JP5605921B2 - アクリロニトリルの精製方法 - Google Patents

アクリロニトリルの精製方法 Download PDF

Info

Publication number
JP5605921B2
JP5605921B2 JP2012550805A JP2012550805A JP5605921B2 JP 5605921 B2 JP5605921 B2 JP 5605921B2 JP 2012550805 A JP2012550805 A JP 2012550805A JP 2012550805 A JP2012550805 A JP 2012550805A JP 5605921 B2 JP5605921 B2 JP 5605921B2
Authority
JP
Japan
Prior art keywords
stage
temperature
acrylonitrile
tower
hydrogen cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012550805A
Other languages
English (en)
Other versions
JPWO2012090690A1 (ja
Inventor
和彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012550805A priority Critical patent/JP5605921B2/ja
Publication of JPWO2012090690A1 publication Critical patent/JPWO2012090690A1/ja
Application granted granted Critical
Publication of JP5605921B2 publication Critical patent/JP5605921B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4205Reflux ratio control splitter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/42Regulation; Control
    • B01D3/4211Regulation; Control of columns
    • B01D3/4216Head stream
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • C07C253/26Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons containing carbon-to-carbon multiple bonds, e.g. unsaturated aldehydes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/32Separation; Purification; Stabilisation; Use of additives
    • C07C253/34Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/06Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms of an acyclic and unsaturated carbon skeleton
    • C07C255/07Mononitriles
    • C07C255/08Acrylonitrile; Methacrylonitrile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留することにより、アクリロニトリルを精製する方法に関する。
プロピレン及び/又はプロパン、アンモニア並びに酸素を触媒の存在下に反応させてアクリロニトリルを製造するプロセスにおいては、まず、生成したアクリロニトリル、アセトニトリル及びシアン化水素を含む反応生成ガスを急冷塔で冷却するとともに、未反応のアンモニアを硫酸で中和除去する。その後、反応生成ガスは吸収塔に送られ、アクリロニトリル、アセトニトリル及びシアン化水素を水に吸収させる。次いで、吸収塔で得られたアクリロニトリル等を含む水溶液を回収塔に導入し、該水溶液から、蒸留操作によってアセトニトリル及び大部分の水を含む留分と、アクリロニトリルやシアン化水素の大部分を含む留分とに分離する。その後、アクリロニトリルやシアン化水素の大部分を含む留分を脱青酸脱水塔に導入して、シアン化水素及び水を分離した後、塔底液を製品塔に導入し、蒸留操作によりアクリロニトリルを精製し、製品規格に適合した製品を得る。
特許文献1には、アクリロニトリルの精製において、脱青酸脱水塔に酸及びハイドロキノンを添加して、アクリロニトリル及びシアン化水素の重合を抑制する方法が開示されている。
特開平2007−39403号公報
脱青酸脱水塔ではアクリロニトリル、シアン化水素及び水を含む溶液を蒸留し、塔頂からはシアン化水素を含む蒸気が留出し、塔底からはアクリロニトリルを含む溶液が抜き出される。塔頂から留出するシアン化水素を含むガスは、凝縮器により冷却して分縮し、凝縮しなかった不純物の少ないシアン化水素はシアン化水素誘導体の原料として用いられるため、塔頂から留出するシアン化水素ガス中のアクリロニトリル濃度を低く保つことが好ましい。このため、一般的な蒸留の手法に従って塔頂温度を目標温度に維持する運転を行っても、塔頂から留出するシアン化水素ガス中のアクリロニトリル濃度が安定せず、シアン化水素ガス中のアクリロニトリル濃度が規定値を超えて上昇する現象が度々見られる。この現象が起こると、シアン化水素誘導体原料の品質が安定しないばかりでなく、アクリロニトリル製品の品質が安定しなかったり、さらには脱青酸脱水塔におけるアクリロニトリル及びシアン化水素の重合の一要因にもなる。
従来、製品であるアクリロニトリルの収量を増加させることについては、当然ながら多くの関心が寄せられ、検討されてきた。一方、収量の増加という直接的な効果を目的とした改良の他にも、製品品質の安定化という間接的な改善によっても技術上及び経済上大きなメリットがあるが、これまで詳細な検討がなされていないのが現状である。
上記事情に鑑み、本発明が解決しようとする課題は、アクリロニトリルの製造プロセスにおいて、製品品質を安定化させる方法を提供することである。
本発明者は、アクリロニトリルを製造するプロセスにおいて、アクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程における蒸留塔の特定の段の温度が一定となるように制御することで、製品品質を安定化させ、且つ、プロセス負荷を軽減できることを見出し、本発明を完成させた。
即ち、本発明は以下のとおりである。
[1]
蒸留塔と、前記蒸留塔に接続された、塔頂ガスの凝縮器と、を有する蒸留装置を用いてアクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する温度制御段の温度を一定に維持する工程を含む方法。
[2]
前記凝縮器へ冷媒を供給する管及び/又は前記凝縮器から冷媒を排出する管に調整弁が設けられ、前記温度制御段に温度計が設けられており、
前記温度制御段の目標温度を設定し、
前記温度制御段の温度が前記目標温度より高い場合は前記調整弁の開度を調整して冷媒の供給量を増加させ、
前記温度制御段の温度が前記目標温度より低い場合は前記調整弁の開度を調整して冷媒の供給量を減少させることにより前記温度制御段の温度を一定に維持する、上記[1]記載の方法。
[3]
前記温度制御段の温度の上限値及び下限値を設定し、前記温度制御段の温度が前記下限値以上、前記上限値以下で推移するように、前記冷媒の供給量を前記調整弁によって調整する、上記[2]記載の方法。
[4]
前記蒸留塔にリボイラーから一定の熱量を与えながら前記凝縮器の除熱量を増減し、
各除熱量において、前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する各段の温度と、
