少なくとも分離面である積層基板200の表面201に平坦化処理を行う。これにより、分離後の積層基板200の表面(ここでは、単結晶半導体基板100の表面又は裏面)を平坦にし、SOI基板の製造プロセスにおいて積層基板200をボンド基板として再利用することが可能となる。
次に、平坦化処理が行われた積層基板200に対して、SOI基板の製造プロセスにおいてボンド基板として使用できるか否か検査を行う(図6(E−2)参照)。
積層基板200は、単結晶半導体基板100と単結晶半導体基板150が貼り合わされた界面付近において欠陥等が存在しやすく、貼り合わせ界面付近の欠陥を有する部分をSOI基板の単結晶半導体層124として設けた場合には、当該単結晶半導体層124を用いて形成された素子に不良が生じるおそれがある。従って、検査工程を設け、ボンド基板として使用できない基板をあらかじめ発見することにより、積層基板200を繰り返し利用する場合であっても素子の不良を低減し、歩留まりを向上させることが可能となる。また、歩留まりを向上させる検査工程を設けることは、単結晶半導体基板の使用効率を高める観点からも効果的である。
検査工程では、積層基板200の状態を検査する。例えば、積層基板200の厚さや反り量を測定する。特に、単結晶半導体基板100の厚さ(接合界面までの厚さ)を測定することが好ましい。また、積層基板200の表面(単結晶半導体基板100の表面)の状態(キズの有無)等を観察することが好ましい。単結晶半導体基板100が薄くなり接合界面付近に近づく程、欠陥等が存在する可能性が高いためである。なお、積層基板200の厚さや反り量の測定は、レーザー変位計を用いて行うことができる。また、積層基板200の表面の状態(キズの有無)等の観察は顕微鏡を用いて行うことができる。
このような検査を行った後、当該検査工程の結果に応じて積層基板200をボンド基板として再利用するか否かを決定する構成とすることができる。例えば、検査工程において、所定の条件を満たす積層基板200は、SOI基板の製造プロセスにおいてボンド基板として再利用する。一方で、所定の条件を満たさなくなった積層基板200に対しては、単結晶半導体基板100及び絶縁層142を研磨等により除去して単結晶半導体基板150の表面を露出させ(図6(E−3)参照)、当該単結晶半導体基板150をSOIの製造プロセス(図1、図3参照)におけるボンド基板として用いることができる。
積層基板200が所定の条件を満たすか否かは、例えば、積層基板200を構成する単結晶半導体基板100の厚さに応じて決定することができる。また、単結晶半導体基板100の厚さの他にも、反り量や表面状態に応じて適宜決定することができる。
なお、検査工程は、平坦化処理工程の前に設けてもよい。
検査工程を設けることにより、積層基板200内に欠陥が存在する場合であっても、当該欠陥がSOI基板の単結晶半導体層124に形成されることを低減することができる。その結果、当該単結晶半導体層124を用いて形成された素子に不良が生じることを抑制することができる。
なお、本実施の形態で示した構成は、本明細書の他の実施の形態で示す構成と適宜組み合わせて行うことができる。
(実施の形態4)
本実施の形態では、SOI基板の製造プロセスにおいて、ボンド基板として用いる単結晶半導体基板とベース基板との貼り合わせ方法に関して図面を参照して詳細に説明する。具体的には、上記実施の形態において、図1(A)〜(D)、図3(A)〜(D)、図7(A)〜(D)に対応している。
まず、単結晶半導体基板100を準備する(図8(A−1)参照)。単結晶半導体基板100の表面は、あらかじめ硫酸過水(SPM)、アンモニア過水(APM)、塩酸過水(HPM)、希フッ酸(DHF)などを用いて適宜洗浄することが汚染除去の点から好ましい。また、希フッ酸とオゾン水を交互に吐出して洗浄してもよい。
次に、単結晶半導体基板100の表面に酸化膜132を形成する(図8(A−2)参照)。
酸化膜132は、例えば、酸化シリコン膜、酸化窒化シリコン膜等の単層、又はこれらを積層させた膜を用いることができる。これらの膜は、熱酸化法、CVD法又はスパッタリング法等を用いて形成することができる。また、CVD法を用いて酸化膜132を形成する場合には、テトラエトキシシラン(略称;TEOS:化学式Si(OC)等の有機シランを用いて作製される酸化シリコン膜を酸化膜132に用いることが生産性の点から好ましい。
本実施の形態では、単結晶半導体基板100に熱酸化処理を行うことにより酸化膜132(ここでは、SiOx膜)を形成する(図8(A−2)参照)。熱酸化処理は、酸化性雰囲気中にハロゲンを添加して行うことが好ましい。
