JP5652317B2 - 制御部一体型グロープラグ - Google Patents

制御部一体型グロープラグ Download PDF

Info

Publication number
JP5652317B2
JP5652317B2 JP2011104032A JP2011104032A JP5652317B2 JP 5652317 B2 JP5652317 B2 JP 5652317B2 JP 2011104032 A JP2011104032 A JP 2011104032A JP 2011104032 A JP2011104032 A JP 2011104032A JP 5652317 B2 JP5652317 B2 JP 5652317B2
Authority
JP
Japan
Prior art keywords
control unit
glow plug
terminal
heating element
drive signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104032A
Other languages
English (en)
Other versions
JP2012233661A (ja
Inventor
尚治 森田
尚治 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011104032A priority Critical patent/JP5652317B2/ja
Publication of JP2012233661A publication Critical patent/JP2012233661A/ja
Application granted granted Critical
Publication of JP5652317B2 publication Critical patent/JP5652317B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • F02P19/023Individual control of the glow plugs

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

本発明は、通電により発熱するグロープラグへの通電を制御する制御部をグロープラグと一体に設けた制御部一体型グロープラグに関する。
ディーゼルエンジン等の内燃機関の予熱などには、通電により発熱する発熱ヒータを内蔵したグロープラグが一般に使用されている。
従来、グロープラグの発熱を制御する通電制御装置として、バッテリ等の電源装置からグロープラグに対する通電の可否を決定する信号を出力するための通電信号出力手段と、該通電信号出力手段から通電を許可する信号が入力された際に、バッテリからグロープラグへの通電経路を開閉する通電制御手段としての半導体スイッチング素子とを備えたものが知られている。
また、近年、環境問題への関心の高まりから、燃焼排気の浄化を図るべく、予熱以外のときにもグロープラグへの通電を行うアフターグロー制御が行われるようになっており、また、高速昇温を実現するため、大電流の制御が可能な半導体スイッチンッグ素子としてパワーMOSFETやIGBT等の大容量のパワーデバイスが用いられるようになっている。
このようなパワーデバイスは発熱量が多く、複数のグロープラグを一つのグロープラグ通電制御装置(以下、適宜GCUと称す。)を用いて制御する場合には、GCU内に搭載される複数のパワーデバイスから放出される熱によって互いのパワーデバイスが加熱され熱暴走を招く虞がある。
このような熱暴走を防止するためには、それぞれのパワーデバイスの搭載間隔を広くしたり、ヒートシンクを設けたりして放熱性を高くする必要が生じ、GCUの大型化を招いていた。
そこで、GCUの小型化と制御精度の向上との両立を図るべく、各グロープラグに半導体スイッチング素子を含む制御回路の少なくとも一部を搭載した制御部一体型のグロープラグが検討されている(特許文献1、特許文献2等)。
特許文献1には、自己着火式内燃機関のためのシーズ形グロープラグであって、内燃機関の燃焼室内へ突出する電気的な加熱素子と、電流導入部とを有し、該電流導入部によって加熱素子のための加熱電流が開放によって燃焼室内に導入される、シーズ形グロープラグにおいて、電流導入部の領域にスイッチが設けられており、該スイッチの開閉によって加熱電流が制御可能であるように構成されていることを特徴とする、シーズ形グロープラグが開示されている。
また、特許文献2には、筒形状であって、その外周にエンジンに固定するためのねじ部が設けられると共に、絶縁部材にインサート成形される発熱体を、パイプ部材を介して保持し、発熱体に接続される電極2を収納したハウジング部を備えて構成されるグロープラグにおいて、ハウジング部に加締め固定されるヒートシンクと、ヒートシンクにセラミック基板が設置されると共に、このセラミック基板上に設置され、スイッチング信号によって制御されることでバッテリ電圧に基づくスイッチング電圧を出力するパワートランジスタを備えた半導体チップと、を備えることを特徴とするグロープラグが開示されている。
ところが、特許文献1や、特許文献2にあるような従来の制御部一体型のグロープラグでは、グロープラグに内蔵された発熱体への通電を図る通電端子の一方を、発熱体の保持固定に用いられている金属製のハウジング部に接続し、該ハウジング部を介して接地状態としているため、発熱体への通電を開閉するための半導体スイッチング素子を含む制御部は、必然的にグロープラグの上流側に配設することになり、半導体スイッチング素子を開閉駆動するための駆動回路には、いわゆる上流側駆動回路(ハイサイドゲートドライバ、HGD)を用いることとなる。
一方、半導体スイッチング素子として用いられるMOSFETには、p型の基板にn型の不純物をドーピングし、さらに、n型ゲート電極の両側にソース電極とドレイン電極を形成して、電子をキャリアとしたnチャンネルMOSFETと、n型の基板にp型の不純物をドーピングし、さらに、p型ゲート電極の両側にソース電極とドレイン電極を形成して、正孔をキャリアとしたpチャンネルMOSFETと、nチャンネルMOSFETとpチャンネルMOSFETとの両方を同一チップ内に形成したCMOSFET等がある。
パルス電流のデューティ比を調整してグロープラグの発熱温度を調整するPWM制御には、オン抵抗が大きく、大電流通電時の損失の大きいpチャンネルMOSFETよりも、スイッチングの切換速度が速く大電流通電時の損失も小さいNチャネルMOSFET、又は、CMOSFETのnチャンネル側が好適に用いられている。
また、大電流の制御を可能とするパワーMOSFETでは、基本構造として、DMOS(Double-Diffused MOSFET)と呼ばれるn型不純物の濃度の高いn+基板の表面に形成したn型不純物の濃度の低いn−エピタキシャル層に表面に、低濃度のp型層と高濃度のn+層とが形成された二重拡散構造を有している。
このようなパワーMOSFETでも、nチャンネルMOSFETはpチャンネルMOSFETに比べてオン抵抗が小さく、スイッチング特性に優れている点は、通常のMOSFETと同様である。
ところが、nチャンネルMOSFETは、ゲート電圧をソース電圧よりも高くしないとドレイン・ソース間に電流を流すことができないので、特許文献1、2等にあるように、スイッチング素子としてnチャンネルMOSFETを制御部一体型グロープラグに採用し、グロープラグを構成する発熱体の上流側に設けた場合、nチャンネルMOSFETを駆動するハイサイドゲートドライバには、特許文献3にあるようにチャージポンプを設けて、ゲート電圧を高くする必要がある。
また、nチャンネルMOSFETのドレイン・ソース間に流れる電流量を多くするためには、チャージポンプに、比較的大きな容量のコンデンサを用いる必要があり、ゲートドライバ内に内蔵できる容量のコンデンサでは、容量不足となるため、容量の大きなコンデンサをゲートドライバの外部に載置することとなる。
このため、必然的に、グロープラグへの通電を開閉制御するためのnチャンネルMOSFETを駆動するハイサイドゲートドライバには、外部に設けたコンデンサとの接続を図るための入出力端子が必要となり、制御素子の体格増大を招く虞がある。
特に、半導体素子の耐熱温度は、150〜175℃であるのに対して、チャージポンプに用いられる外部コンデンサの耐熱温度は、105〜120℃程度であるため、高温に発熱するグロープラグからの熱の影響をできるだけ廃除するのが望ましく、このようなハイサイドゲートドライバをグロープラグの頭部に一体的に収容する際には、収容部の容積を大きくする必要も生じ、制御部一体型のグロープラグ全体の体格を小型化するのが困難となる虞がある。
また、従来のグロープラグでは、絶縁体の内部に収容した発熱体に接続された一対のリード部の内、一方の端を絶縁体の側面に引き出して接地電極を形成し、絶縁体を保持する筒状の金属スリーブにロウ付け等によって接続することによって、発熱体を保持すると共に、発熱体の一端を接地状態としている。
このため、グロープラグが発熱したときや、被加熱流体である燃焼室内の気体の温度が高温となったときに、金属スリーブの熱膨張係数と絶縁体の熱膨張数の差によって、接地電極と金属スリーブとの接続部分に引っ張り応力が作用し、接地電極と金属スリーブとの間の接触抵抗が大きくなったり、長期の使用によって、接地電極を構成する金属が絶縁体内に拡散するマイグレーション現象等を引き起こしたりして、グロープラグが劣化し、発熱温度の低下を招く虞もある。
そこで、本発明は、かかる実情に鑑み、制御部と発熱部とが一体となった制御部一体型グロープラグにおいて、簡易な構成とすることにより、さらなる小型化と耐久性の向上とを図る制御部一体型グロープラグを提供すること目的とするものである。
請求項1の発明では、通電により発熱する発熱体を内蔵するグロープラグと、上記発熱体への通電を外部からの駆動信号にしたがって開閉制御する制御部と、先端側で上記発熱体を保持して、被加熱流体中に固定すると共に、基端側に上記発熱体及び上記制御部に外部電源から駆動電圧の供給及び上記駆動信号の伝達可能とするコネクタ部を保持する略筒状のハウジング部とを具備して、上記グロープラグと上記制御部とを一体化した制御部一体型グロープラグであって、上記制御部が、少なくとも、上記発熱体の下流側に配設し、接地せしめたnチャンネルMOSFETからなる半導体開閉素子と、該半導体開閉素子を上記駆動信号にしたがって開閉駆動する下流側駆動回路とを具備し、上記ハウジング部と上記コネクタ部との間に区画した制御部収容空間に、該制御部を配設せしめたことを特徴とする。
請求項2の発明では、上記nチャンネルMOSFETが、二重拡散構造(DMOS)を有するパワーMOSFETである。