前記各段におけるアクリロニトリル濃度及びシアン化水素濃度を測定し、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する段であって、前記アクリロニトリル濃度が前記シアン化水素濃度より低い段のうち、最も下部の段(最下段)を、温度制御段に設定し、
前記各除熱量における各段の温度から、前記蒸留塔の塔頂から留出するアクリロニトリルの濃度が最小になるように、前記温度制御段の目標温度を決定する工程を含む、上記[1]〜[3]のいずれか記載のアクリロニトリルの精製方法。
[5]
前記蒸留塔にリボイラーから一定の熱量を与えながら前記凝縮器の除熱量を増減し、
各除熱量において、前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する各段の温度と、
前記各段におけるアクリロニトリル濃度及びシアン化水素濃度を測定し、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する段であって、前記アクリロニトリル濃度が前記シアン化水素濃度より高い段のうち、最も上部の段(最上段)を、温度制御段に設定し、
前記各除熱量における各段の温度から、前記蒸留塔の塔頂から留出するアクリロニトリルの濃度が最小になるように、前記温度制御段の目標温度を決定する工程を含む、上記[1]〜[3]のいずれか記載のアクリロニトリルの精製方法。
[6]
蒸留塔と、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する温度制御段に設けられた温度計と、
前記蒸留塔に連結された凝縮器と、
前記凝縮器に連結された冷媒を供給する管及び冷媒を排出する管と、
前記冷媒を供給する管及び/又は冷媒を排出する管に取り付けられた冷媒の供給量を調整するための調整弁と、を有する蒸留装置であって、
前記温度計は温度調節計を介して前記調整弁に接続されており、
前記温度計によって前記温度制御段の温度が前記温度調節計に送信され、
前記温度調節計によって前記温度制御段の温度が目標温度より高い場合には前記調整弁の開度が調整されることにより冷媒の供給量が増やされ、
前記温度制御段の温度が目標温度より低い場合には前記調整弁の開度が調整されることにより冷媒の供給量が減らされ
アクリロニトリル、シアン化水素及び水の分離精製に用いられる、蒸留装置。
本発明によれば、アクリロニトリルの製造プロセスにおいて、長期間に渡り高品質の製品を安定的に得ることができる。
アクリロニトリル製造プロセスの一例を概念的に示す概略図である。 脱青酸脱水塔とそれに接続された設備の一例を概念的に示す概要図である。 脱青酸脱水塔とそれに接続された設備の別の例を概念的に示す概要図である。
以下、本発明を実施するための形態(以下、本実施形態)について詳細に説明する。尚、本発明は、本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
以下、必要に応じて図面を参照しつつ、本実施形態について詳細に説明する。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。装置や部材の寸法比率は図示の比率に限られるものではない。
本実施形態のアクリロニトリルの精製方法は、
蒸留塔と、前記蒸留塔に接続された、塔頂ガスの凝縮器と、を有する蒸留装置を用いてアクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する温度制御段の温度を一定に維持する工程を含む方法である。
図1は、アクリロニトリル製造プロセスの一例を概略的に示す概略図であり、図2は、脱青酸脱水塔とそれに接続された設備の一例を概念的に示す概要図である。なお、以下本実施形態における「蒸留塔」は「脱青酸脱水塔」として説明するが、「蒸留塔」としては「脱青酸脱水塔」に限らず、蒸留を行うことが可能な塔であれば、全て本実施形態の「蒸留塔」の範囲に含まれる。
アクリロニトリル製造プロセスにおいては、まず、ガス状プロピレン及び/又はプロパンをライン2から、アンモニアをライン3から、酸素(通常は空気を用いる)はライン4から、それぞれ流動層触媒を充填した流動層反応器1に供給し、プロピレン及び/又はプロパンをアンモ酸化反応させる。得られた反応生成ガスをライン5から抜き出し、急冷塔6に導入する。急冷塔6では反応生成ガスと水を向流接触させ、反応生成ガスを冷却し、高沸点物質及びガス中に微量に含まれている流動層触媒を除去する。また、未反応アンモニアを硫酸で中和除去する。これらの高沸点物質、触媒及び硫安は、急冷塔6の塔底のライン7よりプロセス系外に抜き出す。
急冷塔6上部から取り出されるガスをライン8により吸収塔9に導入する。吸収塔9の塔頂に回収塔12から抜き出した水を吸収水としてライン14から供給し、反応生成ガス中のアクリロニトリル、アセトニトリル及びシアン化水素を水に吸収させる。吸収されなかったプロピレン、プロパン、酸素、窒素、二酸化炭素、一酸化炭素等及び微量の有機物等は、吸収塔の塔頂のライン11より抜き出す。吸収塔9の塔底液はライン10より回収塔12に供給する。
回収塔12の塔頂に抽出水をライン15から導入し、抽出蒸留によりアセトニトリルを抽出分離する。アセトニトリルはライン16よりプロセス系外に抜き出す。また、大部分の水はライン13よりプロセス系外に抜き出す。回収塔の塔頂からライン17によりアクリロニトリル、シアン化水素及び水を留出し、図示していない凝縮器で凝縮した後、図示していないデカンターで有機層と水層の二層に分離する。アクリロニトリル、シアン化水素及び少量の水を含む有機層を脱青酸脱水塔18に供給する。水層は、(ライン10より)回収塔供給液又は(ライン15より)抽出水等として、前工程にリサイクルする。
脱青酸脱水塔18の塔頂からシアン化水素を含む蒸気をライン19より留出して凝縮器20に送り、冷却して分縮する。凝縮したシアン化水素液をライン22により塔頂に還流し、凝縮しなかった不純物の少ない粗シアン化水素ガスをライン21より系外に抜き出す。粗シアン化水素ガスは、必要に応じて図示していない蒸留塔で精製し、シアン化水素誘導体の原料として用いる。凝縮器20としては縦型が好ましく、上部管板に酢酸を散布してシアン化水素の重合を抑制する。凝縮器20に用いる冷媒20aとしては、供給温度が0〜35℃、好ましくは3〜30℃の水又はメタノール水溶液を用いる。
脱青酸脱水塔18の中段にあるチムニートレイDからライン23により塔内液を抜き出し、サイドカットクーラー23bで冷媒23aによって冷却後、ライン23cによりデカンター23dに供給し、デカンター23dで有機層と水層の二層に分離する。本実施形態において、「中段」とは、塔頂より下で塔底より上の部分を示し、多段蒸留塔の場合は塔底と塔頂の間の一段を示す。例えば、全段数が50〜65段の蒸留塔の場合、粗アクリロニトリルから水を効率よく分離する観点で、ライン23は通常塔底から数えて20〜30段に設定するのが好ましい。冷媒23aは、前記冷媒20aと同様のものを使用できる。サイドカットクーラー23bでの除熱量は、デカンター23d内に設置された液の温度を測定するための温度計(図示されていない)を参照し、調整される。デカンター内の液温度は、20〜40℃の範囲で一定となるよう制御されることが好ましい。デカンター内の水層はライン23fにより、回収塔12等の前工程にリサイクルする。デカンター内の有機層はライン23eにより、上述した塔内液を抜き出した段より下の段に戻す。この有機層は予熱して戻してもよい。
蒸留に必要な熱は、リボイラー24aからライン24cを通して供給する。熱媒24bとしては、水蒸気又は回収塔12の塔下部(ライン14及び15)及び/又は塔底(ライン13)から取り出される高温のプロセス水を用いる。
リボイラー24aにより蒸留塔に与える熱量は、脱青酸脱水塔18におけるアクリロニトリルの分離回収を効率よく行う観点から、180×10〜260×10kcal/h/t−アクリロニトリルが好ましく、190×10〜230×10kcal/h/t−アクリロニトリルがより好ましい。ここで、アクリロニトリルの質量は、製品塔から製品として取得されるアクリロニトリルの質量(t)であり、上述の数値は、アクリロニトリル単位質量当たりの熱量を表していることから「熱量原単位」と呼ぶことができる。
脱青酸脱水塔18の塔底からライン24により粗アクリロニトリルを抜き出し、製品塔25に送る。なお、ライン24により抜き出された塔底液の一部はリボイラー24aに供給される。