例えば、塩素(Cl)が添加された酸化性雰囲気中で単結晶半導体基板100に熱酸化処理を行うことにより、塩素酸化された酸化膜132を形成する。この場合、酸化膜132は、塩素原子を含有した膜となる。
酸化膜132中に含有された塩素原子は、歪みを形成する。その結果、酸化膜132の水分に対する吸収割合が向上し、拡散速度が増大する。つまり、酸化膜132表面に水分が存在する場合に、当該表面に存在する水分を酸化膜132中に素早く吸収し、拡散させることができる。
熱酸化処理の一例としては、酸素に対し塩化水素(HCl)を0.5〜10体積%(好ましくは3体積%)の割合で含む酸化性雰囲気中で、900℃〜1150℃の温度(代表的には1000℃)で行うことができる。処理時間は0.1〜6時間、好ましくは0.5〜1時間とすればよい。形成される酸化膜の膜厚としては、10nm〜1000nm(好ましくは50nm〜300nm)、例えば100nmの厚さとする。
本実施の形態では、酸化膜132に含まれる塩素原子の濃度を1×1017atoms/cm〜1×1021atoms/cmとなるように制御する。酸化膜132に塩素原子を含有させることによって、外因性不純物である重金属(例えば、Fe、Cr、Ni、Mo等)を捕集して単結晶半導体基板100が汚染されることを防止する効果を奏する。
酸化膜132として、HCl酸化などによって膜中に塩素等のハロゲンを含ませることにより、単結晶半導体基板に悪影響を与える不純物(例えば、Na等の可動イオン)をゲッタリングすることができる。つまり、酸化膜132を形成した後に行われる熱処理により、単結晶半導体基板に含まれる不純物が酸化膜132に析出し、ハロゲン(例えば塩素)と反応して捕獲されることとなる。それにより酸化膜132中に捕集した当該不純物を固定して単結晶半導体基板100の汚染を防ぐことができる。また、酸化膜132はガラス基板と貼り合わせた場合に、ガラスに含まれるNa等の不純物を固定する膜として機能しうる。
特に、酸化膜132として、HCl酸化などによって膜中に塩素等のハロゲンを含ませることは、半導体基板の洗浄が不十分である場合や、繰り返し再利用して用いられる半導体基板の汚染除去に有効となる。
また、酸化膜132に含有させるハロゲン原子としては塩素原子に限られない。酸化膜132にフッ素原子を含有させてもよい。単結晶半導体基板100表面をフッ素酸化するには、単結晶半導体基板100表面にフッ酸に浸漬した後に酸化性雰囲気中で熱酸化処理を行うことや、NFを酸化性雰囲気に添加して熱酸化処理を行えばよい。
次に、運動エネルギーを有するイオンを単結晶半導体基板100に照射することで、単結晶半導体基板100の所定の深さに結晶構造が損傷された脆化領域104を形成する(図8(A−3)参照)。図4(A−3)に示すように、酸化膜132を介して、加速されたイオン103を単結晶半導体基板100に照射することで、単結晶半導体基板100の表面から所定の深さの領域にイオン103が添加され、脆化領域104を形成することができる。イオン103は、ソースガスを励起して、ソースガスのプラズマを生成し、このプラズマに含まれるイオンを、電界の作用によりプラズマから引き出して、加速したイオンである。
脆化領域104が形成される領域の深さは、イオン103の運動エネルギー、質量と電荷、イオン103の入射角によって調節することができる。運動エネルギーは加速電圧、ドーズ量などにより調節できる。イオン103の平均侵入深さとほぼ同じ深さの領域に脆化領域104が形成される。そのため、イオン103を添加する深さで、単結晶半導体基板100から分離される単結晶半導体層の厚さが決定される。この単結晶半導体層の厚さが10nm以上500nm以下、好ましくは50nm以上200nm以下になるように、脆化領域104が形成される深さを調節する。
脆化領域104の形成は、イオンドーピング処理で行うことができる。イオンドーピング処理には、イオンドーピング装置を用いて行うことができる。イオンドーピング装置の代表的な装置は、プロセスガスをプラズマ励起して生成された全てのイオン種をチャンバー内に配置された被処理体に照射する非質量分離型の装置である。非質量分離型の装置であるのは、プラズマ中のイオン種を質量分離しないで、全てのイオン種を被処理体に照射しているからである。これに対して、イオン注入装置は質量分離型の装置である。イオン注入装置は、プラズマ中のイオン種を質量分離し、ある特定の質量のイオン種を被処理体に照射する装置である。