請求項3の発明では、上記コネクタ部が内側に上記駆動信号を伝達する駆動信号端子と上記駆動電圧を伝達する駆動電圧端子とを収容し、上記駆動信号端子と上記制御部とを接続する駆動信号線の一部と、上記駆動電圧端子と上記制御部とを接続する電力線の一部と、上記駆動電圧端子と上記グロープラグの入力端子とを接続する電力線の一部とに伸縮可能な伸縮部を設ける。
請求項4の発明では、上記制御部が、上記発熱体に流れる電流を検出する電流検出手段と、該電流検出手段によって検出した電流を閾値判定し、上記グロープラグの異常を検出する自己診断部を具備する。
本発明によれば、nチャンネルMOSFETのソースは接地されており、上記下流側駆動回路の出力電圧は、電源電圧まで容易に引き上げることが可能であるので、nチャンネルMOSFETをオンする際に、チャージポンプを用いずとも、ソース電圧よりも高いゲート電圧を印加することができるので、下流側駆動回路の構成を簡素化することができ、容易に制御部一体型グロープラグの小型化を図ることができる。
また、高温環境下に晒されるグロープラグとハウジング部との間で直接的に接地する必要がなく、グロープラグの入力側端子も接地側端子も、上記制御部収容空間内の120度〜170程度の比較的安定した温度環境下で上記駆動電圧及び上記制御部との接続が図られるので、断線等の異常が発生し難く、信頼性の高い制御部一体型グロープラグが実現できる。
一方、本発明によらず、半導体開閉素子をグロープラグの上流側に設け、半導体開閉素子としてnチャンネルMOSFETを用いた場合には、nチャンネルMOSFETをオンさせるためには、ゲート電圧をソース電圧より高くする必要があるが、負荷の上流側に設けられているためnチャンネルMOSFETオン時のソースには電源電圧が印加されることになり、ゲート電圧をソース電圧よりも高くするためのチャージポンプが必要となり、電流制御部の体格が大きくなる。
また、本発明によらず、半導体開閉素子をグロープラグの上流側に設け、半導体開閉素子としてpチャンネルMOSFETを用いた場合には、チャージポンプは不要となるが、移動速度の遅い正孔がキャリアとなるpチャンネルMOSFETは、移動速度の速い電子がキャリアとなるnチャンネルMOSFETに比べ、オン抵抗が大きく、駆動信号にしたがって負荷への通電をオンオフさせたときの損失が大きく、グロープラグの発熱温度を所望の温度に制御するのが困難となる虞がある。
また、本発明によらず、半導体開閉素子を、グロープラグの上流側に設けた場合、グロープラグの下流側を接地することになり、従来のように、グロープラグの側面に引き出した接地電極をハウジング部等に接続すると、グロープラグの熱膨張率とハウジング部等との熱膨張率の差によって接地電極とハウジング部との接続部分に引っ張り応力や、外部からの振動が作用し、接地電極とハウジング部との密着強度の低下を引き起こす虞もある。
本発明の第1の実施形態における制御部一体型グロープラグの概要を示し、(a)は、縦断面図、(b)は、上面図。 図1の制御部一体型グロープラグのブロック図。 比較例として示す、従来の制御部一体型グロープラグの概要を示す縦断面図。 図3の制御部一体型グロープラグのブロック図。 本発明の第2の実施形態における制御部一体型グロープラグのブロック図。 本発明の第3の実施形態における制御部一体型グロープラグのブロック図。
本発明の第1の実施形態における制御部一体型グロープラグ6について、図1、図2を参照して説明する。
本発明の制御部一体型グロープラグ6は、図1に示すように、図略の内燃機関7の各気筒70に設けられ、発熱部10が被加熱流体中に固定されるグロープラグ1と、グロープラグ1への通電を制御する制御部4と、外部電源からの駆動電圧や駆動信号などの電気信号を伝達可能とするコネクタ部5とによって構成され、図2に示すように、外部のエンジン制御装置(ECU)9とワイヤハーネス8を介して接続可能となっている。
本発明の制御部一体型グロープラグ6は、被加熱流体700として、内燃機関燃焼室内の混合気の加熱に用いられ、低温始動時に混合気を加熱し、着火性の向上を図るプリグロー制御や、燃焼排気の浄化を図るべく、始動時以外にも排気温度を上昇させるアフターグロー制御が行われる。
グロープラグ1は、図1(a)に示すように、通電により発熱する発熱体10と、発熱体10と外部との接続を図る一対のリード部11、12と、これらを覆う絶縁体13とによって構成され、略柱状に形成されている。
発熱体10は、例えば、窒化珪素及び二硅化モリブデン等からなる電導性セラミック抵抗体によって略U字形に形成され、リード部11、12は、タングステン等の耐熱性導電材料が用いられ、絶縁体13は、窒化珪素等のセラミック材料が用いられ、ホットプレス焼成等の公知の製法によって略柱状に形成され、絶縁体13の外部にリード部11、12の端部が引き出されている。
グロープラグ1は、筒状の金属製スリーブ15内に挿入され、ロウ付け部151によって保持・固定されている。
さらに、金属製スリーブ15は、略筒状のハウジング部16の先端側筒状部162に挿入、保持されている。
金属スリーブ15とハウジング部16とは、嵌め合い、レーザ溶接、ネジ締め等の公知の手段によって互いに固定されている。
ハウジング部16の先端側筒状部162の外周には、ネジ部163及びシール部164が形成され、図略の内燃機関7の各気筒70の燃焼室(シリンダヘッド)に螺結され、気密を保持しつつ、グロープラグ1を被加熱流体700中の所定位置に固定している。
ハウジング部16の基端側外周には、ネジ部163をネジ締めするための六角部160が形成され、さらに基端側には、後述するコネクタ5を嵌着固定するためのボス部161が形成されている。
ボス部161の内側には、制御部4を収容するための制御部収容空間500が区画されている。
コネクタ5は、熱可塑性樹脂からなり略有底筒状に形成されたコネクタ部50と、コネクタ部50と共に、インサート成形された駆動信号端子51と電力供給端子52とによって構成されている。
コネクタ部50の先端側には、ハウジング部ボス部161との嵌合や螺合によりコネクタ5をハウジング部16に固定するコネクタ保持部54が形成されている。
コネクタ5の中間には、コネクタ基底部53が形成され、駆動信号端子51と電力供給端子52とが保持固定されている。
さらに、コネクタ基底部53の先端側の筒状部分は、ボス部161の内側と共に制御部4を収容する制御部収容空間500を形成している。
コネクタ5の基端側には、筒状のコネクタ部50(雌コネクタ)が形成され、ワイヤハーネス8の端部に設けられたハーネス側コネクタ部80(雄コネクタ)との嵌合により、コネクタ部50の内側に露出した駆動信号端子51と電力供給端子52とからなる雄端子51、52と、図1(c)、(d)に示すような、ハーネス側コネクタ部80の内側に収容された駆動信号端子81と電力供給端子82とからなる雌端子81、82とを接続することにより、導通状態となり、外部に設けたECU9からの駆動信号SIの伝達と、電源電圧+Bの供給と、を可能としている。
制御部収容空間500内に載置された制御部4は、少なくとも、発熱体10への通電を開閉制御する半導体開閉素子(nチャンネルMOSFET、以下n−MOSと称す。)2と、n−MOS2を駆動する下流側駆動回路(ローサイドゲートドライバ、以下、適宜LGDと称す。)3とを含み、モールド樹脂によってパッケージされ、リードフレームによって所定の入出力端子が引き出されている。
具体的には、図1に示すように、駆動信号端子51とSI端子とが駆動信号線130を介して接続され、GND端子とハウジング部16のボス部161とが接地用信号線140を介して接続され、電力供給端子52と+B端子とが電力線121を介して接続され、さらに電力供給端子52とグロープラグ1の一方のリード部12とが導通線120を介して接続され、VDD端子と発熱体1の他方のリード部11とが導通線110を介して接続されている。
また、制御部4は、ヒートシンクを設けて、ハウジング部16のボス部161の内周に密着させ、ハウジング部16を介して、n−MOS2で発生した熱を気筒70に放熱するようにしても良い。
本実施形態における制御部4は、図2に示すように、発熱体10への通電を開閉制御するn−MOS2と、n−MOS2を駆動するLGD3とによって構成されている。
n−MOS2は、基本構造として、DMOS(Double-Diffused MOSFET)と呼ばれるn型不純物の濃度の高いn+基板の表面に形成したn型不純物の濃度の低いn−エピタキシャル層に表面に、低濃度のp型層と高濃度のn+層とが形成された二重拡散構造を有し、大電流の制御を可能とするn―チャンネルパワーMOSFETが用いられている。
n−MOS2は、グロープラグ1の下流側に設けられ、LGD3によって開閉駆動されるように配設されている。
n−MOSのドレイン端子Dは、発熱体1の一方のリード部11と通電線110を介して接続されている。
n−MOS2のソース端子Sは、通電線140を介して、ハウジング部16に接続され、ハウジング部16を介して接地された状態となっている。
n−MOS2のゲート端子Gは、LGD3の出力VOUTと接続されている。
LGD3は、駆動電圧として電源電圧+Bが駆動電圧端子(+B端子)に入力され、外部に設けたエンジン制御装置(ECU)9から内燃機関7の運転状況に応じて発信される駆動信号SIを入力として、駆動信号SIのHi、Loにしたがって、電源電圧+Bに等しい電圧を最大電圧とする出力電圧VOUTとして、n−MOS2のゲート端子Gに印加する。
一方、n−MOS2のドレイン端子Dは、負荷となる発熱体10の下流側に接続され、ソース端子Sは、接地されているので、駆動信号SIのHiLoにしたがって、ゲート閾値電圧よりも高いゲート電圧VGGが印加されることになるので、n−MOS2の安定した駆動が行われる。
本実施形態において、金属スリーブ15と絶縁体13との間で、従来のように、電気的な接続を考慮する必要がなく、リード部11、12は、通電線110、120を介してVDD端子及び電力供給端子52に接続されており、図1に示すように、通電線110、120の一部をコイル状に巻いて伸縮可能とすることも可能で、温度変化によるリード部11、12の伸縮を通電線110、120の伸縮部の弾性によって完全に吸収し、接続部分の剥離を回避し耐久性を向上させることもできる。
なお、本実施形態においては、n―MOS2と、LGD3とを一つのパッケージ内に収容した構成を示してあるが、n−MOS2と、LGD3とをパッケージ内に収容することなく、ベアチップを制御部収容空間500内に載置するようにして、制御部収容空間500の容積を小さくし、さらなる小型化を図ることもできる。
また、制御部収容空間500内に、エポキシ樹脂、シリコン樹脂、フッ素樹脂等の絶縁性樹脂と炭化ケイ素、窒化アルミニウム、窒化ホウ素、窒化ケイ素、
マグネシア、アルミナ、結晶性シリカ、溶融シリカ等の)絶縁性で高熱伝導性のフィラーと充填して、制御部4の放熱性の向上と、外部からの振動に対する耐久性の向上を図るようにしても良い。
ここで、図3、図4を参照して、比較例として、絶縁体13zの内部に埋設した発熱体10zに接続された一対のリード部11z、12zの一方の端を、絶縁体13zの基端側側面に引き出して、金属スリーブ15zに接続して、接地状態とした従来のグロープラグ1zの上流側に制御部4zを設けた場合の問題点について詳述する。
なお、比較を容易にするため上記実施形態における制御部一体型グロープラグ6と同じ構成については同じ符号を付し、対応する構成において相違点のあるものについては、同じ符号に枝番としてzの符号を追加して示してある。
グロープラグ1zでは、接地電極110zを絶縁体13zの基端側側面に引き出して、絶縁体13zをロウ付け部151zによって金属スリーブ15zに接続すると同時に、接地電極110zを金属スリーブ15zに接続し、ハウジング部16zを介して気筒70に接地状態としている。
このため、グロープラグ1zの発熱したときや、被加熱流体700が高温となったときなどに金属スリーブ15zの熱膨張係数と絶縁体13zの熱膨張係数の差によって、接地電極110zと金属スリーブ15zとの接続部分に引っ張り応力が作用し、接地電極110zと金属スリーブ15zとの間の接触抵抗が大きくなったり、比較的高温に晒され易い金属スリーブ15zに接続された接地電極11zを構成する金属が、長期の使用によって、絶縁体13z内に拡散するマイグレーション現象等を引き起こしたりして、グロープラグが劣化し、発熱温度の低下を招く虞がある。
制御部4zでは、n−MOS2zのドレイン・ソース間に流れる電流量を多くするためには、チャージポンプ(CGP)31zに、比較的大きな容量のコンデンサC、Cを用いる必要があり、HGD3z内に内蔵できる容量のコンデンサでは、容量不足となるため、外部に容量の大きなコンデンサC、Cを載置することとなる。
比較例において、CGP31zは、+Bに接続された第1のダイオードDと、第1のダイオードD1に直列に接続された第2のダイオードDと、とHGD3zの出力VOUTから、第1のダイオードDと第2の第オードDとの間に接続され、HGD3zの外部に載置される第1のコンデンサCと、第2のダイオードD2と接地GNDとの間に接続され、HGD3zの外部に載置される第2のコンデンサCとによって構成されており、外部から発信された駆動信号SIのHiLo切換に同期して、発振回路310zから発振された、例えばパルス周期変調(PFM)信号にしたがって、駆動信号SIがHiのときには、第1のダイオードD1を経由して第1のコンデンサCに入力電圧+Bを充電し、入力電圧が第1のコンデンサCの電圧と等しくなる。
駆動信号SIがLoのときには、第1のコンデンサCに充電された電圧+Bに、入力電圧+Bが重畳して、入力電圧+Bの2倍の電圧が第2のコンデンサCが充電され、駆動信号SIがHiとなったときに、第2のコンデンサC2から入力電圧+Bの2倍の出力電圧VCCGがHGD30zの駆動電圧として印加され、駆動信号SIに同期して、入力調整回路300zから発振された、例えば、パルス幅変調(PWM)信号に従って、HGD30zからn−MOS2zのゲート電圧VGGとして、電源電圧+Bの2倍の電圧を印加することができる。
しかし、グロープラグ1zへの通電を開閉制御するためのn−MOS2zを上流側で駆動するHGD3zには、外部に設けたコンデンサC1、C2との接続を図るための入出力端子が必要となり、必然的に制御部4zの体格増大を招くことになる。
特に、n−MOS2zの耐熱温度は、150〜175℃であるのに対して、CGP31zに用いられる外部コンデンサC、Cの耐熱温度は、105〜120℃程度であるため、高温に発熱するグロープラグ1からの熱の影響をできるだけ廃除するのが望ましく、このようなHGD3zをグロープラグ1の頭部に一体的に収容する場合に収容部500zの容積を大きくする必要が生じる。
このため、図3に示すように、駆動信号端子51zと、制御部4zの+B端子とが駆動信号線130zを介して接続され、電力供給端子52zと制御部4zの+B端子とが電力線121zを介して接続され、制御部4zのVSS端子とグロープラグ1zの一方のリード部12と電力線120zを介して接続され、制御部4zの出力VOUTと第1のコンデンサCの一方の端子(VOUT端子)とが電力線131zを介して接続され、第1のコンデンサCの他方の端子(V端子)と制御部4zの入力V端子とが電力線132zを介して接続され、制御部4zのチャージ出力VCCGと第2のコンデンサCのVCCG端子とが電力線142zを介して接続され、第2のコンデンサCのGND端子と制御部4zのGND端子とが電力線141zを介して接続され、さらに制御部4zのGND端子とハウジング部16zのボス部161zとが接地用信号線140zを介して接続されている。
このように、負荷(グロープラグ1z)の上流側に制御部4zを設けた場合、図1に示した本願の実施例に比べて遙かに配線が複雑となり、その分だけ製造コストも増加する。
また、制御部4zから発生する熱の影響が少なくなるように、十分な距離を設けて第1のコンデンサC、第2のコンデンサCを配設するなどの、第1のコンデンサC、第2のコンデンサC、及び制御部4zの放熱性を考慮して配置し、固定するための手間と、制御部収容空間500zの容積を大きくすることも必要となる。
図5を参照して、本発明の第2の実施形態における制御部一体型グロープラグ6aについて説明する。
上記実施形態においては、制御部4をLGD3とn−MOS2とによって構成した、最も基本的なものを示したが、本実施形態においては、制御部4aにグロープラグ1の断線や過電流を検出し、異常の有無を判定する自己診断装部(DIU)32を設けた点が相違する。
本実施形態においては、制御部4aとして、上記第1の実施形態と同様の構成に加えて、グロープラグ1と、下流側に設けたn−MOS2との間に電流検出手段として、シャント抵抗Rを介装し、シャント抵抗Rの両端の電位差を検出する第1の電位差検出手段CMPと、第1の電位差検出手段CMPの出力結果を閾値判定して異常の有無を判定し、自己診断信号DIとして発信する第2の電位差検出手段CMP2を設け、コネクタ5内に、電源入力端子51、駆動信号入力端子52、自己診断信号出力端子53を設けてある。
このような構成においても、上記実施形態と同様、負荷(グロープラグ1)の下流側に制御部4aを設けることにより、制御部4aを簡素化することが可能で、n−MOS2と、LGD30と、DIU32とを一つのICチップ内に形成することができる。
図6を参照して、本発明の第3の実施形態における制御部一体型グロープラグ6bについて説明する。
上記第2の実施形態においては、電流検出手段として、シャント抵抗Rを設けた例を示したが、本実施形態においては、n−MOSの内部にカレントミラー回路を設け、これを電流検出手段として利用した自己診断部(DIU)32bを設けた点が相違する。
グロープラグ1に発熱体10として、電導性セラミック抵抗体を用いた、いわゆるセラミックグロープラグにおいては、発熱体10の抵抗値が温度上昇と共に極めて広い範囲で変化し、突入時には、100A程度の大電流が流れ、安定制御時には、数A程度に下がる。このため、上記第2の実施形態のように、シャント抵抗Rをグロープラグ1の電力供給ライン上に介装して電流検出を行う場合に、シャント抵抗RSの抵抗値を、高い電流値に合わせて小さい抵抗値に設定すると、低い電流値の検出が困難となる虞があり、また、低い電流値に合わせて比較的大きな抵抗値に設定すると、始動時の突入電流によるエネルギーロスが増加し、グロープラグ1の昇温スピードも遅くなる虞がある。
一方、実際のn―MOS2においては、一般的に、複数(n個)のトランジスタセルを並列に形成して大きな電流を制御できるようになっている。
そこで、本実施形態においては、n−MOS2を構成する複数のトランジスタセルの一部を利用して、本図に示すようにカレントミラー回路を構成し、ミラー電流(ILD/n)を検出することによって、グロープラグ1への通電に損失を与えることなくグロープラグ1に流れる電流ILDを算出し、異常の有無を検出するように構成してある。
本実施形態におけるDIU32は、n−MOS2のトランジスタセルの一部に流れる電流(ILD/n)をミラー回路側に設けたシャント抵抗Rによって検出し、これを、閾値判定また、本実施形態において、複数のミラー回路を利用して、電流値の大きな変化に対して測定レンジの異なる複数の電流検出抵抗Rを設けることによって、より一層精度良くグロープラグ1に流れる電流(ILD)を検出することが可能となり、異常検出に利用することができる。
なお、一般的に、n−MOS2bは、ドレインとなる+n層をベース基板として、多層構造で作り込まれるため、本実施形態において、DIU32bをn−MOS同時に作り込むためには、本図に示すように、DIU32bは、ソース側に形成することになる。
したがって、n−MOS2b、LGD30、DIU32bをそれぞれ独立の素子で形成しパッケージに収める場合には、DIU32bをn−MOS2bの上流側に接側しても良い。
本発明は、制御部の簡素化による小型化の効果に加え、いわゆるセラミックグロープラグと制御部とを一体化した場合に、グロープラグの上流側に制御部を設けた場合のように、熱膨張係数の異なる発熱体の接地電極と金属スリーブとを接続する必要がないので、耐久性向上に特に優れた効果を発揮し得るものであり、上記実施形態においては、発熱体して、セラミック抵抗体を用いた例について説明したが、本発明を、特許文献1にあるような発熱体として金属抵抗体を用いた場合に適用することも可能である。
この場合においても、制御部を簡素化し、装置の小型を可能とする効果を発揮できる。
1 グロープラグ
10 発熱体
11、12 リード部
110、120、121、130、140 通電線
13 絶縁体
15 スリーブ
151 ロウ付け部
16 ハウジング部
160 ハウジング部六角部
161 ハウジング部ボス部
162 ハウジング部筒状部
163 ハウジング部ネジ部
2 半導体開閉素子(n−MOSFET)
3 下流側駆動回路(ローサイドゲートドライバ、LGD)
4 グロープラグ通電制御部(GCU)
5 コネクタ
50 コネクタ部(雌コネクタ)
500 素子収容部
51 駆動信号端子(雄端子金具)
52 電力端子(雄端子金具)
53 コネクタ基底部
54 コネクタ保持部
6 制御部一体型グロープラグ(CMBGP)
7 内燃機関
70 燃焼室壁部(シリンダヘッド)
700 燃焼室
8 ワイヤハーネス
80 雄コネクタ
81、82 雌端子金具
9 電子制御装置(ECU)
+B バッテリ電圧
SI 駆動信号
特表2003−509652号公報 特開2006−153293号公報 特開2007−214647号公報

Claims (4)

  1. 通電により発熱する発熱体を内蔵するグロープラグと、上記発熱体への通電を外部からの駆動信号にしたがって開閉制御する制御部と、先端側で上記発熱体を保持して、被加熱流体中に固定すると共に、基端側に上記発熱体及び上記制御部に外部電源から駆動電圧の供給及び上記駆動信号の伝達可能とするコネクタ部を保持する略筒状のハウジング部とを具備して、上記グロープラグと上記制御部とを一体化した制御部一体型グロープラグであって、
    上記制御部が、少なくとも、上記発熱体の下流側に配設し、接地せしめたnチャンネルMOSFETからなる半導体開閉素子と、該半導体開閉素子を上記駆動信号にしたがって開閉駆動する下流側駆動回路とを具備し、
    上記ハウジング部と上記コネクタ部との間に区画した制御部収容空間に、該制御部を配設せしめたことを特徴とする制御部一体型グロープラグ。
  2. 上記nチャンネルMOSFETが、二重拡散構造(DMOS)を有するパワーMOSFETである請求項1に記載の制御部一体型グロープラグ。
  3. 上記コネクタ部が内側に上記駆動信号を伝達する駆動信号端子と上記駆動電圧を伝達する駆動電圧端子とを収容し、
    上記駆動信号端子と上記制御部とを接続する駆動信号線の一部と、
    上記駆動電圧端子と上記制御部とを接続する電力線の一部と、
    上記駆動電圧端子と上記グロープラグの入力端子とを接続する電力線の一部とに伸縮可能な伸縮部を設けた請求項1又は2に記載の制御部一体型グロープラグ。
  4. 上記制御部が、上記発熱体に流れる電流を検出する電流検出手段と、該電流検出手段によって検出した電流を閾値判定し、上記グロープラグの異常を検出する自己診断部を具備する請求項1ないし3のいずれかに記載の制御部一体型グロープラグ。
JP2011104032A 2011-05-09 2011-05-09 制御部一体型グロープラグ Active JP5652317B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104032A JP5652317B2 (ja) 2011-05-09 2011-05-09 制御部一体型グロープラグ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104032A JP5652317B2 (ja) 2011-05-09 2011-05-09 制御部一体型グロープラグ

Publications (2)

Publication Number Publication Date
JP2012233661A JP2012233661A (ja) 2012-11-29
JP5652317B2 true JP5652317B2 (ja) 2015-01-14

Family

ID=47434137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104032A Active JP5652317B2 (ja) 2011-05-09 2011-05-09 制御部一体型グロープラグ

Country Status (1)

Country Link
JP (1) JP5652317B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139137B2 (ja) * 2013-01-08 2017-05-31 日本特殊陶業株式会社 グロープラグ及びグロープラグ構造体
JP6024524B2 (ja) * 2013-03-07 2016-11-16 株式会社デンソー コネクタ付き通電制御素子収容筐体並びに発熱体通電制御装置
WO2015093219A1 (ja) * 2013-12-20 2015-06-25 ボッシュ株式会社 グロープラグの故障診断方法及びグロープラグ故障診断装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013735A (ja) * 2000-06-26 2002-01-18 Bosch Automotive Systems Corp グロープラグ
JP2003166714A (ja) * 2001-11-30 2003-06-13 Ngk Spark Plug Co Ltd グロープラグ及びグロープラグの製造方法
JP4225273B2 (ja) * 2004-11-25 2009-02-18 株式会社デンソー グロープラグ
JP5393341B2 (ja) * 2009-08-20 2014-01-22 株式会社デンソー グロープラグ劣化判定装置
JP5552920B2 (ja) * 2010-06-25 2014-07-16 株式会社デンソー セラミックヒータ

Also Published As

Publication number Publication date
JP2012233661A (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5884390B2 (ja) 発熱装置
US8289669B2 (en) Semiconductor device including over voltage protection circuit having gate discharge circuit operated based on temperature and voltage as to output transistor
JP4736668B2 (ja) 負荷駆動装置の信号検出装置
EP1669675B1 (en) Glow plug for diesel engine with integrated electronics and heat sink
JP5652317B2 (ja) 制御部一体型グロープラグ
WO2021024813A1 (ja) 半導体装置
US20170201075A1 (en) Semiconductor apparatus
US20170279446A1 (en) Semiconductor device
JP6805496B2 (ja) 半導体装置
JP4919847B2 (ja) 過電流検出回路および半導体装置
US9559024B2 (en) Power semiconductor module
US12104565B2 (en) Igniter and engine ignition device
JP5948740B2 (ja) 制御部一体型グロープラグとその通電制御方法
KR20120095807A (ko) 글로 플러그의 통전제어장치
KR100423367B1 (ko) 전력변환장치 및 반도체 장치
JP6696334B2 (ja) 点火装置
JP2004006506A (ja) 点火コイル
HU224254B1 (hu) Izzítógyertya
JP5720452B2 (ja) 発熱体通電制御装置
JP2007095848A (ja) 半導体装置
TW202121816A (zh) 切換模組
JP2001244463A (ja) 半導体装置
CN107035596B (zh) 半导体装置
JPH11118562A (ja) 熱式流量計
JP2022188429A (ja) スイッチ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R151 Written notification of patent or utility model registration

Ref document number: 5652317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250