製品塔25は、大気圧より低い圧力下で運転される棚段蒸留塔である。製品塔25の留出蒸気はライン26を通じて抜出され、凝縮器30に送られ凝縮される。凝縮液は、ライン31を通じて製品塔25に還流され、一部の液は、ライン29を通じて抜き出される。高沸点物質を含む塔底液は、ライン28より抜出される。図1で示されるプロセスにおいては、ライン27からアクリロニトリルを製品として取得する。
アクリロニトリルの製造プロセスにおいては、通常運転中であっても、生産計画などからアクリロニトリルの生産量の増減がなされることがある。この場合、脱青酸脱水塔18にフィードする溶液量が増減され、蒸留装置の運転条件を調整する必要性が生じる。本実施形態において、「蒸留装置」とは、リボイラー、凝縮器を始めとする蒸留塔の付帯設備を含む概念であり、蒸留塔の中段から溶液の一部を抜出して、その中段抜出し液を冷却及び/又は油水分離する場合、冷却器及び/又は油水分離器も蒸留装置に含まれる。
脱青酸脱水塔18は、常圧下で運転される棚段蒸留塔であり、その棚数は、好ましくは50段〜65段である。使用する棚には、シーブトレイ、デュアルフロートレイ等の種類があるが、これらに限定されない。
脱青酸脱水塔へのフィード液は、ライン17よりフィード段Aに供給される。前記フィード段Aの位置は、チムニートレイDの上部であり、好ましくはチムニートレイDの10段〜25段上部である。フィード液が供給されると、塔内を蒸気が上昇し、塔頂からシアン化水素を含む蒸気がライン19より留出する。留出蒸気を凝縮器20に送り、冷却して分縮する。凝縮したシアン化水素液をライン22により塔の最上段Cに還流し、凝縮しなかった不純物の少ない粗シアン化水素ガスをライン21より系外に抜き出す。塔内を流下する還流液と塔内を上昇する蒸気が接触して、蒸留精製が行われる。
本実施形態の方法においては、フィード段Aより上部かつ塔の最上段Cより下部に位置する段Bの温度を一定に維持する。ここで、「フィード段Aより上部」には、フィード段A自体は含まれず、「最上段Cより下部」には最上段C自体は含まれない。本実施形態において、「温度を一定に維持」とは、設定された目標温度に維持することを示し、後述する上限値及び下限値を設定する場合には、上限値以上、下限値以下の温度範囲に維持することも含まれる。また、計器測定値のハンチングによる振幅を包含している。ここで、「段B」とは、フィード段Aより上部かつ塔の最上段より下部に位置する全段という意味ではなく、この間の段から選ばれる温度計22bが設置される特定の段を指し、「温度制御段」と呼ばれる。より好ましくはフィード段Aより上部3段〜塔の最上段より下部3段の間に位置する特定の段Bの温度を一定に維持する。
目標温度は、特定の一点の温度を設定することが好ましいが、実際には、温度制御段の温度が目標温度からずれた場合でも、蒸留分離上、目標温度での蒸留と遜色がない許容できる温度の上限及び下限が存在する。本実施形態においては、その値をそれぞれ上限値、下限値と呼ぶ。上限値及び下限値は、概ね、上限値=目標温度×1.05、下限値=目標温度×0.95とするのが好ましい。例えば、上限値が目標温度+2℃であり、下限値が目標温度−2℃である場合、温度制御段の温度を目標温度±2℃以内に維持する。
温度計22bは、温度調節計22aを介して、冷媒を排出する管に設けられた、冷媒20aの流量調節弁20bに接続されており、温度計22bによって温度制御段Bの温度が温度調節計22aに送信され、温度制御段Bの温度が目標温度よりも高い場合には調整弁20bの開度を調整することにより冷媒の供給量を増加させ、温度制御段Bの温度が目標温度よりも低い場合には調整弁20bの開度を調整することにより冷媒の供給量を減少させる。調整弁の「開度を調整」する態様には、開度を大きく、即ち弁を開く態様と、開度を小さく、つまり弁を閉じる態様の2とおりがある。図2に示す例のように排出管に調整弁が設けられている場合、調整弁20bを開くことによって冷媒20aが排出され、排出される冷媒よりも温度の低い冷媒が凝縮器20内に流入するので、凝縮器20の冷却効果が高まる。逆に、調整弁20bを閉じることによって冷媒20aの排出が抑制され、排出される冷媒よりも温度の低い冷媒が凝縮器20内に流入するのを妨げるので、凝縮器20の冷却効果が低くなる。このように調節弁20bにより、冷媒20aの供給量を変化させることで、凝縮器20から塔に戻す還流液の温度を変化させ、温度制御段Bの温度を一定に維持する。
温度制御段の温度の上限値及び下限値を設定する場合には、温度制御段の温度が下限値以上、上限値以下で推移するように、冷媒の供給量を調整弁によって調整することができる。
温度制御段Bの目標温度は、留出蒸気中のアクリロニトリル濃度を下げ、シアン化水素純度を上げる観点、及び塔底液中のシアン化水素濃度を下げ、アクリロニトリル純度を上げる観点から40〜55℃が好ましく、45〜50℃がより好ましい。温度制御段Bの温度が目標温度より高い場合、留出蒸気中のアクリロニトリル濃度が上昇しアクリロニトリルの損失につながる上、留出するシアン化水素の純度が下がるためシアン化水素誘導体の品質に悪影響を及ぼす。一方、温度制御段Bの温度が目標温度より低い場合、塔底液中のシアン化水素濃度が上昇し、下流の製品塔で充分に除去できず、アクリロニトリル製品がオフスペック品となるおそれがある。
本実施形態において「目標温度」とは、実験室におけるアクリロニトリル蒸留実験及び/又は商業スケールの蒸留装置を用いた蒸留分離性能の温度依存性に関する実験から導き出される最適な温度である。例えば、蒸留塔の塔頂から塔底の各温度分布(以下、「温度プロファイル」という。)と塔頂のキー物質の濃度及び塔底のキー物質の濃度の関係を調べる。ここで、キー物質とは、蒸留分離を行うに際して指針とする物質のことで、一般には微量不純物のことを指し、当該物質が多く混入していると精製上好ましくない。キー物質濃度のスペックを定め、これを分離スペックとし、蒸留塔の運転管理に用いるのが好ましい。
図3は、脱青酸脱水塔18とそれに接続された設備の別の例を示す概要図である。凝縮器の冷媒20aの供給管と排出管とを接続する流量調節弁20b’が設けられていること以外、図2に示す例とほぼ同じであるので、相違点のみ説明する。調節弁20b’を開くと、冷媒20aの一部は供給管から凝縮器を経ないで排出管に流入するので、調節弁20b’を開くことで冷媒20aの供給量が減少する。温度計22bは、温度調節計22aを介して、流量調節弁20b,20b’に接続されており、温度制御段Bの温度が温度調節計22aに送信され、温度制御段Bの温度が目標温度よりも高い場合には調整弁20bが開かれ、及び/又は調節弁20b’が閉じられて冷媒20aの供給量を増加させる。温度制御段Bの温度が目標温度よりも低い場合には調整弁20bが閉じられ、及び/又は調節弁20b’が開かれて冷媒20aの供給量を減少させ、温度制御段Bの温度を一定に維持する。
図3に示す例では、流量調節弁20b,20b’の両方が温度調節計22aからの命令で動作するようになっているが、「温度制御段の温度を一定に維持する」機能を奏する限り、両方が温度調節計22aによって開閉される必要はなく、流量調節弁20bのみが温度調節計22aによって開閉し、流量調節弁20b’は手動であってもよい。調節弁20b’が手動の場合、調節弁20b’の開度は一定にしておき、図2に示す例と同様に調節弁20bを操作することで、温度制御段Bの温度を一定に維持する。
商業スケールのアクリロニトリル蒸留装置では、塔頂のキー物質としてはアクリロニトリル、塔底のキー物質としてはシアン化水素及び水を用いることが好ましい。塔頂から留出するシアン化水素ガス中のアクリロニトリルを低濃度に保つことで、製品として取得するアクリロニトリルの質量低下を防止できる。また、シアン化水素も市販される製品の1つであり、種々のシアン化水素誘導体に利用されるが、シアン化水素中のアクリロニトリルの濃度を低く保つことで、例えば、アセトンシアンヒドリン(ACH)法によって得られるメタクリル酸メチル(MMA)の好ましくない着色等を防ぐことができる。塔頂からアクリロニトリルが留出しても、蒸留等によってさらに分離することでシアン化水素の純度を上げることは可能ではあるが、蒸留装置等の分離設備の他に、この設備から排出されるアクリロニトリル含有廃水の処理設備も必須要件となってしまう。そのため、シアン化水素を利用することを考慮すると、塔頂から留出するシアン化水素中のアクリロニトリルの濃度を低く維持することが好ましい。塔頂から留出するシアン化水素中のアクリロニトリル濃度は、好ましくは1000ppm以下であり、より好ましくは700ppm以下であり、さらに好ましくは500ppm以下である。
