JP5582294B2 - Hot water / hot water heating system with dual refrigeration cycle - Google Patents

Hot water / hot water heating system with dual refrigeration cycle Download PDF

Info

Publication number
JP5582294B2
JP5582294B2 JP2010083456A JP2010083456A JP5582294B2 JP 5582294 B2 JP5582294 B2 JP 5582294B2 JP 2010083456 A JP2010083456 A JP 2010083456A JP 2010083456 A JP2010083456 A JP 2010083456A JP 5582294 B2 JP5582294 B2 JP 5582294B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
water supply
water
refrigerant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010083456A
Other languages
Japanese (ja)
Other versions
JP2011214776A (en
Inventor
亮 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010083456A priority Critical patent/JP5582294B2/en
Publication of JP2011214776A publication Critical patent/JP2011214776A/en
Application granted granted Critical
Publication of JP5582294B2 publication Critical patent/JP5582294B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、冷媒間熱交換器で接続された高元側の冷凍サイクルと低元側の冷凍サイクルとを有し、高元側の冷凍サイクルで水−冷媒熱交換器により温水供給部内の水を加熱昇温して給湯と温水暖房とに供する二元冷凍サイクルによる給湯・温水暖房装置に関するものである。   The present invention has a high-source-side refrigeration cycle and a low-source-side refrigeration cycle connected by an inter-refrigerant heat exchanger, and the water in the hot water supply section is water-refrigerant heat exchanger in the high-source-side refrigeration cycle. The present invention relates to a hot water supply / hot water heating apparatus using a dual refrigeration cycle that heats and heats a hot water supply for hot water supply and hot water heating.

特許文献1には、冷媒間熱交換器で接続された高元側の冷凍サイクルと低元側の冷凍サイクルとを有し、高元側の冷凍サイクルで水−冷媒熱交換器により貯湯タンク内の水を加熱昇温して温水を生成する給湯装置が開示されている。   Patent Document 1 has a high-source-side refrigeration cycle and a low-source-side refrigeration cycle connected by an inter-refrigerant heat exchanger, and the water-refrigerant heat exchanger in the hot water storage tank in the high-source-side refrigeration cycle. A hot water supply apparatus that heats and raises the temperature of water to generate hot water is disclosed.

貯湯タンク内の温水は、温水暖房のファンコンベクタや床暖房にも使用できるが、給湯の場合と温水暖房の場合とでは、水−冷媒熱交換器で水を加熱するときに、その昇温する温度幅が異なるため、同じ冷凍サイクルで給湯と温水暖房とを行おうとする場合、次のような問題がある。   Hot water in the hot water storage tank can be used for fan convectors and floor heating for hot water heating, but the temperature rises when water is heated with a water-refrigerant heat exchanger in hot water heating and hot water heating. Since the temperature ranges are different, there are the following problems when trying to perform hot water supply and hot water heating in the same refrigeration cycle.

一例として、5kWの加熱量で温水を生成することを想定して、暖房の場合には、60℃まで加熱して出湯し暖房端末で放熱させると、温水はおよそ10Kの温度降下で水−冷媒熱交換器に戻ってくるため、その昇温幅は10K程度となり、また、そのときの水−冷媒熱交換器内での水流量は、およそ毎分7.17リットルとなる。   As an example, assuming that hot water is generated with a heating amount of 5 kW, in the case of heating, when heated to 60 ° C., discharged hot water and radiated at the heating terminal, the hot water is a water-refrigerant with a temperature drop of about 10K. Since the temperature returns to the heat exchanger, the temperature rise range is about 10K, and the water flow rate in the water-refrigerant heat exchanger at that time is about 7.17 liters per minute.

これに対して、給湯の場合には、17℃程度の市水を80℃にまで昇温させることから、その昇温幅は63Kであり、また、水−冷媒熱交換器内での水流量は、およそ毎分1.19リットルであり、温水暖房時の約1/6である。このように、給湯と温水暖房とでは出湯温度と水流量が異なるのに、それらを同じ冷凍サイクルで実現するには非効率であることが分かる。   On the other hand, in the case of hot water supply, since the city water of about 17 ° C. is heated to 80 ° C., the temperature increase range is 63K, and the water flow rate in the water-refrigerant heat exchanger Is approximately 1.19 liters per minute, which is about 1/6 that of hot water heating. In this way, although the hot water temperature and the water flow rate are different between hot water supply and hot water heating, it is found that it is inefficient to realize them in the same refrigeration cycle.

特開2004−218943号公報Japanese Patent Application Laid-Open No. 2004-218943

したがって、本発明の課題は、給湯時と温水暖房時とで、出湯温度と水流量に応じて、高元側冷凍サイクルの運転を切り替えることにより、全体として効率のよい運転が行えるようにした二元冷凍サイクルによる給湯・温水暖房装置を提供することにある。   Therefore, an object of the present invention is to enable efficient operation as a whole by switching the operation of the high-side refrigeration cycle according to the hot water temperature and the water flow rate during hot water supply and hot water heating. It is to provide a hot water supply / hot water heating device based on the original refrigeration cycle.

上記課題を解決するため、本発明は、請求項1に記載されているように、給湯および/または温水暖房用の温水供給部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む高元側冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む低元側冷媒回路とを備え、上記温水供給部と上記高元側の第1凝縮部との間に水−冷媒熱交換器が設けられ、上記高元側の第1蒸発部と上記低元側の第2凝縮部との間に冷媒間熱交換器が設けられている二元冷凍サイクルによる給湯・温水暖房装置において、
給湯時と温水暖房時とで上記高元側冷媒回路の運転サイクルを切り替える制御手段を有するとともに、上記水−冷媒熱交換器は、上記高元側冷媒回路に対して並列に接続される少なくとも2つの水−冷媒熱交換部を備え、上記制御手段は、上記高元側冷媒回路の運転サイクルを、給湯時には超臨界域の冷媒顕熱で上記温水供給部内の水を加熱昇温する遷臨界サイクル運転とし、上記遷臨界サイクル運転時にはいずれかひとつの水−冷媒熱交換部を使用し、温水暖房時には冷媒の凝縮熱で上記温水供給部内の水を加熱昇温する亜臨界サイクル運転とし、上記亜臨界サイクル運転時には2つの水−冷媒熱交換部を使用することを特徴としている。
In order to solve the above problems, the present invention provides a hot water supply unit for hot water supply and / or hot water heating, a first compressor, a first condensing unit, a first expansion valve, and A high-end side refrigerant circuit including a first evaporator, and a low-end side refrigerant circuit including a second compressor, a second condensing unit, a second expansion valve, and a second evaporating unit, A water-refrigerant heat exchanger is provided between the first condensing unit on the original side, and an inter-refrigerant heat exchanger is provided between the first evaporating unit on the high original side and the second condensing unit on the low original side. In the hot water supply / hot water heating device by the provided dual refrigeration cycle,
At least refrigerant heat exchanger is connected in parallel to the high-side refrigerant circuit - in that during hot water supply during the hot water heating as well as have a control means for switching the operation cycle of the high-side refrigerant circuit, the water Two water-refrigerant heat exchanging sections are provided, and the control means is configured to transcritically heat the water in the hot water supply section with the refrigerant sensible heat in the supercritical region during the hot water supply operation cycle of the high-source side refrigerant circuit. Cycle operation, using any one water-refrigerant heat exchange unit during the transcritical cycle operation, and subcritical cycle operation that heats and heats the water in the hot water supply unit with the condensation heat of the refrigerant during warm water heating , Two water-refrigerant heat exchangers are used during the subcritical cycle operation .

