JP5654359B2 - プラズマエッチング方法、及びプラズマエッチング装置 - Google Patents

プラズマエッチング方法、及びプラズマエッチング装置 Download PDF

Info

Publication number
JP5654359B2
JP5654359B2 JP2011001489A JP2011001489A JP5654359B2 JP 5654359 B2 JP5654359 B2 JP 5654359B2 JP 2011001489 A JP2011001489 A JP 2011001489A JP 2011001489 A JP2011001489 A JP 2011001489A JP 5654359 B2 JP5654359 B2 JP 5654359B2
Authority
JP
Japan
Prior art keywords
gas
adhesive layer
plasma
etching
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011001489A
Other languages
English (en)
Other versions
JP2012146700A (ja
Inventor
森川 泰宏
泰宏 森川
貴英 村山
貴英 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011001489A priority Critical patent/JP5654359B2/ja
Publication of JP2012146700A publication Critical patent/JP2012146700A/ja
Application granted granted Critical
Publication of JP5654359B2 publication Critical patent/JP5654359B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

この発明は、プラズマエッチング方法、特に、接着層を介して積層されたシリコン基板に該シリコン基板と接着層とを貫通する貫通孔を形成するプラズマエッチング方法、及び該方法を用いて該貫通孔を形成するプラズマエッチング装置に関する。
従来から、半導体装置に対する小型化の要請に応えるために、回路パターンの微細化や高集積化を可能とする技術の開発が行われてきた。現在では、こうした技術が、半導体装置におけるリーク電流の増加や信号の遅延等の容易には解決し難い課題に直面している。そこで、こうした課題を解決する技術として、単一平面上での微細化によらずに、複数の半導体装置を三次元的に積層する三次元実装技術が着目されている。三次元実装技術の中でも、特に、シリコン基板を貫通する電極(シリコン貫通電極:TSV)を用いて半導体装置間を接続する実装技術、いわゆるTSV技術の研究が鋭意行われている。
ところで、半導体装置を製造する過程において、TSVを形成することの可能なタイミングは複数存在する。例えば、非特許文献1に記載のように、素子や多層配線の形成された2枚のシリコン基板が接着層を介して接着された積層体に上記TSVを形成することもできる。図7は、上述した積層体の断面構造の一例を示す断面図である。
図7に示されるように、積層体100の第1シリコン基板110は、接着層120を介して第2シリコン基板130上に積層されている。第1シリコン基板110では、第1シリコン層111上に、絶縁材料によって覆われる第1多層配線層112が積層され、また、第1多層配線層112の表面には、第1電極パッド113が露出している。これに対して、第2シリコン基板130では、第2シリコン層112上に、絶縁材料によって覆われる第2多層配線層132が積層され、また、第2多層配線層132の内部には、第2電極パッド133が形成されている。そして、第1シリコン基板110の第1シリコン層111と第2シリコン基板130の第2多層配線層132とが、接着層120によって接着されている。こうした積層体100には、第1多層配線層112上に形成されたハードマスク140を用いることで、第1電極パッド113と第2電極パッド133とを接続するTSV用の凹部150が、2点鎖線にて示される位置に形成される。
このような製造方法によれば、2枚のシリコン基板110,130に跨ってTSVを形成することができるため、それぞれの基板に形成されたTSV同士の位置を合わせる必要がない。それゆえに、TSVを介した電気的な接続がより簡単、且つ、信頼性の高いものになる。また、形成されたTSVは、素子形成時のような高温には曝されないことから、TSV形成に用いられる電極材料を選択する際の自由度がより高くなる。
ところで、上記凹部150は、一般に、プラズマエッチングによって形成される。また、こうしたプラズマエッチングでは、第1シリコン基板110に適したエッチャントによ
るエッチングが、シリコン基板の積層方向に進行することで、第1シリコン基板110の厚さ方向に延びる凹部150が形成される。図8(a)〜(c)は、積層体100の断面構造の一部を示す断面図であって、第1シリコン基板110と接着層120とに凹部150が形成される過程を示す。
図8(a)に示されるように、第1シリコン基板11に形成された凹部150の底面150aが接着層120と第1シリコン層111との境界120aに到達すると、凹部150内に侵入した正電荷を帯びたエッチャント160が、境界120aに衝突し始める。接着層120は、上記エッチャント160によってはエッチングされにくいことから、境界120aに対する正イオンの衝突は、第1シリコン基板110への凹部150の形成が完了するまで継続する。その結果、接着層120の表面には、エッチャント160の正電荷が蓄積し続けることになる。このような状態から、図8(b)に示されるように、接着層120のエッチングが行われると、エッチャント160の進行方向は、接着層120の表面に蓄積された正電荷によって積層方向から逸れることになる。そのため、接着層120のエッチングは、シリコン基板の積層方向ではなく、接着層120の表面に沿った方向に進行し、いわゆるサイドエッチング120eが生じてしまう。そして、図8(c)に示されるように、凹部150の底面150aが、接着層120と第2多層配線層132との境界132aに到達するときには、図8(b)に示されるよりも、さらに接着層120の表面に沿った方向にサイドエッチング120eが進行した状態となってしまう。それゆえに、上述のように微細化された半導体装置では、境界120aの方向に凹部150が広がる結果、凹部150内の全体にわたってTSVを形成することが困難となり、TSVの電気的特性や機械的特性が十分に得られ難いものとなっている。
この発明は、上記従来の実情に鑑みてなされたものであり、その目的は、シリコン基板に挟まれた接着層をエッチングする際に、シリコン基板の積層方向へエッチングを進みやすくすることのできるプラズマエッチング方法、及びプラズマエッチング装置を提供することにある。
以下、上記課題を解決するための手段及び作用効果について記載する。
請求項1に記載の発明は、有機シリコン酸化物からなる接着層が第1シリコン基板と第2シリコン基板とに挟まれたかたちの積層体を真空槽に搬入し、該積層体に対し、前記第1シリコン基板と前記接着層とを貫通して前記積層体の積層方向に延びる貫通孔を形成するプラズマエッチング方法であって、第1ガスを用いたプラズマを前記真空槽内に生成して、前記積層方向に延びる第1孔を前記第1シリコン基板に形成する第1エッチング工程と、第2ガスを用いたプラズマを前記真空槽内に生成して、前記第1孔から前記積層方向に延びる第2孔を前記接着層に形成する第2エッチング工程とを備え、前記第1ガスには、前記第1孔の内面を保護するための第1保護ガスが含まれ、前記第2ガスには、前記第2孔の内面を保護するための第2保護ガスが含まれ、前記第1エッチング工程と前記第2エッチング工程との間には、前記第1ガスと前記第2ガスとの混合ガスを用いたプラズマを前記真空槽内に生成して、前記第1シリコン基板と前記接着層との境界をエッチングする中間工程がさらに備えられ、前記第1シリコン基板に形成される前記第1孔の底面から前記接着層が露出する前に、前記中間工程を開始することを要旨とする。
請求項に記載の発明は、有機シリコン酸化物からなる接着層が第1シリコン基板と第2シリコン基板とに挟まれたかたちの積層体を収容する真空槽と、前記真空槽に第1ガス及び第2ガスを供給するガス供給部と、前記真空槽に供給されたガスで前記真空槽内にプラズマを生成するプラズマ生成部と、前記ガス供給部、及び前記プラズマ生成部の動作を制御する制御部と、前記第1孔の底面における前記接着層の露出の度合いを前記真空槽内の光に基づいて検出する検出部と、を備え、前記制御部は、前記第1ガスを用いたプラズマにより前記積層方向に延びる第1孔を前記第1シリコン基板に形成する第1エッチング工程と、前記第2ガスを用いたプラズマにより前記第1孔から前記積層方向に延びる第2孔を前記接着層に形成する第2エッチング工程とを順に実行し、前記第1孔の内面を保護するための第1保護ガスを前記第1ガスに含め、前記第2孔の内面を保護するための第2保護ガスを前記第2ガスに含め、前記第1エッチング工程と前記第2エッチング工程との間に、前記第1ガスと前記第2ガスとの混合ガスを用いたプラズマを前記真空槽内に生成させて、前記第1シリコン基板と前記接着層との境界をエッチングする境界エッチング工程をさらに実行し、前記検出部の検出結果に基づいて、前記第1シリコン基板に形成される前記第1孔の底面から前記接着層が露出する前に、前記中間工程を開始するプラズマエッチング装置を要旨とする。
上記方法及び構成では、第1ガスのプラズマによって第1シリコン基板に第1孔を形成した後に、中間工程が実施され、その後、第2ガスのプラズマによって接着層に第2孔が形成される。そして、中間工程では、第1保護ガスが含まれる第1ガスと第2保護ガスが含まれる第2ガスとの混合ガスによって、第1シリコン基板と接着層との境界がエッチングされ、これにより第1孔と第2孔とをつなぐ連結孔が形成される。そのため、第1シリコン基板の貫通によって接着層がプラズマに曝されるときには、第2ガスのプラズマ化によって生成されたエッチャントによって接着層に孔が形成され始めるとともに、混合ガスに含まれる第2保護ガスによって、その孔の内面が保護されることとなる。それゆえに、中間工程では、第1ガスのプラズマに含まれるエッチャントの電荷が上記境界に蓄積しにくくなる結果、接着層に形成される孔の内面に向けてエッチャントの軌道が曲げられることを抑制できる。また、接着層に形成される孔の内面に向けてエッチャントの軌道が曲げられるとしても、接着層に形成される孔の内面は、第2保護ガスの作用によって保護される。それゆえに、接着層が、上記積層体の積層方向とは垂直な方向にエッチングされること、言い換えれば、接着層にサイドエッチングが生じることを抑制できる。
加えて、同方法及び構成では、シリコン基板のエッチングと接着層のエッチングとによる第1孔、連結孔、及び第2孔の形成が、単一の真空槽でできるようになる。これにより、シリコン基板のエッチングと接着層のエッチングとが、別々の真空槽で行われる方法と比較して、これら孔の形成に必要な真空槽の数を減らすことができる。
また、上記方法及び構成では、第1シリコン基板を介して接着層に到達する孔を形成するときに、第1孔の底面から接着層が露出する前に、中間工程を開始するようにしている。そのため、第1孔の底面から接着層が露出し始めると、混合ガスのプラズマ中に含まれるエッチャントが、露出部分から順に接着層をエッチングするとともに、同プラズマ中に含まれる第2保護ガスが、該接着層に形成された孔の内面を保護する。それゆえに、第1シリコン基板のエッチャント由来の電荷が、より上記境界に蓄積しにくくなるとともに、接着層に形成される孔の内面が、より確実に保護されるようになる。したがって、接着層でのサイドエッチングがより抑えられるようになる。
請求項に記載の発明は、請求項1に記載のプラズマエッチング方法において、前記第1孔の底面の全てが、前記第1シリコン基板と前記接着層との境界を越えた後に、前記中間工程を終了することをその要旨とする。
請求項に記載の発明は、請求項に記載のプラズマエッチング装置において、前記制御部は、前記検出部の検出結果に基づいて、前記第1孔の底面の全てが、前記第1シリコン基板と前記接着層との境界を越えた後に、前記中間工程を終了することを要旨とする。
上記方法及び構成では、第1シリコン基板を介して接着層に到達する第1孔を形成するときに、第1孔の底面が、第1シリコン基板と接着層とによって形成される境界を越えた後に中間工程を終了するようにしている。そのため、第1シリコン基板のエッチャントによる電荷が、より上記境界に蓄積しにくくなる。それゆえに、接着層でのサイドエッチングがより抑えられるようになる。
請求項に記載の発明は、請求項1又は2に記載のプラズマエッチング方法において、前記第1エッチング工程、前記第2エッチング工程、及び前記中間工程では、前記真空槽内に形成した磁気中性線を用いてプラズマを生成することを要旨とする。
上記方法では、真空槽内に形成した磁気中性線を用いてプラズマを生成するため、真空槽内の圧力がより低い状態で、密度の高いプラズマを形成することができる。それゆえに、各エッチャントが、真空槽内の粒子と衝突する確立を低下させることができることから、エッチングの効率を保ちつつ、プラズマ中に含まれるエッチャントの軌道を垂直に保ちやすくすることができる。これにより、接着層におけるサイドエッチングが抑えられやすくなるとともに、シリコン基板のエッチング時にもサイドエッチングが抑えられるようになる。
請求項に記載の発明は、請求項1〜のいずれか一項に記載のプラズマエッチング方法において、前記第1シリコン基板は、前記接着層に接するシリコン層を備え、前記第1ガスは、第1保護ガスとして、酸素ガス及び臭化水素ガスを含み、前記第2ガスは、第2保護ガスとして、酸素ガス及び窒素ガスを含むことを要旨とする。
上記方法では、第1シリコン基板が、接着層に接するシリコン層を備えるとともに、第1ガスが、第1保護ガスとして、酸素ガス及び臭化水素ガスを含み、第2ガスが、第2保護ガスとして、酸素ガス及び窒素ガスを含むようにしている。そのため、シリコン層に形成される第1孔の内壁と、接着層に形成される第2孔の内壁とが、保護ガスとの反応によって形成される保護膜によって保護されつつ、第1孔及び第2孔の底面のエッチングが進行するようになる。それゆえに、シリコン層と接着層との境界がエッチングされるときに、接着層でのサイドエッチングが生じにくくなる。
本発明の一実施形態におけるプラズマエッチング装置の概略構成を示す図。 本発明の一実施形態におけるプラズマエッチング方法の処理手順を示すフローチャート。 マスク用ガス、多層配線層用ガス、シリコン層用ガス、及び接着層用ガスの供給態様を示すタイミングチャート。 (a)(b)(c)本実施形態のプラズマエッチング方法を用いて凹部を形成したときの積層体の一部断面構造を経時的に示す図。 実施例のプラズマエッチング方法を用いて凹部を形成した積層体の断面構造を示す図。 比較例のプラズマエッチング方法を用いて凹部を形成した積層体の断面構造を示す図。 2つのシリコン基板が接着層を介して接着された積層体の断面構造を示す図。 (a)(b)(c)従来のプラズマエッチング方法を用いて凹部を形成したときの積層体の一部断面構造を経時的に示す図。
以下、本発明の一実施形態におけるプラズマエッチング方法及びプラズマエッチング装置について、図1〜図6を参照して説明する。
図1に示されるように、プラズマエッチング装置は、上面が開口した真空槽11と、該真空槽11の上面を塞ぐ石英窓12とによって形成された空間に、上記積層体100と同一の多層構造をなした積層体30を載置する基板ステージ13が内蔵されている。基板ステージ13では、第1シリコン基板が第2シリコン基板よりも上に配置されるように積層体30が載置される。この基板ステージ13には、コンデンサ14を介して積層体30に高周波電圧を印加するバイアス用高周波電源15が接続されている。
バイアス用高周波電源15から基板ステージ13に、例えば2MHzの高周波電圧が印加されると、真空槽11内の電子が積層体30の上面に衝突することで、積層体30に負のバイアス電圧が印加されるようになる。
また、真空槽11には、アルゴン(Ar)ガスを供給するマスフローコントローラMFC1、八フッ化シクロブタン(C)ガスを供給するマスフローコントローラMFC2、及び酸素(O)ガスを供給するマスフローコントローラMFC3が接続されている。加えて、真空槽11には、窒素(N)ガスを供給するマスフローコントローラMFC4、六フッ化硫黄(SF)ガスを供給するマスフローコントローラMFC5、及び臭化水素(HBr)ガスを供給するマスフローコントローラMFC6が接続されている。さらに、真空槽11には、真空槽11内を排気する排気ポンプ16が接続されているとともに、真空槽11と排気ポンプ16との間には、真空槽11内の圧力を測定する圧力計17が接続されている。
上記各種マスフローコントローラMFC1〜MFC6が、所定流量のガスを真空槽11に供給するとともに、排気ポンプ16が、所定流量で真空槽11内を排気することによって、真空槽11内の圧力が所定の圧力とされる。なお、ガス供給部は、上記マスフローコントローラMFC1〜MFC6によって構成される。
上記石英窓12の外表面には、基板ステージ13の上方に位置するように高周波アンテナ21が配設されている。高周波アンテナ21は、石英窓12の中心から外周に向かう渦巻き状をなすように三回巻き回された上段アンテナ21aと、該上段アンテナ21aと同一形状の下段アンテナ21bとを上下に重ねたものである。上段アンテナ21aの中心側の端部である入力部21cには、入力側可変コンデンサ22と整合器23とを介してアンテナ用高周波電源24が接続されている。また、同上段アンテナ21aの外周側の端部である出力部21dには、出力側可変コンデンサ25が接続されている。
アンテナ用高周波電源24は、高周波アンテナ21に例えば13.56MHzの高周波電圧を印加することで、真空槽11内に供給されたガスのプラズマを生成する。このとき、整合器23は、アンテナ用高周波電源24の出力インピーダンスと、真空槽11を含む負荷の入力インピーダンスとを整合させる。また、プラズマが生成されるときには、出力側可変コンデンサ25が、高周波アンテナ21の全体にて、真空槽11内のプラズマとの誘導結合性を略均一にする。そのため、石英窓12の下面の全体では、プラズマの密度が略均一となる。それゆえに、エッチング時に石英窓12の下面に付着する反応生成物が、該石英窓12の下面の全体にわたりプラズマ中の粒子によってスパッタされるようになる。つまり、上記反応生成物は、石英窓12の下面全体において略均一に除去されるように
なる。他方、入力側可変コンデンサ22は、上記出力側可変コンデンサ25を含めた負荷の入力インピーダンスと、アンテナ用高周波電源24の出力インピーダンスとを整合させる。なお、入力側可変コンデンサ22の静電容量と出力側可変コンデンサ25の静電容量とは、例えば10pF〜100pFの範囲で変更することができる。
上記石英窓12の外周には、上段コイル26a、中段コイル26b、及び下段コイル26cを備える磁場コイル26が、該石英窓12を囲み、且つ中段コイル26bと石英窓12とが同一平面上に位置するように配設されている。磁場コイル26の有する各コイル26a,26b,26cには、これらコイル26a,26b,26cの各々に対応する電流供給部27が接続されている。より詳細には、上段コイル26aに上段電流供給部27aが接続され、また、中段コイル26bに中段電流供給部27bが接続され、また、下段コイル26cに下段電流供給部27cが接続されている。そして、上段電流供給部27a及び下段電流供給部27cが、各々の接続されたコイルに対して同じ向きの電流を供給するとともに、中段電流供給部27bが中段コイル26bに逆向きの電流が供給することで、石英窓12と基板ステージ13との間に磁気中性線が形成される。
なお、プラズマ生成部は、上記高周波アンテナ21、整合器23、アンテナ用高周波電源24、磁場コイル26、及び電流供給部27によって構成される。
プラズマエッチング装置は、上記マスフローコントローラMFC1〜MFC6、バイアス用高周波電源15、排気ポンプ16、アンテナ用高周波電源24、及び電流供給部27の動作を制御する制御部28を備えている。制御部28の入力インターフェース28aには、上記圧力計17が接続されている。また、制御部28の出力インターフェース28bには、マスフローコントローラMFC1〜MFC6、バイアス用高周波電源15、排気ポンプ16、アンテナ用高周波電源24、及び電流供給部27が接続されている。そして、制御部28は、上記積層体30のエッチング時に用いられるガスとその流量、真空槽11内の圧力、及び各高周波電源15,24からの供給電圧値等のエッチング時の各種条件に関する情報が記憶された記憶部28cを有している。
制御部28は、積層体30のエッチング時に、圧力計17から入力される情報、及び記憶部28cに記憶された情報に応じてマスフローコントローラMFC1〜MFC6及び排気ポンプ16の動作を制御して、真空槽11内を所定の圧力とする。また、制御部28は、記憶部28cに記憶された情報に応じて、マスフローコントローラMFC1〜MFC6、アンテナ用高周波電源24、及び電流供給部27の動作を制御して、真空槽11内に所定ガスのプラズマを生成する。
こうしたプラズマエッチング装置を用いたエッチングでは、まず、排気ポンプ16によって真空槽11内が排気され、続いて、真空槽11内に搬送された積層体30が基板ステージ13上に配置される。そして、積層体30のうちでエッチング対象となる層にあわせて、上記各マスフローコントローラMFC1〜MFC6から各種ガスが供給された後、アンテナ用高周波電源24から高周波アンテナ21に高周波電圧が印加されることによって、真空槽11内にプラズマが生成される。このとき、電流供給部27から磁場コイル26に電力が供給されて、真空槽11内に磁気中性線が形成される。次いで、バイアス用高周波電源15から基板ステージ13に高周波電圧が印加されると、積層体30に形成されたハードマスクに応じて、積層体30がその積層方向にエッチングされる。
積層体30は、上述のように、第1シリコン層に第1多層配線層を積層した第1シリコン基板と、第2シリコン層に第2多層配線層を積層した第2シリコンとを有している。そして、第1シリコン基板の第1シリコン層と、第2シリコン基板の第2多層配線層とが、接着層を介して対向するように接着されている。そのため、第1シリコン層と接着層とを貫通して第2多層配線層に到達する凹部を第1多層配線層上に形成されたハードマスクを
用いたエッチングによって形成すると、第1シリコン層と接着層との境界において、接着層にサイドエッチングが生じてしまう。
そこで、本実施形態では、第1シリコン層と接着層との境界をエッチングする際に、第1シリコン層用のエッチングガスと接着層用のエッチングガスとの混合ガスを用いたエッチングを行うようにしている。
以下、上記制御部28が、上記ガス供給部及びプラズマ生成部の動作を制御することでプラズマエッチング装置に実施させるプラズマエッチング方法について、図2〜図4を参照して説明する。
まず、図2に示されるように、上記プラズマエッチング方法では、第1シリコン基板上に形成されたハードマスクをエッチングするマスクエッチング工程(ステップS1)が実施される。積層体30に形成されるハードマスクは、例えばシリコン窒化物によって形成される。ハードマスクは、マスフローコントローラMFC1からのArガス、マスフローコントローラMFC2からのCガス、及びマスフローコントローラMFC3からのOガスからなるマスク用ガスのプラズマを用いてエッチングされる。
ハードマスクのエッチングが終了すると、第1多層配線層エッチング工程(ステップS2)が実施される。第1多層配線層は、低誘電率材料、例えばメチル基を含有するシリコン酸化膜等のケイ素、酸素、炭素、及び水素を含む材料(SiOCH材)で形成された複数の層間絶縁層の積層体であって、互いに重なる層間絶縁層の間には、金属多層配線層が挟入されている。なお、第1多層配線層におけるエッチングの対象は、金属多層配線層以外の領域、すなわち複数の層間絶縁層である。第1多層配線層は、マスフローコントローラMFC1からのArガス、マスフローコントローラMFC2からのCガス、マスフローコントローラMFC3からのOガス、及びマスフローコントローラMFC4からのNガスからなる多層配線層用ガスのプラズマを用いてエッチングされる。
第1多層配線層のエッチングが終了すると、第1エッチング工程としての第1シリコン層エッチング工程(ステップS3)が実施される。第1シリコン層は、マスフローコントローラMFC5からのSFガス、マスフローコントローラMFC6からのHBrガス、及びマスフローコントローラMFC3からのOガスからなる第1ガスとしてのシリコン層用ガスのプラズマを用いてエッチングされる。シリコン層用ガスは、第1保護ガスとしてのHBrガスとOガスとを含んでいる。これらガスは、シリコン層に形成された第1孔としての凹部の内面に、上記プラズマ中のエッチャントによってエッチングされにくい保護膜を形成する。
そして、第1シリコン層のエッチングが、接着層との境界付近まで進行すると、中間工程としての境界エッチング工程(ステップS4)が実施される。境界エッチング工程は、上記シリコン層用ガスと、第1シリコン層の下層である接着層のエッチングに用いられる第2ガスとしての接着層用ガスとの混合ガスによって上記境界をエッチングする。接着層用ガスは、マスフローコントローラMFC5からのSFガス、マスフローコントローラMFC3からのOガス、及びマスフローコントローラMFC4からのNガスからなる。接着層用ガスは、第2保護ガスとしてのとしてのOガスとNガスとを含んでいる。
エッチングにより形成された凹部の底面が上記境界を越えると、第2エッチング工程としての接着層エッチング工程(ステップS5)が実施される。接着層は、例えばビスベンゾシクロブテン系の樹脂であるCYCLOTENE/サイクロテン(ダウケミカル社製、登録商標)から形成される層である。接着層は、接着の対象となる第1シリコン層や第2多層配線層と類似した化学的な性質を有する一方、これら第1シリコン層や第2多層配線
層と比較して機械的な強度や硬さが低いものである。そのため、接着層におけるエッチングでは、通常、第1シリコン層や第2多層配線層におけるエッチングと比較してサイドエッチングが生じやすい。例えば、多層配線層と接着層とが共にサイクロテンから形成されるとしても、同サイクロテンに対して施される硬化処理が互いに異なるため、結局のところ、接着層は、多層配線層やシリコン層よりもサイドエッチングされやすいものである。それゆえに、こうした接着層は、多層配線層用ガスとは異なる上記接着層用ガスのプラズマによってエッチングされる。このとき、接着層用ガスに含まれる第2保護ガスが、接着層の形成材料と反応して接着層に形成された第2孔としての凹部の内面に、上記プラズマ中のエッチャントによってエッチングされにくい保護膜を形成する。
接着層のエッチングが終了すると、第2シリコン基板の有する第2多層配線層をエッチングする第2多層配線層エッチング工程(ステップS6)が実施される。第2多層配線層は、上記第1多層配線層と同一の構成であって、そのエッチングの対象もまた、第1多層配線層と同じく、複数の層間絶縁層である。そのため、第2多層配線層は、上記多層配線層用ガスのプラズマによってエッチングされる。そして、第2多層配線層に形成された凹部の底面が、第2多層配線層中に形成された第2電極パッドの表面に達すると、第2多層配線層エッチング工程が終了する。
なお、上記各種プラズマが生成されるときには、磁気中性線が、上記電流供給部27と磁場コイル26とによって真空槽11内に形成されている。そのため、真空槽内の圧力がより低い状態で、密度の高いプラズマを形成することができる。それゆえに、各エッチャントが、真空槽11内の粒子と衝突する確立を低下させることができることから、エッチングの効率を保ちつつ、プラズマ中に含まれるエッチャントの軌道を垂直に保ちやすくすることができる。これにより、上述した保護膜の形成による作用に加えて、接着層におけるサイドエッチングが、さらに抑えられやすくなるとともに、第1シリコン層等のエッチング時にも、さらにサイドエッチングが抑えられるようになる。
その後、銅等の金属が、スパッタ法やCVD法といった公知の成膜方法によって積層体30に形成された凹部に埋め込まれることで、第1シリコン層と接着層とを貫通して第2多層配線層中の第2電極パッドにまで繋がるシリコン貫通電極(TSV)が形成される。
このように、上記プラズマエッチング方法では、ハードマスク、第1多層配線層、第1シリコン層、接着層、及び第2多層配線層に跨る凹部の形成が、単一の真空槽11でできるようになる。これにより、各層に対するエッチングが、別々の真空槽で行われる方法と比較して、凹部の形成に必要な真空槽の数を減らすことができる。
上記各種ガスの供給態様について、図3を参照して詳述する。図3に示されるように、積層体30へのエッチングが開始されると、マスク用ガスの供給が開始される(タイミングT1)。ハードマスクのエッチングが終了すると、マスク用ガスの供給が停止されるとともに、ハードマスクの下層である第1多層配線層のエッチングガスである多層配線層用ガスの供給が開始される(タイミングT2)。第1多層配線層のエッチングが終了すると、多層配線層用ガスの供給が停止されるとともに、第1多層配線層の下層である第1シリコン層のエッチングガスであるシリコン層用ガスの供給が開始される(タイミングT3)。そして、第1シリコン層のエッチングが終了する前に、シリコン用ガスの供給が維持された状態で、接着層用ガスの供給が開始される(タイミングT4)。第1シリコン基板と接着層との境界を超えて接着層がエッチングされると、接着層用ガスの供給が維持された状態で、シリコン用ガスの供給が停止される(タイミングT5)。接着層のエッチングが終了すると、接着層用ガスの供給が停止されるとともに、接着層の下層である第2多層配線層のエッチングガスとして再び多層配線層用ガスの供給が開始される(タイミングT6)。第2多層配線層のエッチングが進み、凹部の底面が上記第2電極パッドの表面に到達
すると、多層配線層用ガスの供給が停止される(タイミングT7)。
なお、上記各タイミングのうち、タイミングT1からタイミングT2までの間が、上記マスクエッチング工程(ステップS1)に、タイミングT2からタイミングT3までの間が、上記第1多層配線層エッチング工程(ステップS2)に、タイミングT3からタイミングT4までの間が第1シリコン層エッチング工程(ステップS3)にそれぞれ相当する。そして、タイミングT4からタイミングT5までの間が、上記境界エッチング工程に(ステップS4)、タイミングT5からタイミングT6までの間が、上記接着層エッチング工程に(ステップS5)、タイミングT6からタイミングT7までの間が、上記第2多層配線層エッチング工程(ステップS6)にそれぞれ相当する。また、上記各工程の開始タイミングから終了タイミングまでの時間は、予め測定された上記各層のエッチングに要する時間に基づいて設定されている。
上記プラズマエッチング方法、特に第1シリコン層エッチング工程、境界エッチング工程、及び接着層エッチング工程によって形成される凹部の断面構造を、図4を参照して説明する。
図4(a)に示されるように、第1シリコンエッチング工程では、マスクエッチング工程及び第1多層配線層エッチング工程を通じて、第1シリコン基板31のハードマスク34及び第1多層配線層31bに形成された凹部35が、第1シリコン層31aの厚さ方向に形成される。これにより、凹部35の底面35aが、第1シリコン基板31と接着層32との境界32aを露出させない深さにまで進行する。このとき、シリコン層用ガスに含まれる上記第1保護ガスによって、凹部35の内面が保護されることから、エッチャント40による凹部の形成は、積層体30の積層方向に進行しやすくなる。
そして、凹部35の底面35aが境界32aに到達する前に、境界エッチング工程が開始される。これにより、凹部35の底面35aから上記境界32aが露出し始めたときから、真空槽11内のプラズマには、接着層32のエッチャント40が含まれていることになる。つまり、境界32aにエッチャント40が衝突し始めたときから、該境界32aのエッチングが開始されるため、境界32aにはエッチャント40からの正電荷が蓄積しにくくなる。また、境界エッチング工程に用いられる上記混合ガスには、第1シリコン層31aに形成された凹部35の内面を保護する第1ガスと、接着層32に形成された凹部35の内面を保護する第2ガスとが含まれている。保護膜を形成するためには、エッチャントのエッチングによって生成される揮発性の生成物とこれら第1ガスや第2ガスとの衝突が必要とされる。上述のような方法によれば、凹部35の底面35aに接着層が露出する前に、該凹部35の内部に混合ガスが充填されることとなる。それゆえに、凹部35の内部に混合ガスが充填されている分、接着層32の内面に対する保護膜の形成が早められることとなる。
このように、上記境界32aのエッチング時には、エッチャント40の軌道が、凹部35の内面側に向けて曲げられることが抑えられるとともに、第1シリコン層31a及び接着層32に形成された凹部35の内面が保護膜によって保護される。それゆえに、図4(b)に示されるように、上記境界32aでの接着層32におけるサイドエッチングが生じにくくなる。
同図4(b)に示されるように、凹部35の底面35aの全てが、境界32aを超えて接着層32中に進行すると、境界エッチング工程から接着層エッチング工程への切り替えが行われる。接着層32のエッチングにより、図4(c)に示されるように、凹部35の底面35aが、接着層32と第2シリコン基板33の第2多層配線層33bとの境界33dに一致すると、接着層エッチング工程から第2多層配線層エッチング工程への切り替え
が行われる。そして、凹部35の底面35aが、第2電極パッド33cの表面にまで達すると、第2多層配線層エッチング工程が終了されることで、積層体30に凹部35を形成するためのプラズマエッチングが完了する。
[実施例]
下記形成材料及び厚さの各層を有する積層体に対して、第1電極パッドと第2電極パッドとを接続するTSV用の凹部を形成した。なお、ハードマスクに形成される孔の直径を10μmとした。
・ハードマスク(SiN) 05μm
・第1多層配線層におけるエッチング対象(SiO) 0.5μm
・第1シリコン層(単結晶シリコン) 10μm
・接着層(シロキサン樹脂) 5μm
・第2多層配線層におけるエッチング対象(SiO) 1.0μm
・第2シリコン層(単結晶シリコン) 10μm
[実施例1]
図5に示されるように、第1シリコン層31aと第1多層配線層31bとからなる第1シリコン基板31が、第2シリコン層33aと第2多層配線層33bとからなる第2シリコン基板33に接着層32を介して接着された積層体30に、凹部35を形成した。該凹部35を形成するために、上記マスクエッチング工程、第1多層配線層エッチング工程、第1シリコン層エッチング工程、境界エッチング工程、及び第2多層配線層エッチング工程を以下の条件で実施した。
○マスクエッチング工程
・真空槽内の圧力 0.67Pa
・Ar/C/Oガスの流量 180/20/10sccm
・アンテナ用高周波電源からの供給電力 1200W
・バイアス用高周波電源からの供給電力 400W
○第1多層配線層エッチング工程
・真空槽内の圧力 2Pa
・Ar/C/Oガスの流量 180/20/10sccm
・アンテナ用高周波電源からの供給電力 1200W
・バイアス用高周波電源からの供給電力 400W
○第1シリコン層エッチング工程
・真空槽内の圧力 6.65Pa
・SF/O/HBrガスの流量 150/55/0sccm
・アンテナ用高周波電源からの供給電力 1000W
・バイアス用高周波電源からの供給電力 50W
○境界エッチング工程
・真空槽内の圧力 1.5Pa
・SF/O/HBr/Nガスの流量 30/200/85sccm
・アンテナ用高周波電源からの供給電力 2000W
・バイアス用高周波電源からの供給電力 300W
○接着層エッチング工程
・真空槽内の圧力 1.5Pa
・SF/O/Nガスの流量 30/200/85sccm
・アンテナ用高周波電源からの供給電力 2000W
・バイアス用高周波電源からの供給電力 300W
○第2多層配線層エッチング工程
・上記第1多層配線層と同条件
同図5に示されるように、上記工程を実施することによって、ハードマスク34、第1多層配線層31b、第1シリコン層31a、及び接着層32を貫通して、第2多層配線層33b中の第2電極パッド33cの表面に達する凹部35が、積層体30に形成された。
凹部35は、該凹部35の形成された全ての層において、積層体30の積層方向に平行な形状であった。
[比較例1]
図6に示されるように、第1シリコン層51aと第1多層配線層51bとからなる第1シリコン基板51が、第2シリコン層53aと第2多層配線層53bとからなる第2シリコン基板53に接着層52を介して接着された積層体50に、凹部55を形成した。該凹部55を形成するために、上記実施例1の工程から境界エッチング工程を除いた工程を上記実施例1と同様の条件で実施した。
同図6に示されるように、上記工程を実施することによって、ハードマスク54、第1多層配線層51b、第1シリコン層51a、及び接着層52を貫通して、第2多層配線層53b中の第2電極パッド53cに達する凹部55が、積層体50に形成された。凹部55は、接着層52以外の層において、積層体50の積層方向に沿った形状であった。これに対し、該凹部55は、第1シリコン層51aと接着層52との境界52aにおいて生じたサイドエッチング52eのために、接着層52において、積層体50の積層方向とは垂直な方向に延びる形状であった。
以上説明したように、上記実施形態によれば、以下に列挙する効果が得られるようになる。
(1)第1ガスのプラズマによって第1シリコン層31aに凹部35を形成した後に、中間工程が実施され、その後、第2ガスのプラズマによって接着層32に凹部35が形成されるようにした。そして、中間工程では、第1保護ガスが含まれる第1ガスと第2保護ガスが含まれる第2ガスとの混合ガスによって、第1シリコン層31aと接着層32の境界32aがエッチングされるようにした。
そのため、第1シリコン層31aの貫通によって接着層32がプラズマに曝されるときには、第2ガスから生成されたエッチャント40によって接着層32に凹部35が形成され始めるとともに、混合ガスに含まれる第2保護ガスによって、凹部35の内面が保護されることとなる。それゆえに、中間工程では、第1ガスのプラズマに含まれるエッチャント40の電荷が上記境界32aに蓄積しにくくなる結果、接着層32に形成される凹部35の内面に向けてエッチャント40の軌道が曲げられることを抑制できる。また、接着層32に形成される凹部35の内面に向けてエッチャント40の軌道が曲げられるとしても、接着層32に形成される凹部35の内面は、第2保護ガスの作用によって保護される。それゆえに、接着層32が、上記積層体30の積層方向とは垂直な方向にエッチングされること、言い換えれば、接着層32においてサイドエッチングが生じることを抑制できる。
(2)また、上記実施形態では、ハードマスク34、第1多層配線層31b、第1シリコン層31a、接着層32、及び第2多層配線層33bのエッチングによる凹部35の形成を、単一の真空槽11でできるようになる。これにより、これら各層のエッチングを別々の真空槽で行われる方法及び装置と比較して、上記凹部35の形成に必要な真空槽の数を減らすことができる。
(3)第1シリコン層31aを介して接着層32に到達する凹部35を形成するときに、凹部35の底面35aから接着層32が露出する前に、中間工程を開始するようにしている。そのため、凹部35の底面35aから接着層32が露出し始めると、混合ガスのプラズマ中に含まれるエッチャントが、露出部分から順に接着層32をエッチングするとともに、同プラズマ中に含まれる第2保護ガスが、該接着層32に形成された凹部35の内面を保護する。それゆえに、第1シリコン層31aのエッチャントによる電荷が、より上記境界32aに蓄積しにくくなるとともに、接着層32に形成される凹部35の内面が、
より確実に保護されるようになる。したがって、接着層32でのサイドエッチングがより抑えられるようになる。
(4)第1シリコン基板31を介して接着層32に到達する凹部35を形成するときに、凹部35の底面35aが、第1シリコン基板31と接着層32とによって形成される境界32aを越えた後に中間工程を終了するようにしている。そのため、第1シリコン基板31のエッチャント40由来の電荷が、より上記境界32aに蓄積しにくくなる。それゆえに、接着層32でのサイドエッチングがより抑えられるようになる。
(5)真空槽11内に形成した磁気中性線を用いて各エッチングガスのプラズマを生成するようにした。これにより、真空槽11内の圧力がより低い状態で、密度の高いプラズマを形成することができる。そのため、各エッチャントが、真空槽11内の粒子と衝突する確立を低下させることができることから、エッチングの効率を保ちつつ、プラズマ中に含まれるエッチャントの軌道を垂直に保ちやすくすることができる。それゆえに、接着層32におけるサイドエッチングが抑えられやすくなるとともに、第1シリコン層31aのエッチング時にもサイドエッチングが抑えられるようになる。
(6)第1シリコン基板31が、接着層32に接する第1シリコン層31aを備えるようにした。そして、第1ガスが、第1保護ガスとして、酸素ガス及び臭化水素ガスを含み、第2ガスが、第2保護ガスとして、酸素ガス及び窒素ガスを含むようにした。そのため、第1シリコン層31aに形成される凹部35の内壁と、接着層32に形成される凹部35の内壁とが、上記各保護ガスとの反応によって形成される保護膜によって保護されつつ、凹部35の底面のエッチングが進行するようになる。それゆえに、第1シリコン層31aと接着層32との境界32aがエッチングされるときに、接着層32でのサイドエッチングが生じにくくなる。
なお、上記実施形態は、以下のように適宜変更して実施することができる。
・上記Cガスに代えて、他のCF系ガスを用いるようにしてもよい。
・上記マスク用ガスにNガスを添加するようにしてもよい。
・上記Nガスに限らず、他の窒素を含有するガス、例えばNOガス、NHガス、CNガス、及びCHN系ガス等を用いるようにしてもよい。
・上記ハードマスクの形成材料は、シリコン窒化物に限らず、例えばシリコン酸化物(SiO)や、シリコン酸フッ化物(SiOF)等であってもよい。
・上記第1多層配線層及び第2多層配線層における層間絶縁層は、ポリイミド系膜のような有機膜によって形成するようにしてもよい。その場合、多層配線層用ガスとしてNとHとからなるガスを用いるようにすればよい。また、層間絶縁層は、シリコン酸化物(SiO)によって形成するようにしてもよい。この場合、ハードマスクは、シリコン窒化物等の材料で形成することが好ましい。
・上記シリコン層用ガス、及び接着層用ガスに含まれるSFガスに代えて、他のフッ素を含有ガス、例えば、三フッ化塩素(ClF)ガスを用いるようにしてもよい。
・第1多層配線層と第2多層配線層とは、同一の材料で形成しなくともよい。
・上記各工程を継続する時間は、予め測定されたエッチングの所要時間に基づいて設定し、該時間が経過したときに工程間の切り替えを行うようにした。これに限らず、例えば発光分光分析装置等、凹部35の底面35aにおける接着層32の露出の度合いを真空槽11内の光に基づいて検出する検出部を備え、制御部28が、検出部の検出結果に基づいて、工程の切り替えを行うようにしてもよい。例えば、制御部28は、検出部の検出結果
に基づいて、凹部35の底面35aから接着層32が露出する前に、境界エッチング工程を開始する構成であってもよい。また、制御部28は、検出部の検出結果に基づいて、凹部35の底面35aの全てが境界32aを越えた後に、境界エッチング工程を終了する構成であってもよい。
・第1ガスに含まれる第1保護ガスは、少なくとも酸素ガスを含んでいればよい。つまり、第1ガスに含まれる第1保護ガスは、第1孔(凹部)の内面と反応する、あるいは他のガス種と反応することによって、第1シリコン基板110よりもエッチングされにくい被膜を該内面に形成することの可能なガスであればよく、その一例として、酸素ガス、あるいは酸素ガスと臭化水素ガスとの混合ガスを挙げることができる。ちなみに、第2ガスに含まれる第2保護ガスは、第1保護ガスとは互いに異なるガスであって、第2孔(凹部)の内面と反応する、あるいは他のガス種と反応することによって、接着層32よりもエッチングされ難い被膜を該内面に形成することの可能なガスであればよく、その一例として、酸素ガス、あるいは酸素ガスと窒素ガスとの混合ガスを挙げることができる。
・上記各工程では、真空槽11内の磁気中性線を用いてプラズマを形成するようにした。これに限らず、磁気中性線は、上記工程のいくつかで選択的に用いるようにしてもよい。またあるいは、磁気中性線を用いることなく、エッチングガスのプラズマを形成するようにしてもよい。
・上記プラズマエッチング装置は、磁場コイル26及び電流供給部27を有していない装置として具現化してもよい。この場合、上記プラズマ生成部は、高周波アンテナ21、整合器23、及びアンテナ用高周波電源24によって構成される。
・凹部35の底面35aの全てが境界32aを越える前に、境界エッチング工程を終了してもよい。また、凹部35の底面35aの一部が接着層32になった後に、境界エッチング工程を開始してもよい。要するに、境界32aにおいて境界エッチング工程が実施される方法及び構成であればよい。
上述した境界エッチング工程が行われない方法及び構成では、接着層エッチング工程が開始される前に、エッチングの対象となる第1シリコン層31aの全てをエッチングする必要がある。すなわち、接着層32のエッチングが開始される前に、凹部35の底面35aの全てを接着層32にする必要がある。それゆえに、接着層32にて電荷の蓄積や保護膜の形成不足が余儀なくされて、これらに起因したサイドエッチングが進行してしまう。
この点、凹部35の底面35aの一部が接着層32になった後に境界エッチング工程が開始される方法及び構成であれ、底面35aの全てが境界32aを越える前に境界エッチング工程が終了する方法及び構成であれ、境界32aにおいては境界エッチング工程が実施される。そして、上述した電荷の蓄積や保護膜の形成不足が少なからず軽減される以上、接着層32でのサイドエッチングが抑えられるようになる。
上記接着層の材料には、サイクロテン樹脂に限らず、シロキサン系等のSi−Oを含む有機シリコン酸化物を採用することができる。
11…真空槽、12…石英窓、13…基板ステージ、14…コンデンサ、15…バイアス用高周波電源、16…排気ポンプ、17…圧力計、21…高周波アンテナ、21a…上段アンテナ、21b…下段アンテナ、21c…入力部、21d…出力部、22…入力側可
変コンデンサ、23…整合器、24…アンテナ用高周波電源、25…出力側可変コンデンサ、26…磁場コイル、26a…上段コイル、26b…中段コイル、26c…下段コイル、27…電流供給部、27a…上段電流供給部、27b…中段電流供給部、27c…下段電流供給部、28…制御部、28a…入力インターフェース、28b…出力インターフェース、28c…記憶部、30,50,100…積層体、31,51,110…第1シリコン基板、31a,51a,111…第1シリコン層、31b,51b,112…第1多層配線層、31c,51c,113…第1電極パッド、32,52,120…接着層、32a,52a,120a…境界、33,53,130…第2シリコン基板、33a,53a,131…第2シリコン層、33b,53b,132…第2多層配線層、33c,53c,133…第2電極パッド、33d,53d,132a…境界、34,54,140…ハードマスク、35,55,150…凹部、35a,150a…底面、40,160…エッチャント、52e,120e…サイドエッチング。

Claims (6)

  1. 有機シリコン酸化物からなる接着層が第1シリコン基板と第2シリコン基板とに挟まれたかたちの積層体を真空槽に搬入し、該積層体に対し、前記第1シリコン基板と前記接着層とを貫通して前記積層体の積層方向に延びる貫通孔を形成するプラズマエッチング方法であって、
    第1ガスを用いたプラズマを前記真空槽内に生成して、前記積層方向に延びる第1孔を前記第1シリコン基板に形成する第1エッチング工程と、
    第2ガスを用いたプラズマを前記真空槽内に生成して、前記第1孔から前記積層方向に延びる第2孔を前記接着層に形成する第2エッチング工程とを備え、
    前記第1ガスには、前記第1孔の内面を保護するための第1保護ガスが含まれ、
    前記第2ガスには、前記第2孔の内面を保護するための第2保護ガスが含まれ、
    前記第1エッチング工程と前記第2エッチング工程との間には、前記第1ガスと前記第2ガスとの混合ガスを用いたプラズマを前記真空槽内に生成して、前記第1シリコン基板と前記接着層との境界をエッチングする中間工程がさらに備えられ
    前記第1シリコン基板に形成される前記第1孔の底面から前記接着層が露出する前に、
    前記中間工程を開始する
    ことを特徴とするプラズマエッチング方法。
  2. 前記第1孔の底面の全てが、前記第1シリコン基板と前記接着層との境界を越えた後に、
    前記中間工程を終了する
    請求項1に記載のプラズマエッチング方法。
  3. 前記第1エッチング工程、前記第2エッチング工程、及び前記中間工程では、
    前記真空槽内に形成した磁気中性線を用いてプラズマを生成する
    請求項1又は2に記載のプラズマエッチング方法。
  4. 前記第1シリコン基板は、前記接着層に接するシリコン層を備え、
    前記第1ガスは、第1保護ガスとして、酸素ガス及び臭化水素ガスを含み、
    前記第2ガスは、第2保護ガスとして、酸素ガス及び窒素ガスを含む
    請求項1〜のいずれか一項に記載のプラズマエッチング方法。
  5. 有機シリコン酸化物からなる接着層が第1シリコン基板と第2シリコン基板とに挟まれたかたちの積層体を収容する真空槽と、
    前記真空槽に第1ガス及び第2ガスを供給するガス供給部と、
    前記真空槽に供給されたガスで前記真空槽内にプラズマを生成するプラズマ生成部と、
    前記ガス供給部、及び前記プラズマ生成部の動作を制御する制御部と
    前記第1孔の底面における前記接着層の露出の度合いを前記真空槽内の光に基づいて検出する検出部と、を備え、
    前記制御部は、
    前記第1ガスを用いたプラズマにより前記積層方向に延びる第1孔を前記第1シリコン基板に形成する第1エッチング工程と、前記第2ガスを用いたプラズマにより前記第1孔から前記積層方向に延びる第2孔を前記接着層に形成する第2エッチング工程とを順に実行し、
    前記第1孔の内面を保護するための第1保護ガスを前記第1ガスに含め、
    前記第2孔の内面を保護するための第2保護ガスを前記第2ガスに含め、
    前記第1エッチング工程と前記第2エッチング工程との間に、前記第1ガスと前記第2ガスとの混合ガスを用いたプラズマを前記真空槽内に生成させて、前記第1シリコン基板と前記接着層との境界をエッチングする中間工程をさらに実行し、
    前記検出部の検出結果に基づいて、前記第1シリコン基板に形成される前記第1孔の底面から前記接着層が露出する前に、前記中間工程を開始する
    プラズマエッチング装置。
  6. 記制御部は、前記検出部の検出結果に基づいて、前記第1孔の底面の全てが、前記第1シリコン基板と前記接着層との境界を越えた後に、前記中間工程を終了する
    請求項に記載のプラズマエッチング装置。
JP2011001489A 2011-01-06 2011-01-06 プラズマエッチング方法、及びプラズマエッチング装置 Active JP5654359B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001489A JP5654359B2 (ja) 2011-01-06 2011-01-06 プラズマエッチング方法、及びプラズマエッチング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001489A JP5654359B2 (ja) 2011-01-06 2011-01-06 プラズマエッチング方法、及びプラズマエッチング装置

Publications (2)

Publication Number Publication Date
JP2012146700A JP2012146700A (ja) 2012-08-02
JP5654359B2 true JP5654359B2 (ja) 2015-01-14

Family

ID=46790010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001489A Active JP5654359B2 (ja) 2011-01-06 2011-01-06 プラズマエッチング方法、及びプラズマエッチング装置

Country Status (1)

Country Link
JP (1) JP5654359B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967710B2 (ja) * 2012-09-28 2016-08-10 サムコ株式会社 プラズマエッチングの終点検出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120272B2 (ja) * 2002-05-29 2008-07-16 沖電気工業株式会社 絶縁膜のエッチング方法および半導体装置のコンタクト形成方法
JP2007129000A (ja) * 2005-11-02 2007-05-24 Matsushita Electric Ind Co Ltd ドライエッチング方法
KR101097821B1 (ko) * 2007-04-11 2011-12-22 가부시키가이샤 알박 드라이 에칭방법
JP5710267B2 (ja) * 2007-12-21 2015-04-30 ラム リサーチ コーポレーションLam Research Corporation シリコン構造体の製造及びプロファイル制御を伴うシリコンディープエッチング

Also Published As

Publication number Publication date
JP2012146700A (ja) 2012-08-02

Similar Documents

Publication Publication Date Title
CN106537576B (zh) 整合式金属间隔垫与气隙互连
WO2005069367A1 (ja) 半導体装置の製造方法および成膜システム
JP2013520830A (ja) ビア及びエッチングされた構造におけるコンフォーマル絶縁層の形成方法及びパターン形成方法
WO1998021748A1 (fr) Dispositif a semi-conducteur et son procede de fabrication
JP2013118359A (ja) プラズマエッチング方法
US11319630B2 (en) Deposition apparatus and deposition method
JP2001223269A (ja) 半導体装置およびその製造方法
KR100382387B1 (ko) 플라즈마 처리 방법
KR100708035B1 (ko) 유기막의 에칭방법, 반도체장치의 제조방법 및 패턴형성방법
JP5119606B2 (ja) 半導体装置及び半導体装置の製造方法
WO2008066172A1 (fr) Procédé de formation de film, appareil de formation de film, support de stockage et dispositif semi-conducteur
JP4578332B2 (ja) 半導体装置およびその製造方法
CN109545695A (zh) 半导体装置的制造方法
CN105097445A (zh) 去除蚀刻室中的颗粒的方法
JP5654359B2 (ja) プラズマエッチング方法、及びプラズマエッチング装置
JP6002008B2 (ja) 半導体装置の製造方法
JP5714004B2 (ja) プラズマ処理方法
JP2011151057A (ja) 半導体装置の製造方法
JP2011155077A (ja) 半導体装置の製造方法
JP6331452B2 (ja) 有機膜のエッチング方法
WO2000054328A1 (fr) Systeme de fabrication de dispositif semi-conducteur
JP2003297817A (ja) 半導体装置の製造方法、半導体装置、そのためのプラズマcvd装置
WO2012049823A1 (ja) 半導体装置の製造方法および半導体装置
WO2013125647A1 (ja) 半導体装置の製造方法及び半導体装置
JP5213897B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250