イオンドーピング装置の主要な構成は、被処理物を配置するチャンバー、所望のイオンを発生させるイオン源、およびイオンを加速し、照射するための加速機構である。イオン源は、所望のイオン種を生成するためのソースガスを供給するガス供給装置、ソースガスを励起して、プラズマを生成させるための電極などで構成される。プラズマを形成するための電極として、フィラメント型の電極や容量結合高周波放電用の電極などが用いられる。加速機構は、引出電極、加速電極、減速電極、接地電極等の電極など、およびこれらの電極に電力を供給するための電源などで構成される。加速機構を構成する電極には複数の開口やスリットが設けられており、イオン源で生成されたイオンは電極に設けられた開口やスリットを通過して加速される。なお、イオンドーピング装置の構成は上述したものに限定されず、必要に応じた機構が設けられる。
本実施形態では、イオンドーピング装置で、水素を単結晶半導体基板100に添加する。プラズマソースガスとして水素を含むガスを供給する。例えば、Hを供給する。水素ガスを励起してプラズマを生成し、質量分離せずに、プラズマ中に含まれるイオンを加速し、加速されたイオンを単結晶半導体基板100に照射する。
イオンドーピング装置において、水素ガスから生成されるイオン種(H、H 、H )の総量に対してH の割合が50%以上とする。より好ましくは、そのH の割合を80%以上とする。イオンドーピング装置は質量分離を行わないため、プラズマ中に生成される複数のイオン種のうち、1つ(H )を50%以上とすることが好ましく、80%以上とすることが好ましい。同じ質量のイオンを照射することで、単結晶半導体基板100の同じ深さに集中させてイオンを添加することができる。
脆化領域104を浅い領域に形成するためには、イオン103の加速電圧を低くする必要があるが、プラズマ中のH イオンの割合を高くすることで、水素イオンを効率よく、単結晶半導体基板100に添加できる。H イオンはHイオンの3倍の質量を持つことから、同じ深さに水素原子を1つ添加する場合、H イオンの加速電圧は、Hイオンの加速電圧の3倍にすることが可能となる。イオンの加速電圧を大きくできれば、イオンの照射工程のタクトタイムを短縮することが可能となり、生産性やスループットの向上を図ることができる。
イオンドーピング装置は廉価で、大面積処理に優れているため、このようなイオンドーピング装置を用いてH を照射することで、半導体特性の向上、大面積化、低コスト化、生産性向上などの顕著な効果を得ることができる。また、イオンドーピング装置を用いた場合、重金属も同時に導入されるおそれがあるが、塩素原子を含有する酸化膜132を介してイオンの照射を行うことによって、重金属による単結晶半導体基板100の汚染を防ぐことができる。
なお、加速されたイオン103を単結晶半導体基板100に照射する工程は、イオン注入装置で行うこともできる。イオン注入装置は、チャンバー内に配置された被処理体に、ソースガスをプラズマ励起して生成された複数のイオン種を質量分離し、特定のイオン種を照射する質量分離型の装置である。したがって、イオン注入装置を用いる場合は、水素ガスやPHを励起して生成されたHイオンおよびH イオンを質量分離して、HイオンまたはH イオンの一方のイオンを加速して、単結晶半導体基板100に照射する。
次に、ベース基板120を準備する(図8(B−1)参照)。
また、ベース基板120を用いるに際し、ベース基板120の表面をあらかじめ洗浄することが好ましい。具体的には、ベース基板120を、塩酸過水(HPM)、硫酸過水(SPM)、アンモニア過水(APM)、希フッ酸(DHF)等を用いて超音波洗浄を行う。例えば、ベース基板120の表面に塩酸過水を用いて超音波洗浄を行うことが好ましい。このような洗浄処理を行うことによって、ベース基板120表面の平坦化や残存する研磨粒子を除去することができる。
次に、ベース基板120の表面に窒素含有層121(例えば、窒化シリコン膜又は窒化酸化シリコン膜等の窒素を含有する絶縁膜)を形成する(図8(B−2)参照)。
本実施の形態において、窒素含有層121は、単結晶半導体基板100上に設けられた酸化膜132と貼り合わされる層(接合層)となる。また、窒素含有層121は、後にベース基板上に単結晶構造を有する単結晶半導体層を設けた際に、ベース基板に含まれるNa(ナトリウム)等の不純物が単結晶半導体層に拡散することを防ぐためのバリア層として機能する。
また、窒素含有層121を接合層として用いるため、接合不良を抑制するには窒素含有層121の表面を平滑とすることが好ましい。具体的には、窒素含有層121の表面の平均面粗さ(Ra)を0.5nm以下、自乗平均粗さ(Rms)を0.60nm以下、より好ましくは、平均面粗さを0.35nm以下、自乗平均粗さを0.45nm以下となるように窒素含有層121を形成する。膜厚は、10nm以上200nm以下、好ましくは50nm以上100nm以下の範囲で設けることが好ましい。
次に、単結晶半導体基板100の表面とベース基板120の表面とを対向させ、酸化膜132の表面と窒素含有層121の表面とを接合させる(図8(C)参照)。