塔底から抜き出されるアクリロニトリル中にシアン化水素が多く混入する場合、そのアクリロニトリルを用いて得られるアクリル繊維やABS樹脂の着色原因になる。また、水が多く混入する場合は、製品アクリロニトリルの純度が落ちる。塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は、好ましくは100ppm以下であり、より好ましくは70ppm以下であり、さらに好ましくは50ppm以下である。
リボイラーの加熱量及び/又は凝縮器の除熱量を増減することで、塔内の温度プロファイルを変更し、塔頂及び塔底のキー物質濃度の変化を測定する。その測定結果から、良好な蒸留分離性能を示す塔内温度プロファイルを形成するための好ましい温度制御段の位置及びその目標温度が定められる。
以下に、温度制御段の位置と目標温度の決定方法の一例を示す。
まず、リボイラーの加熱量と凝縮器の除熱量を一定にして、キー物質の濃度(質量%)を各段において調べる(濃度プロファイル)。併せて、各段の温度も測定しておく(温度プロファイル)。次いで、リボイラーの加熱量は変更しないで、凝縮器の除熱量のみを変更し、濃度プロファイル及び温度プロファイルを測定する。凝縮器の除熱量が異なる場合のそれぞれの塔内の温度プロファイルを比較した時、仮に、フィード段の温度同士及び最上段の温度同士がそれぞれの場合で同一であっても、フィード段より上部かつ最上段より下部に位置する各段の温度が異なる場合があり、このとき、各ケースの塔頂及び塔底のキー物質濃度には相違が生じる。つまり、フィード段及び/又は最上段の温度のみを監視していても、塔頂及び塔底のキー物質の濃度を制御することはできない。本発明者は、フィード段より上部かつ最上段より下部に位置する段の温度変化が、キー物質濃度に影響することを発見した。
そして、濃度プロファイルにおいて塔頂及び塔底のキー物質の濃度が逆転する段、具体的には、アクリロニトリル濃度がシアン化水素濃度より低い段のうち、最も下部の段(最下段)の温度、及び/又はアクリロニトリル濃度がシアン化水素濃度より高い段のうち、最も上部の段(最上段)は、塔頂及び/又は塔底のキー物質濃度に強い相関を示すことを見出した。
アクリロニトリルは塔底において高濃度であり、シアン化水素は塔頂において高濃度であるため、両者の濃度はある段で逆転することになるが、この逆転する段はフィード段より上部であって、最上段より下部に位置しており、この段の温度が塔頂及び/又は塔底におけるキー物質の濃度に影響する。従って、濃度プロファイルを参照して、キー物質濃度が逆転する段を、温度制御段の位置として決定することが好ましい。そして、好ましい温度プロファイルにおけるその温度制御段の温度から、目標温度を設定することができる。一般的には好ましい温度プロファイルにおいて、温度制御段の温度は急激な変化を示し、温度プロファイルの変曲点が温度制御段に該当する場合が多い。
即ち、本実施形態の方法における好適な態様としては、
前記蒸留塔にリボイラーから一定の熱量を与えながら前記凝縮器の除熱量を増減し、
各除熱量において、前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する各段の温度と、
前記各段におけるアクリロニトリル濃度及びシアン化水素濃度を測定し、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する段であって、前記アクリロニトリル濃度が前記シアン化水素濃度より低い段のうち、最も下部の段(最下段)及び/又は前記アクリロニトリル濃度が前記シアン化水素濃度より高い段のうち、最も上部の段(最上段)を、温度制御段に設定し、
前記各除熱量における各段の温度から、前記蒸留塔の塔頂から留出するアクリロニトリルの濃度が最小になるように、前記温度制御段の目標温度を決定する工程を含む。
キー物質の分離スペックを満足するようにアクリロニトリルを精製する観点から、濃度プロファイル及び温度プロファイルを参照して、温度制御段の位置及びその目標温度をすることは好ましい態様であると言える。
蒸留塔の運転開始時は、リボイラーの加熱量の増加と凝縮器の除熱量の増加を並行して繰り返すことになるが、最終調整段階においては、リボイラーの加熱量と、凝縮器の除熱量という二つの熱量に関する変数を一度に増減すると、蒸留塔を安定に運転することが困難となる。そのため、蒸留塔を安定に運転しつつ温度制御段の位置及び目標温度を決める観点で、リボイラーには180×10〜260×10kcal/h/t−アクリロニトリルの範囲で一定の加熱量を与えつつ、凝縮器の除熱量を増減し、蒸留塔の温度制御段の温度が目標温度となるように制御することが好ましい。こうすることで、蒸留塔の良好な分離性能を早期に引き出し、再精製が必要なオフスペック品の生成量を抑制できる傾向にある。また、製品取得時期を早めることが可能となる。
アクリロニトリルの製造プロセスにおいては、通常運転中であっても、生産計画などからアクリロニトリルの生産量の増減がなされることがある。この場合、脱青酸脱水塔18にフィードされる溶液量が増減される。フィード液の質量変化に応じた製品生産量と、上述したリボイラー熱量原単位からリボイラーに加える熱量(以下、「リボイラー加熱量」という。)を調整変更する。リボイラー加熱量を増減した場合、蒸留塔内部の蒸気量が変化する。例えば、リボイラー加熱量を増加させた場合、アクリロニトリルが塔上部に炊き上がり、粗シアン化水素中に留出する割合が上がってしまうことがある。逆にリボイラー加熱量を減少させた場合、シアン化水素が塔下部に下がり、塔底抜出液中に存在する割合が上がってしまうことがある。これらはいずれも製品(アクリロニトリル、シアン化水素誘導体)純度に悪影響を及ぼす。これらを防止するために、リボイラー加熱量の増減量に応じて、蒸留塔温度を適正に調整することが有用である。
本実施形態の精製方法を行うための装置としては特に限定されないが、例えば、以下の蒸留装置を用いて行うことができる。
蒸留塔と、
前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する温度制御段に設けられた温度計と、
前記蒸留塔に連結された凝縮器と、
前記凝縮器に連結された冷媒を供給する管及び冷媒を排出する管と、
前記冷媒を供給する管及び/又は冷媒を排出する管に取り付けられた冷媒の供給量を調整するための調整弁と、を有する蒸留装置であって、
前記温度計は温度調節計を介して前記調整弁に接続されており、
前記温度計によって前記温度制御段の温度が前記温度調節計に送信され、
前記温度調節計によって前記温度制御段の温度が目標温度を超えた場合には前記調整弁の開度が調整されることにより冷媒の供給量が増やされ、前記温度制御段の温度が目標温度未満の場合には前記調整弁の開度が調整されることにより冷媒の供給量が減らされる、蒸留装置。
以下に実施例を示して、本実施形態をより詳細に説明するが、本実施形態は以下に記載の実施例によって限定されるものではない。なお、実施例におけるアクリロニトリル製造プロセスは、図1に示したものと同様である。また、実施例における脱青酸脱水塔は、図2に示したものと同様である。
アクリロニトリルの分析は、以下の装置及び条件でガスクロマトグラフィーにより行った。
ガスクロマトグラフィーは、装置として島津GC−17Aを用い、カラムはTC−FFAP 60m×0.32膜厚0.25μmを用いた。検出器はFID、キャリヤーガスにはヘリウムを用いた。
カラム温度条件は、以下の通りであった。
初期温度:50℃
昇温速度:5℃/分
最終温度1:180℃ 15分HOLD
昇温速度:10℃/分
最終温度2:230℃ 10分HOLD
最終温度3:50℃ 5分HOLD
シアン化水素及び水の分析は、それぞれ硝酸銀滴定法及びカールフィッシャー法により行った。
流量計及び温度計としては、以下のものを用いた。
流量計:YKOGAWA製 差圧式流量計(オリフィス型) Differential Pressure Transmitter DP hard EJX
温度計:OKAZAKI製 抵抗温度計 Resistance Thermometer, Temperature Trans
[実施例1]
プロピレン、アンモニア及び空気を内径8m、長さ20mの縦型円筒型の流動層反応器1に供給し、プロピレンのアンモ酸化反応を下記の通り行った。流動層反応器1は、その内部に原料ガス分散管や分散板、除熱管及びサイクロンを有していた。脱青酸脱水塔18は、シーブトレイ55段からなり、塔底から数えて37段目にフィード段A、24段目にチムニートレイDを有し、24段にサイドカット流を抜き出すライン23を有し、サイドカットクーラー23b、デカンター23dを経て、23段目にデカンター内の有機層を戻すライン23eを有していた。
流動層触媒は、粒径10〜100μm、平均粒径55μmであるモリブデン−ビスマス−鉄系担持触媒を用い、静止層高2.7mとなるよう充填した。空気分散板から空気を56000Nm/h供給し、原料ガス分散管からプロピレン6200Nm/h及びアンモニアを6600Nm/h供給した。反応温度は440℃となるよう除熱管で制御した。圧力は0.70kg/cmGであった。
反応生成ガスを急冷塔6に導入し、水と向流接触させ、未反応のアンモニアを硫酸で中和除去した。急冷塔6から流出したガスをライン8より吸収塔9に導入した。吸収塔9塔頂のライン14より吸収水を導入し、ガスと向流接触させ、ガス中のアクリロニトリル、アセトニトリル及びシアン化水素を水中に吸収させた。吸収水量は、吸収塔塔頂から排出されるガス中のアクリロニトリル濃度が100volppmとなるように調整した。吸収されなかったガスは、吸収塔塔頂ライン11より取り出し、焼却した。
吸収塔塔底液を80℃に予熱し、回収塔12に供給した。回収塔12でアセトニトリル及び大部分の水を分離し、塔頂ライン17からアクリロニトリル、シアン化水素及び水を留出させた。該留出蒸気を凝縮し、図示していない回収塔デカンターで有機層と水層を形成させ、水層は回収塔12の供給ライン10にリサイクルし、有機層は脱青酸脱水塔18に供給した。
脱青酸脱水塔18へのフィード液は、ライン17に設置された図示していない流量計及び温度計により、質量及び温度を測定した。測定値は、それぞれ13595kg/h及び35.0℃であった。
脱青酸脱水塔18の塔頂ライン19から粗シアン化水素ガスを抜き出して凝縮器20に送り、冷却して分縮した。凝縮器20に用いた冷媒20aは、6℃の水であった。凝縮したシアン化水素液を塔頂に還流し、凝縮しなかった不純物の少ないシアン化水素ガスをライン21から系外に抜き出した。
脱青酸脱水塔18の24段から塔内液を抜き出し、サイドカットクーラー23bで冷却した。サイドカットクーラー23bに用いた冷媒23aは、25℃の水であった。サイドカットクーラーの除熱量Q3は、デカンター23dの液温が30℃となるように、冷媒23aの流量で調整した。塔から抜き出したサイド流は、デカンター23dにて有機層と水層の二層に分離し、水層は、ライン23fにより抜き出し、回収塔12の供給液にリサイクルした。有機層はライン23eにより、塔の23段に戻した。
リボイラー24aの熱源には、回収塔12下部から抜き出した110℃のプロセス水を用いた。与えた熱量Q1は200×10kcal/h/t−アクリロニトリルとし、製品塔25にて製品として取得したアクリロニトリルの質量が、時間当たり11.5tであったので、2300×10kcal/hとなるよう、リボイラー24aに通じるプロセス水24bの流量を調整した。
塔底ライン24から粗アクリロニトリルを抜き出し、製品塔25に送った。塔底抜出液は、ライン24に設置された図示していない流量計により質量を測定し、その測定値は、11585kg/hであった。塔底抜出液の温度は、脱青酸脱水塔18の塔底の液温と同一であり86℃であった。
ここで、リボイラー24aの加熱量と凝縮器20の除熱量を一定にして、フィード段より上部の各段におけるアクリロニトリル濃度とシアン化水素濃度を測定した結果、アクリロニトリル濃度がシアン化水素濃度より低い段のうち、最も下部の段は塔底から数えて51段であった。
次に、リボイラー24aの加熱量を一定としたままで、塔頂から留出するシアン化水素中のアクリロニトリル濃度を300ppmとなるように凝縮器の除熱量を調整した結果、当該段の温度は48℃であった。
ここで当該段を温度制御段B、当該段に設置された温度計を温度計22b、当該段の目標温度を48℃として、当該段の温度が48℃となるように凝縮器の除熱量を調整した。
アクリロニトリル生産量を11.5±0.2t/hとした時期約6ヶ月間、上記運転を継続した。この間、温度制御段の温度は、48±0.4℃であった。
脱青酸脱水塔は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[実施例2]
生産計画の変更によりアクリロニトリル生産量を12.7t/hに増量したこと以外は、実施例1と同一の設備及び方法でアクリロニトリルを製造した。
リボイラー熱量は2540×10kcal/hまで増加させた。脱青酸脱水塔18の温度制御段Bの温度が48℃となるよう温度調節計22aを介して、冷媒20aの流量調節弁20bを制御した。脱青酸脱水塔18の塔内の各温度及びデカンター23dの温度は、実施例1とほぼ同一であった。
アクリロニトリル生産量を12.7±0.2t/hとした時期約3ヶ月間、上記運転を継続した。この間、温度制御段の温度は、48±0.4℃であった。脱青酸脱水塔18は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[実施例3]
実施例1と同じ条件でアクリロニトリルの製造を行い、リボイラー24aの加熱量と凝縮器20の除熱量を一定にして、フィード段より上部の各段におけるアクリロニトリル濃度とシアン化水素濃度を測定した結果、アクリロニトリル濃度がシアン化水素濃度より高い段のうち、最も下部の段は塔底から数えて50段であった。
次に、リボイラー24aの加熱量を一定としたままで、塔頂から留出するシアン化水素中のアクリロニトリル濃度を300ppmとなるように凝縮器の除熱量を調整した結果、当該段の温度は51℃であった。
ここで当該段を温度制御段B、当該段に設置された温度計を温度計22b、当該段の目標温度を48℃として、当該段の温度が51℃となるように凝縮器の除熱量を調整した。
アクリロニトリル生産量を11.5±0.2t/hとした時期約6ヶ月間、上記運転を継続した。この間、温度制御段の温度は、51±0.4℃であった。脱青酸脱水塔は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリルニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[実施例4]
プロパン、アンモニア及び空気を実施例1と同じ流動層反応器1に供給し、プロパンのアンモ酸化反応を下記の通り行った。
流動層触媒は、粒径10〜100μm、平均粒径55μmであるモリブデン−バナジウム系担持触媒を用い、静止層高2.2mとなるよう充填した。空気分散板から空気を64500Nm/h供給し、原料ガス分散管からプロパン4300Nm/h及びアンモニアを4300Nm/h供給した。反応温度は440℃となるよう除熱管で制御した。圧力は0.75kg/cmGであった。
反応生成ガスを急冷塔6に導入し、水と向流接触させた。また、未反応のアンモニアを硫酸で中和除去した。
急冷塔6から取り出したガスをライン8より吸収塔9に導入した。塔頂ライン14より吸収水を導入し、ガスと向流接触させ、ガス中のアクリロニトリル、アセトニトリル及びシアン化水素を水中に吸収させた。未吸収のガスは、吸収塔塔頂ライン11より取り出し、焼却した。吸収塔塔頂から取り出したガス中のアクリロニトリル濃度が100volppmとなるよう、吸収水量を調整した。
吸収塔塔底液を予熱し、回収塔12に供給した。回収塔でアセトニトリル及び大部分の水を分離し、塔頂ライン17からアクリロニトリル、シアン化水素及び水を留出させた。該留出蒸気を凝縮し、有機層と水層を形成させ、水層は回収塔の供給ライン10にリサイクルし、有機層は脱青酸脱水塔18に供給した。
脱青酸脱水塔18へのフィード液は、ライン17に設置された図示していない流量計及び温度計により、質量及び温度を測定した。測定値は、それぞれ6219kg/h及び35.0℃であった。
脱青酸脱水塔18の塔頂ライン19から粗シアン化水素ガスを抜き出して凝縮器20に送り、冷却して分縮した。凝縮器20に用いた冷媒20aは、6℃の水であった。凝縮したシアン化水素液を塔頂に還流し、凝縮しなかった不純物の少ないシアン化水素ガスをライン21から系外に抜き出した。
脱青酸脱水塔18の24段から塔内液を抜き出し、サイドカットクーラー23bで冷却した。サイドカットクーラー23bに用いた冷媒23aは、25℃の水であった。サイドカットクーラーの除熱量Q3は、デカンター23dの液温が30℃となるように、冷媒23aの流量で調整した。塔から抜き出したサイド流は、デカンター23dにて有機層と水層の二層に分離し、水層は、ライン23fにより抜き出し、回収塔12の供給液にリサイクルした。有機層はライン23eにより、塔の23段に戻した。
リボイラー24aの熱源には、回収塔12下部から抜き出した110℃のプロセス水を用いた。与えた熱量Q1は、250×10kcal/h/t−アクリロニトリルとし、製品塔25にて製品として取得したアクリロニトリルの質量が、時間当たり5.22tであったので、1305×10kcal/hとなるよう、リボイラー24aに通じるプロセス水24bの流量を調整した。
塔底ライン24から粗アクリロニトリルを抜き出し、製品塔25に供給した。塔底抜出液は、ライン24に設置された図示していない流量計により、質量を測定し、その測定値は5312kg/hであった。塔底抜出液の温度は、脱青酸脱水塔18の塔底の液温と同一であり86℃であった。
ここで、リボイラー24aの加熱量と凝縮器20の除熱量を一定にして、フィード段より上部の各段におけるアクリロニトリル濃度とシアン化水素濃度を測定した結果、アクリロニトリル濃度がシアン化水素濃度より低い段のうち、最も下部の段は塔底から数えて51段であった。
次に、リボイラー24aの加熱量を一定としたままで、塔頂から留出するシアン化水素中のアクリロニトリル濃度を300ppmとなるように凝縮器の除熱量を調整した結果、当該段の温度は48℃であった。
ここで当該段を温度制御段B、当該段に設置された温度計を温度計22b、当該段の目標温度を48℃として、当該段の温度が48℃となるように凝縮器の除熱量を調整した。
アクリロニトリル生産量を5.22±0.17t/hとした時期約4ヶ月間、上記運転を継続した。この間、温度制御段Bの温度は、48±0.4℃であった。脱青酸脱水塔は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±10ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppm以下であった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[実施例5]
実施例4と同じ条件でアクリロニトリルの製造を行い、リボイラー24aの加熱量と凝縮器20の除熱量を一定にして、フィード段より上部の各段におけるアクリロニトリル濃度とシアン化水素濃度を測定した結果、アクリロニトリル濃度がシアン化水素濃度より高い段のうち、最も下部の段は塔底から数えて50段であった。
次に、リボイラー24aの加熱量を一定としたままで、塔頂から留出するシアン化水素中のアクリロニトリル濃度を300ppmとなるように凝縮器の除熱量を調整した結果、当該段の温度は51℃であった。
ここで当該段を温度制御段B、当該段に設置された温度計を温度計22b、当該段の目標温度を48℃として、当該段の温度が51℃となるように凝縮器の除熱量を調整した。
アクリロニトリル生産量を5.22±0.17t/hとした時期約4ヶ月間、上記運転を継続した。この間、温度制御段Bの温度は、51±0.4℃であった。脱青酸脱水塔は安定的に運転でき、この間、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度は300±20ppmであり、塔底から抜き出されるアクリロニトリル中のシアン化水素濃度は40±10ppmであった。またこの間、アクリロニトリル製品中のシアン化水素濃度は5ppm以下であり、高品質のアクリロニトリル製品を安定的に取得できた。また、粗シアン化水素の純度も安定しており、シアン化水素誘導体の品質にも問題はなかった。
[比較例1]
脱青酸脱水塔の最上段を温度制御段とし、当該段の温度が30℃となるよう運転したこと以外は、実施例1と同一の設備及び方法でプロピレンのアンモ酸化反応を実施し、3ヶ月間アクリロニトリルを製造した。この間、温度制御段の温度は30℃で変化がなかったが、製造開始から1ヵ月後に、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度が1000ppmに上昇した。凝縮器の除熱量Q2が不足していると判断し、凝縮器に通じる冷媒の流量を上げてQ2を増加させところ、脱青酸脱水塔の最上段の温度は30℃で変化がなかったが、塔頂から留出するシアン化水素中のアクリロニトリル濃度は300ppmまで減少した。
製造開始から2ヵ月後に製品として取得したアクリロニトリル中のシアン化水素の濃度が20ppmまで上昇しオフスペック品となった。この時、脱青酸脱水塔の塔底液中のシアン化水素濃度は、120wtppmであった。凝縮器の除熱量Q2が過多と判断し、凝縮器に通じる冷媒の流量を下げてQ2を減少させたところ、製品として取得したアクリロニトリル中のシアン化水素濃度が5ppmまで減少しオンスペック品となった。また、塔頂から留出するシアン化水素中に留出するアクリロニトリルの割合は600ppmまで上昇し、シアン化水素誘導体の品質が落ちていた。この間、脱青酸脱水塔の最上段の温度は30℃で変化がなかった。
[比較例2]
脱青酸脱水塔の最上段を温度制御段とし、当該段の温度が30℃となるよう運転したこと以外は、実施例4と同一の設備及び方法でプロパンのアンモ酸化反応を実施し、2ヶ月間アクリロニトリルを製造した。この間、温度制御段の温度は30℃で変化がなかったが、製造開始から2週間後に、脱青酸脱水塔塔頂から留出するシアン化水素中のアクリロニトリル濃度が1000ppmに上昇した。凝縮器の除熱量Q2が不足していると判断し、凝縮器に通じる冷媒の流量を上げてQ2を増加させところ、脱青酸脱水塔の最上段の温度は30℃で変化がなかったが、塔頂から留出するシアン化水素中のアクリロニトリル濃度は300ppmまで減少した。
製造開始から4週間後に製品として取得したアクリロニトリル中のシアン化水素の濃度が20ppmまで上昇しオフスペック品となった。この時、脱青酸脱水塔の塔底液中のシアン化水素濃度は、120wtppmであった。凝縮器の除熱量Q2が過多と判断し、凝縮器に通じる冷媒の流量を下げてQ2を減少させたところ、製品として取得したアクリロニトリル中のシアン化水素濃度が5ppmまで減少しオンスペック品となった。また、塔頂から留出するシアン化水素中に留出するアクリロニトリルの割合は600ppmまで上昇し、シアン化水素誘導体の品質が落ちていた。この間、脱青酸脱水塔の最上段の温度は30℃で変化がなかった。
本出願は、2010年12月27日に日本国特許庁へ出願された日本特許出願(特願2010−290914)に基づくものであり、その内容はここに参照として取り込まれる。
本発明の方法は、プロピレン及び/又はプロパン、アンモニア及び酸素を触媒の存在下に反応させるアクリロニトリルの製造プロセスにおける産業上利用可能性を有する。
1 流動層反応器
2 プロピレン及び/又はプロパンの供給管
3 アンモニアの供給管
4 空気(酸素)の供給管
6 急冷塔
5、7、8 ライン
9 吸収塔
10、11 ライン
12 回収塔
13、14、15、16、17 ライン
18 脱青酸脱水塔
19 ライン
20 脱青酸脱水塔凝縮器
20a 脱青酸脱水塔凝縮器に供給する冷媒
20b 脱青酸脱水塔凝縮器に供給する冷媒の流量調節弁
20b’ 凝縮器の冷媒の供給管と排出管とを接続する流量調節弁
21、22 ライン
22a 温度調節計
22b 温度検出器(温度計)
23、23c、23e、23f ライン
23a 脱青酸脱水塔サイドカットクーラーに供給する冷媒
23b 脱青酸脱水塔サイドカットクーラー
23d 脱青酸脱水塔デカンター
24、24c ライン
24a 脱青酸脱水塔リボイラー
24b 脱青酸脱水塔リボイラーに供給する熱媒
25 製品塔
26、27、28、29 ライン
30 製品塔凝縮器
31 ライン
A フィード段
B 温度制御段
C 最上段
D チムニートレイ

Claims (6)

  1. 蒸留塔と、前記蒸留塔に接続された、塔頂ガスの凝縮器と、を有する蒸留装置を用いてアクリロニトリル、シアン化水素及び水を含む溶液を蒸留する工程を含むアクリロニトリルの精製方法であって、
    前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する温度制御段の温度を一定に維持する工程を含む方法。
  2. 前記凝縮器へ冷媒を供給する管及び/又は前記凝縮器から冷媒を排出する管に調整弁が設けられ、前記温度制御段に温度計が設けられており、
    前記温度制御段の目標温度を設定し、
    前記温度制御段の温度が前記目標温度より高い場合は前記調整弁の開度を調整して冷媒の供給量を増加させ、
    前記温度制御段の温度が前記目標温度より低い場合は前記調整弁の開度を調整して冷媒の供給量を減少させることにより前記温度制御段の温度を一定に維持する、請求項1記載の方法。
  3. 前記温度制御段の温度の上限値及び下限値を設定し、前記温度制御段の温度が前記下限値以上、前記上限値以下で推移するように、前記冷媒の供給量を前記調整弁によって調整する、請求項2記載の方法。
  4. 前記蒸留塔にリボイラーから一定の熱量を与えながら前記凝縮器の除熱量を増減し、
    各除熱量において、前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する各段の温度と、
    前記各段におけるアクリロニトリル濃度及びシアン化水素濃度を測定し、
    前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する段であって、前記アクリロニトリル濃度が前記シアン化水素濃度より低い段のうち、最も下部の段(最下段)を、温度制御段に設定し、
    前記各除熱量における各段の温度から、前記蒸留塔の塔頂から留出するアクリロニトリルの濃度が最小になるように、前記温度制御段の目標温度を決定する工程を含む、請求項1〜3のいずれか1項記載のアクリロニトリルの精製方法。
  5. 前記蒸留塔にリボイラーから一定の熱量を与えながら前記凝縮器の除熱量を増減し、
    各除熱量において、前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する各段の温度と、
    前記各段におけるアクリロニトリル濃度及びシアン化水素濃度を測定し、
    前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する段であって、前記アクリロニトリル濃度が前記シアン化水素濃度より高い段のうち、最も上部の段(最上段)を、温度制御段に設定し、
    前記各除熱量における各段の温度から、前記蒸留塔の塔頂から留出するアクリロニトリルの濃度が最小になるように、前記温度制御段の目標温度を決定する工程を含む、請求項1〜3のいずれか1項記載のアクリロニトリルの精製方法。
  6. 蒸留塔と、
    前記蒸留塔のフィード段より上部かつ前記蒸留塔の最上段より下部に位置する温度制御段に設けられた温度計と、
    前記蒸留塔に連結された凝縮器と、
    前記凝縮器に連結された冷媒を供給する管及び冷媒を排出する管と、
    前記冷媒を供給する管及び/又は冷媒を排出する管に取り付けられた冷媒の供給量を調整するための調整弁と、を有する蒸留装置であって、
    前記温度計は温度調節計を介して前記調整弁に接続されており、
    前記温度計によって前記温度制御段の温度が前記温度調節計に送信され、
    前記温度調節計によって前記温度制御段の温度が目標温度より高い場合には前記調整弁の開度が調整されることにより冷媒の供給量が増やされ、
    前記温度制御段の温度が目標温度より低い場合には前記調整弁の開度が調整されることにより冷媒の供給量が減らされ
    アクリロニトリル、シアン化水素及び水の分離精製に用いられる、蒸留装置。
JP2012550805A 2010-12-27 2011-12-12 アクリロニトリルの精製方法 Active JP5605921B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550805A JP5605921B2 (ja) 2010-12-27 2011-12-12 アクリロニトリルの精製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010290914 2010-12-27
JP2010290914 2010-12-27
PCT/JP2011/078706 WO2012090690A1 (ja) 2010-12-27 2011-12-12 アクリロニトリルの精製方法
JP2012550805A JP5605921B2 (ja) 2010-12-27 2011-12-12 アクリロニトリルの精製方法

Publications (2)

Publication Number Publication Date
JPWO2012090690A1 JPWO2012090690A1 (ja) 2014-06-05
JP5605921B2 true JP5605921B2 (ja) 2014-10-15

Family

ID=46382806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012550805A Active JP5605921B2 (ja) 2010-12-27 2011-12-12 アクリロニトリルの精製方法

Country Status (5)

Country Link
JP (1) JP5605921B2 (ja)
KR (1) KR101528986B1 (ja)
CN (1) CN103261150B (ja)
TW (1) TWI434821B (ja)
WO (1) WO2012090690A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104922926A (zh) * 2014-03-21 2015-09-23 英尼奥斯欧洲股份公司 头馏分塔塔顶系统
CN104922923A (zh) * 2014-03-21 2015-09-23 英尼奥斯欧洲股份公司 添加抑制剂的头馏分塔操作
CN104587818B (zh) * 2014-09-30 2017-01-04 英尼奥斯欧洲股份公司 骤冷塔操作和底物处理
CN104693069A (zh) * 2015-03-06 2015-06-10 英尼奥斯欧洲股份公司 改进的丙烯腈制造
CN113336669A (zh) * 2015-03-06 2021-09-03 英尼奥斯欧洲股份公司 改进的丙烯腈制造
CN114870421A (zh) * 2015-11-16 2022-08-09 英尼奥斯欧洲股份公司 头馏分塔泵循环
CN106334330B (zh) * 2016-09-28 2018-11-09 唐山钢铁集团有限责任公司 蒸馏塔塔顶温度自动调节控制方法
MY189643A (en) * 2016-10-21 2022-02-22 Asahi Chemical Ind Purifying method, production method, and distillation apparatus for acrylonitrile
CN108337889B (zh) * 2016-10-21 2019-07-26 旭化成株式会社 丙烯腈的纯化方法、制造方法及蒸馏装置
CN111484428A (zh) * 2019-01-29 2020-08-04 旭化成株式会社 (甲基)丙烯腈的纯化方法和(甲基)丙烯腈的制备方法
CN112439296A (zh) * 2019-09-05 2021-03-05 中石油吉林化工工程有限公司 丙烯腈装置吸收塔塔底低温循环工艺
CN112441939B (zh) * 2019-09-05 2024-03-22 中石油吉林化工工程有限公司 丙烯腈生产系统
KR102482497B1 (ko) * 2020-06-16 2022-12-29 태광산업주식회사 증류 장치 및 이의 용도

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222309A (ja) * 2009-03-24 2010-10-07 Asahi Kasei Chemicals Corp アクリロニトリルの精製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1171823A (en) * 1967-01-20 1969-11-26 G & J Weir Ltd Water Distillation Plant.
US3885928A (en) * 1973-06-18 1975-05-27 Standard Oil Co Ohio Acrylonitrile and methacrylonitrile recovery and purification system
DD125821A1 (ja) * 1976-05-21 1977-05-18
JPH0975604A (ja) * 1995-09-14 1997-03-25 Sumitomo Chem Co Ltd 蒸留塔の制御方法
BR9911267A (pt) * 1998-06-15 2001-03-13 Solutia Inc Processo para a recuperação de nitrilas olefinicamente insaturadas
JP2005028224A (ja) * 2003-07-08 2005-02-03 Mitsubishi Chemicals Corp 蒸留装置の制御方法
JP4959158B2 (ja) * 2005-08-05 2012-06-20 旭化成ケミカルズ株式会社 アクリロニトリルの分離回収方法
CN101754788A (zh) * 2007-07-19 2010-06-23 弗兰克·巴尔 控制和冷却蒸馏塔的方法
JP5476774B2 (ja) * 2009-04-07 2014-04-23 三菱レイヨン株式会社 (メタ)アクリロニトリルの回収方法
CN201512484U (zh) * 2009-09-14 2010-06-23 郑州正力聚合物科技有限公司 特种丙烯腈提纯装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222309A (ja) * 2009-03-24 2010-10-07 Asahi Kasei Chemicals Corp アクリロニトリルの精製方法

Also Published As

Publication number Publication date
KR20130086643A (ko) 2013-08-02
JPWO2012090690A1 (ja) 2014-06-05
TWI434821B (zh) 2014-04-21
WO2012090690A1 (ja) 2012-07-05
CN103261150B (zh) 2015-04-22
TW201231443A (en) 2012-08-01
CN103261150A (zh) 2013-08-21
KR101528986B1 (ko) 2015-06-15

Similar Documents

Publication Publication Date Title
JP5605921B2 (ja) アクリロニトリルの精製方法
JP5605922B2 (ja) アクリロニトリルの精製方法
TWI664161B (zh) 丙烯腈之純化方法、製造方法及蒸餾裝置
JP5512083B2 (ja) 反応器内部の反応速度制御方法、反応装置及びジメチルエーテルの製造方法。
JP2010222309A (ja) アクリロニトリルの精製方法
JP5717280B2 (ja) アクリロニトリルの精製方法
JP2018537512A (ja) 回収塔の制御
JP6300387B1 (ja) アクリロニトリルの精製方法、製造方法、及び蒸留装置
JP4948158B2 (ja) (メタ)アクリル酸溶液を得るためのシステムおよび(メタ)アクリル酸の製造方法
JP5785728B2 (ja) 不飽和ニトリルの蒸留方法及び蒸留装置、並びに不飽和ニトリルの製造方法
KR102079773B1 (ko) (메트)아크릴산의 연속 회수 방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140822

R150 Certificate of patent or registration of utility model

Ref document number: 5605921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350