JP5582822B2 - 電磁波発生装置 - Google Patents

電磁波発生装置 Download PDF

Info

Publication number
JP5582822B2
JP5582822B2 JP2010041134A JP2010041134A JP5582822B2 JP 5582822 B2 JP5582822 B2 JP 5582822B2 JP 2010041134 A JP2010041134 A JP 2010041134A JP 2010041134 A JP2010041134 A JP 2010041134A JP 5582822 B2 JP5582822 B2 JP 5582822B2
Authority
JP
Japan
Prior art keywords
semiconductor
electromagnetic wave
electrode
carrier
wave generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010041134A
Other languages
English (en)
Other versions
JP2011176246A5 (ja
JP2011176246A (ja
Inventor
亮太 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010041134A priority Critical patent/JP5582822B2/ja
Priority to US13/033,480 priority patent/US20110210260A1/en
Publication of JP2011176246A publication Critical patent/JP2011176246A/ja
Publication of JP2011176246A5 publication Critical patent/JP2011176246A5/ja
Application granted granted Critical
Publication of JP5582822B2 publication Critical patent/JP5582822B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Bipolar Transistors (AREA)

Description

本発明は、励起光の照射によって電磁波を発生する電磁波発生装置に関する。
ミリ波帯からテラヘルツ波帯まで(30GHz以上30THz以下)の周波数帯域内にある成分を含む電磁波(本明細書では、単にテラヘルツ波とも呼ぶ)は、以下の様な特徴を持つ。第一に、X線の様に非金属物質を透過する。第二に、生体分子や医薬品などに固有の吸収スペクトルがこの周波数帯に多数存在する。第三に、多くのイメージング用途に必要な空間分解能を有する。以上の特徴から、テラヘルツ波の応用分野として、物質内部の分光分析技術、X線に代わる安全な透視イメージング装置、生体分子や医薬品の解析技術などが開発されている。テラヘルツ波の発生方法として、広く用いられている方法は、光伝導素子を用いる方法である。光伝導素子は、移動度が比較的大きくてキャリア寿命がピコ秒以下という特殊な半導体と、その上に設けられた二つの電極とで構成される。電極間に電圧を印加した状態で電極間のギャップに光照射を行うと、ピコ秒オーダーの電流が電極間を流れ、テラヘルツ波が放射される。
テラヘルツ波の出力を増大する為には、電極間の電界強度が大きい方が好ましく、これを解決する為の発生装置が特許文献1に開示されている。この発生装置は、上記光伝導素子を用いるものではない。図10に示すこの発生装置は、基板11と、真空部分15と、電極12、13とで構成される。電極13の表面部は、光が照射された場合に真空部分15に電子16を放出する光電面14を備える。光電面14には、Sb、K、Na、Csなどの材料を用いる。真空部分15が介在する陽極12と陰極13との間には、電源20で比較的高い電圧Vを印加できる。光伝導素子とは異なり、光電面14から放出された電流が流れる時間τは、陽極12と陰極13とのギャップの間隔d及び電圧Vで決定される。例えば、電極間の電圧V=100V、このギャップd=2μmの場合、τ=0.67psecになると見積もられる。従って、光電面14にレーザ装置30から幅がフェムト秒の短いパルス光31(波長約780nm)を照射すると、時間τの間だけアンテナ(電極間12、13)に誘導電流が流れ、アンテナからテラヘルツ波が放射される。特許文献1は、この様にして、光伝導素子を用いる方法より電界強度を大きくし、テラヘルツ波の出力を向上している。
特開2006−074021号公報
しかし、上記電磁波発生装置の放出電流特性については、以下の点が指摘される。第一に、真空管素子の放出電流特性は、陰極・陽極間の電界の関数となっている為、陰極・陽極間の距離について電極幅に亘って均一性が高い精度で求められるが、加工上の精度から、これは容易ではない。第二に、真空管素子の放出電流特性は、陰極材料の仕事関数に依存しているので、その表面に吸着物などが付着すると仕事関数が変化し、放出電流が変動し易い。上記電磁波発生装置は、この様な真空管素子の特徴をそのまま有し、放出電流特性の安定化が課題となっていた。
上記課題に鑑み、本発明の電磁波発生装置は、第一電極を含むエミッタ部と、第二電極を含むコレクタ部と、エミッタ部とコレクタ部に挟まれたキャリア走行部と、第一電極より第二電極の電位が高くなる様に電圧を印加する電圧印加手段と、を備える。 前記キャリア走行部は、電子であるキャリアが走行する方向に沿って伸びた第一の半導体で構成される。前記エミッタ部は、前記第一の半導体に接して形成されてポテンシャル障壁をなす第二の半導体を含み、光照射手段から光が照射されたときにのみ前記ポテンシャル障壁を乗り越えて前記キャリアが前記キャリア走行部に放出される様に構成される。
本発明によれば、上記先行技術における真空は、固体である半導体(典型的には、平均自由工程より薄い実質的に真性な半導体)に置き換えられて、真空に準じる電子(或いは正孔)の弾道飛行が可能となる。固体である半導体を用いるので、半導体を挟むエミッタ・コレクタ間距離を高い精度で制御できる固体素子の製法を選択することができて、放出電流特性の安定化された電磁波発生装置を実現できる。
実施形態1に係る電磁波発生装置の構成を示す模式図。 実施形態2に係る電磁波発生装置の構成を示す模式図。 実施形態3に係る電磁波発生装置の構成を示す模式図。 実施形態4に係る電磁波発生装置の構成を示す模式図。 実施形態5に係る電磁波発生装置の構成を示す模式図。 実施例1に係る電磁波発生装置の構成を示す模式図。 実施例2に係る電磁波発生装置の構成を示す模式図。 実施例3に係る電磁波発生装置の構成を示す模式図。 電磁波発生装置を用いたテラヘルツ時間領域分光システムの構成を示す模式図。 従来の電磁波発生装置を説明する模式図。
本発明の電磁波発生装置では、光の照射により、第一電極を含むエミッタ部のキャリアが励起され、キャリア走行部をなす第一の半導体に接して形成された第二の半導体によるポテンシャル障壁を超えることで、キャリア走行部でキャリアが加速される。エミッタ部のポテンシャル障壁をなす第二の半導体を第一の半導体に接して設けることで、キャリアの走行距離を安定させることができ、また表面に吸着物などが付着することを防止できる。こうした考え方に基づき、本発明の電磁波発生装置の基本的な構成は、上記の如き構成を有する。典型的には、前記照射光は、時間変調された光であるが、連続光を用いることもできる。連続光では、例えば、周波数差がテラヘルツ領域となる2種類の周波数の光を照射光として用いる。また、電子(或いは正孔)の弾道飛行距離をより精度良く設定するために、好適には、前記キャリア走行部は、前記キャリアが走行する方向に沿った平均自由工程以下の長さの第一の半導体で構成するとよい。また、真性ないし実質的に真性な第一の半導体で構成するとよい。
以下、図を用いて本発明の実施形態及び実施例を説明する。
(実施形態1)
実施形態1に係る電磁波発生装置について、図1を用いて説明する。図1(a)は、本実施形態の電磁波発生装置を表す断面図である。図1(b)は、本実施形態の電磁波発生装置の断面に沿ったバンドプロファイルを示す。図1において、101は、エミッタ部に電子を供給する為の第一電極である。102は、電子(或いは正孔)のトンネルすることのできない程度の厚さの半導体(第二の半導体)で構成されたポテンシャル障壁である。本実施形態では、電極101と半導体ポテンシャル障壁102とがエミッタ部を構成する為、電極101のフェルミエネルギーを基準として、ポテンシャル障壁の高さは後述の励起光131のフォトンエネルギーより少しだけ小さくなる様に設計する。103は、厚さが平均自由工程より薄い真性ないし実質的に真性な半導体(第一の半導体)で構成されたキャリア走行部である。室温において、典型的には十nm〜百nmオーダーである。実質的に真性とは、完全に真性でなくてもよいことを指し、電界が印加できる程度に電子(或いは正孔)濃度が少なければよい。典型的には1016cm−3以下であればよい。走行部103はポテンシャル障壁102と接しており、その界面は周囲の雰囲気に暴露されずに済む構成となっている。よって、その表面に吸着物などが付着するということはない。111は、コレクタ部から電子を抜き取る為の第二電極である。本実施形態では、電極111のみがコレクタ部を構成する。
120は、電極101、111間に電圧121を印加する為の電圧印加手段である電圧源である。電圧源120は、第一電極101を基準に第二電極111の電位が高くなる様に電圧121を印加する。130は、光照射手段である光レーザ装置である。本実施形態では、幅がフェムト秒の短いパルス光131がレーザ装置130から照射され、半導体ポテンシャル障壁102の直上の電極101に照射される。ここで、パルス光131のフォトンエネルギーは半導体ポテンシャル障壁102の高さよりも大きい為、光励起された電子は電位の高い第二電極111に向かって放出される。勿論、それより小さなエネルギーによる電子の励起では、半導体ポテンシャル障壁102の高さを乗り越えられない為、電子が放出されることはない。こうした小さなエネルギーとしては、熱エネルギー(例えば、数十ミリ電子ボルト)による熱励起などが考えられる。
放出された電流が流れる時間τは、第一の半導体で構成されたキャリア走行部103の材料と厚さdで主に決定される。材料に依存するのは、材料中の飽和電子速度が関係するからである。この飽和速度vは、典型的には10cm/secのオーダーである。材料の飽和速度vが10cm/secと仮定し、電子の走行速度vもこれに達すると仮定すると、キャリア走行部103の厚さd=50nmの場合、τ=0.5psecになると見積もられる。この見積もりでは、τ=d/vを用いた。この式は、近似式である。短パルス光131による電子の励起時間、コレクタ部における電子の緩和時間を考慮して上記厚さ等を調整することにより、精度を高めることができる。電界依存性に関しては、電界強度が強ければτが小さくなるといった関係があるが、これには半導体材料による制限がある。典型的には10kV/cmオーダーの電界強度で電子速度が飽和することを考えると、それ以上の電界強度はτを小さくしない。従って、この様なナノ構造では、大きな電圧は必要としない。電極101、111間の電圧V121は1V程度で十分である。このとき、フェムト秒パルス光131を照射すると、時間τの間だけ電極101、111間に誘導電流が流れる。電極101、111をアンテナの形にしておくと、このアンテナからテラヘルツ波が放射される。放射パターンはアンテナに従う。放射されるテラヘルツ波のバンド幅は、単純に1/τで見積もると、2THzとなる。
本実施形態によれば、半導体を挟むエミッタ・コレクタ間距離を高い精度で制御できて、キャリアの走行距離を精度良く設定でき、放出電流特性を安定化できる。また、上記従来技術の真空管素子の放出電流特性は、真空準位が曲げられて生じるポテンシャル障壁における電子のトンネルに依存している。従って、熱エネルギーなどで与えられる僅かな電子のエネルギーの変化によっても、対応するポテンシャル障壁の厚さが変化し、放出電流が変動し易い。これに対して、本実施形態では、真空準位によるポテンシャル障壁は、エミッタに接続された別の半導体における伝導帯の底(或いは価電子帯の頂上)に置き換えられる。その為、数電子ボルトといった金属の仕事関数(Csでは約2eV、これは金属の中では比較的低い)と比較して障壁の高さが小さく、キャリアのトンネルに依存しない様なポテンシャル障壁を提供できる。つまりは、従来の真空を用いた電磁波発生装置をこの様に固体素子化して、放出電流特性を安定化することができる。尚、上記構成において、ポテンシャル障壁を形成する半導体102と半導体103を同じにすることができる。この場合、ポテンシャル障壁は、半導体と電極とのショットキー接合による障壁になって、制御し難くなるが、適切な界面処理や材料の選択を行えば、こうした構造を用いることもできる。また、上記構成において正孔をキャリアとして用いることもできる。この場合は、電圧120の極性を入れ替え、バンドプロファイルの上下を反転させた上記構成を用いればよい。
(実施形態2)
実施形態2に係る電磁波発生装置について、図2を用いて説明する。図2(a)は、本実施形態の電磁波発生装置を表す断面図である。図2(b)は、本実施形態の電磁波発生装置の断面に沿ったバンドプロファイルを示す。本実施形態において、第一電極201、ポテンシャル障壁202、キャリア走行部203、第二電極211、電圧印加手段220、光照射手段230は、実施形態1と同様であるが、エミッタ部の構成が異なる。204は、第一電極201と第二の半導体のポテンシャル障壁202に挟まれてポテンシャル障壁と接する半導体である。その導電性は、走行部203のキャリアの導電型と等しいn型かp型が選ばれる。本実施形態では、電極201、導電性の半導体204、半導体ポテンシャル障壁202がエミッタ部を構成する為、導電性の半導体204のフェルミエネルギーを基準として、ポテンシャル障壁の高さを設計する。例えば、導電性の半導体204のキャリア濃度は1018〜1019cm−3程度に調整する。この場合、フェルミエネルギーはキャリアの伝導帯底付近に位置する。すると、第一電極201のフェルミエネルギーすなわち半導体204のフェルミエネルギーを基準として、ポテンシャル障壁の高さは、半導体204と第二の半導体のポテンシャル障壁202のバンドオフセットによって設計することができる。例えば、半導体における典型的なバンドオフセットは、0.5eVなどと設計できる為、この場合、対応する励起光231の波長(フォトンエネルギー)は、2.4μm以下(0.5eV以上)であればよい。
本実施形態の動作方法を説明する。実施形態1と同様に、電圧印加手段220は、電極201、211間に電圧221を印加する。本実施形態では、光照射手段230からの短いパルス光231は、半導体ポテンシャル障壁202の直上の導電性半導体204に照射される。ただし、図2の様な配置の場合、電極201が光231の透過を妨げる為、斜め上方向か横方向に配置した光照射手段230からの照射も考えられる。勿論、電極201を薄くしたり、電極201の材料にITOやZnOなどの透明導電膜を用いたりすれば、透過率を向上することはできる。
この様に、励起光の波長として、比較的長波長側に対応することができるのが本実施形態の特徴である。故に、適切なバンドオフセットを選択して、光照射手段として、比較的低価格な1.5μm帯のファイバーレーザ装置などを利用することもできる。その他の点は、実施形態1と同様である。
(実施形態3)
実施形態3に係る電磁波発生装置について、図3を用いて説明する。図3(a)は、本実施形態の電磁波発生装置を表す断面図である。図3(b)は、本実施形態の電磁波発生装置の断面に沿ったバンドプロファイルを示す。同図は、一例として、キャリアとして電子を選んだ場合を表している。本実施形態において、第一電極301、導電性の半導体304、ポテンシャル障壁302、キャリア走行部303、第二電極311、電圧印加手段320、光照射手段330は、実施形態2と同様であるが、コレクタ部の構成が異なっている。
312は、サブコレクタと呼ばれる導電型の半導体であって、第二電極311の位置に自由度を与え、基板31上に実施形態2の構成を配置する為に設けている。従って、本実施形態では、電極311とサブコレクタ312とがコレクタ部を構成する。この為、例えば、基板31として半導体基板を選んだとすると、基板31上に半導体層312、303、302、304を順に結晶成長し、絶縁体305を用いるなど、よく知られた半導体プロセス技術で本実施形態を作製できる。すなわち、本実施形態は、コレクタ部、キャリア走行部、エミッタ部をこの順に積層することで作製できる。その手順は、例えば、よく知られたヘテロ接合バイポーラトランジスタ(HBT)の製造方法に準じる。サブコレクタ312の導電型は、走行部303のキャリアの導電型と等しいn型或いはp型を選択し、できる限りキャリアが高濃度になる様に調整する。
本実施形態の動作方法は、実施形態2と同様である。だたし、半導体312におけるキャリアの緩和時間を考慮する必要がある。また、励起光331による光キャリア生成で著しく電気伝導度が変わらない様に、サブコレクタ312の半導体の材料は、エネルギーギャップが励起光331のフォトンエネルギーより大きくなる様に選択することが好ましい。
(実施形態4)
実施形態4に係る電磁波発生装置について、図4を用いて説明する。図4(a)は、本実施形態の電磁波発生装置を表す断面図である。図4(b)は、本実施形態の電磁波発生装置の断面に沿ったバンドプロファイルを示す。同図は、キャリアとして電子を選んだ場合を表している。本実施形態において、第一電極401、導電性の半導体404、ポテンシャル障壁402、キャリア走行部403、第二電極411、電圧印加手段420、光照射手段430は、実施形態3と同様である。しかし、実施形態3とは、導電性の半導体312は除去されており、基板41の位置が図の上下方向に反転している点が異なる。この為、上述の半導体312におけるキャリアの緩和時間を考えなくてよい構成となる。というのも、通常、半導体におけるキャリアの緩和機構は、室温では主に縦光学フォノン散乱による数ピコ秒以内での緩和が支配的である。従って、放出された電流が流れる時間τがピコ秒と同じオーダーやそれ以下となる様な設計の場合、この緩和時間を考慮しなければならないからである。この様な意味では、本実施形態は、直接、電極内で緩和が起こる実施形態1、2と同様の単純なキャリア伝導機構を有する。
本実施形態は、基板41上に半導体層404、402、403を順に結晶成長し、絶縁体405を用いて、半導体プロセス技術で作製できる。すなわち、本実施形態は、エミッタ部、キャリア走行部、コレクタ部をこの順に積層することで作製できる。
本実施形態の動作方法は、実施形態3と同様である。すなわち、本実施形態において、光照射手段430から照射される短いパルス光431は、半導体ポテンシャル障壁402の直下の導電性半導体404に照射する。ただし、基板41の位置の反転に伴って、フェムト秒パルス光431は、基板41を通過しなくてはならない構成となっている。従って、基板41は、励起光431に対して、透明で低分散な材料を使用する。例えば、基板41として半導体基板を選んだ場合、少なくとも、半導体41のバンドギャップは励起光431のフォトンエネルギーより大きくする必要がある。或いは、基板41の一部に、裏面側から半導体ポテンシャル障壁402の直下の導電性半導体404まで光導入ができる様に穴を開けてもよい。
(実施形態5)
実施形態5に係る電磁波発生装置について、図5を用いて説明する。図5(a)は、本実施形態の電磁波発生装置を表す断面図である。図5(b)は、本実施形態の電磁波発生装置を表す上面図である。本実施形態において、第一電極501、第二電極511、電圧印加手段520、光照射手段530は実施形態3と同様であり、導電性の半導体504、ポテンシャル障壁502、キャリア走行部503、導電性の半導体512は、横に並んだ配置となっている。本実施形態では、第一電極501と導電性の半導体504とポテンシャル障壁502がエミッタ部を、第二電極511と導電性の半導体512がコレクタ部を構成する。これは、これまでの実施形態が縦型であったことに対して、本発明が横型でも構成できる一例を示すものである。例えば、基板51として真性ないし実質的に真性な半導体基板を選んだとすれば、基板51上において、p型半導体領域502、n型半導体領域504、512を順にイオン注入するなど、よく知られた半導体プロセス技術によって作製可能である。更に精度の高い傾斜基板を利用したヘテロ接合を用いて作製してもよい。本実施形態では、ポテンシャル障壁502として、走行部503を飛行する電子とは反対の導電型となるp型を用いる。障壁の高さはキャリア濃度によって制御することができる。
本実施形態の動作方法は、実施形態3と同様である。すなわち、本実施形態において、光照射手段530から照射される励起光531は、半導体ポテンシャル障壁502の隣の導電性の半導体504に照射する。半導体504(特に半導体502との界面付近が好ましい)にフェムト秒パルス光531を直接照射することができるので、これまでの縦型よりも光効率は良い。
本実施形態では、キャリア走行部503には、電極501、511間に生じる電気力線に沿った横方向の電界が掛かる。従って、放出された電流が流れる時間τは、キャリア走行部503の材料と横方向の長さdで主に決定される。つまり、本実施形態では、τの決定には、キャリアの走行方向に沿った半導体の長さが関わっている。その他、τの導出に関しては、実施形態1で説明した内容と同じである。従って、フェムト秒パルス光531を照射すると、時間τの間だけ電極501、511間に誘導電流が流れる。本実施形態では、電極501、511がダイポールアンテナの形になっている。アンテナ形状としては、ダイポールアンテナ、ボウタイアンテナなどがよく知られている。放射パターンは、基板51にアンテナが貼り付いている形となっている為、誘電率の高い方に、つまりは、基板51側に偏る。
更に具体的な電磁波発生装置について、以下の実施例で説明する。
(実施例1)
実施例1に係る電磁波発生装置について、図6を用いて説明する。図6(a)は、本実施例の電磁波発生装置を表す断面図である。図6(b)は、本実施例の電磁波発生装置の断面に沿った半導体部分のバンドプロファイルを示す。図6(c)は、本実施例の電磁波発生装置を表す上面図である。本実施例は、実施形態1と実施形態3とを組み合わせた形態を有する。
図6(a)、(c)において、61はGaAs基板である。本実施例は、GaAs基板61上に構成される。601は、Ti/Pt/Au電極(第一電極)である。602は、厚さ10nmのAlGaAs(Alの組成30%)で構成されたポテンシャル障壁である。本実施例では、電極601とAlGaAsポテンシャル障壁602がエミッタ部を構成する為、ポテンシャル障壁の高さはTiとAlGaAsのショットキー障壁高さと一致し、約0.7eVである。603は、厚さ30nmのアンドープGaAsで構成された走行部である。ここの電子濃度は、周囲と比較して十分に希薄であればよい為、アンドープでも問題はない。更に、612は、厚さ100nm、電子濃度が1×1019cm−3のn−GaAsであり、バンドギャップは約1.4eVである。611は、Ti/Pt/Au電極(第二電極)である。本実施例では、Ti/Pt/Au電極611とサブコレクタ612がコレクタ部を構成する。
図6(b)は、本実施例の半導体部分のバンドプロファイルを、ポワソンソルバを使用して計算したもので示す。ここで、走行部603のドナー濃度として1×1016cm−3を与えて計算しても、実質的にバンドプロファイルの変化はない。こうした構造は、GaAs基板61上に半導体層612、603、602を順にMBE法或いはMOVPE法を用いて結晶成長し、メサ状へのエッチング、SiO605などによるパッシベーションなど、よく知られた半導体プロセス技術で作製する。メサは、RC時定数をできるだけ小さくする為に小面積が好ましく、また、光照射の投影面積より少し大きな程度がよい。本実施例では、10μm×10μmを用いる。
本実施例の動作にあたり、電極601、611間には、電圧源620から電圧を印加し、走行部603における電界強度を50V/cm程度に調整する。本実施例では、レーザ装置630として、幅が数十フェムト秒の短パルス光を発振する1.5μm帯ファイバーレーザ装置を用いる。フェムト秒パルス光631は、AlGaAsポテンシャル障壁602の直上のTi/Pt/Au電極601に照射する。波長1.5μmはフォトンエネルギー0.8eVに相当する為、約0.7eVのAlGaAsポテンシャル障壁602を超える様な電子の光励起が可能である。また、サブコレクタ612のバンドギャップは約1.4eVであり、励起光631の照射によりサブコレクタ612の電気伝導度が著しく変わらない様に設計されている。
図6(c)において、606は、第一電極601を櫛歯状に形成した部分を示している。本実施例では、光631の透過を妨げない様に電極601に櫛歯状電極部606を設けている為、幾分か光効率が良い。放出された電流が流れる時間τは、GaAs走行部603の材料に依存する。GaAsの室温における20〜200kV/cmの電界印加時の電子の走行速度vは、概ね0.8×10cm/secである。これについては、GaAsにおける材料特性を調べたJ. S. Blakemore, Jour. Appl. Phys. Vol.53, R123(1982)を参照した。故に、τ=d/vより、τ=0.38psecと見積もられる。放射パターンは、誘電率の高いGaAs基板61側に放射される為、テラヘルツ波の損失の小さい半絶縁性基板61を用いるとよい。
(実施例2)
実施例2に係る電磁波発生装置について、図7を用いて説明する。図7(a)は、本実施例の電磁波発生装置を表す断面図である。図7(b)は、本実施例の電磁波発生装置の断面に沿った半導体部分のバンドプロファイルを示す。図7(c)は、本実施例の電磁波発生装置を表す上面図である。本実施例は、実施形態2と実施形態3とを組み合わせた形態を有する。
図7(a)において、71はInP基板である。本実施例は、InP基板71上に構成される。701は、パッシベーション705上のTi/Pd/Au電極(第一電極)である。702は、フェルミエネルギー付近のトンネル確率が0.1%以下となる厚さ8nmのInAlAsで構成されたポテンシャル障壁である。704は、厚さ100nm、電子濃度が1×1019cm−3のn−InGaAsであり、フェルミエネルギーは伝導帯底付近にある。本実施例では、電極701、n−InGaAs704、InAlAsポテンシャル障壁702がエミッタ部を構成する為、ポテンシャル障壁の高さはInGaAsとInAlAsのバンドオフセットと一致し、約0.5eVとなる。703は、厚さ60nmのi−InGaAsで構成された走行部である。更に、712は、厚さ100nm、電子濃度が2×1019cm−3のn−InPであり、バンドギャップは約1.3eVある。711は、Ti/Pd/Au電極(第二電極)である。本実施例では、Ti/Pd/Au電極711とサブコレクタ712がコレクタ部を構成する。いずれの半導体層も、InP基板71に格子整合する組成を用いる。図7(b)は、本実施例の半導体部分のバンドプロファイルを、ポワソンソルバを使用して計算したもので示す。InAlAsポテンシャル障壁702は、臨界膜厚以下であれば、Al組成が大きくなる側に歪みを与えてポテンシャル障壁の高さを大きく、或いはAl組成が小さくなる側に歪みを与えてポテンシャル障壁の高さを低く設計することもできる。
本実施例の動作にあたり、電極701、711間には、電圧源720から電圧1Vを印加する。その他は、実施例1と同様である。レーザ装置730は、実施例1と同様のレーザ装置を用いる。フェムト秒パルス光731は、ポテンシャル障壁702の直上のn−InGaAs704に照射する。図7(c)において、706は、第一電極701をリング状に形成した部分を示している。本実施例では、光731の透過を妨げない様に電極701にリング状電極部706を設け、n−InGaAs704の一部が露出している為、光効率が良い。放出された電流が流れる時間τは、InGaAs走行部703の材料に依存する。InGaAsの電子の走行速度vは概ね9×10cm/sec(電子の弾道飛行を利用したVFET構造を提案する、K. Furuya et al, J. Phys.: Conf. Ser. Vol.38, 208 (2006)を参照)である。その為、τ=d/vより、τ=67fsecと見積もられる。放射パターンは、誘電率の高いInP基板71の側に放射される為、テラヘルツ波の損失の小さい半絶縁性基板71を用いるとよい。
(実施例3)
実施例3に係る電磁波発生装置について、図8を用いて説明する。図8(a)は、本実施例の電磁波発生装置を表す断面図である。図8(b)は、本実施例の電磁波発生装置の断面に沿った半導体部分のバンドプロファイルを示す。図8(a)において、81はInP基板である。本実施例は、実施例2の変形例であり、n−InP712は除去され、InP基板81の位置が図の上下方向に反転している。従って、本実施例では、パッシベーション805上のTi/Pd/Au電極(第二電極)811のみがコレクタ部を構成する。TiとInGaAsの界面の性質により、Ti/Pd/Au電極811はショットキーコレクタとして動作する。その他は、実施例2と同様である。すなわち、801はTi/Pd/Au電極(第一電極)、802は厚さ8nmのInAlAsポテンシャル障壁、804は、厚さ100nmの電子濃度が1×1019cm−3のn−InGaAs、803は、厚さ60nmのi−InGaAsである。本実施例の半導体部分のバンドプロファイルを、ポワソンソルバを使用して計算したもので示す図8(b)では、i−InGaAs走行部803を飛行する電子は左側に向かう。
本実施例の動作方法は、実施例2と同様であり、電極801、811間には、電圧源820から電圧が印加される。ただし、レーザ装置830からのフェムト秒パルス光831は、基板81を通過する為、1.5μm帯の励起光831にとって損失や分散が比較的小さい半絶縁性InP基板81を用いる。本実施例において、放射パターンは、アンテナ801、811とその上に載せた誘電体レンズ840によって制御する。本実施例ではSiレンズを用いる為、テラヘルツ波は上方向にも放射する。
(実施例4)
図9は、実施例4に係る電磁波発生装置を用いたテラヘルツ時間領域分光システム(THz−TDS)を示す。この様な分光システム自体は、従来から知られているものと基本的に同じである。この分光システムは、短パルスレーザ830と、ハーフミラー910と、光遅延系920と、電磁波発生素子(電磁波発生装置)800と、電磁波検出素子(電磁波検出装置)940とを主要な要素として備える。ポンプ光931、プローブ光932は、それぞれ電磁波発生素子800と電磁波検出素子940を照射する。電圧源820で電圧が印加されている電磁波発生素子800から発生したテラヘルツ波は、テラヘルツガイド933、935によって検体950に導かれる。検体950の吸収スペクトルなどの情報を含むテラヘルツ波は、テラヘルツガイド934、936によって導かれて電磁波検出素子940で検出される。このとき、電流計960の検出電流の値は、テラヘルツ波の振幅に比例する。時間分解を行う(つまり電磁波の時間波形を取得する)には、プローブ光932側の光路長を変化させる光遅延系920を動かすなど、ポンプ光とプローブ光との照射タイミングを制御すればよい。すなわち、電磁波発生素子800における電磁波発生時と電磁波検出素子960における電磁波検出時との間の遅延時間を調整する。
本実施例において、電磁波検出素子940は1.5μm帯に対応した低温成長InGaAsによる光伝導素子を用いる。部品点数は増えるが、プローブ光932側に第二次高調波発生器(SHG結晶)を挿入し、電磁波検出素子940として低温成長GaAsによる光伝導素子を用いると、信号雑音比が向上する為に好ましい。この様に、本発明による電磁波発生装置を用いてテラヘルツ時間領域分光システムを構成することが可能である。
101・・・第一電極、102・・・第二の半導体(ポテンシャル障壁)、103・・・第一の半導体(キャリア走行部)、111・・・第二電極、120・・・電圧印加手段(電圧源)、130・・・光照射手段、131・・・光(時間変調された光)

Claims (10)

  1. 第一電極を含むエミッタ部と、
    第二電極を含むコレクタ部と、
    前記エミッタ部とコレクタ部に挟まれたキャリア走行部と、
    前記第一電極より前記第二電極の電位が高くなる様に電圧を印加する電圧印加手段と、
    光を照射する光照射手段と、
    を備え、
    前記キャリア走行部は、電子であるキャリアが走行する方向に沿って伸びた第一の半導体で構成され、
    前記エミッタ部は、前記第一の半導体に接して形成されてポテンシャル障壁をなす第二の半導体を含み、前記光によりキャリアが前記ポテンシャル障壁以上のエネルギレベルに励起されるときにのみ前記ポテンシャル障壁を乗り越えて前記キャリアが前記キャリア走行部に放出されるように構成されることを特徴とする電磁波発生装置。
  2. 第一電極を含むエミッタ部と、
    第二電極を含むコレクタ部と、
    前記エミッタ部とコレクタ部に挟まれたキャリア走行部と、
    前記第一電極より前記第二電極の電位が低くなる様に電圧を印加する電圧印加手段と、
    光を照射する光照射手段と、
    を備え、
    前記キャリア走行部は、正孔であるキャリアが走行する方向に沿って伸びた第一の半導体で構成され、
    前記エミッタ部は、前記第一の半導体に接して形成されてポテンシャル障壁をなす第二の半導体を含み、前記光によりキャリアが前記ポテンシャル障壁以上のエネルギレベルに励起されるときにのみ前記ポテンシャル障壁を乗り越えて前記キャリアが前記キャリア走行部に放出されるように構成されることを特徴とする電磁波発生装置。
  3. 前記キャリア走行部は、前記キャリアが走行する方向に沿った平均自由工程以下の長さの第一の半導体で構成されることを特徴とする請求項1または2に記載の電磁波発生装置。
  4. 前記キャリア走行部は、真性、ないし電界が印加できる程度に電子或いは正孔の濃度が少ない第一の半導体で構成されることを特徴とする請求項1から3のいずれか1項に記載の電磁波発生装置。
  5. 前記エミッタ部は、前記第一電極と前記第二の半導体に挟まれて前記第二の半導体と接し前記キャリアと等しい導電型の半導体を含むことを特徴とする請求項1から4のいずれか1項に記載の電磁波発生装置。
  6. 前記コレクタ部は、前記光のフォトンエネルギーよりエネルギーギャップが大きく前記キャリアと等しい導電型の半導体を含むことを特徴とする請求項1から5のいずれか1項に記載の電磁波発生装置。
  7. 基板の上に、前記コレクタ部、前記キャリア走行部、前記エミッタ部がこの順に、或いは前記エミッタ部、前記キャリア走行部、前記コレクタ部がこの順に、積層されていることを特徴とする請求項1から6のいずれか1項に記載の電磁波発生装置。
  8. 前記第一の半導体と前記第二の半導体は同じ半導体であることを特徴とする請求項1から7のいずれか1項に記載の電磁波発生装置。
  9. 第二の半導体は、キャリアがトンネルすることのできない程度の厚さを有することを特徴とする請求項1から8のいずれか1項に記載の電磁波発生装置。
  10. 請求項1から9のいずれか1項に記載の電磁波発生装置と、
    前記電磁波発生装置から発生された電磁波を検出するための電磁波検出装置と、
    前記電磁波発生装置における電磁波発生時と前記電磁波検出装置における電磁波検出時との間の遅延時間を調整するための遅延系と、
    を備え、
    前記遅延系により遅延時間を変化させることによって電磁波の時間波形を取得することを特徴とする時間領域分光装置。
JP2010041134A 2010-02-26 2010-02-26 電磁波発生装置 Expired - Fee Related JP5582822B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010041134A JP5582822B2 (ja) 2010-02-26 2010-02-26 電磁波発生装置
US13/033,480 US20110210260A1 (en) 2010-02-26 2011-02-23 Electromagentic-wave generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041134A JP5582822B2 (ja) 2010-02-26 2010-02-26 電磁波発生装置

Publications (3)

Publication Number Publication Date
JP2011176246A JP2011176246A (ja) 2011-09-08
JP2011176246A5 JP2011176246A5 (ja) 2013-04-11
JP5582822B2 true JP5582822B2 (ja) 2014-09-03

Family

ID=44504807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041134A Expired - Fee Related JP5582822B2 (ja) 2010-02-26 2010-02-26 電磁波発生装置

Country Status (2)

Country Link
US (1) US20110210260A1 (ja)
JP (1) JP5582822B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2212679A1 (en) * 2007-09-18 2010-08-04 Applied Biosystems Inc. Methods, systems and apparatus for light concentrating mechanisms
JP5910064B2 (ja) * 2011-12-20 2016-04-27 セイコーエプソン株式会社 光伝導アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置および計測装置
JP5998479B2 (ja) * 2011-12-28 2016-09-28 セイコーエプソン株式会社 光伝導アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置および計測装置
JP6003063B2 (ja) * 2012-01-18 2016-10-05 セイコーエプソン株式会社 光伝導アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置および計測装置
JP6296681B2 (ja) * 2012-01-19 2018-03-20 キヤノン株式会社 発振素子、発振器及びこれを用いた撮像装置
JP5998489B2 (ja) * 2012-01-20 2016-09-28 アイシン精機株式会社 多光子励起型のテラヘルツ波発生素子及びテラヘルツ波検出素子
JP5987346B2 (ja) * 2012-02-23 2016-09-07 セイコーエプソン株式会社 アンテナ、テラヘルツ波発生装置、カメラ、イメージング装置、および計測装置
RU2632256C2 (ru) * 2012-04-19 2017-10-03 Карнеги Меллон Юниверсити Диод на гетеропереходах металл-полупроводник-металл (мпм)
US9543423B2 (en) 2012-09-04 2017-01-10 Carnegie Mellon University Hot-electron transistor having multiple MSM sequences
JP6032427B2 (ja) * 2013-02-27 2016-11-30 セイコーエプソン株式会社 光伝導アンテナ、カメラ、イメージング装置、および計測装置
JP6194676B2 (ja) * 2013-07-29 2017-09-13 富士通株式会社 アンテナ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677534B2 (ja) * 1995-07-24 1997-11-17 株式会社エイ・ティ・アール光電波通信研究所 マイクロ波半導体装置とその発振周波数を変化するための方法
JP2728200B2 (ja) * 1995-09-04 1998-03-18 広島大学長 固体テラヘルツ帯電磁波発生装置
JP2765629B2 (ja) * 1996-03-25 1998-06-18 株式会社エイ・ティ・アール光電波通信研究所 負性抵抗を有する超格子半導体装置と負性抵抗を変化するための方法及びマイクロ波発振回路
JP3135871B2 (ja) * 1997-09-12 2001-02-19 株式会社エイ・ティ・アール環境適応通信研究所 超格子半導体装置
GB2409337B (en) * 2002-09-04 2005-08-03 Teraview Ltd An emitter
JP4785392B2 (ja) * 2004-03-26 2011-10-05 キヤノン株式会社 テラヘルツ電磁波の発生素子の製造方法
US7595498B2 (en) * 2004-08-05 2009-09-29 Panasonic Corporation Electromagnetic wave generation apparatus and manufacturing method of electromagnetic wave generation apparatus
JP2006216851A (ja) * 2005-02-04 2006-08-17 Matsushita Electric Ind Co Ltd 電磁波発生装置
US7376403B1 (en) * 2005-04-25 2008-05-20 Sandia Corporation Terahertz radiation mixer
JP2007281223A (ja) * 2006-04-07 2007-10-25 Matsushita Electric Ind Co Ltd 電磁波発生装置
US7601294B2 (en) * 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
JP5196750B2 (ja) * 2006-08-25 2013-05-15 キヤノン株式会社 発振素子
CN101210873A (zh) * 2006-12-31 2008-07-02 清华大学 一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备
JP5127360B2 (ja) * 2007-08-20 2013-01-23 キヤノン株式会社 発振素子、及び検査装置
JP5171539B2 (ja) * 2007-11-29 2013-03-27 キヤノン株式会社 共鳴トンネル構造体

Also Published As

Publication number Publication date
JP2011176246A (ja) 2011-09-08
US20110210260A1 (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5582822B2 (ja) 電磁波発生装置
US20200264048A1 (en) Photoconductive Detector Device with Plasmonic Electrodes
JP6062640B2 (ja) 光伝導素子
JP5654760B2 (ja) 光素子
JP5270585B2 (ja) 高速光導電体
JP5656428B2 (ja) 光伝導素子
JP6332980B2 (ja) 光伝導素子、光伝導素子の製造方法、及び、テラヘルツ時間領域分光装置
Erhard et al. Ultrafast photodetection in the quantum wells of single AlGaAs/GaAs-based nanowires
Qu et al. Electroluminescence from Nanocrystals above 2 µm
JPWO2015129668A1 (ja) 熱輻射光源、及び該光源に用いる2次元フォトニック結晶
US20120236307A1 (en) Photoconductive element
JP2010045157A (ja) テラヘルツ電磁波放射素子およびテラヘルツ電磁波発生方法
JP2007281223A (ja) 電磁波発生装置
Petrov et al. Terahertz Emitters and Detectors Made on High-Resistivity InGaAsP: Fe Photoconductors
Balci et al. High efficient THz emission from unbiased and biased semiconductor nanowires fabricated using electron beam lithography
JP5737956B2 (ja) テラヘルツ波素子
US20240004263A1 (en) Systems and Methods for Wavelength Conversion through Plasmon-Coupled Surface States
Moon et al. Field enhancement effect in nano-electrodes for THz generation and detection
Kuznetsov et al. Photoconductive terahertz antennas based on topological insulators Bi 2− x Sb x Te 3− y Se y
Balci et al. Biased THz emission from InGaAs nanowires fabricated using electron beam lithography
Romeo et al. Room-temperature nanowire terahertz photodetectors
JP2004172410A (ja) テラヘルツ光発生素子およびテラヘルツ光発生装置
JP2013115405A (ja) 光検出素子及び光検出方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

LAPS Cancellation because of no payment of annual fees