ここでは、単結晶半導体基板100とベース基板120を酸化膜132と窒素含有層121を介して密着させた後、単結晶半導体基板100の一箇所に1〜500N/cm、好ましくは1〜20N/cm程度の圧力を加える。圧力を加えた部分から酸化膜132と窒素含有層121とが接合しはじめ、自発的に接合が形成され全面におよぶ。この接合工程は、ファンデルワールス力や水素結合が作用しており、加熱処理を伴わず、常温で行うことができるため、ベース基板120に、ガラス基板のように耐熱温度が低い基板を用いることができる。
なお、単結晶半導体基板100とベース基板120との貼り合わせを行う前に、単結晶半導体基板100上に形成された酸化膜132と、ベース基板120上に形成された窒素含有層121の表面処理を行うことが好ましい。
表面処理としては、プラズマ処理、オゾン処理、メガソニック洗浄、2流体洗浄(純水や水素添加水等の機能水を窒素等のキャリアガスとともに吹き付ける方法)又はこれらの方法を組み合わせて行うことができる。特に、酸化膜132、窒素含有層121の少なくとも一方の表面にプラズマ処理を行った後に、オゾン処理、メガソニック洗浄、2流体洗浄等を行うことによって、酸化膜132、窒素含有層121表面の有機物等のゴミを除去し、表面を親水化することができる。その結果、酸化膜132と窒素含有層121の接合強度を向上させることができる。
また、酸化膜132と窒素含有層121を接合させた後、接合強度を増加させるための熱処理を行うことが好ましい。この熱処理の温度は、脆化領域104に亀裂を発生させない温度とし、例えば、室温以上400℃未満の温度範囲で処理する。また、この温度範囲で加熱しながら、酸化膜132と窒素含有層121を接合させてもよい。熱処理には、拡散炉、抵抗加熱炉などの加熱炉、RTA(瞬間熱アニール、Rapid Thermal Anneal)装置、マイクロ波加熱装置などを用いることができる。
一般的に、酸化膜132と窒素含有層121を接合と同時又は接合させた後に熱処理を行うと、接合界面において脱水反応が進行し、接合界面同士が近づき、水素結合の強化や共有結合が形成されることにより接合が強化される。脱水反応を促進させるためには、脱水反応により接合界面に生じる水分を高温で熱処理を行うことにより除去する必要がある。つまり、接合後の熱処理温度が低い場合には、脱水反応で接合界面に生じた水分を効果的に除去できないため、脱水反応が進まず接合強度を十分に向上させることが難しい。
一方で、酸化膜132として、塩素原子等を含有させた酸化膜を用いた場合、当該酸化膜132が水分を吸収し拡散させることができるため、接合後の熱処理を低温で行う場合であっても、脱水反応で接合界面に生じた水分を酸化膜132へ吸収、拡散させ脱水反応を効率良く促進させることができる。この場合、ベース基板120としてガラス等の耐熱性が低い基板を用いた場合であっても、酸化膜132と窒素含有層121の接合強度を十分に向上させることが可能となる。また、バイアス電圧を印加してプラズマ処理を行うことにより、酸化膜132の表面近傍にマイクロポアを形成し、水分を効果的に吸収し拡散させ、低温であっても酸化膜132と窒素含有層121の接合強度を向上させることができる。
次に、熱処理を行い脆化領域104にて分離することにより、ベース基板120上に、酸化膜132及び窒素含有層121を介して単結晶半導体層124を設ける(図8(D)参照)。
加熱処理を行うことで、温度上昇によって脆化領域104に形成されている微小な孔には、添加された元素が析出し、内部の圧力が上昇する。圧力の上昇により、脆化領域104の微小な孔に体積変化が起こり、脆化領域104に亀裂が生じるので、脆化領域104に沿って単結晶半導体基板100が劈開する。酸化膜132はベース基板120に接合しているので、ベース基板120上には単結晶半導体基板100から分離された単結晶半導体層124が形成される。また、ここでの熱処理の温度は、ベース基板120の歪み点を越えない温度とする。
この加熱処理には、拡散炉、抵抗加熱炉などの加熱炉、RTA(瞬間熱アニール、Rapid Thermal Anneal)装置、マイクロ波加熱装置などを用いることができる。例えば、RTA装置を用いる場合、加熱温度550℃以上730℃以下、処理時間0.5分以上60分以内で行うことができる。
なお、上述したベース基板120と酸化膜132との接合強度を増加させるための熱処理を行わず、図8(D)の熱処理を行うことにより、酸化膜132と窒素含有層121との接合強度の増加の熱処理工程と、脆化領域104における分離の熱処理工程を同時に行ってもよい。