具体的には、請求項に記載されているように、上記遷臨界サイクル運転時に使用される上記いずれかひとつの水−冷媒熱交換部には、冷媒流路用開閉弁と通水路用開閉弁とが設けられているとともに、上記水−冷媒熱交換器の出口側には冷媒により加熱昇温された温水を給湯側と温水暖房側とに切り替える第1流路切替弁が設けられ、上記制御手段は、上記遷臨界サイクル運転時には、上記冷媒流路用開閉弁と通水路用開閉弁をともに閉にするとともに、上記第1流路切替弁を給湯側に切り替え、上記亜臨界サイクル運転時には、上記冷媒流路用開閉弁と通水路用開閉弁をともに開にするとともに、上記第1流路切替弁を温水暖房側に切り替える。
Specifically, as described in claim 2 , any one of the water-refrigerant heat exchanging parts used during the transcritical cycle operation includes a refrigerant flow opening / closing valve and a water passage opening / closing. And a first flow path switching valve for switching the hot water heated by the refrigerant between the hot water supply side and the hot water heating side at the outlet side of the water-refrigerant heat exchanger, The control means closes both the refrigerant flow path on-off valve and the water flow path on-off valve at the time of the transcritical cycle operation, switches the first flow path switching valve to the hot water supply side, and at the time of the subcritical cycle operation. The refrigerant flow path opening / closing valve and the water flow path opening / closing valve are both opened, and the first flow path switching valve is switched to the hot water heating side.

また、本発明には、請求項に記載されているように、給湯および/または温水暖房用の温水供給部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む高元側冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む低元側冷媒回路とを備え、上記温水供給部と上記高元側の第1凝縮部との間に水−冷媒熱交換器が設けられ、上記高元側の第1蒸発部と上記低元側の第2凝縮部との間に冷媒間熱交換器が設けられている二元冷凍サイクルによる給湯・温水暖房装置において、
給湯時と温水暖房時とで上記高元側冷媒回路の運転サイクルを切り替える制御手段を有するとともに、上記水−冷媒熱交換器は、上記高元側冷媒回路に対して直列に接続される少なくとも2つの水−冷媒熱交換部を備え、上記制御手段は、上記高元側冷媒回路の運転サイクルを、給湯時には超臨界域の冷媒顕熱で上記温水供給部内の水を加熱昇温する遷臨界サイクル運転とし、上記遷臨界サイクル運転時にはいずれかひとつの水−冷媒熱交換部を使用し、温水暖房時には冷媒の凝縮熱で上記温水供給部内の水を加熱昇温する亜臨界サイクル運転とし、上記亜臨界サイクル運転時には2つの水−冷媒熱交換部を使用する態様も含まれる。
Further, the present invention is, as described in claim 3, hot water and / or a hot water supply unit for hot water heating, the first compressor, a first condenser portion, the first expansion valve and the first evaporator And a low-side refrigerant circuit including a second compressor, a second condensing unit, a second expansion valve, and a second evaporation unit, and the hot water supply unit and the high-side side first circuit A water-refrigerant heat exchanger is provided between the first condensing unit, and an inter-refrigerant heat exchanger is provided between the first high-evaporating unit and the second low-side condensing unit. In hot water supply / hot water heating system with dual refrigeration cycle,
Control means for switching the operation cycle of the high-side refrigerant circuit between hot water supply and hot water heating, and the water-refrigerant heat exchanger is connected in series to the high-source side refrigerant circuit. Two water-refrigerant heat exchanging sections, and the control means is a transcritical cycle for heating and heating the water in the hot water supply section with the refrigerant sensible heat in the supercritical region when supplying hot water. During the transcritical cycle operation, one of the water-refrigerant heat exchange units is used, and during warm water heating , the water in the warm water supply unit is heated and heated with the condensation heat of the refrigerant. A mode in which two water-refrigerant heat exchangers are used during critical cycle operation is also included.

具体的には、請求項に記載されているように、上記高元側冷媒回路に対して直列に接続される少なくとも2つの水−冷媒熱交換部のうち、冷媒の流れ方向で上流側の水−冷媒熱交換部の冷媒入口側と冷媒出口側との間には迂回配管が設けられているとともに、上記冷媒入口側には冷媒流路を上記水−冷媒熱交換部側と上記迂回配管側のいずれか一方に切り替える第2流路切替弁が設けられ、上記温水供給部は、下流側の水−冷媒熱交換部側から上流側の水−冷媒熱交換部を通って温水暖房側に温水が流される第1通水回路と、上記下流側の水−冷媒熱交換部と上記上流側の水−冷媒熱交換部との間から第3流路切替弁を介して給湯側に至る第2通水回路を有し、上記制御手段は、上記遷臨界サイクル運転時には、上記第2流路切替弁を上記迂回配管側に切り替えるとともに、上記第3流路切替弁を上記第2通水回路側に切り替え、上記亜臨界サイクル運転時には、上記第2流路切替弁を上記水−冷媒熱交換部側に切り替えるとともに、上記第3流路切替弁を上記第1通水回路側に切り替える。
Specifically, as described in claim 4 , among at least two water-refrigerant heat exchange units connected in series to the high-side refrigerant circuit, the upstream side in the refrigerant flow direction. A bypass pipe is provided between the refrigerant inlet side and the refrigerant outlet side of the water-refrigerant heat exchange part, and a refrigerant flow path is provided on the refrigerant inlet side with the water-refrigerant heat exchange part side and the bypass pipe. A second flow path switching valve for switching to one of the two sides is provided, and the hot water supply unit passes from the downstream water-refrigerant heat exchange unit side to the upstream water-refrigerant heat exchange unit to the hot water heating side. The first water passage through which the hot water flows, and between the downstream water-refrigerant heat exchanger and the upstream water-refrigerant heat exchanger through the third flow path switching valve to the hot water supply side. The water flow circuit, and the control means sets the second flow path switching valve in the transcritical cycle operation. In addition to switching to the circulation pipe side, the third flow path switching valve is switched to the second water flow circuit side, and the second flow path switching valve is switched to the water-refrigerant heat exchange side during the subcritical cycle operation. At the same time, the third flow path switching valve is switched to the first water flow circuit side.

本発明において、上記制御手段は、請求項に記載されているように、上記亜臨界サイクル運転から上記遷臨界サイクル運転への切替時には、上記高元側の第1膨張弁の開度を閉側に所定に絞った状態で、上記高元側の第1圧縮機の回転数を上昇させ、上記高元側の第1蒸発部での蒸発圧力の低下が所定値よりも大きい場合には、上記低元側の第2圧縮機の回転数および/または第2膨張弁の開度を所定に制御する。
In the present invention, as described in claim 5 , the control means closes the opening of the high-side first expansion valve when switching from the subcritical cycle operation to the transcritical cycle operation. When the rotational speed of the first high-side compressor is increased in a state of being squeezed to a predetermined side, and the lowering of the evaporation pressure at the first high-evaporator is larger than a predetermined value, The rotational speed of the second compressor on the lower side and / or the opening of the second expansion valve are controlled to be predetermined.

また、上記制御手段は、請求項に記載されているように、上記遷臨界サイクル運転から上記亜臨界サイクル運転への切替時には、上記高元側の第1膨張弁の開度を開側に所定に大きくした状態で、上記高元側の第1圧縮機の回転数を下げ、上記高元側の第1蒸発部での蒸発圧力の低下が所定値よりも小さい場合には、上記低元側の第2圧縮機の回転数および/または第2膨張弁の開度を所定に制御する。
In addition, as described in claim 6 , the control means sets the opening of the high-side first expansion valve to the open side when switching from the transcritical cycle operation to the subcritical cycle operation. When the rotational speed of the first compressor on the high power side is lowered in a state where it is increased to a predetermined level, and the decrease in the evaporation pressure in the first evaporator on the high power side is smaller than a predetermined value, the low power The rotational speed of the second compressor on the side and / or the opening of the second expansion valve are controlled to be predetermined.

本発明によれば、出湯温度が高く、水の流量が少ない給湯時には、高元側冷媒回路の運転サイクルが超臨界域の冷媒顕熱で温水供給部内の水を加熱昇温する遷臨界サイクル運転とされ、これに対して、出湯温度が給湯よりも低く、水の流量が給湯よりも多い温水暖房時には、高元側冷媒回路の運転サイクルが冷媒の凝縮熱で温水供給部内の水を加熱昇温する亜臨界サイクル運転に切り替えられるようにしたことにより、全体として効率のよい運転を行うことができる。   According to the present invention, at the time of hot water supply where the temperature of the hot water is high and the flow rate of water is low, the operation cycle of the high-side refrigerant circuit heats and heats the water in the hot water supply unit with the refrigerant sensible heat in the supercritical region. On the other hand, during hot water heating where the tapping temperature is lower than that of the hot water supply and the flow rate of water is higher than that of the hot water supply, the operation cycle of the high-side refrigerant circuit heats up the water in the hot water supply section with the heat of condensation of the refrigerant. By switching to the warming subcritical cycle operation, an efficient operation as a whole can be performed.

本発明において採用される(a)亜臨界サイクル運転時におけるp−h線図,(b)遷臨界サイクル運転におけるp−h線図。The (a) ph diagram at the time of subcritical cycle operation adopted in the present invention, (b) the ph diagram at transcritical cycle operation. 本発明の第1実施形態を示す冷凍回路図。The refrigeration circuit diagram which shows 1st Embodiment of this invention. 上記第1実施形態の動作フローチャート。The operation | movement flowchart of the said 1st Embodiment. 本発明の第2実施形態を示す冷凍回路図。The freezing circuit diagram which shows 2nd Embodiment of this invention. 上記第2実施形態の動作フローチャート。The operation | movement flowchart of the said 2nd Embodiment. 上記各実施形態における遷臨界サイクルへの運転切替時の制御フローチャート。The control flowchart at the time of the operation | movement switching to the transcritical cycle in each said embodiment. 上記各実施形態における亜臨界サイクルへの運転切替時の制御フローチャート。The control flowchart at the time of the operation | movement switching to the subcritical cycle in each said embodiment.

次に、図1ないし図7により、本発明の実施形態について説明するが、本発明はこれに限定されるものではない。   Next, an embodiment of the present invention will be described with reference to FIGS. 1 to 7, but the present invention is not limited to this.

遷臨界サイクル運転によれば、冷媒と水とを小さい温度差で熱交換し、なおかつ、大きなエンタルピー差を確保できることから、水を低い温度から高い温度まで加熱昇温することができるため、給湯に適していると言える。一方、戻り温水の温度が高く十分に放熱が行われない場合には、給湯と同等のエンタルピー差を確保するには、圧縮機吐出温度が非常に高くなり、場合によっては過熱がとれず圧縮機吸入冷媒が二相状態になるおそれもあるため、温水暖房にはあまり適していない。   Transcritical cycle operation allows heat exchange between refrigerant and water with a small temperature difference, and a large enthalpy difference can be ensured, so water can be heated from a low temperature to a high temperature. It can be said that it is suitable. On the other hand, if the temperature of the return hot water is high and sufficient heat dissipation is not performed, the compressor discharge temperature will be very high to ensure the same enthalpy difference as hot water supply. Since the intake refrigerant may be in a two-phase state, it is not very suitable for hot water heating.

これに対して、亜臨界サイクル運転の場合、凝縮域で高い温度の潜熱エンタルピー差を大きく確保できることから、温水暖房のように昇温幅の小さい加熱昇温に適していると言える。   On the other hand, in the case of subcritical cycle operation, a large difference in latent heat enthalpy at a high temperature can be secured in the condensation region, so that it can be said that it is suitable for heating and heating with a small heating range such as hot water heating.

そこで、本発明では、高元側の冷凍サイクルが、温水暖房時には、図1(a)に示すp−h線図に沿った亜臨界サイクル運転とされ、これに対して、給湯時には、図1(b)に示すp−h線図に沿った遷臨界サイクル運転に切り替えられる。   Therefore, in the present invention, the high-side refrigeration cycle is set to a subcritical cycle operation according to the ph diagram shown in FIG. 1 (a) during hot water heating, whereas in the hot water supply, FIG. The operation is switched to the transcritical cycle operation along the ph diagram shown in (b).

そのため、図2に示すように、第1実施形態は、基本的な構成として、高元側冷凍サイクルとして用いられる第1冷媒回路10と、低元側冷凍サイクルとして用いられる第2冷媒回路20と、給湯端末と温水暖房端末とに温水を供給する温水供給部30とを備える。   Therefore, as shown in FIG. 2, the first embodiment includes, as a basic configuration, a first refrigerant circuit 10 that is used as a high-side refrigeration cycle, and a second refrigerant circuit 20 that is used as a low-side refrigeration cycle. And a hot water supply unit 30 for supplying hot water to the hot water supply terminal and the hot water heating terminal.

高元側の第1冷媒回路10の冷媒循環系10a内には、圧縮機11,凝縮部12,膨張弁13,蒸発部14およびアキュムレータ15が含まれ、同様に、低元側の第2冷媒回路20の冷媒循環系20a内にも、圧縮機21,凝縮部22,膨張弁23,蒸発部(空気−冷媒熱交換器)24およびアキュムレータ25が含まれている。   The refrigerant circulation system 10a of the first refrigerant circuit 10 on the higher element side includes a compressor 11, a condensing unit 12, an expansion valve 13, an evaporation unit 14, and an accumulator 15, and similarly, the second refrigerant on the lower element side. The refrigerant circulation system 20a of the circuit 20 also includes a compressor 21, a condensing unit 22, an expansion valve 23, an evaporation unit (air-refrigerant heat exchanger) 24, and an accumulator 25.

温水供給部30は貯湯タンク31を備え、貯湯タンク31内の温水を図示しない蛇口栓等の給湯端末と、暖房端末32とに供給する。この実施形態において、暖房端末32は温水ファンコンベクタであるが、床暖房パネルやラジエータであってもよい。   The hot water supply unit 30 includes a hot water storage tank 31 and supplies hot water in the hot water storage tank 31 to a hot water supply terminal such as a faucet plug (not shown) and a heating terminal 32. In this embodiment, the heating terminal 32 is a hot water fan vector, but may be a floor heating panel or a radiator.

高元側の凝縮部12と温水供給部30とが、水−冷媒熱交換器Aを介して熱的に接続され、また、高元側の蒸発部14と低元側の凝縮部22とが、冷媒間熱交換器Bを介して熱的に接続されている。   The high-side condensing unit 12 and the hot water supply unit 30 are thermally connected via the water-refrigerant heat exchanger A, and the high-side evaporating unit 14 and the low-side condensing unit 22 are connected to each other. The heat exchanger B is thermally connected via the inter-refrigerant heat exchanger B.

この第1実施形態において、水−冷媒熱交換器Aは、第1水−冷媒熱交換部A1と第2水−冷媒熱交換部A2とを有し、これらの水−冷媒熱交換部A1,A2は、並列として冷媒循環系10aに接続されている。   In this first embodiment, the water-refrigerant heat exchanger A has a first water-refrigerant heat exchange part A1 and a second water-refrigerant heat exchange part A2, and these water-refrigerant heat exchange parts A1, A2 is connected in parallel to the refrigerant circulation system 10a.

これに伴って、凝縮部12も第1凝縮部121と第2凝縮部122とに分割され、第1凝縮部121は第1水−冷媒熱交換部A1内に配置され、第2凝縮部122は第2水−冷媒熱交換部A2内に配置されている。   Accordingly, the condensing unit 12 is also divided into a first condensing unit 121 and a second condensing unit 122, and the first condensing unit 121 is disposed in the first water-refrigerant heat exchange unit A <b> 1 and the second condensing unit 122. Is disposed in the second water-refrigerant heat exchange section A2.

一方の第1凝縮部121の冷媒入口側には開閉弁16が設けられ、第1および第2凝縮部121,122の冷媒出口側は合流して膨張弁13に至る。   The opening / closing valve 16 is provided on the refrigerant inlet side of the first condensing part 121, and the refrigerant outlet sides of the first and second condensing parts 121, 122 merge to reach the expansion valve 13.

温水供給部30は、貯湯タンク31の底部側から引き出された往路配管33を有し、往路配管33には、流路切替弁34と水循環用の送水ポンプ35とが含まれている。   The hot water supply unit 30 has an outward piping 33 drawn from the bottom side of the hot water storage tank 31, and the outward piping 33 includes a flow path switching valve 34 and a water supply pump 35 for water circulation.

流路切替弁34は、交代的に切り替えられる2つの流入口34a,34bと、一つの流出口34cとを有する三方弁で、一方の流入口34aに往路配管33が接続され、流出口34cに送水ポンプ35の吸い込み側が接続されている。   The flow path switching valve 34 is a three-way valve having two inflow ports 34a and 34b that are alternately switched and one outflow port 34c. The forward piping 33 is connected to one inflow port 34a, and the outflow port 34c is connected to the outflow port 34c. The suction side of the water pump 35 is connected.

送水ポンプ35の吐出側配管は二股の通水路に分岐され、その一方の通水路331は第1水−冷媒熱交換部A1内に通され、他方の通水路332は第2水−冷媒熱交換部A2内に通されている。なお、一方の通水路331には開閉弁333が設けられている。   The discharge-side piping of the water supply pump 35 is branched into a bifurcated water passage, one of the water passages 331 is passed through the first water-refrigerant heat exchanger A1, and the other water passage 332 is in the second water-refrigerant heat exchange. It passes through part A2. One water passage 331 is provided with an on-off valve 333.

図2において、各凝縮部121,122に流れる冷媒の流れ方向は上から下であり、これに対して、各通水路331,332に流れる水の流れ方向は下から上であり、冷媒の流れと水の流れは対向流である。   In FIG. 2, the flow direction of the refrigerant flowing through the condensing units 121 and 122 is from the top to the bottom, whereas the flow direction of water flowing through the water passages 331 and 332 is from the bottom to the top. And the flow of water is countercurrent.

各通水路331,332の他端側は合流し、その合流配管334を介して流路切替弁37に至る。流路切替弁37は、一つの流入口37aと、交代的に切り替えられる2つの流出口37b,37cとを有する三方弁で、流入口37aに上記合流配管334が接続される。   The other end sides of the water passages 331 and 332 join together and reach the passage switching valve 37 via the joining pipe 334. The flow path switching valve 37 is a three-way valve having one inflow port 37a and two outflow ports 37b and 37c that are switched alternately, and the junction pipe 334 is connected to the inflow port 37a.

また、一方の流出口37bには、暖房端末32を含む温水循環系38の一端側が接続され、他方の流出口37cには貯湯タンク31の上部に戻される復路配管39が接続されている。温水循環系38の他端側は、上記流路切替弁34の残された流入口34bに接続されている。   One outlet 37b is connected to one end of a hot water circulation system 38 including the heating terminal 32, and the other outlet 37c is connected to a return pipe 39 that is returned to the upper part of the hot water storage tank 31. The other end of the hot water circulation system 38 is connected to the remaining inlet 34 b of the flow path switching valve 34.

この第1実施形態に係る給湯・温水暖房装置は、高元側の冷凍サイクル(第1冷媒回路10)を温水暖房時には亜臨界サイクル運転とし、給湯時には遷臨界サイクル運転に切り替えるに必要な制御を行う制御手段40を備えている。   The hot water supply / hot water heating apparatus according to the first embodiment performs control necessary for switching the high-side refrigeration cycle (first refrigerant circuit 10) to subcritical cycle operation during hot water heating and switching to transcritical cycle operation during hot water supply. The control means 40 to perform is provided.

これにより、温水暖房運転時には、水−冷媒熱交換器を2つ以上に切り替えて大きい送水量に対応できるようにし、送水量が温水暖房よりも小さい給湯時には、基本的にひとつの水−冷媒熱交換器で対応する。   Thereby, at the time of hot water heating operation, the water-refrigerant heat exchanger is switched to two or more so as to be able to cope with a large amount of water supply, and at the time of hot water supply where the amount of water supply is smaller than that of hot water heating, basically one water-refrigerant heat Correspond with an exchange.

制御手段40には、CPUやマイクロコンピュータ等が用いられ、圧縮機11,21の回転数、膨張弁13,23の開度、開閉弁16,333、流路切替弁34,37および送水ポンプ35の送水量等を制御する。   As the control means 40, a CPU, a microcomputer or the like is used, and the rotation speeds of the compressors 11 and 21, the opening degrees of the expansion valves 13 and 23, the on-off valves 16 and 333, the flow path switching valves 34 and 37, and the water supply pump 35. Control the amount of water flow.

次に、第1実施形態の動作の一例について説明する。なお、給湯時は80℃出湯で、17℃の水を63K加熱昇温させ、温水暖房時は60℃出湯で、50℃の戻り温水を10K加熱昇温させるものとする。   Next, an example of the operation of the first embodiment will be described. It should be noted that at the time of hot water supply, 80 ° C. hot water is used and the temperature of 17 ° C. is heated by 63K, and at the time of hot water heating, the hot water is heated at 60 ° C. and the return hot water of 50 ° C. is heated by 10K.

まず、温水暖房時には、高元側冷媒回路10の開閉弁16と、通水路331の開閉弁333とを開として、第1および第2水−冷媒熱交換部A1,A2に冷媒と水とが流れる状態にする。   First, at the time of hot water heating, the on-off valve 16 of the high-source side refrigerant circuit 10 and the on-off valve 333 of the water passage 331 are opened, and refrigerant and water are supplied to the first and second water-refrigerant heat exchange units A1, A2. Make it flow.

また、流路切替弁34の流入口34a側を閉,流入口34b側を開、流路切替弁37の流出口37c側を閉,流出口37b側を開として、送水ポンプ35を起動するとともに、高元側冷媒回路10を亜臨界サイクル運転として、水−冷媒熱交換部A1,A2にて目標温度60℃の温水を生成し、その温水を暖房端末32を含む温水循環系38に流す。   The water supply pump 35 is started by closing the inlet 34a side of the flow path switching valve 34, opening the inlet 34b side, closing the outlet 37c side of the flow path switching valve 37, and opening the outlet 37b side. Then, the high-end side refrigerant circuit 10 is set to the subcritical cycle operation, hot water having a target temperature of 60 ° C. is generated in the water-refrigerant heat exchange units A 1, A 2, and the hot water flows to the hot water circulation system 38 including the heating terminal 32.

これに対して、給湯時には、高元側冷媒回路10の開閉弁16と、通水路331の開閉弁333とを閉として、第1水−冷媒熱交換部A1には冷媒,水ともに流さず、第2水−冷媒熱交換部A2のみに冷媒と水とが流れる状態にする。   On the other hand, at the time of hot water supply, the on-off valve 16 of the high-source side refrigerant circuit 10 and the on-off valve 333 of the water passage 331 are closed, and neither refrigerant nor water flows through the first water-refrigerant heat exchange unit A1, The refrigerant and water flow only in the second water-refrigerant heat exchange part A2.

また、流路切替弁34の流入口34a側を開,流入口34b側を閉、流路切替弁37の流出口37c側を開,流出口37b側を閉として、送水ポンプ35を起動するとともに、高元側冷媒回路10を遷臨界サイクル運転として、第2水−冷媒熱交換部A2で目標温度80℃の温水を生成し、その温水を温水循環系38には流さずに、復路配管39を介して貯湯タンク31に戻す。
The water supply pump 35 is started by opening the inlet 34a side of the flow path switching valve 34, closing the inlet 34b side, opening the outlet 37c side of the flow path switching valve 37, and closing the outlet 37b side. the high-side refrigerant circuit 10 as a transcritical cycle operation, the second water - to produce hot water of targets temperature 80 ° C. in the refrigerant heat exchanger A2, without supplying the the hot water to the hot water circulation system 38, return piping It returns to the hot water storage tank 31 through 39.

これにより、貯湯タンク31には約80℃の温水が貯められるが、市水(水道水)と適宜混合して約38〜45℃の温水に調温して給湯に供することが好ましい。また、給湯により減らされた水量については、市水を貯湯タンク31に給水すればよい。   Thus, hot water of about 80 ° C. is stored in the hot water storage tank 31, but it is preferable that the hot water tank 31 is appropriately mixed with city water (tap water) to adjust the temperature to about 38 to 45 ° C. to supply hot water. Moreover, what is necessary is just to supply city water to the hot water storage tank 31 about the amount of water reduced by hot water supply.

高元側冷媒回路10の亜臨界サイクル運転時および遷臨界サイクル運転時の動作点の一例を次表1に示す。

Figure 0005582294
An example of operating points during the subcritical cycle operation and the transcritical cycle operation of the high-source side refrigerant circuit 10 is shown in Table 1 below.
Figure 0005582294

また、高元側冷媒回路10の亜臨界サイクル運転時、遷臨界サイクル運転のいずれにおいても、低元側冷媒回路20は所定の条件下で運転されるが、その動作点の一例を次表2に示す。

Figure 0005582294
Further, in both the sub-critical cycle operation and the transcritical cycle operation of the high-source side refrigerant circuit 10, the low-source side refrigerant circuit 20 is operated under a predetermined condition. Shown in
Figure 0005582294

また、上記表1および表2の動作点における高元側冷媒回路10と低元側冷媒回路20の運転状況の一例を次表3に示す。

Figure 0005582294
In addition, Table 3 shows an example of operating conditions of the high-side refrigerant circuit 10 and the low-side refrigerant circuit 20 at the operating points in Tables 1 and 2 above.
Figure 0005582294

また、上記第1実施形態において、給湯時と温水暖房時の各弁16,34,37,333の切り替え状態および送水ポンプ35の送水量の動作切り替え状態を図3のフローチャートに示す。これによると、給湯運転時(遷臨界サイクル運転時)には、送水ポンプ35の送水量が小さくされ、温水暖房時(亜臨界サイクル運転時)には、送水ポンプ35の送水量が増加されている。   Moreover, in the said 1st Embodiment, the switching state of each valve 16,34,37,333 at the time of hot water supply and warm water heating and the operation switching state of the water supply amount of the water supply pump 35 are shown in the flowchart of FIG. According to this, during the hot water supply operation (transcritical cycle operation), the water supply amount of the water supply pump 35 is reduced, and during the hot water heating (subcritical cycle operation), the water supply amount of the water supply pump 35 is increased. Yes.

次に、図4を参照して、本発明の第2実施形態について説明する。この第2実施形態においても、水−冷媒熱交換器Aは、第1水−冷媒熱交換部A1と第2水−冷媒熱交換部A2とを有しているが、上記第1実施形態と異なる点は、第1水−冷媒熱交換部A1と第2水−冷媒熱交換部A2とが直列に高元側の冷媒循環回路10a内に組み込まれている点である。そのほかの構成は、上記第1実施形態と同じであってよい。   Next, a second embodiment of the present invention will be described with reference to FIG. Also in the second embodiment, the water-refrigerant heat exchanger A includes the first water-refrigerant heat exchange part A1 and the second water-refrigerant heat exchange part A2. A different point is that the first water-refrigerant heat exchange part A1 and the second water-refrigerant heat exchange part A2 are incorporated in series in the refrigerant circulation circuit 10a on the higher side. Other configurations may be the same as those in the first embodiment.

高元側の冷媒循環回路10aの冷媒の流れ方向を基準として、その上流側に第1水−冷媒熱交換部A1が配置され、第2水−冷媒熱交換部A2は、第1水−冷媒熱交換部A1の下流側に配置されている。   The first water-refrigerant heat exchange unit A1 is disposed upstream of the refrigerant flow direction of the high-side refrigerant circulation circuit 10a as a reference, and the second water-refrigerant heat exchange unit A2 includes the first water-refrigerant heat exchange unit A2. It arrange | positions in the downstream of heat exchange part A1.

この第2実施形態によると、第1凝縮部121と第2凝縮部122は直列として圧縮機11の吐出側と膨張弁13との間に配置されるが、上流側の第1凝縮部121の冷媒入口側と冷媒出口側との間に迂回配管18が接続されるとともに、その冷媒入口側に流路切替弁17が設けられる。   According to the second embodiment, the first condensing unit 121 and the second condensing unit 122 are arranged in series between the discharge side of the compressor 11 and the expansion valve 13. A bypass pipe 18 is connected between the refrigerant inlet side and the refrigerant outlet side, and a flow path switching valve 17 is provided on the refrigerant inlet side.

流路切替弁17には、一つの流入口17aと、交代的に切り替えられる2つの流出口17b,17cとを有する三方弁が用いられ、流入口17aに圧縮機11の吐出側が接続され、一方の流出口17bに迂回配管18が接続され、他方の流出口17cに第1凝縮部121が接続される。   The flow path switching valve 17 is a three-way valve having one inflow port 17a and two outflow ports 17b and 17c that are alternately switched, and the discharge side of the compressor 11 is connected to the inflow port 17a. The bypass pipe 18 is connected to the outlet 17b, and the first condenser 121 is connected to the other outlet 17c.

通水側も、通水路331と通水路332とが直列に接続されるが、その間に流路切替弁36が設けられる。流路切替弁36には、一つの流入口36aと、交代的に開閉される2つの流出口36b,36cとを有する三方弁が用いられる。   On the water flow side, the water flow path 331 and the water flow path 332 are connected in series, and a flow path switching valve 36 is provided therebetween. As the flow path switching valve 36, a three-way valve having one inflow port 36a and two outflow ports 36b and 36c that are alternately opened and closed is used.

流路切替弁36の上流側である流入口36aには、第2水−冷媒熱交換部A2内を含む通水路332が接続され、流路切替弁36の下流側となる流出口36bには、復路配管39が接続され、他方の流出口36cには、第1水−冷媒熱交換部A1内を通される通水側では下流側となる通水路331が接続される。通水路331の出口側は、温水循環系38に接続される。   A water passage 332 including the inside of the second water-refrigerant heat exchange part A2 is connected to the inlet 36a that is upstream of the flow path switching valve 36, and to the outlet 36b that is downstream of the flow path switching valve 36. The return pipe 39 is connected, and the other outflow port 36c is connected with a downstream water passage 331 on the water passage side through the first water-refrigerant heat exchange section A1. The outlet side of the water passage 331 is connected to the hot water circulation system 38.

次に、第2実施形態の動作について説明する。ここでも上記第1実施形態と同様に、給湯時は80℃出湯で、17℃の水を63K加熱昇温させ、温水暖房時は60℃出湯で、50℃の戻り温水を10K加熱昇温させるものとする。   Next, the operation of the second embodiment will be described. Here again, as in the first embodiment, 80 ° C. hot water is used for hot water supply, and 17 ° C. water is heated for 63K, and 60 ° C. hot water is used for hot water heating, and 50 ° C. return hot water is heated for 10K. Shall.

まず、温水暖房時には、冷媒回路側では、流路切替弁の流出口17cを開,流出口17bを閉として、第1凝縮部121と第2凝縮部122とを直列につなぐ。   First, at the time of warm water heating, on the refrigerant circuit side, the outlet 17c of the flow path switching valve is opened and the outlet 17b is closed, and the first condensing unit 121 and the second condensing unit 122 are connected in series.

また、通水側でも、流路切替弁36の流出口36cを開,流出口36bを閉として、通水路332,331を直列につなぐとともに、流路切替弁34の流入口34a側を閉,流入口34b側を開として、温水循環系38に温水が流れるようにする。   On the water flow side, the outlet 36c of the flow path switching valve 36 is opened, the outlet 36b is closed, the water paths 332 and 331 are connected in series, and the inlet 34a side of the flow path switching valve 34 is closed. The inlet 34b side is opened so that warm water flows through the warm water circulation system 38.

そして、上記第1実施形態と同様に、送水ポンプ35を起動するとともに、高元側冷媒回路10を亜臨界サイクル運転として、水−冷媒熱交換部A1,A2にて目標温度60℃の温水を生成し、その温水を暖房端末32を含む温水循環系38に流す。   And like the said 1st Embodiment, while starting the water supply pump 35, the high side refrigerant circuit 10 is made into a subcritical cycle operation, and hot water with the target temperature of 60 degreeC is made into water-refrigerant heat exchange part A1, A2. The hot water is generated and flows into the hot water circulation system 38 including the heating terminal 32.

これに対して、給湯時には、冷媒回路側では、流路切替弁の流出口17bを開,流出口17cを閉として、圧縮機11からの吐出冷媒を迂回配管18を介して第2凝縮部122へと流し、第1凝縮部121には冷媒を流さないようにする。   On the other hand, at the time of hot water supply, on the refrigerant circuit side, the outlet 17b of the flow path switching valve is opened and the outlet 17c is closed, and the refrigerant discharged from the compressor 11 passes through the bypass pipe 18 to the second condensing unit 122. So that the refrigerant does not flow through the first condensing unit 121.

また、通水側でも、流路切替弁36の流出口36cを閉,流出口36bを開として、第1水−冷媒熱交換部A1の通水路331には温水を流さず、第2水−冷媒熱交換部A2の通水路332から復路配管39を介して貯湯タンク31に温水を戻すようにする。   On the water flow side, the outlet 36c of the flow path switching valve 36 is closed and the outlet 36b is opened so that warm water does not flow through the water passage 331 of the first water-refrigerant heat exchange section A1, and the second water- The hot water is returned from the water passage 332 of the refrigerant heat exchange section A2 to the hot water storage tank 31 via the return pipe 39.

そして、上記第1実施形態と同様に、送水ポンプ35を起動するとともに、高元側冷媒回路10を遷臨界サイクル運転として、第2水−冷媒熱交換部A2で目標温度80℃の温水を生成し、その温水を温水循環系38には流さずに、復路配管39を介して貯湯タンク31に戻す。
Then, as in the first embodiment, as well as activates the water pump 35, the high-side refrigerant circuit 10 as a transcritical cycle operation, a second water - hot water of targets temperature 80 ° C. In the refrigerant heat exchanger A2 The hot water is generated and returned to the hot water storage tank 31 via the return pipe 39 without flowing into the hot water circulation system 38.

参考までに、上記第2実施形態において、給湯時と温水暖房時の各弁17,34,36の切り替え状態および送水ポンプ35の送水量の動作切り替え状態を図5のフローチャートに示す。第2実施形態においても、給湯運転時(遷臨界サイクル運転時)には、送水ポンプ35の送水量が小さくされ、温水暖房時(亜臨界サイクル運転時)には、送水ポンプ35の送水量が増加されている。   For reference, in the second embodiment, the switching state of the valves 17, 34, 36 and the operation switching state of the water supply amount of the water pump 35 during hot water supply and hot water heating are shown in the flowchart of FIG. Also in the second embodiment, during the hot water supply operation (transcritical cycle operation), the water supply amount of the water supply pump 35 is reduced, and during hot water heating (during subcritical cycle operation), the water supply amount of the water supply pump 35 is reduced. Has been increased.

ここで、図6の制御フローチャートを参照して、上記第1および第2実施形態における温水暖房運転(亜臨界サイクル運転)から給湯運転(遷臨界サイクル運転)へ切り替えるときの制御動作について説明する(p−h線図は図1(b)参照)。   Here, with reference to the control flowchart of FIG. 6, the control operation when switching from the hot water heating operation (subcritical cycle operation) to the hot water supply operation (transcritical cycle operation) in the first and second embodiments will be described ( (See FIG. 1B for the ph diagram).

まず、高元側(冷媒回路10側)の膨張弁(電子膨張弁)13の開度を任意ステップ分閉側に絞り、高元側圧力の高低差を広げたうえで、高元側の圧縮機11の回転数を上昇させる。   First, the opening of the expansion valve (electronic expansion valve) 13 on the high-side (refrigerant circuit 10 side) is narrowed to the closed side by an arbitrary step, and the high-side pressure difference is widened, and then the high-side compression is performed. The rotation speed of the machine 11 is increased.

これにより、高元側の蒸発部14での蒸発圧力が下がるため、蒸発温度が低くなり、これに伴って、低元側(冷媒回路20側)の凝縮圧力が押し下げられる。これは、高元側の必要とする吸熱量が変化したため、冷媒間熱交換器Bでの熱バランスの位置が変化したことによる。   As a result, the evaporation pressure in the high-evaporator 14 is lowered, so that the evaporation temperature is lowered, and the condensing pressure on the low-source side (refrigerant circuit 20 side) is pushed down accordingly. This is due to the change in the heat balance position in the inter-refrigerant heat exchanger B because the endothermic amount required on the high-end side has changed.

したがって、効率が良い圧力で高元側,低元側ともに熱バランスをとるために、低元側の圧縮機21の回転数を上昇させ、また、低元側の膨張弁(電子膨張弁)23の開度を最適な状態に調整する必要がある。   Therefore, in order to achieve a heat balance between the high-source side and the low-source side with an efficient pressure, the rotational speed of the low-source side compressor 21 is increased, and the low-source side expansion valve (electronic expansion valve) 23 is increased. It is necessary to adjust the opening degree of the to an optimum state.

そこで、この例では、高元側で標準としている蒸発圧力をPstとして、高元側の蒸発圧力Pの低下(Pst−P)が例えば0.15MPaより大きい場合(Pst−P>0.15MPa)には、低元側の圧縮機21の回転数を上昇させ、必要に応じて膨張弁23の開度を調整し、Pst−P≦0.15MPaとなるようにする。   Therefore, in this example, when the evaporation pressure that is standard on the high element side is Pst, and the decrease (Pst-P) of the evaporation pressure P on the high element side is larger than 0.15 MPa, for example (Pst-P> 0.15 MPa) For this, the rotational speed of the low-side compressor 21 is increased, and the opening degree of the expansion valve 23 is adjusted as necessary so that Pst−P ≦ 0.15 MPa.

このような調整を行ったうえで、高元側の高圧側圧力を超臨界にするに際し、臨界圧力を例えば0.5MPa超えるように、高元側の圧縮機11の回転数および/または膨張弁13の開度を調整する。   After making such adjustment, when the high pressure on the high pressure side is made supercritical, the rotation speed and / or the expansion valve of the high pressure compressor 11 is set so that the critical pressure exceeds 0.5 MPa, for example. The opening degree of 13 is adjusted.

また、出湯温度や高元側の圧縮機11の吐出温度等を確認しながら、高元側の圧縮機11の回転数や温水流量の調整を行い、指示出湯温度(例えば80℃)に到達させる。   In addition, while confirming the hot water temperature, the discharge temperature of the high-end compressor 11, etc., the rotational speed and hot water flow rate of the high-end compressor 11 are adjusted to reach the indicated hot water temperature (for example, 80 ° C.). .

次に、図7の制御フローチャートを参照して、上記第1および第2実施形態における給湯運転(遷臨界サイクル運転)から温水暖房運転(亜臨界サイクル運転)へ切り替えるときの制御動作について説明する(p−h線図は図1(a)参照)。   Next, with reference to the control flowchart of FIG. 7, the control operation when switching from the hot water supply operation (transcritical cycle operation) to the hot water heating operation (subcritical cycle operation) in the first and second embodiments will be described ( (See FIG. 1A for the ph diagram).

まず、高元側の膨張弁13の開度を任意ステップ分開側とし、高元側圧力の高低差を小さくしたうえで、高元側の圧縮機11の回転数を出湯温度に見合う凝縮温度(例えば60℃)になるように下げる。   First, the opening degree of the high-end side expansion valve 13 is set to the open side by an arbitrary step, and the difference in height of the high-end side pressure is reduced. For example, 60 ° C.).

また、高元側の圧縮機11の吐出温度も、凝縮温度に対して+15K程度になるように、高元側の圧縮機11の回転数,膨張弁13の開度および温水流量の調整を行う。   Further, the rotational speed of the high-end compressor 11, the opening degree of the expansion valve 13, and the hot water flow rate are adjusted so that the discharge temperature of the high-end compressor 11 is also about + 15K with respect to the condensation temperature. .

その際、高元側と、その熱源となる低元側との熱バランスをとるために、低元側の圧縮機21の回転数を下げる制御を行い、高元側の圧縮機11の圧縮比と低元側の圧縮機21の圧縮比とがほぼ同じになるように、冷媒間熱交換器Bにおける圧力(高元側は蒸発圧力,低元側は凝縮圧力)を設定することが効率的に好ましい。   At that time, in order to achieve a heat balance between the high-source side and the low-source side that is the heat source, control is performed to reduce the rotational speed of the low-source-side compressor 21, and the compression ratio of the high-source-side compressor 11 is controlled. It is efficient to set the pressure in the inter-refrigerant heat exchanger B (evaporation pressure on the high element side and condensation pressure on the low element side) so that the compression ratio of the compressor on the low element side is approximately the same. Is preferable.

10 第1冷媒回路(高元側)
11 圧縮機
12 凝縮部
121 第1凝縮部
122 第2凝縮部
13 膨張弁
14 蒸発部
16 開閉弁
20 第2冷媒回路(低元側)
21 圧縮機
22 凝縮部
23 膨張弁
24 蒸発部
30 温水供給部
31 貯湯タンク
32 暖房端末
33 往路配管
331,332 通水路
333 開閉弁
34,36,37 流路切替弁(三方弁)
35 送水ポンプ
38 温水循環系
39 復路配管
40 制御手段
A 水−冷媒熱交換器
A1 第1水−冷媒熱交換器
A2 第2水−冷媒熱交換器
B 冷媒間熱交換器
10 First refrigerant circuit (high-end side)
DESCRIPTION OF SYMBOLS 11 Compressor 12 Condensing part 121 1st condensing part 122 2nd condensing part 13 Expansion valve 14 Evaporating part 16 On-off valve 20 2nd refrigerant circuit (low original side)
DESCRIPTION OF SYMBOLS 21 Compressor 22 Condensing part 23 Expansion valve 24 Evaporating part 30 Hot water supply part 31 Hot water storage tank 32 Heating terminal 33 Outward piping 331,332 Water passage 333 On-off valve 34,36,37 Channel switching valve (three-way valve)
35 Water Pump 38 Hot Water Circulation System 39 Return Pipe 40 Control Unit A Water-Refrigerant Heat Exchanger A1 First Water-Refrigerant Heat Exchanger A2 Second Water-Refrigerant Heat Exchanger B Inter-Refrigerant Heat Exchanger

Claims (6)

給湯および/または温水暖房用の温水供給部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む高元側冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む低元側冷媒回路とを備え、上記温水供給部と上記高元側の第1凝縮部との間に水−冷媒熱交換器が設けられ、上記高元側の第1蒸発部と上記低元側の第2凝縮部との間に冷媒間熱交換器が設けられている二元冷凍サイクルによる給湯・温水暖房装置において、
給湯時と温水暖房時とで上記高元側冷媒回路の運転サイクルを切り替える制御手段を有するとともに、上記水−冷媒熱交換器は、上記高元側冷媒回路に対して並列に接続される少なくとも2つの水−冷媒熱交換部を備え、
上記制御手段は、上記高元側冷媒回路の運転サイクルを、給湯時には超臨界域の冷媒顕熱で上記温水供給部内の水を加熱昇温する遷臨界サイクル運転とし、上記遷臨界サイクル運転時にはいずれかひとつの水−冷媒熱交換部を使用し、温水暖房時には冷媒の凝縮熱で上記温水供給部内の水を加熱昇温する亜臨界サイクル運転とし、上記亜臨界サイクル運転時には2つの水−冷媒熱交換部を使用することを特徴とする二元冷凍サイクルによる給湯・温水暖房装置。
A hot water supply unit for hot water supply and / or hot water heating, a high-side refrigerant circuit including a first compressor, a first condensing unit, a first expansion valve and a first evaporating unit, a second compressor, and a second condensing unit , A low-side refrigerant circuit including a second expansion valve and a second evaporator, and a water-refrigerant heat exchanger is provided between the hot water supply unit and the high-side first condensing unit, In the hot water supply / hot water heating device by the dual refrigeration cycle in which the inter-refrigerant heat exchanger is provided between the high-evaporator side first evaporator and the low-source side second condenser unit,
At least refrigerant heat exchanger is connected in parallel to the high-side refrigerant circuit - in that during hot water supply during the hot water heating as well as have a control means for switching the operation cycle of the high-side refrigerant circuit, the water With two water-refrigerant heat exchangers,
The control means, the operating cycle of the high-side refrigerant circuit, at the time of hot water and transcritical cycle operation for heating heating water in the hot water supply unit with refrigerant sensible heat of supercritical range, any at the time of the transcritical cycle operation One water-refrigerant heat exchange unit is used, and in the hot water heating , the water in the hot water supply unit is heated and heated by the heat of condensation of the refrigerant, and in the subcritical cycle operation, two water-refrigerants are used. A hot water supply / hot water heating device using a dual refrigeration cycle, characterized by using a heat exchange section .
上記遷臨界サイクル運転時に使用される上記いずれかひとつの水−冷媒熱交換部には、冷媒流路用開閉弁と通水路用開閉弁とが設けられているとともに、上記水−冷媒熱交換器の出口側には冷媒により加熱昇温された温水を給湯側と温水暖房側とに切り替える第1流路切替弁が設けられ、上記制御手段は、上記遷臨界サイクル運転時には、上記冷媒流路用開閉弁と通水路用開閉弁をともに閉にするとともに、上記第1流路切替弁を給湯側に切り替え、上記亜臨界サイクル運転時には、上記冷媒流路用開閉弁と通水路用開閉弁をともに開にするとともに、上記第1流路切替弁を温水暖房側に切り替えることを特徴とする請求項に記載の二元冷凍サイクルによる給湯・温水暖房装置。 The water-refrigerant heat exchanger used in the transcritical cycle operation is provided with a refrigerant flow path opening / closing valve and a water flow path opening / closing valve, and the water-refrigerant heat exchanger. A first flow path switching valve for switching the hot water heated by the refrigerant between the hot water supply side and the hot water heating side is provided on the outlet side of the refrigerant, and the control means is for the refrigerant flow path during the transcritical cycle operation. Both the on-off valve and the water passage on-off valve are closed, the first flow path switching valve is switched to the hot water supply side, and the refrigerant flow on-off valve and the water passage on-off valve are both connected during the subcritical cycle operation. The hot water supply / hot water heating apparatus with a dual refrigeration cycle according to claim 1 , wherein the first flow path switching valve is switched to a hot water heating side while being opened. 給湯および/または温水暖房用の温水供給部と、第1圧縮機,第1凝縮部,第1膨張弁および第1蒸発部を含む高元側冷媒回路と、第2圧縮機,第2凝縮部,第2膨張弁および第2蒸発部を含む低元側冷媒回路とを備え、上記温水供給部と上記高元側の第1凝縮部との間に水−冷媒熱交換器が設けられ、上記高元側の第1蒸発部と上記低元側の第2凝縮部との間に冷媒間熱交換器が設けられている二元冷凍サイクルによる給湯・温水暖房装置において、
給湯時と温水暖房時とで上記高元側冷媒回路の運転サイクルを切り替える制御手段を有するとともに、上記水−冷媒熱交換器は、上記高元側冷媒回路に対して直列に接続される少なくとも2つの水−冷媒熱交換部を備え、
上記制御手段は、上記高元側冷媒回路の運転サイクルを、給湯時には超臨界域の冷媒顕熱で上記温水供給部内の水を加熱昇温する遷臨界サイクル運転とし、上記遷臨界サイクル運転時にはいずれかひとつの水−冷媒熱交換部を使用し、温水暖房時には冷媒の凝縮熱で上記温水供給部内の水を加熱昇温する亜臨界サイクル運転とし、上記亜臨界サイクル運転時には2つの水−冷媒熱交換部を使用することを特徴とする二元冷凍サイクルによる給湯・温水暖房装置。
A hot water supply unit for hot water supply and / or hot water heating, a high-side refrigerant circuit including a first compressor, a first condensing unit, a first expansion valve and a first evaporating unit, a second compressor, and a second condensing unit , A low-side refrigerant circuit including a second expansion valve and a second evaporator, and a water-refrigerant heat exchanger is provided between the hot water supply unit and the high-side first condensing unit, In the hot water supply / hot water heating device by the dual refrigeration cycle in which the inter-refrigerant heat exchanger is provided between the high-evaporator side first evaporator and the low-source side second condenser unit,
Control means for switching the operation cycle of the high-side refrigerant circuit between hot water supply and hot water heating, and the water-refrigerant heat exchanger is connected in series to the high-source side refrigerant circuit. With two water-refrigerant heat exchangers,
The control means sets the operation cycle of the high-side refrigerant circuit as a transcritical cycle operation in which the water in the hot water supply section is heated and heated with sensible heat in the supercritical region during hot water supply. A single water-refrigerant heat exchange unit is used, and in the hot water heating , the water in the hot water supply unit is heated and heated by the condensation heat of the refrigerant, and in the subcritical cycle operation, two water-refrigerant heats are used. water heating and hot water heating system by two-way refrigeration cycle you, characterized by using a replacement unit.
上記高元側冷媒回路に対して直列に接続される少なくとも2つの水−冷媒熱交換部のうち、冷媒の流れ方向で上流側の水−冷媒熱交換部の冷媒入口側と冷媒出口側との間には迂回配管が設けられているとともに、上記冷媒入口側には冷媒流路を上記水−冷媒熱交換部側と上記迂回配管側のいずれか一方に切り替える第2流路切替弁が設けられ、上記温水供給部は、下流側の水−冷媒熱交換部側から上流側の水−冷媒熱交換部を通って温水暖房側に温水が流される第1通水回路と、上記下流側の水−冷媒熱交換部と上記上流側の水−冷媒熱交換部との間から第3流路切替弁を介して給湯側に至る第2通水回路を有し、
上記制御手段は、上記遷臨界サイクル運転時には、上記第2流路切替弁を上記迂回配管側に切り替えるとともに、上記第3流路切替弁を上記第2通水回路側に切り替え、上記亜臨界サイクル運転時には、上記第2流路切替弁を上記水−冷媒熱交換部側に切り替えるとともに、上記第3流路切替弁を上記第1通水回路側に切り替えることを特徴とする請求項に記載の二元冷凍サイクルによる給湯・温水暖房装置。
Of the at least two water-refrigerant heat exchange units connected in series to the high-source side refrigerant circuit, the refrigerant inlet side and the refrigerant outlet side of the upstream water-refrigerant heat exchange unit in the refrigerant flow direction A bypass pipe is provided between them, and a second flow path switching valve for switching the refrigerant flow path to either the water-refrigerant heat exchange section side or the bypass pipe side is provided on the refrigerant inlet side. The hot water supply unit includes a first water flow circuit in which hot water flows from the downstream water-refrigerant heat exchange unit side to the hot water heating side through the upstream water-refrigerant heat exchange unit, and the downstream water -Having a second water flow circuit from the refrigerant heat exchange part and the upstream water-refrigerant heat exchange part to the hot water supply side via the third flow path switching valve;
In the transcritical cycle operation, the control means switches the second flow path switching valve to the bypass piping side, switches the third flow path switching valve to the second water flow circuit side, and controls the subcritical cycle. 4. The switch according to claim 3 , wherein, during operation, the second flow path switching valve is switched to the water-refrigerant heat exchange section side, and the third flow path switching valve is switched to the first water flow circuit side. Hot water supply / hot water heating system with dual refrigeration cycle.
上記制御手段は、上記亜臨界サイクル運転から上記遷臨界サイクル運転への切替時には、上記高元側の第1膨張弁の開度を閉側に所定に絞った状態で、上記高元側の第1圧縮機の回転数を上昇させ、上記高元側の第1蒸発部での蒸発圧力の低下が所定値よりも大きい場合には、上記低元側の第2圧縮機の回転数および/または第2膨張弁の開度を所定に制御することを特徴とする請求項1または3に記載の二元冷凍サイクルによる給湯・温水暖房装置。 The control means, when switching from the subcritical cycle operation to the transcritical cycle operation, with the opening of the high expansion side first expansion valve narrowed to a close side to a predetermined value, When the rotation speed of the first compressor is increased and the decrease in the evaporation pressure in the first evaporation section on the higher side is larger than a predetermined value, the rotation speed of the second compressor on the lower side and / or The hot water supply / hot water heating device with a dual refrigeration cycle according to claim 1 or 3 , wherein the opening of the second expansion valve is controlled to a predetermined value. 上記制御手段は、上記遷臨界サイクル運転から上記亜臨界サイクル運転への切替時には、上記高元側の第1膨張弁の開度を開側に所定に大きくした状態で、上記高元側の第1圧縮機の回転数を下げ、上記高元側の第1蒸発部での蒸発圧力の低下が所定値よりも小さい場合には、上記低元側の第2圧縮機の回転数および/または第2膨張弁の開度を所定に制御することを特徴とする請求項1または3に記載の二元冷凍サイクルによる給湯・温水暖房装置。 When switching from the transcritical cycle operation to the subcritical cycle operation, the control means is configured to increase the opening of the first high-side expansion valve to a predetermined value while opening the first high-side first expansion valve. When the rotation speed of the first compressor is reduced and the decrease in the evaporation pressure in the first evaporation section on the high-source side is smaller than a predetermined value, the rotation speed and / or the second rotation of the second compressor on the low-element side is reduced. The hot water supply / hot water heating device by the dual refrigeration cycle according to claim 1 or 3 , wherein the opening degree of the two expansion valves is controlled to a predetermined value.
JP2010083456A 2010-03-31 2010-03-31 Hot water / hot water heating system with dual refrigeration cycle Expired - Fee Related JP5582294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010083456A JP5582294B2 (en) 2010-03-31 2010-03-31 Hot water / hot water heating system with dual refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010083456A JP5582294B2 (en) 2010-03-31 2010-03-31 Hot water / hot water heating system with dual refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2011214776A JP2011214776A (en) 2011-10-27
JP5582294B2 true JP5582294B2 (en) 2014-09-03

Family

ID=44944706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010083456A Expired - Fee Related JP5582294B2 (en) 2010-03-31 2010-03-31 Hot water / hot water heating system with dual refrigeration cycle

Country Status (1)

Country Link
JP (1) JP5582294B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359247A (en) * 2014-11-08 2015-02-18 合肥天鹅制冷科技有限公司 Heat pump device
CN105928243A (en) * 2016-06-17 2016-09-07 科希曼电器有限公司 Combined type multifunctional heat pump system
CN108106036B (en) * 2017-12-05 2023-10-27 广东申菱环境系统股份有限公司 Heat pump utilizing waste heat of cascade refrigeration system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925383B2 (en) * 2002-10-11 2007-06-06 ダイキン工業株式会社 Hot water supply device, air conditioning hot water supply system, and hot water supply system
JP2004218943A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Air conditioning and water heater
JP3733119B2 (en) * 2003-02-21 2006-01-11 三洋電機株式会社 Heat pump water heater / heater
JP4484213B2 (en) * 2005-01-25 2010-06-16 東芝機器株式会社 Water heater
JP4776511B2 (en) * 2006-11-24 2011-09-21 日立アプライアンス株式会社 Refrigeration equipment
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device
JP2009264716A (en) * 2008-04-30 2009-11-12 Panasonic Corp Heat pump hot water system
JP4915680B2 (en) * 2009-06-30 2012-04-11 株式会社東洋製作所 Multi-source heat pump steam / hot water generator

Also Published As

Publication number Publication date
JP2011214776A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
KR101212698B1 (en) Heat pump type speed heating apparatus
JP5383816B2 (en) Air conditioner
KR101147268B1 (en) Heat pump system for heating/cooling and providing hot water and Control method thereof
WO2006004046A1 (en) Hot-water supply device
JP2010181104A (en) Heat pump type hot water-supply/air-conditioning device
JP2015031451A (en) Heating hot water supply system
WO2018025318A1 (en) Heat pump device
JP2014016079A (en) Heat pump
JP5300806B2 (en) Heat pump equipment
JP2012154574A (en) Refrigeration cycle apparatus and hydronic heater using the refrigeration cycle apparatus
JP6123697B2 (en) Heat pump type hot water heater
JP2017155944A (en) Refrigeration cycle device and hot water heating device including the same
JP5582294B2 (en) Hot water / hot water heating system with dual refrigeration cycle
JP2009264717A (en) Heat pump hot water system
JP5176474B2 (en) Heat pump water heater
JP4033788B2 (en) Heat pump equipment
JP2010210204A (en) Hot-water supply heating system
JP5447968B2 (en) Heat pump equipment
JP2004125205A (en) Waste heat recovery type heat pump
JP2011127778A (en) Fluid utilization system and operation control method of the same
JP5333557B2 (en) Hot water supply air conditioning system
JP2009133540A (en) Heat pump system
JP2009085479A (en) Hot water supply device
JP2010210207A (en) Hot water supply heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R151 Written notification of patent or utility model registration

Ref document number: 5582294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees