JP5665973B2 - セラミックヒータ - Google Patents

セラミックヒータ Download PDF

Info

Publication number
JP5665973B2
JP5665973B2 JP2013507803A JP2013507803A JP5665973B2 JP 5665973 B2 JP5665973 B2 JP 5665973B2 JP 2013507803 A JP2013507803 A JP 2013507803A JP 2013507803 A JP2013507803 A JP 2013507803A JP 5665973 B2 JP5665973 B2 JP 5665973B2
Authority
JP
Japan
Prior art keywords
ceramic
heating resistor
mixed layer
ceramic substrate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013507803A
Other languages
English (en)
Other versions
JPWO2012133800A1 (ja
Inventor
神谷 哲
哲 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013507803A priority Critical patent/JP5665973B2/ja
Publication of JPWO2012133800A1 publication Critical patent/JPWO2012133800A1/ja
Application granted granted Critical
Publication of JP5665973B2 publication Critical patent/JP5665973B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material

Landscapes

  • Resistance Heating (AREA)

Description

本発明は、ヘアアイロン、水加熱用ヒータ、酸素センサ、空燃比センサ、グロープラグ、半導体製造装置等に用いられるセラミックヒータに関する。
被加熱物を加熱するためのセラミックヒータは、耐久性を向上させるためにアルミナを主成分とするセラミック焼結体の中にタングステン等の高融点金属の発熱抵抗体をパターンとして設けた構成が主に用いられている(たとえば特許文献1参照)。
発熱抵抗体は、線状または板状に形成され、通電することによってジュール熱を発生する。発熱抵抗体で発生した熱は、セラミック焼結体を伝導し、セラミック焼結体の表面温度を高める。
セラミックヒータとしては、セラミック焼結体の表面温度が所定の温度となるように制御する必要がある。たとえば発熱抵抗体に通電する電流値を変化させることによってセラミック焼結体の表面温度を制御することができる。電流値を大きくすれば発生する熱量が多くなって表面温度は高くなり、電流値を小さくすれば発生する熱量が少なくなって表面温度が低くなる。
特開平5−315055号公報
セラミックヒータは種々の分野で利用されており、セラミックヒータの周辺に電子装置を配置する可能性が高い。セラミックヒータを発熱させるために、発熱抵抗体に通電すると、発熱抵抗体において発生した高周波成分がセラミックヒータから放射され、周辺に配置された電子装置に対するノイズとして影響を及ぼすおそれがある。
本発明の目的は、ノイズの放射が抑制され、周辺の電子装置へ与える影響が小さいセラミックヒータを提供することである。
本発明は、セラミック基体と、
前記セラミック基体内に設けられ、通電によって発熱する発熱抵抗体と、
前記セラミック基体内に設けられ、セラミック材料と金属材料とが混合された混合層と、を有し、該混合層は前記発熱抵抗体から遠ざかるにつれて、前記金属材料の混合割合が小さくなるように構成されていることを特徴とするセラミックヒータである。
また、本発明は、セラミック基体と、
前記セラミック基体内に設けられ、通電によって発熱する発熱抵抗体と、
前記セラミック基体内に設けられ、セラミック材料と金属材料とが混合された混合層と、を有するとともに、
前記発熱抵抗体は前記セラミック基体の加熱面に対向する主面および該主面に隣接する側面を有し、前記混合層は前記発熱抵抗体の前記主面および前記側面を覆うように設けられており、
前記混合層は前記セラミック基体の加熱面に対向する前記発熱抵抗体の前記主面を覆う部分の厚みが、他の部分の厚みよりも厚いことを特徴とするセラミックヒータである。
さらに、本発明は、セラミック基体と、
前記セラミック基体内に設けられ、通電によって発熱する発熱抵抗体と、
前記セラミック基体内に設けられ、セラミック材料と金属材料とが混合された混合層と、を有するとともに、
前記混合層は前記発熱抵抗体の全体を覆うように設けられており、
前記発熱抵抗体は前記セラミック基体の加熱面に対向する主面を有し、前記混合層は、前記セラミック基体の加熱面に対向する前記発熱抵抗体の前記主面を覆う部分の厚みが、他の部分の厚みよりも厚いことを特徴とするセラミックヒータである。
本発明のセラミックヒータによれば、セラミック基体内には、通電によって発熱する発熱抵抗体と、セラミック材料と金属材料とが混合された混合層とが設けられている。
これにより、発熱抵抗体に通電することで発生する高周波成分の放射が、混合層により抑制され、周辺の電子装置へ与える影響を小さくすることができる。
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の第1実施形態であるセラミックヒータ1の構成を概略的に示す一部透過斜視図である。 セラミックヒータ1の構成を示す断面図である。 本発明の第2実施形態であるセラミックヒータ10の構成を示す断面図である。 本発明の第3実施形態であるセラミックヒータ11の構成を示す断面図である。
以下、本発明のセラミックヒータについて図面を参照して詳細に説明する。
図1は、本発明の第1実施形態であるセラミックヒータ1の構成を概略的に示す一部透過斜視図である。図2は、セラミックヒータ1の構成を示す断面図である。
本実施形態のセラミックヒータ1は、セラミック基体4と、セラミック基体4の内部に埋設された混合層2と発熱抵抗体3とからなる。
セラミック基体4は、複数のセラミック層4a、4bにより棒状(円柱状)に形成されたものである。具体的には、図2に示すように、中央の層であるセラミック層4bが棒状(円柱状)であり、セラミック層4bの外周を取り巻くようにセラミック層4aが配置されている。そして、セラミック層4aとセラミック層4bとの間には、セラミック材料と金属材料とが混合された混合層2が設けられる。セラミック層4bと混合層2との間には、通電によって発熱する発熱抵抗体3も設けられる。
発熱抵抗体3の端部には、リード部6が電気的に接続され、リード部6には、セラミック基体4の外表面に設けられたパッド部7が接続される。パッド部7には、ロウ材を介して電源配線8が接続される。電源配線8は、発熱抵抗体3に通電するための図示しない電源装置に接続される。
発熱抵抗体3は、たとえばセラミック層4a、4bと同時焼成が可能な金属材料からなり、セラミック基体4の加熱面に対向する主面および該主面に隣接する側面とを有する。同時焼成が可能な金属材料としてはタングステン、モリブデン、レニウムの1種または2種以上を用いることができる。また、発熱抵抗体3は、セラミック層4aとセラミック層4bとの間の所定の領域、すなわち加熱したい領域に、たとえば、断面矩形の平板状または線状に設けられる。発熱抵抗体3が線状に設けられる場合、ミアンダ状、渦巻き状、波形状などの形状で設けられる。発熱抵抗体3の線幅は、たとえば0.1〜5mmであり、厚みは0.01〜1mmである。
セラミック基体4は、アルミナ、窒化珪素、窒化アルミニウム、炭化珪素などのセラミック材料からなる。発熱抵抗体3で発生した熱は、セラミック基体4内を伝導し、セラミック基体4の外表面が加熱される。
混合層2は、セラミック材料と金属材料とが混合されて形成される。混合層2を構成するセラミック材料は、セラミック基体4に用いられるセラミック材料と同種のものを用いることができ、セラミック基体4のセラミック材料と同一であってもよく、異なっていてもよい。混合層2を構成する金属材料は、発熱抵抗体3に用いられる金属材料と同種のものを用いることができ、発熱抵抗体3に用いられる金属材料と同一であってもよく、異なっていてもよい。混合層2を構成する金属材料としては、レニウムが好ましい。レニウムは、耐酸化性に優れており、レニウムを用いることで通電可能時間が向上する。なお、混合層2は発熱抵抗体3の長手方向の全ての領域にわたって設けられる。また、混合層2の厚みは、たとえば0.01〜0.5mmである。
リード部6は、発熱抵抗体3と同じセラミック層4aとセラミック層4bとの間に設けられる。このリード部6は、発熱抵抗体3と同種の金属材料からなる内層配線である。パッド部7との接続は、たとえばセラミック層4aを厚み方向に外表面まで貫通するビア導体6aを設ける。
セラミックヒータ1が円柱状の場合、外径は、たとえば1〜30mmであり、軸線方向の長さは、たとえば5〜200mmである。また、図示しないがセラミックヒータ1が板状の場合、全体の大きさは、たとえば5〜200mm角である。厚みは、たとえば1〜30mmである。
セラミックヒータ1の急速昇温を目的として、昇温動作開始時にセラミックヒータ1の発熱抵抗体3に大電流を流すと、矩形波パルスのように、電力突入の立ち上がりが急峻になり、高周波成分を含んだ高電力の電流が発熱抵抗体3に突入する。
このような高周波成分によるノイズは、一般的に電磁波障害をもたらす周波数帯域(150kHz〜1GHz)で問題になるラジオノイズである。このノイズは、電源配線などを伝わってくる伝導性ノイズと空間に向けて放射される放射性ノイズとに大別される。
一般的にはラジオ、無線通信、ネットワーク通信などで、通信信号以外の不要輻射ノイズで機器が誤動作したり、雑音が入ったりという障害が起こる。位相制御では、ターンオンする際の電圧、電流の急峻な立ち上がり波形が生じるため、そこに高周波(主に数十KHz〜数十MHzの帯域)のクリックノイズが発生し、制御系に影響を及ぼしたり周辺機器に電波障害を引き起こしたりする。
本発明によれば、昇温動作開始時に発熱抵抗体3で発生した高周波成分は、混合層2により減衰される。減衰されることで、セラミックヒータ1から外部への高周波成分の放射が抑制され、セラミックヒータ周辺に配置された電子装置へ与える影響を小さくすることができる。
本実施形態の混合層2は、セラミック基体4の加熱面に対向する発熱抵抗体3の一主面側に設けられ、この主面から発生する高周波成分を混合層2によって減衰させることができる。ここで、本実施形態は、セラミック基体4が棒状であって、棒状のセラミック層4b(セラミック芯材)の外周面に発熱抵抗体3のパターンが形成され、その外側にセラミック層4aが設けられた構成となっている。このような本実施形態の構成では、セラミック基体4の加熱面とはセラミック基体4の外表面のことであり、セラミック基体4の加熱面に対向する発熱抵抗体3の一主面側とは半径方向外方の主面側を意味する。
また、セラミック基体4が板状の場合、セラミック基体4の加熱面とは被加熱物を加熱しようとする側の外表面のことをいう。通常、セラミック基体4の加熱面と近い位置に発熱抵抗体3は配置されることから、セラミック基体4の加熱面に対向する発熱抵抗体3の一主面側とはセラミック基体4の外表面に近いほうの主面側を意味する。
また、混合層2のセラミック材料の熱伝導率とセラミック基体のセラミック材料の熱伝導率とが同程度である場合は、金属材料が混合されている分だけセラミック基体4よりも混合層2のほうが熱伝導率が大きい。
セラミックヒータの形状が板状の場合、主面における温度分布の均一性が要求される。通常、発熱抵抗体の配置に沿って主面の表面温度が高く、他の部分では低くなるので温度分布にばらつきが発生し易い。セラミックヒータ1は、熱伝導率が大きい混合層2を設けることで、発生源の発熱抵抗体3から熱伝導する領域が広くなり、表面温度の分布の均一性が向上する。
図2は、本発明の第2実施形態であるセラミックヒータ10の構成を示す断面図である。
本実施形態のセラミックヒータ10は、混合層2aの構成が第1実施形態の混合層2と異なるだけであるので、他の構成については第1実施形態と同じ参照符号を付して説明を省略する。
本実施形態では混合層2aが、発熱抵抗体3の一主面に加えてさらに側面も覆うように設けられている。ノイズの原因となる高周波成分は、発熱抵抗体3の一主面に加えて側面からも発生する。本実施形態では、混合層2aが発熱抵抗体3の側面も覆うので、発熱抵抗体3から放射される高周波成分をさらに減衰させることができ、セラミックヒータ周辺に配置された電子装置へ与える影響をさらに小さくすることができる。
また、混合層2aを設ける領域は、第1実施形態の混合層2よりも広いので、発生源の発熱抵抗体3から熱伝導する領域がさらに広くなり、表面温度の分布の均一性がさらに向上する。
図3は、本発明の第3実施形態であるセラミックヒータ11の構成を示す断面図である。
本実施形態のセラミックヒータ11は、混合層2bの構成が第1実施形態の混合層2と異なるだけであるので、他の構成については第1実施形態と同じ参照符号を付して説明を省略する。
本実施形態では混合層2bが、発熱抵抗体3の一主面に側面および他主面も含めて発熱抵抗体3全体を覆うように設けられている。ノイズの原因となる高周波成分は、発熱抵抗体3の全体から発生する。本実施形態では、混合層2bが発熱抵抗体3の全体を覆うので、発熱抵抗体3から放射される高周波成分をさらに減衰させることができ、セラミックヒータ周辺に配置された電子装置へ与える影響をさらに小さくすることができる。
また、混合層2bを設ける領域は、第1実施形態および第2実施形態の混合層2,2aよりも広いので、発生源の発熱抵抗体3から熱伝導する領域がさらに広くなり、表面温度の分布の均一性がさらに向上する。
セラミックヒータの発熱抵抗体に直流電圧で通電し、連続通電またはサイクル通電することにより、イオンマイグレーションが発生し、発熱抵抗体の金属材料、セラミック基体に含まれる金属成分や酸素イオンが移動することで発熱抵抗体が断線するおそれがある。したがって、セラミックヒータでは、イオンマイグレーションが発生しない程度の通電時間に制限される。
本実施形態のように、混合層2bが発熱抵抗体3の全体を覆うことにより、通電時に電気力線の集中が緩和され、イオンマイグレーションの発生が抑制されて断線を防ぐことができる。なお、本実施形態は、セラミック基体4が、軸線方向に垂直な断面形状が、半円状となる半割のセラミック層を組合せてなる円柱状のものであって、半割のセラミック層同士の間に発熱抵抗体3を配置した場合に、効果的な形態である。
本発明の他の実施形態は、上記の第1〜第3実施形態の構成に加えて、混合層における金属材料の分布に特徴を有するものである。以下では第1実施形態の混合層2について説明するが、第2および第3実施形態の混合層2aおよび混合層2bについても同様である。
本実施形態では、混合層2において、発熱抵抗体3から遠ざかるにつれて、含まれる金属材料の混合割合が小さくなるように構成される。すなわち発熱抵抗体3に近接する領域では、金属材料の割合が大きく、発熱抵抗体3から離間した領域では、金属材料の割合が小さくなる。たとえば、最も割合が大きな領域での金属材料の混合量に対する最も割合が小さな領域での金属材料の混合量は、1/5〜1/20である。
発熱抵抗体3の熱膨張係数とセラミック層4a、4bの熱膨張係数には差がある。セラミックヒータ1にサイクル通電すると、この熱膨張係数の差の影響で発熱抵抗体3とセラミック層4a、4bとの間にマイクロクラックが発生する。このマイクロクラックは、サイクル数の増加に伴って進展し、最終的には発熱抵抗体3が断線する。
混合層2の熱膨張係数は、発熱抵抗体3よりも小さく、セラミック層4a、4bよりも大きいので、金属材料が混合層2に一様に分布していても、マイクロクラックの発生をある程度抑制することができる。本実施形態のように、発熱抵抗体3から遠ざかるにつれて、混合層2に含まれる金属材料の混合割合を小さくすることで、混合層2の熱膨張係数を発熱抵抗体3からセラミック層4a、4bまでの間で変化させ、さらにマイクロクラックの発生を抑制することができる。
本発明のさらに他の実施形態は、上記の第2および第3実施形態の構成に加えて、混合層の厚みに特徴を有するものである。以下では第2実施形態の混合層2aについて説明するが、第3実施形態の混合層2bについても同様である。
本実施形態では、混合層2aにおいて、セラミック基体4の加熱面に対向する発熱抵抗体3の一主面側の部分の厚みが、他の部分の厚みよりも厚くなるように構成される。主面に接する部分の厚みは、他の部分の厚みに対して1/3〜1/10である。
発熱抵抗体3で発生した熱の多くは、その主面からセラミック層4aの厚み方向外方に伝導する。したがって、主面に接する部分の厚みを厚くすることで、より主面から厚み方向外方に熱伝導し易くなり、セラミックヒータ1の表面温度の昇温速度を速くすることができる。
なお、混合層2(2a、2b)は、セラミック基体4に含まれない金属成分を含む領域であり、セラミック基体4と混合層2(2a、2b)との境界は、例えば、波長分散型X線分光分析(WDS分析)を用いて断面観察することで判別できる。具体的には、図1に示すセラミックヒータ1のサンプルを長手方向に切断し、切断面の鏡面出しを行い、セラミック基体4と混合層2(2a、2b)との境界付近について、電子プローブマイクロアナライザ(JXA−8100 日本電子株式会社製)を用いたWDS分析により、該当する金属成分のカラーマッピングを行うと、金属成分の有無によりセラミック基体4と混合層2の境界が判別できる。
次に、セラミックヒータ1の製造方法について説明する。
セラミック基体4としては、酸化物セラミックス、窒化物セラミックス、炭化物セラミックス等の絶縁性を備えたセラミック材料を用いることができる。具体的には、アルミナ、窒化珪素、窒化アルミニウム、炭化珪素などを用いることができる。これらの中でも、耐酸化性の点からは、アルミナを用いることが好ましい。
まず、このようなセラミック材料からなるセラミックヒータ1を作製するため、上記のセラミック成分にSiO、CaO、MgO、ZrO等の焼結助剤を含有させて調製したセラミックスラリーをシート状に成形して、セラミックグリーンシートを作製する。または、上記成分を混合してプレス成型や押し出し成型等で棒状や板状の成型体を作製する。
セラミックグリーンシートまたは成型体は、焼成によりセラミック層4a、4bとなるもので一方の主面に、発熱抵抗体、リード部となる抵抗体ペーストまたは導電性ペーストのパターンをそれぞれスクリーン印刷等の手法を用いて形成する。発熱抵抗体およびリード部の材料としては、セラミックとの同時焼成によって作製が可能なタングステン、レニウム、モリブデン、レニウムとタングステンの混合物等の高融点金属を主成分とするものを用いる。抵抗体ペーストおよび導電性ペーストは、これらの高融点金属にセラミック材料、バインダー、有機溶剤等を調合し混練することで作製できる。またこのとき、セラミックヒータ1の用途に応じて、発熱抵抗体3となる抵抗体ペーストまたは導電性ペーストのパターンの長さや折り返しパターンの距離および間隔、パターンの線幅を変更することにより、発熱抵抗体3の発熱位置や抵抗値を所望の値に設定することができる。
そして、このパターンが形成されたセラミックグリーンシートまたは成型体に、さらに同一材質のセラミックグリーンシートまたは成型体と積層液を用いて積層して密着させることにより、内部に発熱抵抗体3およびリード部6を有するセラミック基体4となる棒状または板状の成型体が得られる。
ここで成型体を温度50℃、湿度90%以上の雰囲気に1時間以上放置する(以下では、拡散放置という)。これにより発熱抵抗体となるペーストに含まれる金属成分がイオン化し、セラミックグリーンシートまたは成型体に拡散する。この金属成分が拡散した領域が焼成後に混合層となる。
次に、得られた成形体を1500℃〜1600℃程度で焼成することにより、混合層を有するセラミックヒータを作製することができる。なお、焼成は水素ガス等の非酸化性ガス雰囲気中で行なうことが好ましい。
なお、上記の場合は、発熱抵抗体となるペーストから、セラミックグリーンシートのペーストに接触する部分全体に金属成分が拡散するので、混合層2bが発熱抵抗体3の全体を覆う第3実施形態のセラミックヒータ11を作製することができる。
第1および第2実施形態のように、混合層2,2aの形成部分を特定の部分に限定する場合は、セラミックグリーンシートまたは成型体を予め仮焼しておく。仮焼したセラミックグリーンシートまたは成型体には、拡散放置によって金属成分が拡散しない。仮焼していないセラミックグリーンシートまたは成型体には、拡散放置によって金属成分が拡散するので、混合層の形成部分を制御することができる。
本発明のセラミックヒータの製造方法としては、上記の製造方法に限らず、例えば所望の金属材料を含むセラミックグリーンシートを予め用意しておき、混合層を形成したい領域に部分的に積層するような方法であってもよい。また、所望の金属材料を含むペーストを予め用意しておき、混合層を形成したい領域に、発熱抵抗体用のペーストに重ねて印刷するような方法であってもよい。この方法によれば、発熱抵抗体の金属材料と同一の金属材料を含む混合層とすることもでき、発熱抵抗体の金属材料と異なる金属材料を含む混合層とすることもできる。また、セラミックヒータが、確実に高周波成分の放射抑制効果(シールド効果)を得ることができる。
本発明の実施例であるセラミックヒータを以下のようにして作製した。
<試料1>
まず、Alを主成分とし、SiO、CaO、MgO、ZrOが合計で10質量%以内になるように調整したセラミックグリーンシートを作製した。そして、このセラミックグリーンシートの表面に、発熱抵抗体、リード部およびパッド部となる、レニウムを主成分とする導電性ペーストを、スクリーン印刷法にてそれぞれのパターン形状で印刷した。
そのパターン上に、レニウムを主成分とする導電性ペーストに、さらにセラミック基体と同一成分の粉体を混ぜた混合層用ペーストをスクリーン印刷した。また、棒状成型体をセラミックグリーンシートと同一材料で押し出し成型にて作製した。その後この棒状成型体を1200℃程度で仮焼した。この印刷されたセラミックグリーンシートと、棒状仮焼体とを、同一の組成のセラミックスを分散させた積層液を塗布して積層して、棒状積層体を得た。
こうして得られた棒状積層体を1500〜1600℃の還元雰囲気(窒素雰囲気)中で焼成した。
次に、セラミック基体の外表面のパッド部上に電解めっきにて厚みが2〜4μmのNiめっき膜を設け、ロウ材としてAgロウを用いて、パッド部と、Niからなる直径0.8mm、長さ50mmの電源配線とを接合した。これを試料1とする。
<試料2>
棒状成型体をセラミックグリーンシートと同一材料で押し出し成型にて作製した。その後この棒状成型体を1200℃程度で仮焼した。印刷されたセラミックグリーンシートと、棒状仮焼体とを、同一の組成のセラミックスを分散させた積層液を塗布して積層して、棒状積層体を得た。
次に、この棒状積層体を温度50℃、湿度90%で1時間放置した。
こうして得られた棒状積層体を1500〜1600℃の還元雰囲気(窒素雰囲気)中で焼成した。
次に、セラミック基体の外表面のパッド部上に電解めっきにて厚みが2〜4μmのNiめっき膜を設け、ロウ材としてAgロウを用いて、パッド部と、Niからなる直径0.8mm、長さ50mmの電源配線とを接合した。これを試料2とする。試料2では、拡散放置を行ったことにより、仮焼していないセラミックグリーンシートにレニウムが拡散し、混合層が形成された。
<試料3>
上記の棒状成型体を仮焼せず、そのまま印刷されたセラミックグリーンシートに積層液を塗布して得られた積層体を温度50℃、湿度90%で1時間放置し、得られた棒状積層体を1500〜1600℃の還元雰囲気(窒素雰囲気)中で焼成した。これを試料3とする。試料3では、拡散放置を行ったことにより、仮焼していない棒状成型体および仮焼していないセラミックグリーンシートにレニウムが拡散し、混合層が形成された。
<試料4>
上記の印刷されたセラミックグリーンシートと印刷されていない同一材料のセラミックグリーンシートに積層液を塗布して積層し、板状積層体を得た。次に、この板状積層体を温度50℃、湿度90%で1時間放置した。こうして得られた板状成型体を1500〜1600℃の還元雰囲気(窒素雰囲気)中で焼成した。これを試料4とする。試料4では、拡散放置を行ったことにより、仮焼していないセラミックグリーンシートにレニウムが拡散し、混合層が形成された。
<試料5〜7>
拡散放置を行わなかったこと以外は、試料2〜4と同様にして試料5〜7を得た。
<試料8>
レニウムの代わりにモリブデンを用いたこと以外は、試料1と同様にして試料8を得た。
試料1〜8を、発熱抵抗体を含む領域で切断してレーザーアブレーションシステム(LSX-200 CETAC Technologies社製)を用いてレーザーを照射し、切断面より蒸発したレニウムおよびモリブデンをICP質量分析装置(Platform ICP Micromass社製)で分析した。
比較例である試料5〜7はいずれも発熱抵抗体でのみレニウムが検出された。実施例である試料1〜4は発熱抵抗体およびその周囲(混合層)でレニウムが検出された。また、実施例である試料8は発熱抵抗体およびその周囲(混合層)でモリブデンが検出された。
試料1は、発熱抵抗体の外方側主面付近でのみレニウムが検出された。主面付近のみで検出されたのは、混合層用ペーストを、発熱抵抗体となるパターンの主面付近にのみ配置したからである。また、発熱抵抗体の内方側主面付近には、レニウムが検出されなかった。
試料2は、発熱抵抗体の外方側主面付近および側面付近にもレニウムが検出された。レニウムは発熱抵抗体から外方に向かって遠ざかるにつれて、混合割合が小さくなるように分布していた。発熱抵抗体の内方側主面付近には、レニウムが検出されなかった。これは外方側のセラミックグリーンシートがバインダーを含み、内方側の棒状仮焼体がバインダーを含んでいないため、拡散放置された際にイオン化されたレニウムがセラミックグリーンシートのバインダー中を拡散したと考えられる。
試料3は、発熱抵抗体の外方側主面付近、側面付近および内方側主面付近にもレニウムが検出された。レニウムは発熱抵抗体から外方に向かって遠ざかるにつれて、混合割合が小さくなるように分布していた。
試料4は、試料3と同様のレニウムの分布であった。
試料1,2,5に対して直流電流を通電し、オシロスコープを用いてセラミックヒータに流れるパルス波形、および高周波ノイズを確認した。試料1、2は通電と同時にパルス波形が急峻になるが、高周波ノイズは観測されなかった。一方、試料5では通電と同時にパルス波形が急峻になり、同時に高周波成分によるものと思われるノイズが観察された。
試料1,2では、高周波ノイズが観測されなかったのは、発熱抵抗体で突入電流とともに発生した高周波成分を発熱抵抗体周辺の混合層が減衰したためである。
試料4,7に対して交流電圧を印加し、表面温度を500℃まで上げ、赤外線カメラでヒータ表面の温度分布を確認した。温度分布は、ヒータ表面の複数箇所で得られた温度のうち、最大値と最小値とを求め、最大値と最小値との温度差によって評価した。温度差が小さいほど温度分布が均一であることを示す。
試料4は、温度分布において温度差が1℃で試料全体が均一に昇温された。試料7では温度分布において温度差が5℃で、発熱抵抗体のパターンに沿った部分の温度が他の部分の温度よりも高くなっていた。
試料4は、混合層を有することにより、表面温度に均一な分布が見られた。レニウムの拡散領域で均熱化されて温度分布が良くなったと考えられる。
試料3,6に直流電圧を印加し、表面温度1200℃での連続通電を行い、電気抵抗変化を確認した。試料3は、試料6よりも印加時間に伴う電気抵抗変化が小さく、試料6はおよそ200時間で発熱抵抗体が断線したのに対し、試料3は、同じ200時間でも発熱抵抗体が断線しなかった。
試料6を切断し断面を観察すると、イオンマイグレーションにより陰極側が黒色化していた。これはセラミックスに含まれるマグネシウム、カルシウムが陽イオンとなって陰極に移動し黒色化したものと考えられる。陽極側は、移動した酸素イオンによる酸化が原因とみられる体積膨張によるクラックで断線が確認された。
一方試料3は、陰極側の黒色化も陽極側の体積膨張によるクラックも確認されなかった。これは混合層により、イオンマイグレーションを防止できたものと考えられる。
また、試料1と試料8の高周波ノイズを比較すると、同じように高周波ノイズは確認されなかった。試料1と試料8に直流電圧を印加し、室温から1200℃でのサイクル通電を行い、電気抵抗変化を確認した。その結果、試料8よりも試料1の方が、抵抗変化率が小さく、試料8が250時間で断線したのに対し、試料1は同じ250時間でも発熱抵抗体が断線しなかった。試料1および試料8を切断し断面を観察すると、試料1よりも試料8で陰極側の黒色化が顕著であった。試料8の陽極側は移動した酸素イオンによるクラックで断線が確認された。試料1では、陰極側の黒色化がやや見られたが、断線することはなかった。
試料1と試料8とでは、金属材料がレニウムであるかモリブデンであるかの違いのみであるので、レニウムを用いるほうがより好ましいことがわかった。
本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
1,10,11 セラミックヒータ
2,2a,2b 混合層
3 発熱抵抗体
4 セラミック基体
4a,4b セラミック層
6 リード部
6a ビア導体
7 パッド部
8 電源配線

Claims (7)

  1. セラミック基体と、
    前記セラミック基体内に設けられ、通電によって発熱する発熱抵抗体と、
    前記セラミック基体内に設けられ、セラミック材料と金属材料とが混合された混合層と、を有し、該混合層は前記発熱抵抗体から遠ざかるにつれて、前記金属材料の混合割合が小さくなるように構成されていることを特徴とするセラミックヒータ。
  2. 前記混合層が前記発熱抵抗体と前記セラミック基体の加熱面との間に設けられていることを特徴とする請求項1記載のセラミックヒータ。
  3. 前記発熱抵抗体は前記セラミック基体の加熱面に対向する主面および該主面に隣接する側面を有し、前記混合層は前記発熱抵抗体の前記主面および前記側面を覆うように設けられていることを特徴とする請求項1記載のセラミックヒータ。
  4. 前記混合層は前記発熱抵抗体の全体を覆うように設けられていることを特徴とする請求項1記載のセラミックヒータ。
  5. セラミック基体と、
    前記セラミック基体内に設けられ、通電によって発熱する発熱抵抗体と、
    前記セラミック基体内に設けられ、セラミック材料と金属材料とが混合された混合層と、を有するとともに、
    前記発熱抵抗体は前記セラミック基体の加熱面に対向する主面および該主面に隣接する側面を有し、前記混合層は前記発熱抵抗体の前記主面および前記側面を覆うように設けられており、
    前記混合層は前記セラミック基体の加熱面に対向する前記発熱抵抗体の前記主面を覆う部分の厚みが、他の部分の厚みよりも厚いことを特徴とするセラミックヒータ。
  6. セラミック基体と、
    前記セラミック基体内に設けられ、通電によって発熱する発熱抵抗体と、
    前記セラミック基体内に設けられ、セラミック材料と金属材料とが混合された混合層と、を有するとともに、
    前記混合層は前記発熱抵抗体の全体を覆うように設けられており、
    前記発熱抵抗体は前記セラミック基体の加熱面に対向する主面を有し、前記混合層は、前記セラミック基体の加熱面に対向する前記発熱抵抗体の前記主面を覆う部分の厚みが、
    他の部分の厚みよりも厚いことを特徴とするセラミックヒータ。
  7. 前記金属材料が、レニウムであることを特徴とする請求項1〜のいずれか1つに記載のセラミックヒータ。
JP2013507803A 2011-03-31 2012-03-30 セラミックヒータ Active JP5665973B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507803A JP5665973B2 (ja) 2011-03-31 2012-03-30 セラミックヒータ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011079663 2011-03-31
JP2011079663 2011-03-31
JP2013507803A JP5665973B2 (ja) 2011-03-31 2012-03-30 セラミックヒータ
PCT/JP2012/058632 WO2012133800A1 (ja) 2011-03-31 2012-03-30 セラミックヒータ

Publications (2)

Publication Number Publication Date
JPWO2012133800A1 JPWO2012133800A1 (ja) 2014-07-28
JP5665973B2 true JP5665973B2 (ja) 2015-02-04

Family

ID=46931495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507803A Active JP5665973B2 (ja) 2011-03-31 2012-03-30 セラミックヒータ

Country Status (6)

Country Link
US (1) US9668302B2 (ja)
EP (1) EP2693836B1 (ja)
JP (1) JP5665973B2 (ja)
KR (1) KR101488751B1 (ja)
CN (1) CN103477704B (ja)
WO (1) WO2012133800A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133083A1 (ja) * 2011-03-30 2012-10-04 京セラ株式会社 ヒータ
CN105072718B (zh) 2015-08-21 2017-06-16 重庆利迈陶瓷技术有限公司 一种陶瓷电热体
US10258132B2 (en) 2015-12-31 2019-04-16 Conair Corporation Hair styling apparatus
USD804725S1 (en) 2016-01-08 2017-12-05 Conair Corporation Hair styling apparatus
CN106843333B (zh) * 2017-01-08 2018-12-25 刘家明 氢水热烫智能控制系统
US11237031B2 (en) 2019-08-20 2022-02-01 Rosemount Aerospace Inc. Additively manufactured heaters for air data probes having a heater layer and a dielectric layer on the air data probe body
CN110536491B (zh) * 2019-09-25 2024-07-05 重庆利迈科技有限公司 一种两层结构的陶瓷电热体及电烙铁
US11237183B2 (en) * 2019-12-13 2022-02-01 Rosemount Aerospace Inc. Ceramic probe head for an air data probe with and embedded heater
US11565463B2 (en) 2020-10-20 2023-01-31 Rosemount Aerospace Inc. Additively manufactured heater
CN113712363A (zh) * 2021-08-13 2021-11-30 珠海市佳一陶瓷有限公司 电吹风
US11624637B1 (en) 2021-10-01 2023-04-11 Rosemount Aerospace Inc Air data probe with integrated heater bore and features
US11662235B2 (en) 2021-10-01 2023-05-30 Rosemount Aerospace Inc. Air data probe with enhanced conduction integrated heater bore and features
USD1000692S1 (en) * 2021-10-23 2023-10-03 Ruyun Guo Ceramic heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127084A (ja) * 1984-07-16 1986-02-06 株式会社デンソー セラミツクヒ−タ
JPH05315055A (ja) * 1992-03-09 1993-11-26 Ngk Spark Plug Co Ltd セラミックヒータ
JP2003086334A (ja) * 2001-09-07 2003-03-20 Michihiko Hineno 真空多重構造特殊炭素繊維の複合体発熱体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2208342A (en) * 1938-05-06 1940-07-16 Westinghouse Electric & Mfg Co Method for producing high temperature heating resistors
JP2924177B2 (ja) * 1990-11-30 1999-07-26 株式会社村田製作所 傾斜機能型回路用基板
EP0546495B1 (en) * 1991-12-09 1997-03-12 Toshiba Lighting & Technology Corporation Fixing heater and method of manufacturing fixing heater
FR2733871B1 (fr) * 1995-05-04 1997-06-06 Norton Pampus Gmbh Element chauffant, procede de fabrication et application
EP0984839B1 (de) * 1997-05-28 2002-03-20 Siemens Aktiengesellschaft Metall-keramik-gradientenwerkstoff, erzeugnis daraus und verfahren zur herstellung eines metall-keramik-gradientenwerkstoffes
JPH10335050A (ja) 1997-05-30 1998-12-18 Kyocera Corp セラミックヒータ
CN2321192Y (zh) * 1997-12-12 1999-05-26 江琦 陶瓷红外热辐射装置
US6274855B1 (en) * 1998-11-17 2001-08-14 Ngk Spark Plug Co., Ltd. Heating resistor for ceramic heaters, ceramic heaters and method of manufacturing ceramic heaters
JP4569077B2 (ja) 2003-06-05 2010-10-27 住友電気工業株式会社 半導体あるいは液晶製造装置用保持体およびそれを搭載した半導体あるいは液晶製造装置
US8680443B2 (en) * 2004-01-06 2014-03-25 Watlow Electric Manufacturing Company Combined material layering technologies for electric heaters
JP4761723B2 (ja) * 2004-04-12 2011-08-31 日本碍子株式会社 基板加熱装置
CN100536621C (zh) * 2004-05-27 2009-09-02 京瓷株式会社 陶瓷加热器和采用其的氧传感器及烫发剪
CN2810085Y (zh) * 2005-07-21 2006-08-23 京瓷株式会社 陶瓷加热器以及加热烙铁
US7800021B2 (en) * 2007-06-30 2010-09-21 Husky Injection Molding Systems Ltd. Spray deposited heater element
JP2013501919A (ja) 2009-08-07 2013-01-17 アフィニマーク テクノロジーズ,インコーポレイテッド 脳脊髄液の免疫的識別のための装置および方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127084A (ja) * 1984-07-16 1986-02-06 株式会社デンソー セラミツクヒ−タ
JPH05315055A (ja) * 1992-03-09 1993-11-26 Ngk Spark Plug Co Ltd セラミックヒータ
JP2003086334A (ja) * 2001-09-07 2003-03-20 Michihiko Hineno 真空多重構造特殊炭素繊維の複合体発熱体

Also Published As

Publication number Publication date
WO2012133800A8 (ja) 2013-01-31
KR20130121984A (ko) 2013-11-06
JPWO2012133800A1 (ja) 2014-07-28
KR101488751B1 (ko) 2015-02-03
EP2693836B1 (en) 2015-12-30
CN103477704A (zh) 2013-12-25
EP2693836A4 (en) 2014-09-24
CN103477704B (zh) 2015-12-02
WO2012133800A1 (ja) 2012-10-04
US20140042149A1 (en) 2014-02-13
EP2693836A1 (en) 2014-02-05
US9668302B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
JP5665973B2 (ja) セラミックヒータ
US20230135881A1 (en) Electromagnetic induction heating element and electromagnetic induction heating element assembly
KR20040068154A (ko) 세라믹 히터
KR101591315B1 (ko) 세라믹 히터
CN104838724B (zh) 加热器
US9681498B2 (en) Heater with particle shield for noise
US20070114219A1 (en) Hair dryers containing high-watt density ceramic heaters
JP3935017B2 (ja) セラミックヒータ
JP5748918B2 (ja) ヒータ
EP3751959B1 (en) Heating structure and method of manufacturing a surface type heating element
JP6443415B2 (ja) ガスセンサ
JP2006054125A (ja) ヒータとその製造方法、及びこれを用いたウェハ加熱装置
KR102207442B1 (ko) 히터
JP2012216345A (ja) セラミックヒータ
CN110677936A (zh) 一种陶瓷加热体
CN217826786U (zh) 一种用于对基质加热的加热结构
JP2004342622A (ja) セラミックヒータ
WO2019004089A1 (ja) ヒータ
JP6711708B2 (ja) ヒータ
JP2005071916A (ja) セラミックヒータ
CN116210974A (zh) 一种复合陶瓷发热体及包含其的加热烟具和用途
JP2002319476A (ja) セラミックヒータ
JPH10302938A (ja) セラミックヒータ
TWM468644U (zh) 電熱爐

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150