以上の工程により、ベース基板120上に酸化膜132及び窒素含有層121を介して単結晶半導体層124が設けられたSOI基板を作製することができる。
本実施の形態で方法を用いることによって、窒素含有層121を接合層として用いた場合であっても、ベース基板120と単結晶半導体層124との接合強度を向上させ、信頼性を向上させることができる。その結果、ベース基板120上に形成される単結晶半導体層124への不純物の拡散を抑制すると共に、ベース基板120と単結晶半導体層124とが強固に密着したSOI基板を形成することができる。
また、ベース基板側に窒素含有層を設け、半導体基板側に塩素等のハロゲンを有する酸化膜を形成することにより、作製工程を簡略化すると共にベース基板との貼り合わせ前に当該半導体基板へ不純物元素が浸入することを抑制することができる。また、半導体基板側に設ける接合層として塩素等のハロゲンを有する酸化膜を形成することにより、接合後の熱処理を低温で行う場合であっても、脱水反応を効率良く促進させることにより接合強度を向上させることができる。
その後、その後、分離された単結晶半導体基板100は、上記実施の形態1で示したようにSOI基板の製造プロセスにおいて、再利用することができる。
なお、本実施の形態では、単結晶半導体基板100上に酸化膜132を形成し、ベース基板120上に窒素含有層121を形成する場合を示したが、これに限られない。例えば、単結晶半導体基板100上に酸化膜132と窒素含有層を順に積層させて形成し、酸化膜132上に形成された窒素含有層の表面とベース基板120との表面とを接合させてもよい。この場合、窒素含有層は脆化領域104の形成前に設けてもよいし、形成後に設けてもよい。なお、窒素含有層上に酸化膜(例えば、酸化シリコン)を形成し、当該酸化膜の表面とベース基板120の表面とを接合させても良い。
また、ベース基板120から単結晶半導体層124への不純物の混入が問題とならない場合には、ベース基板120上に窒素含有層121を設けずに、単結晶半導体基板100上に設けられた酸化膜132の表面とベース基板120の表面とを接合させてもよい。この場合、窒素含有層を設ける工程を省略することができる。
なお、本実施の形態で示した構成は、本明細書の他の実施の形態で示す構成と適宜組み合わせて行うことができる。
本発明のSOI基板の作製方法の一例を示す図。 本発明のSOI基板の作製方法の一例を示す図。 本発明のSOI基板の作製方法の一例を示す図。 本発明のSOI基板の作製方法において、単結晶半導体基板同士の貼り合わせ方法の一例を示す図。 本発明のSOI基板の作製方法において、単結晶半導体基板同士の貼り合わせ方法の一例を示す図。 本発明のSOI基板の作製方法において、単結晶半導体基板同士の貼り合わせ方法の一例を示す図。 本発明のSOI基板の作製方法の一例を示す図。 本発明のSOI基板の作製方法において、ボンド基板とベース基板との貼り合わせ方法の一例を示す図。 本発明のSOI基板の作製方法において、単結晶半導体基板同士の貼り合わせ方法の一例を示す図。 本発明のSOI基板の作製方法において、単結晶半導体基板の表面と面取り部と端面を説明する図。
符号の説明
100 単結晶半導体基板
101 表面
102 絶縁層
103 イオン
104 脆化領域
110 単結晶半導体基板
111 表面
112 裏面
113 端面
120 ベース基板
121 窒素含有層
124 単結晶半導体層
132 酸化膜
142 絶縁層
144 絶縁層
146 絶縁層
150 単結晶半導体基板
151 表面
152 裏面
153 端面
200 積層基板
201 表面
203 端面
211 傾斜面
212 傾斜面
213 傾斜面
111a 主面
111b 表面側面取り部
112a 主面
112b 裏面側面取り部
151a 主面
151b 表面側面取り部
152a 主面
152b 裏面側面取り部
201a 主面
202a 主面
201b 表面側面取り部
202b 裏面側面取り部

Claims (5)

  1. 表面側面取り部、裏面側面取り部及び前記表面側面取り部と前記裏面側面取り部とを連結する端面を有しボンド基板となる第1の単結晶半導体基板の表面にイオンを照射して前記第1の単結晶半導体基板中に脆化領域を形成し、絶縁層を介して前記第1の単結晶半導体基板の表面とベース基板とを貼り合わせる第1の工程と、
    前記脆化領域において前記第1の単結晶半導体基板を分離して、前記ベース基板上に前記絶縁層を介して単結晶半導体層を形成する第2の工程と、
    前記単結晶半導体層が分離された前記第1の単結晶半導体基板の表面に平坦化処理を行う第3の工程とを有し、
    前記平坦化処理が行われた前記第1の単結晶半導体基板を、再度前記ボンド基板として複数回使用して前記第1の工程乃至前記第3の工程を繰り返し行い、
    前記第3の工程において前記第1の単結晶半導体基板の表面側面取り部が無くなった段階で、前記平坦化処理が行われた前記第1の単結晶半導体基板の表面を第2の単結晶半導体基板に貼り合わせて積層基板を形成し、
    前記積層基板に表面側面取り部及び裏面側面取り部を設けた後、前記積層基板を前記第1の工程のボンド基板として使用することを特徴とするSOI基板の作製方法。
  2. 表面側面取り部、裏面側面取り部及び前記表面側面取り部と前記裏面側面取り部とを連結する端面とを有し、ボンド基板となる第1の単結晶半導体基板の表面にイオンを照射して前記第1の単結晶半導体基板中に脆化領域を形成し、絶縁層を介して前記第1の単結晶半導体基板の表面とベース基板とを貼り合わせる第1の工程と、
    前記脆化領域において前記第1の単結晶半導体基板を分離して、前記ベース基板上に前記絶縁層を介して単結晶半導体層を形成する第2の工程と、
    前記単結晶半導体層が分離された前記第1の単結晶半導体基板の表面に平坦化処理を行う第3の工程とを有し、
    前記平坦化処理が行われた前記第1の単結晶半導体基板を、再度前記ボンド基板として複数回使用して前記第1の工程乃至前記第3の工程を繰り返し行った後、
    繰り返し使用された前記第1の単結晶半導体基板の表面側面取り部が残存している状態で、前記平坦化処理が行われた前記第1の単結晶半導体基板の表面を第2の単結晶半導体基板に貼り合わせて積層基板を形成し、
    前記積層基板に表面側面取り部及び裏面側面取り部を設けた後、前記積層基板を前記第1の工程におけるボンド基板として使用することを特徴とするSOI基板の作製方法。
  3. 請求項1又は請求項2において、
    前記積層基板の表面側面取り部を、前記第1の単結晶半導体基板に形成された第1の傾斜面と、前記第2の単結晶半導体基板に形成され且つ前記第1の傾斜面と同一面上に設けられた第2の傾斜面と、で設け、
    前記積層基板の表面側面取り部と裏面側面取り部を連結する端面を前記第2の単結晶半導体基板に設けることを特徴とするSOI基板の作製方法。
  4. 請求項1乃至請求項のいずれか一項において、
    前記第1の単結晶半導体基板と第2の単結晶半導体基板との貼り合わせは、前記第1の単結晶半導体基板又は前記第2の単結晶半導体基板の少なくとも一方に形成された接合層を介して行うことを特徴とするSOI基板の作製方法。
  5. 請求項1乃至請求項のいずれか一項において、
    前記ベース基板として、ガラス基板、単結晶半導体基板又は多結晶半導体基板を用いることを特徴とするSOI基板の作製方法。
JP2008249874A 2008-09-29 2008-09-29 Soi基板の作製方法 Expired - Fee Related JP5667743B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249874A JP5667743B2 (ja) 2008-09-29 2008-09-29 Soi基板の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249874A JP5667743B2 (ja) 2008-09-29 2008-09-29 Soi基板の作製方法

Publications (2)

Publication Number Publication Date
JP2010080834A JP2010080834A (ja) 2010-04-08
JP5667743B2 true JP5667743B2 (ja) 2015-02-12

Family

ID=42210902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249874A Expired - Fee Related JP5667743B2 (ja) 2008-09-29 2008-09-29 Soi基板の作製方法

Country Status (1)

Country Link
JP (1) JP5667743B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310031B2 (en) * 2010-07-30 2012-11-13 Memc Electronic Materials, Inc. Semiconductor and solar wafers
KR101938755B1 (ko) 2014-07-10 2019-01-15 가부시키가이샤 사이콕스 반도체 기판 및 반도체 기판의 제조 방법
DE102017203996A1 (de) * 2016-03-11 2017-09-14 Sumco Corporation p-n-Übergangssiliziumwafer-Herstellungsverfahren
JP6597493B2 (ja) * 2016-03-11 2019-10-30 株式会社Sumco pn接合シリコンウェーハの製造方法
JP6604294B2 (ja) * 2016-09-23 2019-11-13 株式会社Sumco シリコン接合ウェーハの製造方法
JP6604300B2 (ja) * 2016-10-14 2019-11-13 株式会社Sumco シリコン接合ウェーハの製造方法
EP3993018A1 (en) * 2017-07-14 2022-05-04 Sunedison Semiconductor Limited Method of manufacture of a semiconductor on insulator structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1140786A (ja) * 1997-07-18 1999-02-12 Denso Corp 半導体基板及びその製造方法
JP4846915B2 (ja) * 2000-03-29 2011-12-28 信越半導体株式会社 貼り合わせウェーハの製造方法
FR2834123B1 (fr) * 2001-12-21 2005-02-04 Soitec Silicon On Insulator Procede de report de couches minces semi-conductrices et procede d'obtention d'une plaquette donneuse pour un tel procede de report
JP2004247610A (ja) * 2003-02-14 2004-09-02 Canon Inc 基板の製造方法
JP4474863B2 (ja) * 2003-08-28 2010-06-09 株式会社Sumco 剥離ウェーハの再生処理方法及び再生されたウェーハ
JP4415588B2 (ja) * 2003-08-28 2010-02-17 株式会社Sumco 剥離ウェーハの再生処理方法

Also Published As

Publication number Publication date
JP2010080834A (ja) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5572347B2 (ja) Soi基板の作製方法
JP5667743B2 (ja) Soi基板の作製方法
JP4934966B2 (ja) Soi基板の製造方法
JP5721962B2 (ja) Soi基板の作製方法
JP5548395B2 (ja) Soi基板の作製方法
JP5622988B2 (ja) 半導体基板の作製方法
KR101541940B1 (ko) Soi 기판의 제조 방법
US8278187B2 (en) Method for reprocessing semiconductor substrate by stepwise etching with at least two etching treatments
JP5917036B2 (ja) Soi基板の作製方法
JP2004221198A (ja) Soiウエーハの製造方法及びsoiウエーハ
JP2010538459A (ja) 熱処理を用いる剥離プロセスにおける半導体ウエハの再使用
JP5520744B2 (ja) 半導体基板の再生方法
KR101752901B1 (ko) 반도체 기판의 재생 방법, 재생 반도체 기판의 제작 방법, 및 soi 기판의 제작 방법
JP5865786B2 (ja) 半導体基板の再生方法、及びsoi基板の作製方法
JP5865057B2 (ja) 半導体基板の再生方法、及びsoi基板の作製方法
JP5364345B2 (ja) Soi基板の作製方法
JP5368000B2 (ja) Soi基板の製造方法
JP2011228651A (ja) 半導体基板の再生方法、再生半導体基板の作製方法、及びsoi基板の作製方法
JP5634210B2 (ja) 半導体基板の作製方法
JP2006303088A (ja) シリコン基板の洗浄方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5667743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees